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This study is devoted to investigating and developing WSN based localisation 

approaches with high position accuracies indoors. The study initially summarises the design 

and implementation of localisation systems and WSN architecture together with the 

characteristics of LQI and RSSI values.  

A fingerprint localisation approach is utilised for indoor positioning applications. A k-

nearest neighbourhood algorithm (k-NN) is deployed, using Euclidean distances between the 

fingerprint database and the object fingerprints, to estimate unknown object positions. 

Weighted LQI and RSSI values are calculated and the k-NN algorithm with different weights 

is utilised to improve the position detection accuracy. Different weight functions are 

investigated with the fingerprint localisation technique. A novel weight function which 

produced the maximum position accuracy is determined and employed in calculations.  

The study covered designing and developing the centroid localisation (CL) and 

weighted centroid localisation (WCL) approaches by using LQI values. A reference node 

localisation approach is proposed. A star topology of reference nodes are to be utilized and a 

3-NN algorithm is employed to determine the nearest reference nodes to the object location. 

The closest reference nodes are employed to each nearest reference nodes and the object 

locations are calculated by using the differences between the closest and nearest reference 

nodes.  

A neighbourhood weighted localisation approach is proposed between the nearest 

reference nodes in star topology. Weights between nearest reference nodes are calculated by 

using Euclidean and physical distances. The physical distances between the object and the 

nearest reference nodes are calculated and the trigonometric techniques are employed to 

derive the object coordinates.  

An environmentally adaptive centroid localisation approach is proposed.Weighted 

standard deviation (STD) techniques are employed adaptively to estimate the unknown object 

positions. WSNs with minimum RSSI mean values are considered as reference nodes across 
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the sensing area. The object localisation is carried out in two phases with respect to these 

reference nodes. Calculated object coordinates are later translated into the universal 

coordinate system to determine the actual object coordinates.  

Virtual fingerprint localisation technique is introduced to determine the object locations 

by using virtual fingerprint database. A physical fingerprint database is organised in the form 

of virtual database by using LQI distribution functions. Virtual database elements are 

generated among the physical database elements with linear and exponential distribution 

functions between the fingerprint points. Localisation procedures are repeated with virtual 

database and localisation accuracies are improved compared to the basic fingerprint approach.  

In order to reduce the computation time and effort, segmentation of the sensing area is 

introduced. Static and dynamic segmentation techniques are deployed. Segments are defined 

by RSS ranges and the unknown object is localised in one of these segments. Fingerprint 

techniques are applied only in the relevant segment to find the object location.  

Finally, graphical user interfaces (GUI) are utilised with application program interfaces 

(API), in all calculations to visualise unknown object locations indoors.  
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CHAPTER 1 

INTRODUCTION 

 

 
1.1 Overview 

    Much research effort is spent nowadays to locate the positions of unknown objects. Indoor 

positioning systems are getting used more extensively as the suitable technologies are 

becoming more available. 

    Improvements in wireless technologies and mobile computing devices helped to generate 

great interest in location aware systems. Location systems locate or track mobile objects for 

different purposes. Indoor location aware applications range from monitoring the movements 

of the patients in hospitals to tracking the movements of goods in a factory. Outdoor location 

aware applications include tracking the location of fire fighters, soldiers in a military situation 

and providing navigation information for travelling ordinary people.  

    Location detection systems can determine the position of unknown objects by using 

different types of information [1, 2]. Absolute positions of the objects can be defined in 2D or 

3D Cartesian coordinate systems. One of the most well-known location detection system is 

the Global Positioning System (GPS). This is a global navigation system [3]. It provides 

location and time information 24 hours a day. See Figure 1.1. It is the most widely used 

outdoor location technology. It can detect a mobile object’s position with accuracies of up to a 

few meters. The GPS system has several satellites orbiting around the world. Each satellite 

within range transmits location and time information messages to land receivers. The receiver 

estimates the distances from each satellite to itself by using the time of signal flights.  

  

Figure 1.1: satellite in orbit [3] 
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    This distance information coming from satellites allows the receiver to calculate its position 

by geometric trilateration. GPS is not a suitable location detection system indoors due to the 

fact that signals are unable to penetrate through the buildings and other obstacles. 

    Another outdoor localisation technology is based on cellular Networks [4]. The location of 

mobile terminals, cell phones, can be determined by base stations. Accuracy of location 

detection can be increased by improving the radio signal characteristics and the number of 

base stations. These location systems can often provide satisfactory estimation results for 

outdoor environments, however they are unsatisfactory for indoor applications due to limits 

on the signal propagation. 

    There are three main Technologies which are used for indoor location detection systems. 

These technologies are based on ultrasonic [5], infrared (IR) [6], and radio frequency (RF)   

[7, 8]. Each technology has its own advantages and disadvantages in location estimation. IR 

based location system is one of the earliest position detection systems [9]. A typical example 

is an active badge, as shown in Figure 1.2. An example of an ultrasonic based system is the 

active bat system, as shown in Figure 1.3, where the tracked object wears a badge which 

emits an ultrasonic signal periodically [10].  

    

Figure 1.2: Active badge system [9]                 Figure 1.3: Active bat system [9] 

    Ultrasonic receivers with a radio link are placed in know locations in an area. They detect 

the signal information synchronised with transmitters and determine the object positions. 

However, due to characteristics of IR signals such as limited transmission range, line of sight 

property and negative effect of sunlight, the IR system has serious drawbacks. 

    Ultrasonic based technology offers low cost systems and fairly accurate location 

estimation. Typical examples are Cricket [11], in Figure 1.4 and Dolphin [12], in Figure 1.5, 

ultrasonic systems. The frequency range of their signals is limited. Dispersion of ultrasonic 

signals in different environments and interference from other sound sources make ultrasonic 

based location estimation unpopular. 
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Figure1.4: Cricket system [11]                            Figure1.5: Dolphin system [12] 

    RF based technology is the most widely used technology in location estimation due to its 

many advantages such as long distance transmission, easy detection and deployment indoors 

[13,14]. This technology also has many disadvantages such as signal attenuation and fading, 

reflections from obstacles. 

    RF localisation systems use radio frequency signals for communication. They can be used 

with wireless local area networks, WLAN, and Bluetooth networks to determine object 

locations [15]. Sensors in the Networks detect RF signal information identified as received 

signal strength (RSS), signal arrival time and signal arrival angle. The location of an object 

can be determined by using these parameters based on triangulations with time of arrival 

(TOA), time difference of arrival (TDOA) and angle of arrival (AOA) techniques. 

    RF based technologies can be divided into wireless local area network WLAN (2.4 GHz 

and 5GHz band), Bluetooth (2.4 GHz band), Ultra Wideband (UWB) and Radio Frequency 

identification devices (RFID) [16,17]. UWB technology is similar to an infrared localisation 

system. UWB transceivers communicate with emitters by sending RF signals with wide 

bandwidth modulation [18, 19, 20 ]. See Figure 1.6. 

 

Figure 1.6: Architecture of network based UWB location tracking system [20]. 

    The location of a transceiver is estimated by using time of flight from the UWB transceiver 

to a minimum 3 scanners. This technology has a wide transmission bandwidth which is 
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greater than 500MHz according to the Federal Communications Commission (FCC). UWB 

signals suffer very little loss in indoors. The only drawback is the impairment of other signals 

radiated from other devices.  

    WLAN localisation systems are also RF based localisation systems [7,8]. They use off-the-

shelf wireless devices and existing WLAN infrastructure with no other extra hardware. Since 

WLAN is widely used in indoors, Wi-Fi enabled tags working on IEEE 802.11 standard are 

utilised in Wi-Fi network infrastructure. Tags communicate with Wi-Fi access points (AP) to 

detect RSS values. These RSS values are reported to a server and the positions of tags are 

calculated by using software techniques. WLAN technology has several advantages such as 

low costs, fast deployment and device simplicity. 

    RFID technology has many advantages such as being contactless and non-line-of-site, 

having multi object recognition ability and long transmission range. It is a widely used 

technology in location determination systems [21]. RFID location system is composed of 

RFID readers and tags [22]. Examples of an active reader and a tag are shown in Figure 1.7. 

They are more likely used for location detection purposes due to their on-board power utilities 

and the resultant long operational ranges. 

    The readers detect the signals from mobile tags in indoors and transfer the signal 

information to a server. The position of the tag is estimated by its proximity, using these 

signals. RFID systems must install many readers indoors to achieve higher position 

accuracies. There is also a trend to combine and integrate the different sensor systems and the 

databases to improve the accuracy of the position detection of the objects indoors [23]. 

 

Figure 1.7: RFID Tag and Reader used in LANDMARC localisation system [7] 

    Large numbers of sensors are introduced in a variety of localisation schemes such as 

triangulation, trilateration, matching and many others. Table 1.1 is prepared to give an 

overview and compare various localisation systems. It can be seen that the accuracies of 

systems vary between 2cm and a few meters. Data repetition rates are between 1Hz and 70Hz 

for the RF systems. Integrated systems such as Cricket and Dolphin [11, 12] have higher 
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localisation accuracies. Ultrasonic and infrared technologies are often integrated with RFID 

techniques. Better indoor planning and positioning of advanced sensors can increase the 

accuracy levels [24, 25]. If accuracy and cost are the most important parameters, then the 

systems including ultrasonic techniques are the most desirable systems. All the systems are 

real time systems and the position information is produced in real time. Overview of 

positioning systems, (Koyuncu & Yang, 2010) [26], are given in Table 1.1. 

 

Table 1.1:  Overview of various positioning systems [26] 

1.2 Wireless Sensor Networks  

    Recent technological developments in wireless systems and miniature embedded 

electronics helped the emergence of wireless sensors. They are identified as wireless sensor 

nodes. A wireless sensor network is constructed by a distributed collection of wireless sensor 

nodes [27, 28]. A wireless sensor network includes large numbers of sensor nodes and they 

communicate over a wireless channel [29]. They achieve distributed sensing and collaborative 

data processing for variety of jobs. Sensor information can be collected and analysed by using 

monitoring techniques [30], as shown in Figure 1.8. 
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Figure 1.8: Schematic view of Wireless sensor networks [30] 

    Sensor nodes are small electronic devices equipped with a processor, battery, wireless 

transceiver for two way communications with other sensors and a memory to store 

information for later calculations. Typical examples of these nodes [31], which are used in 

this study are shown in Figures 1.9a and 1.9b. 

      

Figure 1.9a: Jennic active RFID tag          Figure 1.9b: Jennic active RFID reader 

JN5121 [31]                                                JN5121 [31] 

    Wireless sensor networks are widely used in many applications and initial studies were 

started with military applications in the defence field. The Defence Advanced Research 

Projects Agency, (DARPA), is the pioneer in this area. Nowadays civilian applications of 

these networks are increasing.  

    Wireless sensor nodes (WSN), together with wireless sensor networks are utilised very 

quickly in every walk of life and the main reasons for this are presented as follows:  

 WSNs are very cost effective and relatively cheap to use. 

 WSNs have small sizes; they are robust and easy to apply. 

 WSNs can be deployed anywhere due to their resistance to changing 

environmental factors. 
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 Wireless sensor networks can have large number of sensor nodes and they can 

cover large areas indoors and outdoors. This allows targets to be placed very close 

to sensor nodes providing high accuracy. 

 WSNs can be quickly and efficiently deployed in the areas of interest which 

allows quick data collection. 

 Data generation from multiple sensor nodes can be done simultaneously by 

reducing the data collection time due to their deployment density. 

 In case of any node failures, WSNs can reorganise themselves with different 

routes and continue data reception.  

1.2.1 Wireless Sensor Network applications 

    Wireless sensor networks may consist of different types of sensors such as magnetic, 

visual, infrared, acoustic, radar and RF. Consequently, different types of sensors result in 

different kinds of applications as identified by Akyıldız and W.Su (2001) [32]. These sensors 

may be monitoring a wide range of ambient conditions such as temperature, humidity, 

movement, lighting conditions, pressure, noise levels, or the presence and size of objects. 

Hence, wireless sensor network applications are categorised into military, environment, 

health, home and commercial areas. It is also possible to expand this classification with more 

categories such as space exploration, chemical processing and disaster relief operations as 

defined below, 

 Military applications: WSNs can be an integral part of the command, control, 

Communication, intelligence, surveillance, reconnaissance and targeting systems. 

These networks are based on low cost, disposable and dense deployment of sensor 

nodes and their destruction during operation does not affect the operations as 

much as destruction of traditional sensors. This makes the Wireless Sensor 

Network concept a better approach for the battlefield. 

 Environmental applications: WSNs are used to track the movements of birds, 

animals, and insects. They monitor the environmental conditions which affect 

crops, livestock, irrigation etc. On larger scales, earth monitoring, planetary 

exploration, atmospheric and meteorological conditions, forest fires, flood 

detection and pollution are a few of the environmental applications. 

 Health applications: WSNs provide interfaces to patients to be monitored, to their 

diagnostics, and their drug administration in hospitals. They also allow tracking of 
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patients, to monitor their vital signs and follow up their wellbeing. Tele 

monitoring and tracking of patients and doctors inside the hospitals are other 

important applications. 

 Home applications: WSNs can be used inside the home with sensors embedded 

inside home appliances. These could be be vacuum cleaners, microwave ovens or 

refrigerators. Sensors can interact with each other and with the external network 

via the internet or satellites. End users can manage these devices locally or 

remotely. Houses thus equipped are called ‘smart houses’. 

 Commercial applications: a few of these applications are monitoring product 

quality, managing inventories, environmental control in offices, manufacturing 

environments, automation ,transportation, vehicle tracking and heavy machinery. 

    There are many other areas where WSNs are deployed successfully. These areas can be in 

space control, nuclear plants or chemical processing plants where human life can be in 

danger. Fields of application of wireless sensor networks [33], are summarised in Figure 1.10. 

 

Figure 1.10: Fields of wireless sensor network applications [33] 

1.2.2 Wireless sensor node architecture 

   A typical sensor node consists of 4 basic components as shown in Figure 1.11. These are 

sensor unit, processor unit (microcontroller), transceiver unit and power unit. They may also 

have application dependent additional components such as location finding system, and a 

power generator. These units are summarised [34], as follows, 
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Figure 1.11: A typical wireless sensor node (WSN) architecture [34] 

a) Sensing unit: consists of two sub units, sensors and analogue to digital convertors 

(ADCs). A sensor is a device which measures some physical quantity and 

converts it into a signal to be processed by the microcontroller. There are many 

sensor types such as seismic, thermal, acoustic, visual, infrared etc. They can be 

active or passive sensors. Wireless sensor nodes may include multiple sensors. 

The signals are generated as analogue signals and an internal analogue to digital 

convertor (ADC), digitises these signals and sends them to processor unit. 

b) Processor unit: has a micro controller sub unit to manage the operations of sensors 

and collaborates these sensors with other internal units. It also has a storage unit 

and an I/O peripheral to store a small amount of data. 

c) Transceiver unit: connects the WSNs to the network. It provides transmission and 

reception of data with other WSNs connected to the wireless sensor network. 

WSNs communicate using RF transceiver and a wireless network such as 

Bluetooth or 802.15.4 compliant protocols, ZigBee [35] and MiWi [36].  

d) Power unit: a sensor node is supported by a power unit, a form of power storage 

unit. This could be a battery or a power generation unit such as a solar cell. To 

conserve energy, the power unit may have power conservation techniques such as 

dynamic voltage scaling or on-off switching.  

    Wireless sensor node applications may require knowledge of location with high accuracy. 

Hence a location finding system can use many WSNs with additional components depending 

on the application. For example a location finding system together with a mobile platform is 

deployed to carry out sensing operations in different surroundings. 
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1.2.3 Wireless sensor communication architecture 

    Sensor nodes are usually scattered in a sensor field in an orderly or disorderly form. Each 

of these sensor nodes collects data and sends it to an end user through a sink node. Data can 

be routed to an end user by a multi hop structure as shown in Figure 1.12 or collected directly 

by the sink node from the sensor nodes. The sink node communicates with the server at the 

user location through a wireless medium. The protocol stack used by the sink node and all 

other sensor nodes is shown in Figure 1.13. 

 

Figure 1.12: Sensor nodes scattered in a sensor field [32] 

 

Figure 1.13: The sensor network protocol stack [32] 

    This protocol stack integrates data with network protocols and communicates signals 

efficiently throughout the wireless medium. It consists of an application layer, transport layer, 

network layer, data link layer, physical layer, power management plane, mobility 

management plane and task management plane [37]. 

 Application layer: depending on the sensing tasks, different types of application 

software can be built and used in this layer.  
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 Transport layer: helps to maintain the flow of data if the sensor network 

application requires it. It handles delays, maintains end-to-end connections and 

end-to-end delivery of data packets.  

 Network layer: takes care of routing the data supplied by the transport layer. 

 Data link layer: known as Medium Access Control (MAC). It multiplexes the data 

streams and provides the data frame detection and it is responsible for error 

control. It ensures reliable point-to-point connections in a communication 

network. MAC protocol establishes communication links for data transfer. 

 Physical layer: addresses the needs of simple modulation, transmission and 

receiving techniques. It also has tasks of bit encoding, voltage determination for 

bit transmission and data encryption. 

 Power management plane: manages how a sensor node uses the power. 

 Mobility management plane: detects and registers the movements of sensor nodes 

so that a route back to the user is maintained and the sensor nodes can keep track 

of their operations. 

 Task management plane: balances and schedules the sensing tasks given to a 

specific sensing region. 

    These management planes next to the layers are needed so that the sensor nodes can work 

together in power efficient way, route the data in the sensor network and share resources 

between sensor nodes. (Akyıldız et al. 2002) [32]  

1.2.4 Wireless sensor network standards 

    A wide range of wireless data technologies exist and they are designed for different 

applications. Wireless technologies can be operated by a variety of standards. These standards 

are grouped in order of increasing range as follows: 

 Wireless Personal Area Network (WPAN): this is used for short range 

communication between devices used by single persons. Wireless head sets are 

typical examples. They include standards such as Bluetooth, IEEE 802.15.4, 

Wireless USB and Zigbee. 

 Wireless local Area Network (WLAN): also called Wi-Fi, these systems are used 

to provide wireless access to other systems on the local network such as 

computers and shared printers. WLAN offers better speeds within the local area 

http://en.wikipedia.org/wiki/IEEE_802.15.4-2006
http://en.wikipedia.org/wiki/Wireless_USB
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network. Wi-Fi 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac standards are 

WLAN standards. 

 Wireless Area Network (WAN): this is used for national coverage areas from one 

access point to another allowing seamless coverage for wide areas. Wi-Fi 802.11 

standard is a WAN standard. 

1.2.4.1 IEEE 802.15.4 standards 

    This is a WPAN standard. It offers the physical layer and medium access control layer 

(MAC) for low rate communication. It uses low cost and low power-consumption devices, 

(Callaway et al. 2002) [38]. The standard defines two types of network node. The first is a 

Full Function Device (FFD), which can serve as the coordinator of a personal area network. 

The second is a Reduced Function Device (RFD), which is a simple node and never acts as a 

coordinator [39]. 

1.2.4.2 ZigBee network standards 

    This is a wireless communication standard using low power and low data rate based on 

IEEE 802 standard [40]. ZigBee is built upon IEEE 802.15.4 standard, defines the network 

layer specifications and provides a framework for application programming. Zigbee provides 

low power connectivity for devices with long battery life. It does not require high data 

transfer rates like Bluetooth. ZigBee compliant wireless devices have a transmission range of 

100 meters depending on the RF environment. 

    The data rate is 250kbps at 2.4GHz, 40kbps at 915 MHz and 20kbps at 868 MHz. IEEE 

802.15.4 concentrates on two lower layers of protocol (physical and data link layers). On the 

other hand, ZigBee aims to provide the upper layers of the protocol stack (network and 

application layers) for interoperable data networking, security services and a range of wireless 

control solutions. IEEE 802.15.4 standard, hence the Zigbee standard, supports mesh, star and 

cluster tree type of network topologies, as seen in Figure 1.14. (Ergen, 2004) [41]. 
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Figure 1.14: Different network topologies specified by ZigBee [41] 

    The star topology defines the master slave model. The master is a FFD and the end devices 

can be FFDs or RFDs. In mesh and tree topologies, an FFD can talk to other FFDs within its 

radio range forming a multi hop network. A mesh network is a true peer­to­peer topology 

where beacons will not be applied. ZigBee network layer defines 3 device types:  

 ZigBee coordinator (ZC). There is only one ZC for every ZigBee network. It has a 

unique ID and it is responsible for forming the network. After forming the 

network it acts as a router. It is an FFD managing the whole network.  

 ZigBee router (ZR). This provides routing services to network devices. They can 

send or receive messages. Unlike end devices they don’t sleep and they stay on as 

long as the network is established. It is an FFD with routing capabilities. 

 ZigBee End Device (ZED). This corresponds to an IEEE RFD or FFD acting as a 

simple end device. It is connected to ZC or ZR and does not do any routing. It 

communicates with the network only through their parent nodes and cannot relay 

messages intended for other nodes. 

1.2.5 Localisation Applications 

    Indoor localisation systems are becoming very popular in recent years. These systems have 

led to new techniques in object location detection. For example, location detection of products 

stored in warehouses, location detection of medical personnel or equipment in a hospital, 

location detection of firemen in a fire, or finding tagged maintenance tools scattered all over a 

plant. The main progress in indoor location sensing systems has been made during the last ten 

years. Therefore, both the research and commercial products in this area are new. Many 
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people in the academic world and industry are currently involved in its research and 

development.  

    There are two main types of location information for localisation applications. These are 

physical location and estimated location information. Physical location is expressed in the 

form of coordinates and it identifies a point on a 2-D or 3-D map. Estimated location is 

expressed again in the form of coordinates but calculated after localisation procedures. There 

are four different system topologies for positioning systems (Drane et al. 1998) [42].  

1. Remote positioning system: transmitter is mobile and several fixed measuring 

units receive the transmitter’s signals. The results from all measuring units are 

collected, and the location of the transmitter is computed in a master station.  

2. Self-positioning system: the measuring unit is mobile. This unit receives the 

signals from several transmitters in known locations, and has the capability to 

compute its location based on the measured signals.  

3. Indirect remote positioning system: if a wireless data link is provided in a 

positioning system, it is possible to send the measurement result from a self-

positioning measuring unit to a remote site, and this is called indirect remote 

positioning topology.  

4. Indirect self-positioning system: if the measurement result is sent from a remote 

positioning site to a mobile unit via a wireless data link, this system is called an 

indirect self-positioning system.  

    Positioning systems enable location-awareness for mobile computers in widespread and 

pervasive wireless computing. By utilising location data, location-aware computers can give 

location-based services for mobile users. Indoor positioning systems based on wireless local 

area networks have been suggested as a viable solution where the global positioning system 

does not work well.  

    Instead of depending on accurate estimations of angles or distances in order to derive the 

object location with geometry, location-dependent characteristics of received signal strengths 

can be deployed to determine the object location. The advantage of this technique is that it is 

simple to utilise with no specialised hardware requirement. Any existing wireless local area 

network infrastructure can be reused for this kind of positioning system reducing the cost and 

excessive power consumption.  
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1.2.5.1  Localisation parameters 

    The important point in indoor positioning systems is the localisation accuracy. Throughout 

the literature many algorithms are developed to increase the accuracy of position detection. 

Due to random propagation behaviour and multi path reflections of RF signals, the 

localisation accuracies vary between a few centimetres and a few metres. Many hardware 

platforms are used with related technologies such as infrared, ultrasonic and RF to increase 

the localisation accuracies. On the other hand, combining these technologies causes an 

increase in the cost of localisation. Hence, the most important parameters which effect the 

localisation accuracy can be summarised as cost, power consumption, physical size, 

localisation time and signal accessibility These are listed in detail as follows :  

1. Cost: devices used in localisation must be at manageable prices. Deployment of 

thousands of them must not introduce a serious financial problem. 

2. Power consumption: all the devices must have long operation time. They must 

have on-board power sources and these power sources can be rapidly changed 

with new ones.  

3. Physical size: the size of the transmitters and receivers must be small enough so 

that they can be carried for mobile operations. Advancements in electronics and 

miniaturisation provided small size devices and made localisation procedures 

easier.  

4. Localisation time: unknown position detection must be carried out in the shortest 

possible time. Localisation procedures should not take a very long time. 

Advancements in electronics provide the users with required hardware for fast 

position detection.  

5. Signal accessibility: the signals used in localisation must be easily accessible 

indoors. GPS signals cannot penetrate walls. Infrared and ultrasonic signals are 

affected and dispersed very quickly by the environmental conditions.  

    Finally, most suitable localisation techniques use RF signals. RF signal amplitudes are 

received and processed by cost effective devices. But these signals are affected by 

environmental factors such as obstacles. However they produce reasonable localisation 

accuracies indoors and outdoors.  
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1.3 Research objectives  

    The main purpose of this thesis is to develop object localisation systems with improved 

localisation accuracies by using Jennic wireless sensor nodes indoors. The specific research 

objectives with respect to this main purpose are presented as follows: 

1. Study the related literature in detail to identify the previously developed 

localisation systems. 

2. Propose and develop several localisation systems by using existing localisation 

systems with new approaches to improve the localisation accuracy.  

3. Investigate the directional radiation behaviour of wireless sensor nodes and decide 

which radiation pattern will be used in designing localisation systems. 

4. Calculate distances between transmitter and receiver WSNs with respect to 

measured LQI and RSSI values.  

5.  Develop enhancement procedures to eliminate outliers to reduce the random 

behaviour among LQI and RSSI values before any position detection. 

6. Investigate weight functions with fingerprint localisation systems and determine 

the optimum weight function to generate the maximum localisation accuracy in 

position calculations.  

7. Design and develop an object localisation system based on a fingerprint database 

with k-NN and weighted k-NN algorithms by using RSSI or LQI values.  

8. Design and develop a localisation system by using weighted centroid localisation 

technique (WCL) and introducing bi-sectioning algorithm with RSSI or LQI 

values. 

9. Design and develop a localisation system by using reference anchor nodes across 

the sensing area and introducing a weighting technique between the object and the 

reference nodes utilising real and Euclidean distances. 

10. Design and develop a localisation system by using triangular sub areas across the 

sensing area and weighted centroid localisation technique (WCL) with RSSI and 

LQI values. 

11. Design and develop a localisation technique by using environmentally adaptive 

centroid localisation technique with a weighted STD threshold selection 

mechanism introduced on received RSSI values.  
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12. Design and develop a localisation system based on virtual fingerprint database by 

using physical grid points and virtual grid data points generated with various 

interpolated distribution functions across the sensing area.  

13. Develop a localisation system by utilising static segmentation with feature 

identification functions across a given sensing area. Static Segments are generated 

manually with ranges of received RSSI values within the fingerprint database. 

Localisation procedures are applied only across the object segment.  

14. Develop a localisation system by utilising dynamic segmentation with feature 

identification functions across the sensing area. Dynamic Segments are generated 

automatically with dynamic ranges of RSSI values within the fingerprint database. 

Localisation procedures are applied only across the object segment.     

1.4 Main contributions of the thesis 

    The contributions in this thesis cover the areas of object localisation by using Jennic 

wireless sensor nodes indoors. Initially an extensive literature background is researched and 

various localisation systems are identified. Localisation accuracy indoors was the most 

paramount issue throughout this research. It was observed that localisation accuracies vary 

between 1 metre and several metres for localisation systems using wireless sensor nodes in 

literature. The results of this literature survey are published in (Koyuncu & Yang, 2010) [26]. 

Different localisation approaches are proposed in this research and summarised here as 

follows: 

1) A fingerprint localisation approach is proposed by using received LQI values from 

transmitters across the sensing area. Received LQI values are cleaned from outliers 

and filtered out for localisation calculations. Various weight functions are 

investigated and the weight function which gives the best localisation accuracy is 

determined. This weight function is utilised throughout the calculations. By using 

this weight function and the related fingerprint approach, a localisation error of 

around 0.8 meters is obtained. This approach is published in (Koyuncu & Yang, 

2011) [43]. 

2) A numerical technique named bi-sectioning algorithm is developed with received 

LQI values to determine the object distances to wireless transmitters across the 

sensing area. Initially, LQI values are plotted against the distances between 

transmitters and receivers. Curve fitting is applied on these plots and LQI values 

versus distance calibration curves are generated. Object distances to transmitters are 



CHAPTER 1 INTRODUCTION 

 

18 
 

calculated by using these calibration curves with the assistance of bi-sectioning 

algorithm during localisation procedures throughout the study. This technique is 

published in (Koyuncu & Yang, 2011) [44]. 

3) A weighted centroid localisation (WCL) approach is proposed using triangular sub 

areas across the sensing area indoors. LQI values, received from transmitters, at the 

object location are averaged out respectively. The average LQI value corresponding 

to each transmitter is used. Distances between the object and transmitter nodes are 

calculated by using bi-sectioning algorithm and best fit calibration curves. WCL is 

applied and (x,y) object coordinates are calculated by using trigonometric techniques 

for each triangular sub area. Final object coordinates are estimated by averaging all 

the calculated (x,y) coordinates. The proposed system offers an average localisation 

error of around 1 metre. This approach is published in (Koyuncu & Yang,2011) [44].  

4) An adaptive centroid localisation approach is proposed by using the WCL method.  

RSSI values received at object location are environmentally selected within certain 

boundaries defined by a range of STD values around the RSSI mean value. A second 

level adaptive localisation approach is introduced within the selected RSSI values in 

the first selection. A new range of RSSI values are selected by using a range of new 

STD values around a new RSSI mean value. Localisation procedures are applied 

after both stages of RSSI selection. As a result, environmental factors are introduced 

adaptively and proposed localisation approach generates average localisation errors 

of around 0.9 meters (Koyuncu &Yang, 2014) [45]. 

5) A reference anchor node approach is proposed by introducing wireless sensor nodes 

at known locations across the sensing area. The large number of reference nodes 

employed in the literature is reduced to a few nodes in this study and a new 

algorithm is introduced to improve the localisation accuracy. 3 nearest reference 

nodes and 3 closest reference nodes to nearest reference nodes are determined by 

using a 3-NN algorithm. Weights are utilised with respect to real distances and 

Euclidean distances between these reference nodes. Triangulation techniques are 

deployed to determine the object coordinates. The proposed system offers 

localisation errors of around 0.4 meters. This approach is published in (Koyuncu & 

Yang, 2012) [46].  

6) A virtual fingerprint localisation approach is proposed using a virtual fingerprint 

database across the sensing area. Standard fingerprint localisation technique is time 

consuming during fingerprint preparation in off-line phase. Furthermore, the effect of 
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thinly distributed grid points reduces the position detection accuracy during 

localisation. Hence, the fingerprint database is organised into a finer database by 

introducing virtual grid points between physical grid points. Virtual data is generated 

by using various distribution functions, such as linear and exponential, among the 

virtual grid points. The proposed system offers localisation errors of around 1.2m 

less than a grid space of 4m across the sensing area. This approach is published in 

(Koyuncu & Yang, 2013) [47, 48].  

7) A segmentation approach across the sensing area is introduced to reduce the search 

efforts for the objects. If the sensing area is large or has a non-uniform topology, the 

object search can be quite time consuming. In order to avoid these difficulties, the 

sensing area is sub divided into a number of sub areas, identified as segments, 

according to the area topology. Initially, the sensing area is divided manually into 

segments and this is identified as static segmentation. A feature function is realised 

by using RSSI ranges received across each static segment. Object RSSI 

measurements for each transmitter are compared with feature functions of all the 

segments. A segment whose feature function includes the object RSSI measurements 

is identified as an object segment and it is utilised in localisation procedures. k-NN 

and weighted k-NN algorithms are employed only in object segments to determine 

the object locations. The proposed system offers minimum localisation errors of 

around 1.2m where the grid space is 2m. This approach is published in (Koyuncu & 

Yang, 2013) [49].  

8) A dynamic segmentation approach is introduced by determining the segments 

automatically across the sensing area. An overall standard deviation, (STD), of RSSI 

values from each transmitter is determined across the test area. A grid point on the 

test area boundary is selected as the reference grid point to generate dynamic 

segments. A Range of RSSI ± overall STD is deployed with RSSI values at that grid 

point for each transmitter. These ranges identify the feature function of the segment 

with the selected grid point. RSSI values of all the other fingerprint points are 

checked to see whether they are included in the feature function or not. The first 

segment is determined by fingerprint points whose RSSI values are included in its 

feature function. The same procedures are repeated and other neighbourhood 

segments are determined across the test area. Object RSSI values are checked with 

all the segment feature functions to determine the object segment. k-NN and 

weighted k-NN algorithms are applied to estimate the object location in the object 
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segment. This proposed dynamic segmentation approach offers localisation errors of 

around 0.9m with a grid space of 2m. This approach is published in (Koyuncu & 

Yang, 2013) [49].  

1.5 Thesis Layout 

The thesis consists of 9 chapters organised as follows:  

In Chapter 1, an introduction and an historical background of the research is presented. 

Research objectives and the main contributions of the thesis are explained in detail. A layout 

plan of the thesis is given here. General information about wireless sensor networks and 

wireless sensor nodes are presented. Sensor architecture is defined together with IEEE 

802.15.4 and ZigBee network standards. Localisation parameters are illustrated in detail. 

Localisation applications are given in general terms.  

In Chapter 2, Brief information about object localisation techniques which inspired this 

research is presented. An extensive literature survey is carried out and various important 

localisation techniques such as triangulation, trilateration, TOA, TDOA, AOA are 

summarised. Localisation design considerations are overviewed and efficient localisation 

parameters are analysed. Different localisation concepts using wireless sensor nodes and their 

operational schemes in literature are investigated in great detail. These concepts and their 

applications together with their background information are presented to obtain efficient 

positioning. 

In Chapter 3, a theoretical background of RSSI and LQI values is presented. Radiation beam 

patterns of experimental RFID devices are illustrated. Outlier removal and bi-sectioning 

algorithms are introduced. Propagation losses of RF signals are mentioned and ITU-R 

propagation model is introduced. Fingerprint based localisation approach is implemented by 

using LQI values. A comparative study of empirical weight functions in fingerprint 

localisation is carried out. The best empirical weight function for the best positioning 

accuracy is determined. k-NN nearest neighbourhood algorithm and weighted k-NN 

algorithm are utilised to estimate the object locations. 

In Chapter 4, an environmentally adaptive Centroid Localisation approach, is introduced 

with 2 level adaptive localisation, which are static environmental threshold factors and most 

stable coordinate system with minimum RSS variations.  Distances between object and 

transmitter nodes are calculated by using bi-sectioning algorithm with RSSI versus distance 

calibration curves. These distances are deployed with WCL technique to localise the objects. 
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RSSI values are adaptively adjusted to the environment. Their mean and STD values are 

deployed to create a range of RSSI values. Received RSSI values in ±STD range of their 

mean are utilised. A static environmental factor is deployed with utilised RSSI values 

corresponding to the surrounding concrete walls and adaptive centroid algorithm is applied. 

In Chapter 5, a triangulation approach across the sensing area using the Weighted Centroid 

Localisation technique is proposed. The sensing area is sub divided into triangular sections. 

WCL technique is applied for each triangle area by using the distance values between object 

and triangle corners to determine the object location. The final object location is determined 

by averaging the object locations calculated for each triangle.  

In Chapter 6, a reference anchor node based localisation system is proposed with a new 

weight mechanism between transmitters and receivers. Weights are related to environmental 

conditions. Several reference nodes across the sensing area are utilised to calculate 3 nearest 

reference anchor nodes to object location by using a 3-NN algorithm. Furthermore, 3 Closest 

reference nodes to each previous nearest reference anchor node are selected and estimated 

object coordinates are recalculated. Weights are utilised with respect to real and Euclidean 

distances. Object distances to these nearest reference nodes are defined by using Euclidean 

distances and weights. A triangulation technique is deployed to determine the object 

coordinates.  

In Chapter 7, a virtual fingerprint localisation approach is proposed. A physical fingerprint 

database is sub divided into a finer database by deploying linear and exponential distribution 

functions. These distribution functions are organised with respect to RF signal radiation 

directions of transmitters. The grid space across the sensing area is divided into a finite 

number of virtual sub spaces. Virtual grid points are generated corresponding to these sub 

spaces. Virtual RSSI values are calculated at these virtual grid points with respect to several 

linear and exponential interpolation functions. Once the new fingerprint database is 

constructed by using real and virtual RSSI values, localisation algorithms are deployed to 

calculate the object locations across the sensing area.   

In Chapter 8, a segmentation localisation approach is proposed across the sensing area. 

Objects are searched across the specific sub areas to narrow the localisation time and effort. 

Two kinds of segmentation are utilised which are identified as Static and Dynamic 

segmentation. The theory of segment feature functions is presented. The test area is divided 

into sub areas, called segments, by using static and dynamic methods. A feature function is 
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developed for each segment. Object RSSI values are checked with feature functions of all the 

segments. In case of any inclusion, fingerprint localisation is carried out only within that 

segment.  

In Chapter 9, a summary of the thesis is presented. Demonstrations of how the objectives 

have been achieved are illustrated. Finally, proposals for development of further research are 

given for the reader.  
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LOCALISATION SYSTEMS 

 
 

 

2.1 Background  

    In wireless sensor node applications, location sensing is one of the most important and best 

studied area to determine an object’s locations indoors. Their power consumption aspects, 

long distance coverage and being immune to environmental effects make these wireless 

sensor nodes, (WSN), very popular among localisation devices. Localisation techniques with 

WSNs utilise RF signals and signal attenuation [50], takes place as the Electro-Magnetic 

(EM) waves travel in space [2, 51].  

    RSSI and LQI values are very widely used parameters to express this RF signal attenuation 

in order to determine the object location. Various algorithms are employed with these signal 

strength values to calculate the object positions. The time covered by RF signals between the 

transmitters and receivers is also deployed as a parameter to calculate the object location.  

    If ultrasound technology is used [52], time of arrival, (TOA) or time difference of arrival, 

(TDOA) techniques of Ultrasonic waves are utilised to localise the unknown object position. 

This can even be extended to the audible sound range. Another technique is based on a 

ranging feature which distinguishes between range free [53], and range based localisation 

techniques, [54]. Finally it is also possible to employ centroid [55], and distributed 

localisation systems, [56].  

    Although RSSI techniques generally perform poorly in the indoor environment without a 

careful area-specific training phase, the localisation accuracies can be improved by using 

filtering and various algorithmic methods. But it is still the cheapest solution for coarse-grain 

localisation. Positioning systems enable context aware computing with location awareness, 

[57].  In the last couple of years, location fingerprinting techniques using existing local area 

networks and WLAN infrastructures are widely utilised for indoor areas. Fingerprinting 

technique is relatively simple to deploy compared to other techniques such as angle of arrival 

(AOA), [58] and (TOA), [59].  
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    In this chapter, various topics in localisation system design are overviewed. Well known 

basic localisation techniques are explained. Range free and range based localisations together 

with WSN localisation are covered and presented for the reader’s attention. 

2.2 Localisation Design Considerations 

    Localisation and positioning techniques are still being developed. Many methods and 

algorithms are deployed to achieve higher accuracies. In this chapter, the various issues in 

localisation system design which are considered in this study are presented. Designing an 

efficient localisation system with WSNs depends on many factors. These factors must be 

properly considered during the design of the localisation system. They are summarised as 

follows: 

a) WSNs are operated with onboard power supplies with a limited operational life. 

Processing, communication and sensing operations are carried out by these nodes 

and their operational lifetime is reduced. Hence their operational time must be 

indexed to their detection procedures. They should be idle when they are not 

detecting.  

b) WSNs are deployed in large numbers across the sensing areas. Localisation 

accuracies are indexed to these numbers. A larger number of nodes gives a better 

detection resolution. Hence these nodes must be inexpensive and easy to deploy.  

c) Cost is an important factor while deploying WSNs. The density of WSNs must be 

carefully thought out from cost point of view. An optimum number of WSNs must 

be chosen to obtain the minimum interference with each other and maximum 

accuracy with respect to their total cost. 

d) Localisation accuracy is an important issue for the localisation techniques. The 

required detection range must be carefully decided and the type of localisation 

system selected accordingly. Indoor localisation techniques may require accuracy 

of 1 metre for people while an outdoor localisation technique may have an 

accuracy of 5-10 metres for, say, containers in a dock yard. 

e) Environmental factors are the most important factors for any localisation 

technique. Various obstacles along the path of RF signals would create multiple 

reflections, signal interference and attenuations. These can generate false readings 

of RSS values during measurements. This situation in return will reduce the 

localisation accuracies. Many algorithms are developed to reduce the effects of 

these environmental factors. 
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f) Signal interference between the nodes in the same network is a serious problem. It 

results from collisions between transmitted signal packets among the nodes. This 

reduces the quality of RSS reception and in return causes inaccuracies during 

localisation. Hence this interference problem must be reduced to an optimum level 

to achieve higher accuracies.  

g) Duration of signal transmission and reception between the nodes is an important 

constraint. Short signal packets must be used between the nodes so that battery 

range is extended and the cost of operational procedures is reduced. 

2.3 Localisation techniques  

    There are many localisation systems which are designed and developed in literature. 

Different localisation techniques are deployed in these systems. Localisation technique is 

identified as the methodology which can be used to determine the final position of the 

unknown object. These localisation techniques can be distinguished as triangulation, 

trilateration, (TOA), (TDOA) and fingerprinting. 

2.3.1 Triangulation  

    The triangulation technique [60], is the process of determining the location of an unknown 

point by measuring the angles to it from two known points at both ends of a fixed baseline. It 

utilises the trigonometric relationship between line segments and angles. The locations of two 

transmitters and angular directions of an unknown object from these transmitters are known. 

By using these two angles and the distance between the transmitters, the location of the object 

with respect to transmitters can be obtained as seen in Figure 2.1. 

 

Figure 2.1: Triangulation technique; Tx1, Tx2 are transmitters, O is object, α, β and c are 

known parameters; a and b are unknown parameters 
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Triangulation equations can be expressed as;  

)(            (2.1) 
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Unknown distances a and b to transmitters from object O can be determined as;  
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2.3.2 Trilateration  

    The trilateration technique [61], determines the absolute location of object points by using 

the geometry of spheres or circles. In 2D space the unknown object location is determined by 

using the distance measurements from 3 non-collinear points as shown in Figure 2.2. If the 

distances, radius1, radius 2 and radius 3, between the transmitter nodes and a receiver node 

are known, the intersection point of the circles with these radiuses defines the (x, y) 

coordinates of the object point X. 

   

Figure 2.2: 2D trilateration technique  

    In 3D space, unknown object point, (x, y, z), is at the intersection of 3 sphere surfaces. 

Three spheres with centre points P1, P2, P3 and radiuses r1, r2, r3 are sufficient to determine the 

x, y, z unknown coordinates as seen in Figure 2.3. Equations of 3 sphere surfaces can be 

written as; 
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Formulation is such that centres of the spheres are on the z=0 plane, one centre is at the origin 

and another on the x axis.  

By using these equations; an object point located at x,y,z coordinates which is the intersection 

point of  3 spheres and satisfies all three surface equations can be calculated as : 
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 Figure 2.3: 3D Trilateration geometry 

2.3.3 Time of Arrival (TOA)  

    TOA localisation technique uses signal transmission time and the signal arrival time [59] 

between receiver node and transmitter node. See Figure 2.4. The propagation time can be 

directly converted into distance by using the signal propagation speed. Different types of 

signals can be used such as RF and ultrasound. Due to the very high speed of radio signals 

and the resulting very short time intervals, TOA method is used mostly with ultrasonic 

systems. 
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Figure 2.4: TOA technique  

Assume, T1, T4 are transmit times and T2, T3 are receive times between transmitter Tx and 

receiver Rx. If the speed of the propagating signal is “c”, then the average distance d between 

the transmitter and the receiver is defined as  

])()[(
2

1
1243 cTTcTTd         (2.10) 

    Traditional TOA based systems either use synchronised clocks such as GPS [62], or uses 

the echoing method [63], where a node measures the round trip time of a signal transmitted to 

a remote node. TOA localisation has TOA measurements from 3 transmitter nodes. 

Trilateration is used later to determine the object’s position. 

2.3.4 Time difference of Arrival (TDOA)  

    This technique calculates the distance based on two different signals with different speeds 

such as RF and ultrasound signals [11, 64]. The distance “d” between the transmitter and 

receiver node can be found by measuring the difference between the transmitting and 

receiving times as seen in Figure 2.5.  

Distance d can be determined by the following equation. 
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    where T1 and T3 are the transmitting times of RF and ultrasound signals, T2 and T4 are the 

reception times of the same signals. VRF and VULT are the velocities of the RF and ultrasonic 

signals. A disadvantage of these TOA and TDOA techniques is the requirement of 

synchronisation between receivers and transmitters. This is difficult and costly.  
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Figure 2.5: TDOA technique   

2.3.5 Angle of Arrival (AOA) 

    Angle of arrival (AOA) on a 2D plane is defined as the angle between the propagation 

direction of an incident wave and some reference direction (Peng and Sichitiu, 2006) [65]. 

This angle is represented as degrees in a clockwise direction from the north. When the 

reference direction is 00 or pointing north, AOA is absolute, otherwise relative. Beacon nodes 

have omnidirectional antennas and unknown beacon x is capable of detecting the angles of 

incoming signals. The angle between reference direction 00 North and B1B2 line is a known 

angle Δθ. As seen in Figure 2.6(a), angles θ1+Δθ and θ2+Δθ which are measured at x location, 

are the relative AOAs of the signals sent from beacons B1 and B2.  Hence angles ∠𝑥𝐵2𝐵1 and 

∠𝑥𝐵1𝐵2  can be calculated and the unknown x location can be determined by using the 

triangulation technique as shown in Section 2.3.1.  

     

Figure 2.6: AOA localisation a) Localisation with Δθ orientation information b) localisation 

without Δθ orientation information [65]. 

    When Δθ orientation of the unknown x is not available and the absolute AOAs cannot be 

obtained, AOA differences can be used instead. In Figure 2.6(b), angles ∠𝐵1𝑥𝐵2,∠𝐵1𝑥𝐵3, 
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∠𝐵2𝑥𝐵3 can be computed using the knowledge of relative AOAs. If two points and the chord 

joining them are known, a third point x from which the chord subtends a fixed angle is 

constrained on a circular arc as shown in Figure 2.6(b). For example, angle ∠𝑥𝐵2𝐵1 and the 

chord B1B2 restrict x’s position on the arc passing through B1, x and B2. Since each chord 

determines one arc, the location of an unknown x is at the intersection of all arcs when three 

beacons are available. 

2.3.6 Fingerprint 

    Fingerprint localisation technique utilises radio signal propagation and received signal 

strengths [2, 66] across a grid space. Empirical radio propagation models are used to convert 

the radio signal strength into distances between the transmitters and receivers. Since the signal 

strength changes in dynamic environments due to fading and interference, an alternative 

approach to estimating the object’s position is employed, using RF signal strengths. 

Amplitudes of radio signals, radiating from transmitters, are recorded by a receiver at every 

grid point and stored as a database with respect to their locations. See Figure 2.7. This 

database is called a fingerprint database. A localisation technique which utilises this database 

is called fingerprint localisation. 

 

Figure 2.7: Grid space for fingerprint database. Bi: transmitters, G: grid point, P: object 

receiver. 

    In Figure 2.7, a signal vector is generated at every grid location, G, by using received radio 

signal strength amplitudes from the transmitters and this vector is defined as F= { fi }  where 

i= (1,2,3,4). An object receiver position P can be estimated by acquiring a signal vector, 

P={ri}, where  i = (1,2,3,4). 

    This signal vector is compared with known F vectors across the grid area. Fingerprinting 

technique can be utilised in two phases. First, in offline phase, location fingerprints are 

collected by performing a site survey of the received signal strengths (RSS) at grid points. 
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Secondly, in on-line phase, the object receiver will also sample a vector of RSS values from 

the transmitters and the object location is calculated by using software techniques. 

    A software algorithm computes the Euclidean distances between the sampled object RSS 

vector and each grid location fingerprint vector in the database. The coordinates associated 

with the fingerprint vector that provides the smallest Euclidean distance is returned as the 

estimate of the object position. Location accuracy is reported as the minimum distance 

between the real and estimated object points.  

2.4 Localisation Systems: 

    Various localisation systems are presented in chapter 1 together with their tabulated 

comparisons. An overview of the localisation problem and experimental results will be 

provided here. The localisation problem is defined as the process of finding the current 

position of the objects within a specific region. Localisation using radio signals attracted 

attention in telecommunication and navigation. The most well known positioning system is 

the global positioning system (GPS) (Kaplan, 2005) [67], is a satellite based outdoor 

localisation system. Satellite signals are unable to penetrate buildings which make them 

useless indoors.  

    Indoor radio signal propagation is site specific and exhibits multipath effects. It has low 

probability of line-of-site signal propagation between the transmitter and receiver (Pahlavan 

& Levesque, 2005) [68] .This makes accurate indoor localisation very challenging.  

    For indoor localisation a number of wireless technologies are proposed such as infrared 

(Want et al. 1992) [6], ultrasound (Priyantha et al. 2000) [52], Wi-Fi (Bahl & 

Padmanabhan,2000) [2]; (Youssef & Agrawala, 2005) [69]; UltrawideBand (UWB) (Ingram 

et al. 2004) [70], and more recently RFIDs (Hightower et al. 2000) [8]; (Sansanayuth et al. 

2013) [71]; (Bekkali et al. 2007) [72]; (Yamano et al. 2004) [73].  

    Localisation techniques, in general, deploy metrics of received radio signals. The most 

popular received signal metrics are based on time of arrival (TOA), time difference of arrival 

(TDOA), angle of arrival (AOA) and received signal strength (RSS) measurements. These 

signal metrics are then processed by localisation algorithms to estimate the object position.   

    The accuracy of signal characteristics and complexity of the algorithms define the accuracy 

of the estimated location. Three major localisation areas can be identified depending on how 

the signal metrics are utilised by localisation algorithms. (Hightower & Borriello, 2001) [14]. 

These areas are triangulation, scene analysis and proximity. 
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 Triangulation method: is based on geometric properties of a triangle to estimate 

the object receiver position. Depending on the type of radio signal measurements, 

triangulation can be further sub divided into multilateration and angulation 

methods. In multilateration techniques, TOA, TDOA or RSS measurements from 

multiple wireless nodes are converted to distance estimations. In angulation 

techniques, AOA measurements with the help of specific antenna designs are used 

to determine the receiver position.  

 Scene analysis technique: requires an offline phase to learn RSS behaviour at a 

specific area. This information is then stored in a database called radio map. 

During the online phase the receiver’s unknown location is decided based on the 

similarity between the radio map and real time RSS measurements. Radar (Bahl & 

Padmanabhan, 2000) [2], Horus (Youssef and Agrawala, 2005) [69] and Compass 

(King et al. 2006) [74] are examples of this technique. 

 Proximity technique: is based on detection of objects with known location. This 

can be done by sensors such as touch mouse (Hinckley & Sinclair, 1999) [75] or 

systems based on topology such as active badge location system (Want et al. 

1992) [6]. The technique suffers from limited accuracy.  

    Location awareness is an essential service for many wireless computing scenarios. Many 

applications integrate location information to increase context knowledge. Widespread 

computing environments have specific characteristics which limit the approaches in location 

awareness. Processor performance and the available energy are also limited. Hence, 

requirements for localisation devices and the infrastructure are minimised to allow a large 

range of positioning scenarios. 

    Localisation approaches can be classified into those that are based on coordinates and those 

that are coordinate free (Schuhmann et al. 2008) [76], as seen in Figure 2.8. Coordinate free 

schemes presented by (Fekete et al.2005) [77], focus on an abstract system of location 

awareness. They rely on dense sensor networks to achieve adequate accuracy and they are not 

cost effective. Coordinate based localisation approaches, on the other hand, are used more 

frequently to determine the final object coordinates across the sensing areas. These are further 

divided into range free and range based localisation schemes. Range-free schemes comprise 

of implicit distance measurements. Range based schemes use explicit distances for 

localisation. 
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Figure 2.8: Classification of localisation schemes [76] 

2.4.1 Range free localisation 

Regarding range-free schemes there exist 3 main approaches:  

a) Anchor based Approach: 

    This approach uses anchor beacons which contain 2 dimensional location information     

(xi, yi) to estimate the node positions. A node estimates its position by using special 

algorithms. The scheme is proposed by (Pandey et al. 2006) [78], based on the current access 

point (AP) capability of transmitting at different power levels. Hence a unique set of 

messages transmitted by various APs can be received at every location in the system. The 

object node is expected to transmit back the received messages to the AP which it is 

associated with. The location of the object is then estimated using the set of messages 

received from the object. 

    Another anchor based approach is centroid localisation, (CL), proposed by (Bulusu et al. 

2000) [53]. In this approach, the unknown object calculates its position as the centroid of the 

coordinates of the beacon nodes where the transmissions are received from. CL only performs 

the averaging of beacon coordinates to localise the object, while weighted centroid 

localisation (WCL) uses weights to ensure improved localisation. 

b) Hop based Approach : 

    In this type of localisation scheme, the object position is calculated based on hop distance 

to other nodes. As explained by (Niculesco & Nath, 2003) [79]. This scheme delivers an 

approximate position for all the nodes in networks where only a small number of nodes have 

self positioning capability. All nodes in the network, including other anchors, get the shortest 
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distance in hops to every anchor. This approach only works well in dense networks. It relies 

on flooding of messages which produces high communication overhead which is undesirable.  

c) Area based approach: 

    Area based schemes perform location estimation by isolating the environment into 

triangular regions between beacon nodes as shown by (He et al. 2005) [80] and (Elnahrawy et 

al. 2004) [81]. The presence inside or outside of these triangular regions allows a node to 

narrow down the area in which it can reside.  

    Area based approaches normally perform particularly well in heterogeneous networks 

where there is a high node density. This approach is not suitable due to utilisation of a large 

number of nodes and the high total cost. 

2.4.2 Range based localisation 

Range-based schemes are subdivided into the following 3 approaches:  

a)  Signal propagation time localisation: 

    This is a time of arrival (TOA) technology and it is used as a means of obtaining range 

information through signal propagation time. This application is deployed by satellite 

navigation systems as defined by (Parkinson & Spilker, 1996) [82]. Although this approach 

guarantees high precision and can be globally used, it has various drawbacks such as it can 

only be used outdoors, it needs expensive hardware and consumes too much energy. Hence it 

is an inconvenient system in many situations. 

b) Signal propagation time difference and arrival angle localisation: 

    This technology is based on measurements of time difference of arrival, [64] or the angle of 

arrival, [79]. TDOA estimates the distance between two communicating nodes and this is 

called ranging. 

    AOA allows nodes to estimate and map relative angles between neighbours. TDOA and 

AOA also utilise expensive and energy consuming hardware hence these approaches are also 

unsuitable for widespread usages. 

c) Signal strength localisation : 

    This approach uses received signal strength indicator (RSSI) values of incoming transmitter 

beacon signals. Unlike TOA, TDOA and AOA techniques, RSSIs can be obtained reasonably 

cheaply by using low priced commercial hardware. RSSI techniques use theoretical and 

empirical models to translate the signal strength into distance estimates. Each point is mapped 
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to a signal strength vector, (Bahl & Padmanabhan, 2000) [2], or to a signal strength 

probability distribution (Youssef et al. 2003) [83] across the test areas.  

    This technology suffers from signal interference and multipath fading which make the 

range estimates inaccurate. Furthermore signal strength based approaches require special 

hardware such as infrared badges, cameras, tag transmitters, and readers. 

    Many approaches use location fingerprinting for localisation in wireless sensor networks. 

Two examples are given by (Youssef et al. 2003) [83] and (Bahl & Padmanabhan, 2000) [2]. 

This technique consists of an offline training phase and an online positioning phase. This 

approach needs the preconditioning of a training database for different environments.  

2.4.3 Wireless sensor node localisation: 

    There have been great advances in wireless communication and mobile computing over the 

years. Radio frequency identification devices (RFID) are utilised as wireless sensor nodes for 

localisation purposes. They were initially developed as an automatic identification system 

consisting of readers, tags and servers (Want, 2006) [84].  

    RFID devices can be divided into two classes, active and passive. Active tags have a power 

source on them. Passive tags don’t have any power source on them; they just back scatter the 

carrier signal received from the reader. Key benefits of RFIDs are their low cost and no line 

of sight requirement. Fast reading of multiple tags inspired the industry to develop many 

applications in retail, healthcare, people tracking etc. (Baudin, 2005) [85].  

    Applying RFID for indoor localisation is one of the main active research areas which is 

also utilised in this study. RFID positioning systems can be broadly divided into two groups: 

tag and reader localisation depending on the RFID device on the object. In tag localisation 

schemes, tags are deployed as reference points and localisation technique is applied to 

estimate the location of a tag. SpotON (Hightower et al. 2000) [8], uses RSS measurements to 

estimate the distance between an object tag and three readers and applies trilateration on the 

estimated distances. LANDMARC (Ni et al. 2003) [71] uses a scene analysis approach by 

using readers with different power levels and fixed location reference point tags. Readers vary 

their read range for all reference tags and for the object tag, k nearest reference tags are then 

selected and their positions are averaged out to estimate the object position. 

    In (Stelzer et al. 2004) [86], reference tags are synchronised with the readers. Then TDOA 

principles and TOA measurements relative to reference tags and the object tag are used to 

estimate the location of the object tag. In (Bekkali et al. 2007) [72], RSS measurements from 
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the reference tags are collected and a probabilistic radio map of the area is generated. Then 

localisation techniques are applied to estimate the object’s location.  

    In (Lee & Lee, 2006) [87], passive tags are arranged on the floor at known positions in a 

square pattern. The reader receives all readable tag locations and orientations and estimates 

the object position by using a weighted averaging method. In (Han et al. 2007) [88], tags are 

arranged in a triangular pattern so that the distance in the x-direction is reduced. Estimation 

error is reduced from that in the square pattern. 

    Finally, a Bayesian approach is also proposed by (Xu & Gang, 2006) [89], to predict the 

position of a moving object. Using object movement probability and detected tags’ locations, 

the reader location is determined by maximising the probability. Then the reader position is 

calculated by averaging the defined positions from all the tags. 

2.5 Summary: 

     The aim of this chapter is to present today’s technologies utilised in localisation 

techniques. Designing and implementing a localisation system is quite challenging 

considering the changing indoor conditions such as people’s movement, interference of 

elcetronic devices, furniture alterations and the cost factor. There is no perfect localisation 

approach which produces the exact position of the unknown object. In this chapter, a 

schematical overview of the general localisation techniques is given in Figure 2.8. 

    The increasing demand for intelligent location-aware services in indoor spaces has 

generated many systems with time efficient localisation and low deployment cost. Some 

localisation techniques require extra hardware, such as range based and satellite system. This 

in return increases the cost factor.  

    Various techniques are used to estimate the position of the objects by using transmission 

times of RF signals and their signal strengths. The distances of the object from reference 

points are calculated with these techniques and the actual object position is calculated by 

using these distances. Different power level transmissions are utilised with reference tags and 

object tags. k nearest neighbourhood algorithms,( k- NN), are applied to estimate the nearest 

reference tags to object tag. Large numbers of reference tags produce interference between 

them and this reduces the estimation accuracy.            

     Other techniques such as fingerprinting techniques require an offline computation phase to 

produce an RF signal map across the sensing area. This in return adds extra effort and time to 

calculations. Some techniques deploy a large number of beacons in the sensing area. This is 

impractical and increases the cost. Wireless sensor nodes, namely RFIDs, are the most likely 
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devices which are used in position detection. Transmitter tags and receiver readers can be 

deployed in any formation across the sensing area and the RSS values received can be 

transferred to a server for processing.  

    These RSS measurements are affected by environmental factors and other obstacles across 

the sensing area. Hence the object position estimation accuracy is reduced. Nevertheless RF 

based systems are the most favourable systems with reasonable accuracies indoors and 

outdoors. They are low in cost and efficient in power usage. The future of indoor localisation 

lies with these RF based systems. 
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CHAPTER 3 

LQI CHARACTERISTICS & FINGERPRINT  

LOCALISATION 

 
3.1  Background  

. Radio signals are based on the radiation of Electromagnetic waves in free space [90]. Signal 

characteristics of radio signals differ in different environments. Outdoors, it is easy to predict 

signal propagation behaviour due to large transmission ranges. 

    Indoors, the situation is different due to closed environmental conditions and the obstacles 

introduced along the path of the propagation. Due to indoor reflection, refraction, scattering 

and diffraction [91], indoor transmissions suffer from signal loss and heavy attenuation. The 

signal variations caused by these factors can be classified in two groups: spatial variations and 

temporal variations [92]. 

    Spatial variations are generally due to signal fading [93]. Large scale fading is identified as 

the attenuation of the signal strength as the transmission distances increase. The small scale 

fading, on the other hand, is generated by the sudden changes in signal amplitudes in short 

distances or in short times.  Multipath fading is the most important small scale fading. It 

causes temporal variations as well as spatial variations. Due to these signal variations, signal 

levels must be measured many times to obtain a consistency between them. 

    Indoor environments typically have many walls and obstacles which are made of different 

materials. Hence, the radio signals behave differently in these harsh environments and have 

multipath propagation. Multipath propagations result in the radio waves arriving at different 

times at their destination [94]. These arrived signals interfere with each other and cause 

reductions in signal levels.  There are two identification features with RF radiation. These 

quantities are RSSI and LQI values. They are used to identify the transmission of the radio 

signal packets in space and utilised in localisation technology to determine the object 

locations.  

   The aim in this chapter is, initially, to investigate RSSI and LQI values and develop various 

algorithms such as bisectioning, z-score, k-NN and weighted k-NN which will be utilized 

throughout the study. Later on, classical fingerprint based localisation approach which is one 

of the basic localisation techniques in literature is introduced for reference purposes. 
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Fingerprint method is a preferred localisation solution to find the unknown object locations 

due to its low cost and the accuracies achieved with it. Fingerprint technique requires a large 

amount of data collection from a large number of measurement points to achieve reasonable 

localisation accuracies. There are two important stages in deploying fingerprint localisation. 

In first stage, identified as off-line phase, received signal strengths will be collected at every 

measurement point and they will be stored in a database. In the second stage, identified as the 

on-line phase, the fingerprint of the unknown object point is recorded and this fingerprint is 

searched for throughout the database. 

    Various algorithms are introduced to find the nearest measurement points to the object 

point across the test-bed. Fingerprint based localisation approach is studied in literature by 

many researchers such as (Bahl et al. 2000) [2], (Lionel et al. 2004) [7], (Kaemarungsi et al. 

2004) [66] and (Alippi et al. 2005) [51]. Different algorithms are utilised in these studies and 

different localisation accuracies are obtained. All these systems require large numbers of 

measurement points and, as a result, large amounts of received signal strength data.  

    In this chapter, a fingerprint based approach is presented with localisation accuracies of 

around 1 metre. k- NN and weighted k- NN algorithms are employed throughout this study. 

As a main contribution in this chapter, a variety of weight mechanisms in literature is 

investigated together with the Euclidean distances between object and measurement points. 

An optimum weight function is determined to generate the best localisation accuracies.    

3.2  Received signal strength 

    Due to complex nature of the radio signal propagation, it is difficult to determine the RSS 

values in a standard form. RSS distribution by a receiver at one fixed point shows a similarity 

to Gaussian distribution in the time domain. Signal strength values change with respect to 

physical surroundings and different time periods (Yin et al. 2005) [95], shows three 

normalised histograms of signal strength values received at an access point at different times. 

It can be seen that signal strength values change with time at the same point.  

    Incoming RSS values are measured by the sensors and these values are related to distances 

between transmitters and receivers. The transmitter power, (PTX), is directly related to 

received power, (PRX), at the receiver. According to Friis’ free space transmission model [96], 

Received power can be expressed as in equation (3.1)  

2
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where  PTX = Transmitter power , PRX = Receiver power , GTX = Transmitter gain , GRX = Receiver 

gain ,   = Wave length ,  D = Distance between transmitter and receiver.  

Received signal strength values are converted into RSSI values differently in different wireless sensor 

nodes as shown in equation (3.2).  

REF

RX

P

P
RSSI log.10  dBm                                                                                             (3.2) 

RSSI value is the ratio of received power to a reference power (PREF).  Reference power is 

defined as the absolute value of PREF=1 mW.        

   Received power PRX decreases quadratically with the distance D between a transmitter and a 

receiver. Theoretical plotting of PRX against D is shown in Figure 3.1. RSSI, received by the 

receiver, increases with the decreasing D distance.  The slope of the RSSI curve depends on 

the environmental conditions during the transmission. The relationship between RSSI and 

distance D can be generally expressed as: 

DARSSI log.20          (3.3) 
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Figure 3.1: Plot of PRX against distance d between a transmitter and a receiver 

    A desired normalised plot of RSSI values against D distances from equation (3.3) can be 

presented, as an example, in Figure 3.2.  

 

Figure 3.2: Plot of normalised RSSI values against D distances 
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    In practical situations, radio signals are interfered with other surrounding parameters during 

the propagation and these interference effects reduce the signal quality significantly. Example 

RSSI values typically measured at a receiver point with respect to distances between a 

transmitter and a receiver can be seen in Figure 3.3. 

 

Figure 3.3: Recorded RSSI values against D distances between a transmitter and a receiver 

3.3  Link Quality Indicator 

    During the radio signal transmissions, environmental effects reduce the quality of 

transmitted signal packets and in return decrease the amplitudes of RSSI values. RSSI is a 

measure of total energy of the received signal. There is another way to judge the signal 

quality by considering the signal energy and signal to noise ratio (SNR). Hence Link Quality 

Indicator (LQI) is introduced to define the quality of signal packets received by the receiver 

[97]. LQI is obtained by considering both the signal energy and SNR.  

    LQI represents a number of retransmissions between a transmitter and a receiver to receive 

one radio packet correctly by the receiver. Transmitter node transmits signal packets 

continuously in a loop. A receiver node receives these radio signal packets and forwards the 

LQI values to a server PC. Typical recordings of LQI measurements against distances, 

performed with four transmitters at the same location and one receiver node, are presented in 

Figure 3.4. 

 

Figure 3.4: Recorded LQI values from LA, LB, LC, LD transmitters against distance 
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     As it is observed, LQI values of incoming radio signal packets decrease with increasing 

distances and the resulting plot is always reproducible between any transmitter and receiver 

pair. Envelope functions of the plots are used to define the mathematical relationships 

between LQI and d distances. There are random outliers based on sudden signal fluctuations 

between the transmitters and receivers. These may be caused by the reflections from walls and 

floors and can be eliminated by using mathematical methods. 

    According to IEEE802.15.4 standards, LQI is an identification of RF signal strength and 

the quality of received signal packet [98]. It is proportional to RSSI, signal-to-noise ratio 

estimation or a combination of both.  LQI value is generated whenever a data frame is 

received based on signal strength. Wireless sensor node determines the signal strength by 

reading the amount of gain the sensor is using to receive the frame. This gain is later 

converted into an 8 bit range between 0 and 255 discrete levels identified as LQI. 255 is the 

highest Link quality value.  

    The conversion between LQI and RSSI values differs for different wireless sensor nodes. In 

Jennic WSNs which are used in the measurements, RSSI values in dBm can be directly 

mapped into LQI values by using equation (3.4) [99]. 

3/)305(  LQIRSSI  dBm                     (3.4) 

This is valid for LQI values 0 to 255.  

3.4 Experimental conditions  

    In this section, experimental platforms and the data collection procedures in the study are 

presented. Main features of the sensor devices which are used in the experiments are 

explained. Their radiation properties are analysed and the radiation beam patterns are 

displayed with polar graphs. Curve fitting procedures with recorded RSSI or LQI data are 

carried out to generate calibration curves of data versus distances. Distance calculations are 

deployed for the given relevant data by using bisection algorithm and calibration curves. 

Theoretical background of outlier technique is explained and it is applied with received RSS 

values to eliminate the sudden data variations.  

     ITU-R indoor propagation loss model is introduced in order to include the environmental 

effects during distance calculations. Its applications in determining the distances between 

transmitters and receivers by using RSSI values and empirical environmental loss factors are 

presented.  
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3.4.1 Hardware  

    JENNIC JN5139 type of WSNs are deployed [100], in the experiments. JN5139 

transmitters and receivers are low cost and low power consumption wireless sensor devices.  

They can be used in large topographic areas for wireless localisation.  Zigbee Home Sensor 

demo program [31], is employed to program JN5139 active devices to work as transmitters 

and receivers respectively. An active transmitter/ receiver pair used in this study is shown in 

Figure 3.5 and Figure 3.6.   

                

Figure 3.5: Jennic receiver, JN5139 [100]        Figure 3.6: Jennic transmitter, JN5139 [100]   

 In the experiments, 2 types of JN5139 sensor nodes are employed. One of them is the mobile 

receiver node identified as the reader. The other one is the transmitter node and identified as 

the tag. A third one is the reference node. A number of tags are utilised as reference nodes at 

known positions in some of the experiments. A mobile receiver collects signal packets in the 

form of LQI values from stationary transmitters and reference nodes. It transfers these LQI 

values to a PC through a wired connection to calculate the receiver position.  

 ZigBee protocol [101], which is based on IEEE 802.15.4 standards in 2.4 GHz frequency 

band is utilised during the communication and data transmission between fixed transmitter 

and mobile receiver nodes.  

     Various indoor localisation systems are developed using received signal strengths of 

Jennic WSNs based on ZigBee standards in this study. The majority of the localisation 

systems in the literature employs wireless sensor nodes different from Jennics and their 

system performance evaluation is based on IEEE 802.11 standards for wireless LAN. There is 

insufficient investigation using ZigBee and IEEE 802.15.4 standards. This standard defines 

medium access control (MAC) and physical layer (PHY) protocol for low power devices. 

ZigBee also includes IEEE 802.15.4 standards for MAC and PHY and is suitable for wireless 

sensor Networks. JENNIC JN5139 wireless sensor nodes with ZigBee standards are utilised 

in experimental test-beds to localise the unknown object locations. 
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3.5 RSS measurements 

    Received Signal Strength measurements are conducted in various test areas including 

Loughborough University premises. Meeting rooms in the Computer Science department and 

other offices and halls are engaged at different times for experimentation. Experiments are 

usually carried out during evenings and weekends to avoid the interference effects of people 

walking around with RF signal propagation.  

     Received signal strength values depend on the distances between the transmitters and 

receivers with longer distances resulting in reduced signal strengths. Since the measurements 

of received signal strengths are effected by environmental conditions, recordings of signal 

strengths arriving from transmitters are repeated many times.  

    Average of signal strengths received from a transmitter at one location is taken as the 

measured signal strength at that location. These signal strengths can be in RSSI or LQI format 

depending on the type of WSNs. A typical distribution of measured LQI values against 

distances between a Jennic type transmitter and a receiver is presented in Figure 3.7. 

         

Figure 3.7: Plot of measured LQI values against distances for Jennic type transmitter receiver 

pair and their exponentially fitted curve 

    Correlation between these values and d distances can be quantised and formulated with 

mathematical curves by using curve fitting techniques.  

3.5.1 Curve fitting  

    It can be observed in Figure 3.7 that the distribution of measured LQI values reflects the 

random behaviour of RF signals. There is a locality of randomness in the recordings. A curve 

fitting technique is utilised on the plot of received LQI values against d distances. An 

example exponentially fitted curve on the distribution of LQI values is shown in Figure 3.7.  
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    Fitted curve equation for the received LQI data against distances between 0m and 40m in 

Figure 3.7 is given by the equation (3.5). This equation is generated by MATLAB with 95% 

confidence boundaries. 

dd eedLQI 03035.08276.0 2.1161.108)(             (3.5) 

    Fitted curves are considered as the calibration curves between LQI values and d distances. 

They are utilised to determine the unknown d distances during experiments by using software 

techniques. Any LQI value measured during the experiments can easily be fitted in equation 

(3.5) and corresponding d distance can be calculated by using a software technique called a 

bisectioning algorithm. 

3.5.2 Bi-sectioning algorithm  

    A numerical analysis technique is developed by using a bisectioning algorithm to determine 

the distances between receivers and transmitters. Bisectioning algorithm is a root finding 

method in mathematics [102]. The method repeatedly bisects an interval and then selects a 

subinterval in which a root must lie for further processing. It is also called a binary search 

method where the range of possible solutions is halved in each iteration [103]. This method is 

applied if one needs to solve the equation F(x) for a real variable x. A graphical representation 

of a bisectioning algorithm is shown in Figure 3.8. 

    

Figure 3.8: Steps of bisectioning method over the range [a1,b1] [102]  

    F(x) is a continuous function which is defined in an interval (a, b) as shown in Figure 3.8. 

F(x) must have at least one root in the interval (a, b). At each step, the method divides the 

interval into 2 by finding the midpoint, c= (a+b)/2, and the function F(c) at that point.      

    There are two possibilities; F(a) and F(c) have opposite signs and bracket a root or F(c) and 

F(b) have opposite signs and bracket a root. As a result, the method selects the subinterval as 

a new interval to be used in the next step. The interval is reduced by 50% at each step. The 

process continues until the interval is sufficiently small.  
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    Fitted curve of F(x) for LQI distribution against x distance will be deployed to determine 

an unknown x distance for a given LQI value. Y axis displays LQI values. X axis boundaries 

of fitted curve are a1 and b1. The middle point between a1 and b1 is defined by  

][
2

1
11 baxmidnew            (3.6) 

 xmidnew is checked with the following two statements:  

 If F(a1)* F(xmidnew) < 0 than b1 = xmidnew                    (3.7) 

If F(a1)* F(xmidnew) > 0  than a1 = xmidnew                     (3.8) 

Otherwise xmidnew is the resultant x value  

A criteria is introduced to define the accuracy of x value: 

1.0


xmidnew

xmidoldxmidnew
             (3.9) 

Procedures are repeated with correct inequality and new xmidnew values.  

    If equation (3.9) is met then the program checking continues. Otherwise the last xmidnew 

becomes x unknown distance. Program segment for bisectioning algorithm is presented in 

Figure 3.9.  

   public bool calc() 

   { 

   xMidNew = (xUpper + xLower) / 2; if ((calculate(xLower) * calculate(xMidNew) ) < 0) 
   { 

      xUpper = xMidNew;  

    } 
      else if ((calculate(xLower) * calculate(xMidNew)) > 0) 

    { 

        xLower = xMidNew; 
      } 

      else 

      { 
        valueX = xMidNew;   return true; 

       } 

        if (iteration > 1) 
      { 

    if (Math.Abs((xMidNew - xMidOld) / xMidNew) > 0.1) 

        { 
      xMidOld = xMidNew;  iteration++;  return false; 

        } 

        else 
       { 

       valueX = xMidNew;    return true; 

     }     
        } 

      xMidOld = xMidNew;  iteration++;   return false; 

        }   
     public double calculate(double var) 

     {  

    return ((200.1 * Math.Exp(-0.1397 * var)) + (32.54 * Math.Exp(0.0334 * var)) - Temp);} 

   

Figure 3.9: Bisection algorithm used in calculations 
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3.6 Radiation Beam Patterns  

    Wireless transmitters radiate electromagnetic waves in all directions. Radiation beam 

patterns are shaped according to antenna types. Whip type antennas are used with Jennic 

JN5139 WSNs. These antennas radiate and send signal packets in all directions across the test 

area. The transmission range of Jennic 5139 transmitters is tens of meters.  

    In order to observe the effects of antenna orientations in experiments, LQI values are 

plotted around transmitters. A transmitter is stationed at the centre of a circle with radius r and 

a receiver on the circle records the signal strength values in angular steps.  

     Polar plots of LQI values against angular positions are shown in Figure 3.10 for 2 

transmitters used in the experiments. The results of polar plots show that experimental 

transmitters radiate omni-directionally in all directions. Some irregularities in radiation beam 

patterns are observed but uniform spherical radiation of signal packets are assumed from 

transmitters in all directions.  

  

Figure 3.10a : TxA radiation beam pattern   Figure 3.10b : TxB radiation beam pattern   

    3.7 Outliers  

    An Outlier is an observation which is numerically distant from the rest of the data [104]. It 

is a data point which appears to deviate from other members of the sample. These kinds of 

data frequently occur among RSSI and LQI measurements and they are considered as 

measurement errors.   Outlier points can indicate faulty data. In large amounts of data they are 

usually expected. Possible sources of outliers are recording and measurement errors [105]. 

See Figure 3.11.   

      There are two ways of managing outliers. Firstly, data must be kept carefully during 

experiments. Secondly during the data analysis, statistical methods must be applied.   

Identifying and labelling the outliers is an important step.    There are many outlier techniques 

in literature. Two well known outlier methods are Z -score method [106] and Dixons method 

[107]. Z-score method is deployed when outlier data is observed in the study. 
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Figure 3.11: Examples of outliers  

3.7.1 z-score method 

    In this method, mean ( x ), and standard deviation (s), of the entire data set (xi), are used to 

obtain a z-score, zi , for each data point as show here; 
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    Simple z-score method is not a reliable way of defining outliers due to the fact that both 

mean and standard deviations are also effected by the outliers. Hence a modified z-score test 

is employed.  

    In this modified z-score test, z-score is determined based on outlier resistant estimators. 

“Median of Absolute Deviation”,(MAD), is such an estimator.  It is defined as ;  

}{ mi xxmedianMAD          (3.12) 

where xi is the ith data and xm is the median of the data. MAD is calculated in place of standard 

deviation in z-score calculations. Modified zi is given by (Augusto et al. 2010) [106] in 

empirical form as, 








 


MAD

xx
xz mi

i 6745.0         (3.13) 

For example xi data where i=10 is given in Table 3.1.  
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xi 3.5 3.7 3.4 8.4 2.9 3.8 3.1 3.6 9.6 3.6 

mi xx   0.1 0.1 0.2 4.8 0.7 0.2 0.5 0.0 6.0 0.0 

zim -0.33 0.33 -0.66 15.9 -2.32 0.66 -1.66 0.0 19.9 0.0 

  

Table 3.1: Examples of random xi values and calculated zi values where i=10  

    These random xi numbers are listed in increasing order. Median number (xm) is defined by 

(i+1)/2 = 5.5th data. Since there are an even number of xi data, median xm can be calculated as  

xm= 0.5* (5th data+6th data) = 3.6. 

    MAD can be calculated by determining mi xx   values as shown in Table 3.1. They are 

listed in increasing order and MAD is determined as (i+1)/2 = 5.5th data. Similarly, MAD 

becomes 0.5*(5th data+6th data) =0.2.  Hence modified zi is defined as  

)
2.0

(*6745.0 mi

mi

xx
z


         (3.14) 

    Modified zi values are also displayed in Table 3.1. Any xi data greater than xm+MAD is 

labelled as an outlier. This xi value is 3.8 and outliers are 9.6 and 8.4 which are excluded from 

the data set. Recorded RSSI or LQI values are organised in floating number format and in 

groups of 10 similar to xi values and modified z-score outlier technique is applied to check the 

existence of outliers. Any outliers found are excluded and the rest of the recorded values are 

utilised for localisation procedures. 

3.8 Propagation Path Loss 

RF signal propagation is susceptible to environmental effects and the path loss introduced 

with RSSI and LQI values influences the localisation accuracies. There are different 

propagation path loss models developed in the literature [108,109]. The most popular RF 

propagation path loss models are: 

a) Free space propagation model  

b) Logarithmic distance path loss model  

c) Log-normal distribution model  

d) ITU-R indoor propagation model. 

In practical applications, RF propagation loss is different than the theoretical models due to 

multipaths in the environment. In Log-normal distribution model, path loss is defined as  

GX
d

d
kdPLdPL  )log(10)()(

0

0        (3.15) 
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where PL(d) is the propagation path loss (dB) with distance d, k is path attenuation factor, XG 

is the factor for random effects of shadowing and PL(d0) is the propagation loss in free space 

with d0 =1m. The most commonly used propagation path loss model is ITU-R indoor 

propagation model [108]. In this model, path loss with respect to distance is given as:  

28)()()(20)(  nLdNLogfLogdPL f
     (3.16) 

where d is the distance between transmitter and receiver (meters), N is the distance power loss 

coefficient, Lf is the floor penetration loss factor, n is the number of floors between a 

transmitter and a receiver and f is the radio frequency (MHz). Typical parameters which are 

used with this model in the study are N = 30; n = 0; Lf = 15+4(n-1) =11; f = 2400 MHz.  

Hence RSSI value received from the receiver is defined as;  

)(dPLGPRSSI          (3.17) 

where P is transmitter power and G is antenna gain. Transmitter power and antenna gain 

values are considered from Jennic JN5139 WSN catalogues. 

    Distance d between a transmitter and a receiver can be calculated with equation (3.17) by 

substituting RSSI value received from the receiver. 

3.9 Fingerprint Localisation Method  

    Once the received signal strength values in the form of LQI and RSSI are analized 

thoroughly and their randomness is reduced. The necessary infrastructure is organized for 

experimentation and fingerprint mapping localisation is carried out across a rectangular 

indoor test area. 

      Indoor fingerprint localisation technique is based on identifying the object location with 

received signal strengths at object position by comparing them with a pre-built radio map 

across the test area. A general layout of the test area is given in Figure 3.12.  

  

Figure 3.12: An example test area with 4 transmitters and a mobile user with a grid of 

measurement points  
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    A number of measurement points is organised in a grid formation depending on the 

physical environment and the topology of the test area. Transmitters, located at strategic 

points provide RF propagation to cover the entire test area. In offline phase, at each   

measurement point, RSS values in RSSI or LQI format are received from all the transmitters 

by a receiver on each grid point and they are transferred to a distant server to build a signal 

location database. This database is called the radio map of the test area. 

    RSS values at measurement points display random behaviour and a single measurement of 

RSSI or LQI value can not be relied upon for localisation. Hence average value of multiple 

measurements over a period of time is employed as the signal fingerprint at that point. In 

online phase, mobile user receives RSSI or LQI values at its unknown location and transmits 

them to the server. These values are compared with the created radio map in offline phase in 

the server. A localisation algorithm is used and the probable user location is estimated by 

choosing minimum Euclidean distances between measured RSSI or LQI values in online 

phase and stored RSSI or LQI values in offline phase. A summary block diagram of 

fingerprint localisation approach by using LQI values [110], is presented in Figure 3.13. 

 

Figure 3.13: Architecture of Fingerprint localisation approach [110], by using recorded LQI 

values 

3.9.1 Fingerprint Theory 

    There are two vectors which are used in the estimation of object locations. The first vector 

defines the signal measurements at grid points and consists of RSS values received from Ti 

transmitters, (i=1, 2, 3...N), where N is the total number of transmitters.  They are recorded in 

the fingerprint database. This vector is identified as location fingerprint RSS vector and 
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denoted as jF


 with (j= 1, 2, 3…M). M is the total number of grid points.  Let RSSTi denote 

the average RSS value from Ti
th transmitter at jth grid point. Hence, the location fingerprint 

RSS vector at jth grid point is given as; 

),...,,( 321

j

TN

j

T

j

T

j

Tj RSSRSSRSSRSSF 
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The second vector consists of samples of RSS measurements from N number of Ti 

transmitters at a receiver on the object. This is called sample RSS vector and denoted as 


kR

with (k=1, 2, 3...Z) where Z is the number of object points.  Hence the sample RSS vector at 

kth object point is given as; 
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    Ti transmitters are placed around the sensing area. The object position is estimated by 

comparing location fingerprint RSS vectors and sample RSS vector. 


kR  vector elements are  

mutually independent and normally distributed.   Signal distance between the sample RSS 

vector and location fingerprint RSS vector is used to determine the nearest measurement point 

for the object point. In this example, signal distance is denoted as the Euclidean distance 

between jF  and kR vectors where k=1 corresponding to 1 object and identified as; 
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Fj is the RSS vector at measurement grid point Gj and Rk is the RSS vector at object point. 

This technique determines the grid point corresponding to minimum signal distance between 

the sample RSS vector and the location fingerprint RSS vector. Hence, Euclidean distances 

can be illustrated for 1 object, N transmitter and M grid points as: 
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------------------------------------------------------------------------------------------------------  

There are M number of grid points and Euclidean distances are determined as many as M 

fingerprint locations and a Euclidean vector can be defined as;     
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),....,,,( 4321 MEEEEEE 


                                          (3.19) 

    Euclidean distance is a signal distance and not an actual physical distance. Signal distances 

can only define the closeness of two locations from a radio signal point of view. Hence, 

minimum signal distance between two locations corresponds to the shortest physical distance 

between them. Euclidean distances are sorted out and stored in a database with respect to grid 

coordinates. Grid location corresponding to minimum Euclidean distance can be selected as 

the most probable close object location.  

3.9.2 k-NN algorithm   

    Localisation accuracy can be improved by selecting a number of minimum Euclidean 

distances from the Euclidean database. k number of grid points in the database with smallest 

Euclidean distances are selected. This selection is carried out by using an algorithm called k-

Nearest Neighbourhood algorithm [3, 7]. k number of  grid point coordinates corresponding 

to k number of smallest Euclidean distances are averaged out to give a more accurate estimate 

of object location, (x,y), using equation (3.20). 





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jjestimate yx
k

yx
1

),(
1

),(              (3.20) 

(xj,yj) coordinates are the nearest measurement grid coordinates.  The algorithm for the 

proposed technique is depicted in Figure 3.14. 

-------------------------------------------------------------------------------------------------------- 
Begin  

Step(1) : AP collects LQI values (LQIT1,LQIT2,LQIT3…LQITZ) from transmitter nodes (T1,T2,T3…TZ) . 

Step(2) : Averages a fixed number of LQI values at each grid point to reduce the randomness.  

Step(3) : Generates a fingerprint database for averaged LQI values against grid coordinates. 

Step(4) : AP collects LQI values from object point. 

Step(5) : Calculates the Euclidean distance values between the object and  grid points. 

Step(6) : Sort the Euclidean distance values in ascending order. 

Step(7) : the smallest Euclidean distance value corresponds to 1-nearest neighbour grid point of the  

              object. The coordinates of this grid point is taken as the object coordinates  

Step(8): 2 grid point coordinates corresponding to 2 smallest Euclidean distances are averaged  

              out to give the object coordinates. 

Step(9): 3 and 4 grid point coordinates corresponding to 3 and 4 smallest Euclidean distance values 

              are averaged out to give the object coordinates. 

End 

------------------------------------------------------------------------------------------------------- 

Figure 3.14: Steps of k-NN algorithm for localisation process 

    k - NN algorithm produces a reasonable accuracy compared to grid spacing. A weighting 

scheme [55,111], is deployed to estimate the object location when k number of fingerprints 

are close to the acquired object fingerprint signature. This is identified as weighted k-NN 

algorithm. Many previous studies [98], include weight functions to increase the object 
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localisation accuracies. Weight functions depend on the real distances or Euclidean distances 

between the receivers and transmitters. RSS varies in indoor environment and the distances 

between the transmitters and receivers cannot be detected accurately by using only signal 

strengths and Euclidean distances. Weighting schemes are introduced to compensate these 

signal variations. Weight w is a function [55], depending on the distances and the 

characteristics of the receiver. In every localisation scenario, a different weight function can 

be deployed due to changing environmental conditions. 

    Shorter distances are usually more weighted than longer distances. Hence the weight and 

the distance are inversely proportional in many applications. Using concentric wave 

propagation with linear characteristics of receivers and transmitters, linear weight functions 

are deployed in localisation approaches. A weighting scheme ensures that remote transmitters 

can have an impact on the position determination [112]. Otherwise the approximated position 

moves to closest transmitter’s position and positioning error increases.  (x ,y) coordinates of 

the object are determined by using wi weight function and  k-NN grid coordinates, (xi,yi), as 

shown in equation (3.21).   


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
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iii yxwyx
1

),(),(          (3.21) 

where   



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.   and  
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.   

wi is the weight function of the ith neighbouring grid point in k-nearest neighbourhood . 

    The choice of weight functions is an important factor in contributing to position accuracy.  

Data elements with high weight contribute more to position coordinates than the elements 

with low weight. When the weights are normalised they sum up to 1 as shown here; 





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i

iw
1

1            (3.22) 

   3.9.3 Weight functions 

     There are many weighting schemes employed during the localisation procedures with 

Euclidean distances in literature. Each weight function effects the localisation accuracies 

differently. In Landmarc system, [7], weight function w includes D2 Euclidean distance 

values in the calculations. Hence, in order to stabilize the effects of shorter distances in the 

calculations a comparative study of empirical weight functions are carried out first time in 

order to increase localisation accuracies in smaller indoor areas. This study includes the 

Euclidean distance powers to show which weight function generates the maximum accuracy.  
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     Different weight functions [44], obeying the previous normalisation rule, are assigned 

empirically in equation (3.21) in order to calculate the unknown object coordinates. Object 

position estimation depends on Di Euclidean distances of k-nearest neighbours. wi values are 

formulated to express this dependency with Di values and listed in Table 3.2.  These empirical 

weight functions can be implemented with equation (3.21) and unknown object coordinates 

can be calculated with different accuracy requirements. The weight function which provides 

the minimum error between the estimated and actual object coordinates is selected in future 

localisation applications.  
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Table 3.2: A list of weight functions with respect to Euclidean distances   

3.10 Implementation  

    During experiments, fingerprint data collection are carried out in a fingerprint database in the 

server. Object locations are calculated by using k-NN and weighted k-NN algorithms across the 

test area. The ideal weight function from Table 3.2 which produces the minimum localisation 

error is determined during object position estimations. JN5139 active WSNs work as fixed 

transmitter nodes and object receiver nodes respectively [113,114].   

   A rectangular test area which is deployed during the experiments is on a single floor inside 

a building with a minimum number of obstacles. A block diagram of the test area, 15 m2, with 

24 grid points is shown in Figure 3.15. 

 

Figure 3.15: Block diagram of the test area with 1mx1m grid space and object point P, grid 

point G 

     Bi transmitters are placed at the corners of this test area. A receiver, placed on an unknown 

object, is positioned at an arbitrary point in the test area and interfaced to a computer.  A set 
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of 4 LQI readings at each grid point is recorded by the receiver. Received LQI values exhibit 

a correlation with the receiver aerial orientation as well as its location.  

    Hence, the average LQI values are obtained by averaging out LQI recordings in 4 compass 

directions during the measurements. Received signal message format and the database format in 

the server are shown in Figure 3.16. 

 

Figure 3.16: Received LQI signal and database format in the server  

  

3.10.1 k-NN Experiments 

    Average LQI values are recorded for each grid point and unknown object point. Example 

LQI recordings of the mobile object at unknown locations across the test area and their 4 

nearest Euclidean distances with coordinates are presented in Table 3.3.  

 

Table 3.3: Sample LQI vector r of mobile object at different locations and 4 nearest grid  

coordinates 

     k- NN algorithm is applied with fingerprint database. Estimated object locations are 

calculated by averaging the grid coordinates corresponding to k number of minimum 

Euclidean distances. Resultant average coordinates represent the object location across the 

test area.  Location estimation error, e, is defined by a linear distance between the unknown 

object’s estimated coordinates (xe, ye) and the real coordinates (xr, yr). It is given by:  

22 )()( rere yyxxe                (3.23) 

 

Unknown 
(x,y) position  
Coordinates 

LQI values at unknown 
object  positions   
r (r1,r2,r3,r4) 

 
4- nearest Euclidian distances(LQI) 

4 Grid coordinates  
corresponding to 4 
nearest Euclidean 
distances r1 r2 r3 r4 

1 , 2 105 100 85 190 41.6 32.1 29 27.1 0,1 1,3 0,2 1,2 

2 , 1 90 150 95 140 21.4 24.3 25.2 18.8 3,3 2,1 3,1 3,0 

3 , 2 87 158 110 132 24.2 23.2 19.4 27.1 4,0 5,1 3,1 3,3 

4 , 1 90 142 125 114 25.7 23.9 26.6 23.6 5,2 4,1 4,2 4,3 

5 , 1 88 180 120 128 26.3 37.1 39.1 29.5 4,0 3,1 5,2 5,1 
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Error calculations of unknown object locations in Table 3.3 are given as an example. Locali- 

sation results of 4-NN algorithm reveal an average error of e = 0.82m as shown in Table 3.4. 

 

 

 

 

Table 3.4: Examples of estimated object position coordinates and error distances 

3.10.2 Weighted k-NN Experiments 

    wi weight functions in Table 3.2 are calculated at each unknown object location by using 4-

nearest Euclidean distances. Once wi values are determined, coordinates of the unknown 

object at different positions across the test area are calculated by using equation (3.21).  

    An example calculation of estimated object point coordinates is given here for an unknown 

object point of (1, 2). 4 nearest Euclidean distance values are (41.6, 32.1, 29, 27.1) and their 

corresponding coordinates are {(0,1),(1,3),(0,2),(1,2)} from Table 3.3. Weight function (B) in 

Table 3.2 is utilised for example calculations below. w1, w2, w3, and w4 weight values are 

calculated for 4 nearest grid coordinates. Hence estimated unknown object position 

coordinates (x, y) become: 

)2,54.0()2,1(291.0)2,0(2725.0)3,1(246.0)1,0(19.0),( yx  

    Weight functions in Table 3.2 are calculated for example object locations by using their 

Euclidean distances of k-NN grid points. Coordinates of unknown object locations are 

calculated by using these weight functions and they are tabulated in Table 3.5. 

 

  

 

 

Table 3.5: Estimated object coordinates using different weight functions in Table 3.2 

    Their error calculations are given in Table 3.6.  It can be seen that the minimum average 

error distance is realised with weight function D. Hence it can be concluded that the positions 

of unknown objects in the test area are estimated most accurately by using weight function D 

in calculations.  

Unknown 
(x,y) object 
coordinates 

4 Grid coordinates  
corresponding to 4-NN 
 euclidean distances 

Estimated  
 (x,y) object 
Coordinates 

Error 
Distance 
(m) 

1 , 2 0,1 1,3 0,2 1,2 0.5  2.0 0.5 

2 , 1 3,3 2,1 3,1 3,0 2.75 1.25 0.79 

3 , 2 4,0 5,1 3,1 3,3 3.75 1.25 1.06 

4 , 1 5,2 4,1 4,2 4,3 4.25  2.0 1.03 

5 , 1 4,0 3,1 5,2 5,1 4.25  1.0 0.75 

Average error distance (m) 0.82 

Unknown (x,y)  

Object position 

Coordinates 

Estimated (x,y) object coordinates with different weights  

A B C D E 

1 , 2 0 , 2.0 0.5 , 2.0 0.5 , 2.0 0.6 , 2.1 0.6 , 2.11 

2 , 1 2.7 , 1.2 2.7,1.2 2.7 , 1.2 2.8,1.1 2.84,1.08 

3 , 2 3.7 , 1.2 3.7,1.2 3.1 , 1 3.6 , 1.1 3.64 , 1.05 

4 , 1 4.2 , 2.0 4.2 , 2.0 4.2 , 2.0 4.2 , 2.0 4.22 , 2.0 

5 , 1 4.2 , 1 4.2 , 0.9 4.3 , 0.8 4.3 , 0.7 4.27 , 0.62 
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Table 3.6. Error distances with different weight functions 

A 3D representations of error distances at unknown object locations are presented in Figure 

3.17.  

 

Figure 3.17: Error plots at unknown object locations for different wi values  

Finally, average error distances for different weight functions are displayed in 3D form in 

Figure 3.18. 

.  

Figure 3.18: 3D Average error distances versus weight functions  

3.11 Conclusions 

    In this chapter, Theoretical background of RSSI and LQI values are given. RSSI values 

define received signal strengths by the receivers. LQI values define the best quality 

Unknown 

(x,y) Object 

Position  

Coordinates  

Error distance (e) between estimated and real object positions  

(meters) for each weight function w 

A B C D E 

1 , 2 1 0.5 0.5 0.41 0.42 

2 , 1 0.728 0.728 0.728 0.80 0.843 

3 , 2 1.063 1.063 1.004 1.08 1.145 

4 , 1 1.019 1.019 1.019 1.019 1.0143 

5 , 1 0.8 0.806 0.94 0.76 0.822 

Average error 0.92 0.88 0.83 0.81 0.85 
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connectivity between the receiver and transmitter. LQI values can be considered as a metric 

quantity of the current quality of RSSI values.  

    Localisation systems are based on the distance determination between transmitters and 

receivers. Sudden large amplitude variations of RSSI or LQI values during the measurements 

are quantised as outliers and they are removed from main stream recordings by using known 

outlier technique such as modified z-score method.  

    Theoretical background of bisection algorithm is presented. This algorithm is one of the 

contributions in this chapter. It is a numerical analysis technique which is employed in later 

chapters to determine the distances between transmitters and receivers for recorded RSSI and 

LQI values by using their fitted  calibration curves. The only condition is that these fitted 

curves must be monotonic curves to apply bisection algorithm. Otherwise, in non-monotonic 

curves, x axis values can have more than one y values.  

    Localisation accuracies are based on environmental effects between the transmitters and 

receivers. These environmental effects cause path loss problems during calculations. Various 

path loss models are presented. ITU indoor propagation model which is utilised in this study 

is given in detail.   RF signal radiation behaviour of Jennic transmitter and receiver devices is 

investigated. It was confirmed that RF radiation is omni-directional and signal packets are 

transferred uniformly in all directions.  

      k- NN algorithm is a common algorithm used with the fingerprint localisation approach to 

determine relative unknown object locations. Lower values of k decrease the localisation 

accuracies while higher values of k do not have any significant effect on accuracies. But a 

weighted fingerprinting approach which introduces weight functions gives better localisation 

accuracies. In this study, another main contribution is to compare several empirical weight 

functions and to determine the best weight function in order to give the best localisation 

accuracies using fingerprint technique. Different weight functions are deployed with the basic 

fingerprint localisation approach and the one which gives the optimum localisation accuracy 

is determined.  Weight function D which utilises the inverse 3rd order Euclidean distances is 

the favourite one with a localisation error less than a grid space. It gives the best localisation 

accuracy. Upper and lower orders do not improve the localisation accuracies. 

    Fingerprint localisation approach in this chapter is the basic fingerprint technique in the 

literature. This technique is repeated in this study to be a reference localisation for other 

techniques to be introduced in later chapters.   
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CHAPTER 4  

CENTROID & ADAPTIVE CENTROID 

LOCALISATION 

 
 

4.1 Background  

    Wireless sensor nodes, WSNs, are deployed in many areas to determine objects locations. 

Many location algorithms have been introduced over the years based on RSSs [115,116]. In 

many scenarios, data collected with WSNs must be coupled with environmental information 

to generate location information [117,118]. These nodes have limitations with size and power 

consumption and they must be employed within these limitations. 

    A number of chosen WSNs have fixed positions and are identified as transmitter beacons. 

The other nodes can be used to calculate their positions with the help of these beacons. There 

are many localisation techniques with different accuracy levels. According to (Bulusu et al. 

2000) [53], location estimation is divided into two groups; course grained localisation and 

fine grained localisation. Course grained localisation requires a minimum amount of 

computation time and is called centroid localisation (CL). The localisation accuracies are 

around 2-5 metres. In this technique, position coordinates of all Wireless sensor nodes are 

known and the unknown object node is calculated as the centroid of wireless sensor node 

positions within the communication range. 

     CL algorithm can be improved by using weighted centroid localisation (WCL), [111]. 

WCL introduces weights to the distances between the unknown node and the other WSNs. 

The technique emphasises the nearest node to the unknown object node. In the classical WCL 

method, weights are calculated as inversely proportional to the distances between the 

unknown node and the other WSNs. This proportionality is identified as the attenuation factor 

of RF signals with the distance.  

    WCL technique sometimes gives incorrect position calculations indoors due to RF 

attenuation changes because of concrete surroundings. Adaptive WCL algorithm, AWCL, is 

introduced where the weights are calculated more adaptively to surroundings [119]. This 
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algorithm calculates the target position by using WCL but suffers from RSSI ranging errors 

and position errors of anchor nodes.  

    Hence another algorithm was developed by (W. Feng & Xiao Bi, 2009) [120], identified as 

adaptive cooperative location algorithm. It uses specially built nodes where the environmental 

factors are cooperatively adapted with RSSI values between them.   

     A new two level environmentally adaptive localisation algorithm (EAL) is introduced in 

this chapter by using simple transmitter and receiver WSNs. Environmental conditions are 

introduced with this new algorithm as a static threshold factor related to received RSSI values 

and no cooperative data processing is utilised between transmitter and receiver nodes.  

     RSSI values received from transmitters are filtered and outliers are removed. Remaining 

RSSI values have EAL algorithm applied to smooth the variations a stage further in real time. 

Distances between unknown receiver nodes and transmitter nodes are empirically calculated 

by using adaptively corrected RSSI values. Trigonometric methods are utilised to calculate 

the positions of the unknown objects. STD of filtered RSSI values is employed to determine 

an STD threshold value in each level. Environmental factors are introduced in the calculations 

by means of these threshold STD values in both levels for each transmitter. 

   To reduce these environmental affects further, a reference anchor node with a minimum 

received RSSI mean value is selected across the test area. Position calculations are carried out 

according to this reference node coordinate system and then transferred to a real Cartesian 

coordinate system. Origin of this coordinate system is considered as the most stable location 

with minimum RSSI mean and localisation procedures are carried out in this stable 

environment. The algorithm detects the unknown objects without any information about 

adaptive collaboration between nodes. Better localisation results are obtained compared to 

weighted centroid algorithm under similar environmental conditions. Receiver nodes detect 

the transmitted signals and quantise them in LQI forms. These LQI values are converted into 

RSSI values later and employed in the calculations.  

4.2 Centroid Localisation 

    CL is the simplest localisation algorithm .This algorithm does not require any information 

about RSSI or LQI values corresponding to distances between the transmitter and object 

nodes. The only information required is whether the unknown object is within the range of 

transmitters or not. WSNs are uniformly distributed over the area of interest. Each transmitter 

has a circular transmission range where it can communicate with other receivers as shown in 

Figure 4.1. 
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Figure 4.1: Graphical view of 4 transmitters with ranges and 1 object receiver,  

       : transmitter node,       : receiver node 

    During the first phase; all the transmitters, Tj(x,y), send their position information to a 

receiver on the unknown object within their transmission range. In second phase, receivers 

calculate their own positions, Pi(x,y), by using centroid formation of n number of transmitter 

positions in range as shown in equation (4.1). 





n

j

ji yxT
n

yxP
1

),(
1

),(              (4.1) 

   where i represents the unknown object and j represents the number of transmitters. Hence 

CL performs an averaging of transmitter coordinates to localise the unknown object location. 

An unknown object in one of the intersection areas will calculate its position by equation 

(4.1). This technique gives a large amount of errors. (Blumenthal et al. 2007) [111], showed 

that the accuracy depends on the ratio between transmitter distances and the communication 

ranges. 

4.3 Weighted Centroid Localisation 

    Localisation accuracy with CL is very low and a new technique called weighted centroid 

localisation (WCL) is developed to increase the accuracy. This technique identifies the 

transmitters depending on their distances from the unknown object positions. The aim in this 

technique is to give more weight to transmitters which are nearer to the unknown object. 

    RSSI and LQI quantities can be employed as the distance identifiers between transmitters 

and receivers. These values are inversely proportional to distances between transmitters and 

receivers. Hence RSSI or LQI values can be employed with WCL technique.  

    The basic idea of WCL is to define the location of transmitters with an appropriate weight 

function which is based on distances between unknown objects and transmitters in range. The 
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weight function, wij, describes the weight for transmitter j and object node i. See Equation 

(4.2). The distance between the transmitter j and the object i is given by dij. k is the distance 

power factor. 

k

ij

ij
d

w
1

           (4.2) 

    The distance dij is raised to a higher power k in order to weight longer distances. Power 

factor k ensures that the remote transmitters can still have a weight effect in position 

determination. If k is high, the estimated object position moves towards the closest 

transmitters and localisation error increases. Equation (4.1) can be expanded to WCL 

formulation by equation (4.3). 
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Weight functions are inserted instead of 1’s in equation (4.3) and i object coordinates become: 
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    Weight wij is a function with respect to distances and characteristics of receivers. Weight 

function changes with environmental conditions. Shorter distances have more weights than 

longer distances. 

4.4 Adaptive Localisation 

    Object localisation is carried out by deploying RSSI values from transmitters. These RSSI 

values, hence their mean and standard deviation (STD) values, are effected from 

environmental conditions. A new localisation system is envisaged in this chapter to include 

these effects as threshold factors with RSSI values. By utilizing mean and STD values of 

recorded RSSI values, new ranges of smoother RSSI values are determined and used during 

localisation procedures. New Range of RSSI values are identified as adaptive RSSI values 

and the localisation technique is termed as adaptive localisation.  

WSNs are utilised as transmitters and receivers during RSSI measurements. A number of 

transmitter nodes are strategically placed across the tracking area. In this study, RF 

communication between transmitters around the test area and receivers on the objects is one 

way communication. RF data is sent from transmitters to receivers. Block diagram of the 

localisation system is shown in Figure 4.2. 
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Figure 4.2: Localisation system with a) 5mx3m and b) 3mx5m configurations 

    Received RF signals in appropriate format are sent to a server computer by the object 

receiver for position calculation. The object with a receiver can stay stationary or be in motion 

in the indoor environment. Algorithmic model of the localisation system is presented in 

Figure 4.3.  

   

 Figure 4.3: Algorithmic model of the localisation system  

    In the algorithmic model, there are a number of inputs consisting of RSSI values arriving 

from transmitters. Each input has RSSI values from a transmitter node. Standard deviations 

corresponding to them are also inputted into the model. The final output from the model is the 

coordinates of the target object.  

    Each data frame has N number of RSSI values with an identity number broadcast from 

each transmitter node. Object receiver records RSSI values of each frame and sends them to a 

server PC according to individual identity of the transmitters. The mean value of the received 
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RSSI values in one frame are defined as RMEAN and the standard deviation of these RSSI 

values is defined as RSTD. RMEAN is defined for N number of RSSI values as: 





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pMEAN RSSI
N

R
1
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         (4.5) 

RSTD is defined for N number of RSSI values as: 
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In order to minimise the random behavior of RSSI’s, a signal interval of  

(RMEAN -RSTD < RMEAN < RMEAN +RSTD) is defined. RSSI measurement values within this interval 

are considered for localisations. 

4.4.1 RSSI correction phase 

    If there are “q” number of (RSSI) values in (RMEAN -RSTD < RMEAN < RMEAN +RSTD) interval, m 

is taken as the number of RSSI values which are less than or equal to the mean of q RSSI 

values. The average value of m number of RSSI values is given as 
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where   
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(q – m) is the number of RSSI values whose values are greater than the mean of q RSSI 

values. The average value of (q-m) number of RSSI values is given as 
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RSSI values, received from transmitter A, at object location is expressed as  

YAXAA RRRSSI ).1(.          (4.9) 
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where βA is a constant and defined as the environmental factor depending on RSTD value of 

transmitter A. Similar equations can be utilised for other transmitters. An average threshold 

standard deviation, TSTD, is introduced for all the transmitter nodes in Figure 4.2 as   

)(
4

1
STDDSTDCSTDBSTDASTD RRRRT        (4.10) 

βA is defined in terms of TSTD and RSTDA  as ; 

)1(5.0
STD

STDASTD
A

T

RT 
     for   RSTDA ≤ TSTD       (4.11) 

)1(5.0
STD

STDSTDA
A

T

TR 
     for   RSTDA > TSTD     (4.12) 

    TSTD depends on environmental conditions since STDs depend on environmental 

conditions. Measured RSSIA values are identified as stable if RSTDA ≤ TSTD. Hence βA is 

calculated as )1,5.0(A . Measured RSSIA values are identified as unstable if RSTDA > TSTD. 

βA is than calculated as )5.0,0(A . By substituting βA values in equation (4.9), adapted 

RSSIA values are calculated. The same procedures are applied to calculate the 

environmentally adapted RSSIB, RSSIC, RSSID values. 

    Once the environmentally adaptive RSSI values are determined for an object location, d 

distances between the object and the transmitters are estimated by using ITU-R propagation 

model for further procedures. 

4.4.2 Advanced RSSI correction phase  

     A new interval of RSSI values are now identified in this phase within the selected RSSI 

values in phase 1 to increase the localisation accuracies further. Selected RSSI values in 

Phase 1 are subjected to another selection process to reduce the remaining RSSI variations a 

stage further.  

   The mean value of N number of RSSI values is RMEAN and the standard deviation of these 

RSSI values is RSTD from 1st correction phase. Q number of RSSI values is selected within the 

q interval (RMEAN ± RSTD) from phase 1.   

    New QMEAN and QSTD values of q number of RSSI values are calculated. There are Q number 

of RSSI values in the interval generated by these QMEAN and QSTD values and identified as 

(QMEAN -QSTD < QMEAN < QMEAN +QSTD).  
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    r is taken as the number of RSSI values which are less than or equal to the mean of Q 

number of RSSI values. (Q – r) is the number of RSSI values whose values are more than the 

mean of Q values. New Rx, Ry and βA values are redefined as;  
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    A new weighted Threshold Standard Deviation, T1
STD, is introduced by using QSTD values 

and the average d distances calculated by ITU-R model at object location for all the 

transmitters in new (QMEAN ± QSTD) interval.  

It is shown as ; 
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New βA values for transmitter A are defined in terms of T1
STD and QSTDA are given by 
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    Adaptive RSSIA value is recalculated by substituting new βA , RX and RY values in equation 

(4.9) for transmitter A. Finally, adaptive RSSI values for other transmitters are also calculated 

by using their respective β, RX and RY values. 

4.5 Environmentally Adaptive location algorithm 

    In many object localisation problems with WSNs, localisation methods use simple centroid 

algorithm and range based RSSI algorithm. Both of these algorithms have low computation 

and are easy to apply with RSSI values. In environmentally adaptive location algorithm, the 
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transmitter node with minimum transmitted average RSSI value is selected as the reference 

anchor node across the test area.  

    A minimum average RSSI value represents the minimum RSSI amplitude recordings from 

a particular transmitter node. The minimum RSSI mean, corresponds to most stable RSSI 

values during measurements since they represent minimum RF signal energy levels.  

    This node is taken as the reference anchor node for stable localisation calculations and 

identified as the origin of the relative coordinate system. Positioning calculations are carried 

out with this relative coordinate system and the results are transferred to universal coordinate 

system to define the actual target location. 

    As a result, the effects of larger random variations are reduced and good positioning 

accuracies are obtained. Coordinates of A,B,C,D transmitter nodes and the target object node 

in universal coordinate system, xOy, are taken as (xA,yA), (xB,yB), (xC,yC), (xD,yD) and (xT,yT). 

If the anchor node is assumed to be B transmitter, then the coordinates of the transmitter 

nodes and the object node become (x’A, y’A), (0,0), (x’C,y’C), (x’D,y’D) and (x’T,y’T) in 

relative coordinate system of x’By’ . See Figure 4.4.  

 

Figure 4.4: Universal (xOy) and relative (x’By’) coordinate systems 

The following equations are derived from the translation relationship between two coordinate 

systems: 

x’A=xA-xB , y’A=yA-yB ,  x’C=xC-xB , y’C=yC-yB  ,  x’D=xD-xB , y’D=yD-yB   

 x’T=xT-xB ,  y’T=yT-yB  

Estimated distances between object T and A, C, D nodes with ITU-R model are denoted as dA 

, dC , dD and their trigonometric equations in (x’By’) coordinate system are given by;  

22''2'' )()( AATAT dyyxx          (4.18) 

22''2'' )()( CCTCT dyyxx          (4.19) 

22''2'' )()( DDTDT dyyxx          (4.20)  
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x’T and y’T coordinates can be calculated by utilising equations (4.18), (4.19) and (4.20) as ; 
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Finally, (x’T , y’T), can be translated to universal coordinate system to define the estimated 

object coordinates of (xT,yT) as  xT = x’T+xB and yT = y’T+yB. 

4.6 Implementation  

    Initially, a simple rectangular indoor area of 5mx3m as in Figure 4.2a was deployed for 

experiments. Experiments are carried out in less simple indoor areas at a later stage and the 

results are compared. Calculations are presented in detail for 3mx5m rectangular area as in 

figıre 4.2b and only the results are presented for other indoor areas. Test areas are not free of 

obstacles; there is standard room furniture surrounded by concrete walls. See Figure 4.5. 

Signal strengths in LQI form are received from a Jennic receiver on the object and transferred 

to a server PC. There are 4 transmitters at 4 corners of the test area. 100 LQI values from each 

transmitter are recorded by the receiver and they are converted into RSSI values in the server.  

  

Figure 4.5 : A block diagram of indoor test area  

4.6.1 Centroid localisation 

    Test area configuration in Figure 4.2a is used in the experiments. 100 recorded LQI values 

from each transmitter are stored in a database. They are averaged out to obtain a single 

average LQI value from each transmitter at object locations. These average LQI values are 

utilised and dij distances between transmitters and object locations are calculated by using bi-
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sectioning algorithm. Example average LQI values and dij distances for different object 

locations are presented in Table 4.1. dij distances between the object and transmitters are 

deployed to determine the weight functions for different k values in equation (4.2). For 

example, the weights corresponding to unknown location (1, 1) in Table 4.1 can be calculated 

for different k values and displayed in Table 4.2. 

 

 

 

 

Table 4.1: Average LQIs at object positions and d distances between objects and transmitters 

 

 

 

Table 4.2: Different weights of A,B,C,D transmitters for object location (1,1) 

    Object coordinates, (x,y), are calculated by using equation (4.4) and dij values in Table 4.1. 

An example of estimated object coordinates,(x,y), for object location, (3, 0), with weight 

function w=1/d is presented here: 
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    A sample of estimated object coordinates with different weight functions are displayed in 

Table 4.3. Error calculations with estimated and actual object coordinates are carried out and 

the results are also presented in Table 4.3.  

Table 4.3: Sample of estimated object coordinates with different weight functions and their 

error calculations 

object position 

coordinates 

Ave. LQI values at unknown 

object positions  

dij values corresponding to unknown 

object positions (m)  

(x , y) LQIA LQIB LQIC LQID dA dB dC dD 

1 , 1 110 120 125 150 3.43 2.65 2.34 1.71 

1 , 2 105 100 95 180 4.06 4.68 5.31 1.01 

2 , 1 95 145 95 137 5.31 1.71 5.31 2.03 

3 , 0 95 145 93 145 5.31 1.71 5.93 1.71 

3 , 2 97 151 108 132 5.31 1.71 3.43 2.03 

4 , 1 92 129 121 111 5.93 2.34 2.65 3.43 

Weights WA=1/dA
k WB=1/dB

k WC=1/dC
k WD=1/dD

k 

1/d1 0.29 0.37 0.42 0.58 

1/d2 0.08 0.14 0.18 0.34 

1/d3 0.02 0.05 0.07 0.19 

1/d4 0.01 0.02 0.03 0.11 

object  

coordinates 

Estimated object coordinates with different  

Wij weights 

Error distance, e, for each weight function  

at object coordinates 

(x , y) W1=1/d W2=1/d2 W3=1/d3 W4=1/d4 e1(W1) e2(W2) e3(W3) e4(W4) 

1 , 1 2.3, 1.8 2.1, 2.0 1.8, 2.3 1.5 ,2.5 1.52 1.48 1.52 1.58 

1 , 2 1.2, 2.1 0.36, 2.7 0.08, 2.9 0.01,2.9 0.22 0.94 1.28 0.89 

2 , 1 2.6 , 1.4 2.8, 1.27 3.0, 1.14 3.2, 1.02 0.72 0.84 1.03 1.2 
3 , 0 2.4, 1.4 2.4, 1.4 2.4, 1.49 2.4, 1.49 1.52 1.52 1.60 1.61 

3 , 2 2.8, 1.5 3.0, 1.4 3.1, 1.24 3.3, 1.1 0.53 0.6 0.77 0.95 
4 , 1 3.2, 1.5 3.7, 1.5 4.0, 1.5 4.3, 1.3 0.94 0.58 0.5 0.42 

Average errors 0.91m 0.99m 1.11m 1.11m 
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    The results reveal that the minimum average error distance of 0.91m is obtained with 

weight function w1=1/d. It is observed that the average error distance is increasing with 

increasing k values. 3D representations of error distances at unknown locations are given in 

Figure 4.6. 

 
Figure 4.6: 3D error plots of unknown object locations with different weights 

4.6.2 Adaptive centroid localisation 

    An indoor area of 3mx5m is deployed for experiments as shown in Figure 4.2b. 4 sets of 

100 LQI recordings are received from 4 transmitters around the corners of the test area at 

object location. These recordings are converted into 4 sets of 100 RSSI values named as 

RSSIA, RSSIB, RSSIC, and RSSID. The mean and standard deviation of these RSSI values are 

calculated and presented in Table 4.4.  An example case of recordings is presented here for an 

object location of (2, 3). 

 

 

 

Table 4.4: STD and Mean values of 100 RSSI values at object location (2,3) 

4.6.2.1  RSSI correction phase (phase 1) 

An interval “q” is defined by ( qMEAN - qSTD < qMEAN < qMEAN + qSTD ) around qMEAN value of 

N number of RSSI values. RSSI values in this interval are only considered during calculations 

for each A, B, C, D recordings. These intervals are tabulated together with mean values of q 

number of RSSI values and the number of RSSI values in the intervals in Table 4.5.     

Minimum mean of received RSSI values is RSSIA= - 63.836 dBm as seen in Table 4.4 and the 

corresponding transmitter node at A (0, 0) is chosen as the reference anchor node. 

 

 

100 RSSI (dBm) recordings from A,B,C,D TRANSMİTTERS at target location  

RSSIA  RSSIB  RSSIC  RSSID  

mean std mean std mean std mean std 

- 63.836 0.486 - 61.286 0.952 - 53.286 1.422 - 56.406 0.993 
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Table 4.5: q intervals of RSSI values and mean values in these intervals  

    Hence A(0,0) is selected as the origin of the relative coordinate system in the calculations. 

Rx, Ry and β values for each transmitter are calculated by using RSTD and TSTD values. 

Corresponding adaptive RSSI values within their q intervals are presented in Table 4.6. 

 

  

 

Table 4.6: Calculated adaptive parameters and adaptive RSSI values of the object 

    Adaptive RSSI values are substituted in ITU-R indoor propagation model and 

corresponding destimated values are derived. dactual object distances to transmitters are tabulated 

against destimated values together with their error distances for an example object location (2,3) 

in Table 4.7. 

 

 

 

  

 

Table 4.7: Actual and estimated d distances to transmitters from object location (2, 3) 

Coordinates of transmitters and object location with respect to relative coordinate system 

A(0,0) are given as;  (x’B ,y’B)= (3 , 0) , (x’C , y’C) = (3 , 5) , (x’D,y’D ) = (0 , 5) ,    (x’T , y’T) = 

( xT, yT)  

Trigonometric equations to calculate x’T and y’T can be written as: 

22'2' )0()3( BTT dyx   

22'2' )5()3( CTT dyx 
 

22'2' )5()0( DTT dyx 
 

 x’T and y’T can be determined as: 

transmitters q number of RSSI  qmean qmean ± qSTD  interval 

A 87   -61.286 -64.323 < qA < -63.351 

B 67 -61.378 -62.239 < qB < -60.334 

C 56 -53.630 -54.708 < qC < -51.864 

D 70 -55.866 -57.401 < qD < -55.413 

Transmitters Rx Ry β Adaptive RSSI  values 

A -64 -63.66 0.747 -63.9 

B -61.68 -61.06 0.505 -61.38 

C -53.72 -52.88 0.335 -53.15 

D -56.54 -55.66 0.484 -56.1 

transmitter dactual 

(m) 

destimated 

(m) 

Error (m) 

A 3.605 dA = 3.92 0.29 

B 3.16 dB = 3.22 0.06 

C 2.2 dC = 1.71 0.49 

D 2.8 dD = 2.15 0.65 
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)9(
6

1 22'  CDT ddx   and   )25(
10

1 22'  CBT ddy  

    Estimated target coordinates with respect to the relative coordinate system can be 

calculated as (x’T, y’T) = (1.77, 3.25) by using d values in Table 4.7. Consequently, in the 

universal coordinate system target location (xT, yT) is (1.77, 3.25). It is concluded that the 

proposed system estimates the object coordinates of (2,3) in the universal coordinate system 

as (1.77 , 3.25) with an error distance of 0.34 m. Other object locations are estimated by using 

the proposed system. Selected results with an overall average error distance are presented in 

Table 4.8.  

 

 

 

 

 

 

 

Table 4.8: Estimated object locations and their error distances in phase 1. 

4.6.2.2 Advanced RSSI correction phase (phase 2) 

    4 sets of 100 RSSI values named as RSSIA, RSSIB, RSSIC, and RSSID are recorded by the 

server through object receiver at an example location (1, 3). The mean and STD of these RSSI 

values are presented in Table 4.9. Minimum mean RSSI value is RSSIB= -66.766 dBm as seen 

in Table 4.9 and the corresponding transmitter node at coordinates B(3,0) is chosen as the 

reference anchor node.  

 

 

 

Table 4.9: STD and Mean values of 100 RSSI values at object location (1, 3) in phase 2. 

    An interval “q” is defined by the first ±STD around the mean of 100 RSSI value. Another 

interval “Q” is defined by a second ±STD around the mean of RSSI values in “q” interval of 

each A, B, C, D recordings. These q and Q intervals are tabulated together with their qMEAN 

and QMEAN values and the number of RSSI values within q and Q intervals in Table 4.10.     

Similarly, Rx, Ry, β values are calculated by utilising 
1

STDT  and QSTD values. Adaptive RSSI  

Object  

(x,y) 

Estimated object  

locations 

Error  

Distance(m) 

1 , 1 1.72 , 1.91 1.16 

2 , 2 2.70 , 2.84 1.09 

3 , 4 2.75 , 4.764 1.05 

2 , 1 1.51 , 1.82 0.96 

1 , 3 1.52 , 3.30 0.60 

2 , 3 1.77 , 3.25 0.34 

3 , 1 2.40 , 1.56 0.82 

2 , 4 2.76 , 3.20 1.10 

Average error 0.9 

100 RSSI recordings (dBm) from A,B,C,D TRANSMİTTERS at target location (1, 3) 

RSSIA RSSIB RSSIC RSSID 

mean std mean std mean std Mean std 

- 65.83 2.32 - 66.766 5.209 - 66.613 1.997 - 62.926 3.762 
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Table 4.10: q and Q intervals, their mean and the number of RSSI values in these intervals  

 

values are calculated by using equation (4.9). destimated distances between transmitters and 

object receiver are determined by using adaptive RSSI values and ITU-R indoor propagation 

model. Finally, these destimated distances are employed to estimate the object positions by using 

trigonometric methods. Experiments are repeated in phase 2 at different object locations. 

Selected results and the overall average distance error are presented in Table 4.11.  

 

 

 

 

 

Table 4.11: Estimated target locations with EAL technique in phase 2. 

Error distances obtained in Table 4.8 for phase 1 and in Table 4.11 for phase 2 are graphically 

displayed in Figure 4.7 for reader’s attention.  

 

 

 

 

 

 

 

 

Figure 4.7: Graphical representation of error distances with respect to target locations in 

phase 1 and phase 2 stages  

Tx q number 

of RSSI  

qmean 

(dBm) 

  

qmean ± qSTD interval 

RSSI 

Q number 

of RSSI  

Qmean 

(dBm) 

  

Qmean ± QSTD  interval 

RSSI 
A 61 -65.97 -68.136 < q < -63.477 33 -66.19 -67.30 < Q < -64.64 

B 94  -65.66 -71.976 < q < -61.557 63  -65.42 -68.108 < Q < -63.224 

C 69  -67.01 -68.612< q < -64.614 42  -67.17 -68.017< Q < -66.02 

D 84  -62.38 -66.689 < q < -59.163 59  -62.37 -64.08 < Q < -60.69 

Object  

(x,y) 

Estimated target  

locations 

Error  

Distance(m) 

1 , 1 1.55 , 1.66 0.85 

2 , 2 2.54 , 2.61 0.81 

3 , 4 3.71 , 3.34 0.96 

2 , 1 1.55 , 1.52 0.69 

1 , 3 1.55 , 3.65 0.85 

2 , 3 1.62 , 3.35 0.36 

3 , 1 2.50 , 1.45 0.67 

2 , 4 2.75 , 4.70 1.02 

Estimated error distance 0.77m 
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4.6.2.3 Different Indoor Topologies  

    Localisation experiments are repeated with EAL algorithm in other indoor areas such as a 

large student office, a corridor and a rest lounge. The large student office in Figure 4.8 has 

dimensions of 15mx8m. It contains various obstacles such as high partitions and dense 

furniture. The corridor is an area between offices and labs as shown in Figure 4.9. A section 

of it with dimensions 15mx2m is used during experiments. The rest lounge is a sitting area 

with complex topology and dimensions of 6mx8m as shown in Figure 4.10. It is an area 

where people have coffee breaks and it contains standard household furniture. 

   

Figure 4.8: Large student office  

   

Figure 4.9: Corridor 

    

Figure 4.10: rest lounge 
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    Experiments are repeated in these areas. 4 transmitters, Tx1 to Tx4, are strategically placed 

around the corners of the test areas. The object with a receiver travels around and collects LQI 

data at several locations to send to the server computer. LQI data is converted into RSSI data 

and RSSI data are adaptively corrected in phase 1 and phase 2 stages. Similarly, EAL 

algorithm is applied and transmitter node with minimum transmitted average RSSI value is 

selected as the reference anchor node across each test area. These nodes are taken as reference 

anchor nodes and each is identified as the origin of the relative coordinate system for each test 

area. Localisation calculations are carried out with these relative coordinate systems and final 

results are converted into the universal coordinate system in order to realise the actual target 

locations. A sample of estimated target locations with respect to error distances for the large 

student office in phase 1 and phase 2 is given in Table 4.12.  

 

 

 

 

 

Table 4.12: Estimated object locations for large student office with EAL technique in phase 1 

and 2 

    A sample of estimated object locations with respect to error distances is given in Table 4.13 

for the corridor in phase 1 and phase 2. Similar object position estimations for the rest lounge 

are given in Table 4.14. 

 PHASE 1 PHASE 2 

Object 

(x,y) 

Estimated object 

locations 

 

Error 

Distance(m) 

Estimated object 

locations 

 

Error 

Distance(m) 1 , 1 1.8 , 1.9 1.2 2 , 1.5 1.1 

3 , 3 3.9 , 3.5 1.0 3.5 , 2.2 0.9 
4 , 2 4.7 , 2.8 1.0 4.6 , 2.6 0.8 

5 , 1 5.7 , 0.6 0.8 4.5 , 1.5 0.7 

10 , 2 10.5 , 1.2 0.9 10.5 , 2.7 0.8 
12 , 1 12.6 , 1.5 0.7 12.5 , 1.4 0.6 

Average error distance 0.94m  0.82m 

 

Table 4.13: Estimated object locations for corridor with EAL technique in phase 1 and 2  

 

 

 

 

 PHASE 1 PHASE 2 

Object 

(x,y) 

Estimated object 

locations 

 

Error 

Distance(m) 

Estimated object 

locations 

 

Error 

Distance(m) 

1 , 1 2.2 , 1.8 1.4 1.6 , 2.1 1.2 
3 , 3 3.7 , 4.0 1.2 3.7 , 3.8 1.0 

4 , 7 4.6 , 7.7 0.9 4.7 , 7.5 0.8 

5 , 5 6.0 , 5.7 1.2 5.7 , 5.6 0.9 
10 , 6 10.7 , 6.5 0.8 10.7 , 6.6 0.9 

15 , 5 15.8 , 5.8 1.1 15.7 , 5.5 0.8 
Average error distance 1.1m  0.91m 



CHAPTER 4 CENTROID & ADAPTIVE CENTROID LOCALISATION 

 

77 
 

 

 

 

 

 

Table 4.14: Estimated object locations for rest lounge with EAL technique in phase 1 and phase 2  

    It is observed that areas with uniform rectangular boundaries and fewer obstacles such as the small 

office room and the corridor between offices give better localisation accuracies with EAL algorithm. 

Average error distances are less with these indoor areas. Phase 2 results are always better than Phase 1 

results. Large and complicated indoor topologies introduce higher positioning errors. 

    Finally, EAL algorithm is compared with other well known localisation algorithms in literature such 

as centroid (CL), weighted centroid (WCL), k-neighbourhood (k-NN) and weighted k-NN (W k-NN). 

The large student office is utilised in the experiments. A fingerprint map is constructed across the test 

area with a grid space of 1mx1m. Several object localisations are carried out and their average error 

distances are plotted with respect to algorithms. See Figure 4.11. It is observed that EAL algorithm 

gives better positioning accuracies compare to others across the same test area.  

    

Figure 4.11: Comparison of EAL algorithm with other algorithms for large student office. 

4.7 Conclusion  

    A novel environmentally adaptive localisation approach has been developed by using 

adaptive threshold factors. Random effects of the RSSI measurements were reduced in 2 

phases by determining new ranges of RSSI values. Threshold factors were determined by 

using STD and mean values of recorded RSSI values from transmitters. Adaptive RSSI values 

are calculated by using these threshold factors and the RSSI values are used to calculate the 

estimated object distances with the ITU-R propagation model. In the literature, environmental 

 PHASE 1 PHASE 2 

Object 

(x,y) 

Estimated object 

locations 

 

Error 

Distance(m) 

Estimated object 

locations 

 

Error 

Distance(m) 

2 , 3 2.9 , 4.0 1.3 3.0 , 3.7 1.2 

3 , 5 3.6 , 6.1 1.2 3.7 , 5.9 1.1 
3 , 8 3.7 , 8.9 1.1 3.6 , 8.8 1.0 

4 , 6 4.8 , 6.5 0.9 4.5 , 6.7 0.8 

6 , 6 7.0 , 6.6 1.1 6.8 , 7.5 0.9 
7 , 6 7.7 , 6.8 1.0 7.6 , 6.5 0.7 

Average error distance 1.1m  0.95m 
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adaptivity is carried out with cooperation of WSNs. In this study, the originality lies with the 

application of static threshold factors instead of using any cooperation between WSNs. The 

application of 2nd phase is also an original feature. In this case, weighted threshold factor is 

calculated with weight functions by using distance values to transmitters. As a result, 

localisation accuracies are improved.   

    CL and its improved version WCL method are easy and cost effective methods to determine the 

object locations. Error distances around 1 meter are achieved with WCL method compared to error 

distances of 1 to 2 meters in literature with the same method. Weight functions are implemented by 

using d distances between transmitters and receivers.  

    Curve fitting on the received signal strengths and application of bi-sectioning algorithm are 

new implementations in WCL localisation procedures in this chapter. Bi-sectioning algorithm 

is applied on the fitted curve of LQI distribution at any object location to calculate the d 

distances between transmitters and object receivers.  

    An environmentally adaptive 2 phase localisation algorithm is deployed to determine the 

unknown object locations. This localisation algorithm has a good performance, better 

accuracy, stability and robustness. It is also adaptive to the concrete surroundings. In order to 

reduce the random variations between RSSI values, only a certain part of the recorded RSSI 

values are utilised in the calculations.  

    Mean and STD values of RSSI recordings at the object location are derived. An interval of 

± STD is defined around the mean value. This interval contains q number of RSSI values.   β 

quantity is introduced to include the effects of indoor surroundings of the test area as 

environmental factors. In phase 1, β is a constant value and related to mean value of q number 

of RSSI values and to TSTD which is a static threshold STD. TSTD is generated as the average 

value of RSTD standard deviations of RSSI values, coming from transmitters at the object 

location.  

    This is a new concept to relate the environmental effects in the calculations in terms of 

TSTD. TSTD is compared with each RSTD corresponding to a transmitter and β value for each 

transmitter is calculated. These β values together with Rx and Ry values are utilised to derive 

the environmentally adaptive RSSI values. Adaptive RSSI values, corresponding to each 

transmitter, are deployed with ITU-R indoor propagation model to generate the respective d 

distance between each transmitter and the object receiver. Finally, trigonometric techniques 

are employed to calculate the object position coordinates.  

    In the proposed system, there is only one way communication between transmitters and 

receivers unlike other similar systems in literature. In phase 2, static T1
STD is related to second 
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level QSTD values in a weighted mechanism. New average distances are calculated between 

transmitters and object locations which are related to relevant QSTD values in Q intervals. 

    EAL algorithm calculates the minimum RSSI mean value for each transmitter. This value is 

obtained as RSSIA in phase 1 and RSSIB in phase 2. Positions of these transmitters with minimum 

RSSI mean values are taken as the origins of relative coordinate systems. Localisation calculations are 

carried out with respect to these relative coordinate systems. The results are later transferred to the 

universal coordinate system. 

    Several indoor topologies are utilised to test EAL algorithms. Experimental areas are selected in the 

computer engineering department of Loughborough University, England. Experiments are repeated in 

different locations such as a small office, a large student office, a section of corridor and a rest lounge 

in the building. 

    The results show average localisation accuracy of 0.9 m in phase 1 and around 0.7 m in phase 2 for 

the small office. Average localisation accuracy along the corridor is 0.94m in Phase 1 and 0.82m in 

Phase 2. On the other hand, average localisation accuracy in the large student office is 1.1m in phase 1 

and 0.91m in phase 2. Average localisation accuracy in the rest lounge is 1.1m in phase 1 and 0.95m 

in phase 2. In conclusion, these results reveal that EAL algorithm produces better positioning 

accuracies with error distances less than 1m in rectangular areas with fewer obstacles compared to 

indoor areas with complicated topology and denser obstacles. In areas with complex topology, EAL 

algorithm gives error distances just over 1m in phase 1 and just under 1m in phase 2. When EAL is 

compared with other algorithms across the same test area as shown in Figure 4.11, it also displays 

better localisation results.  

      Hence the technique introduced here is a simple, straight forward, cheaply implemented reliable 

technique which can be used in indoor localisations. Localisation procedures are not stopped at the end 

of phase 1. Introduction of phase 2 during localisation is justified by obtaining improved positioning 

accuracies compared to phase 1. The new proposed EAL technique is published in a journal [121]. 

Finally, the main contribution in this chapter can be identified as the application of 2 phase 

environmentally adaptive localisation by deploying static environmental threshold factors. 
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CHAPTER 5 

LOCALISATION BY TRIANGULATION 

 

 

 

5.1 Background 

    Wireless sensor node technology is a widely used technology to realise the object locations 

in different environments. It is employed for variety of indoor localisations (Lionel et al., 

2004) [7]. There are many position identification systems using different technologies such as 

infrared [6], ultrasonic [11], Radio Frequency [8]. 

    To define the exact coordinates of objects there is a need to measure the distances 

accurately between unknown object locations and known transmitter nodes. In general, RF 

technologies and received signal strength (RSS) values in different formats are utilised to 

determine the unknown locations. WSNs are strategically placed indoors and can be identified 

as transmitter nodes. A WSN receiver which is placed on a mobile object can receive the 

transmitted signal packets in the form of LQI values. These LQI values are transferred to an 

attached server through a wireless or wired link. They are placed in a database with respect to 

measurement coordinates across the test area.  

    Various search algorithms are utilised to compare the object LQI recordings with LQI 

recordings at measurement points. Any closeness between these two recordings determines 

the locations of object points. Search mechanism is generally applied across the total sensing 

area. The sensing area can be any shape or more importantly any size. Topological 

irregularities introduce many ambiguities in measurements. RSS data collection can be 

difficult and time consuming to realise. Hence, the localisation procedures take a longer time 

and a greater effort to determine the object locations. 

    k- NN, weighted k-NN, CL and WCL algorithms are a few popular algorithms for 

determining unknown object locations in a speedy and effective way. In order to reduce the 

search time and effort during object localisation procedures, an important method is 

introduced for deployment in the sensing area. Search areas across the sensing area can be 

reduced and the object search can be carried out in small sections of the sensing area.  
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    Therefore the sensing area is divided into several sub areas in different shapes and sizes. 

This division is carried out according to the topology of indoor layout. Due to different 

architectural plans indoors, many sub areas in different shapes such as triangles, rectangles, 

trapezoids, can be organised. Object localisation is carried out within these sub areas. Finally, 

estimated object locations from these sub areas are combined together by using various 

trigonometric techniques to realise the unknown object location across the sensing area.  

    In this chapter, sensing area is divided into triangular shaped sub areas for simplicity and 

other shapes are unattended. Triangulation approach is introduced to calculate the object 

locations within triangular sub areas. Distances between unknown object and transmitter 

nodes are calculated by using curve fitting techniques and bi-sectioning algorithm on received 

LQI values. The technique offers reasonable localisation accuracies in indoor environments.  

    Radio signals propagate in spherical waves in free space. This propagation is slightly 

different indoors. A certain part of the signals are reflected back from the environment and 

generate a destructive effect when they arrive at destinations. Received signal amplitudes are 

randomised due to these effects and exhibit random behaviour. Nevertheless, free space 

propagation models are implemented in large indoor areas without many obstacles to 

determine the distances between transmitters and receivers. 

    Numerical techniques are employed to determine the object distances with respect to 

transmitters using RSS values. As the receiver gets closer to the transmitter, the signal 

strength increases and it decreases when it moves away from the transmitter. A weighting 

technique is introduced during localisation. The proposed localisation system consists of four 

main phases as shown in Figure 5.1. 

 

 

  

Figure 5.1: Block diagram of localisation system 

5.2 LQI Reception  

    One way to identify the incoming radio signals is to use their RSSI values according to 

IEEE 802.11 standards. In many applications, RSSI has a high variance and localisation of 

unknown node becomes imprecise. Another method of distance determination is carried out 

by LQI of RF transmission. According to IEEE 802.15.4 standards, LQI is identified as the 

LQI 

reception  

 

Curve 

fitting & bi-

sectioning  

 

 

Triangulation 

 

    

     WCL 
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strength of the received signal. It is proportional to RSSI and has a value between 0 to 255 

(Ergen, 2004) [41]. Hence, RSSI values can be directly mapped into LQI values (Benkic et 

al., 2008) [132]. Transmitter nodes transmit the signal packets continuously. Mobile object 

receiver logs LQI of incoming signal packets and sends them to a server computer. Free space 

propagation model for recordings of LQI values against d distances is utilised. Reflections 

from surrounding minor obstacles are considered negligible. The indoor area, considered in 

this chapter, has a uniform layout and it is free of any major obstacles. Recorded LQI values 

are calibrated with respect to indoor d distances. 

    An example plot of LQI values arriving at a receiver node, (Rx), from a transmitter node, 

(Tx), with respect to distances between transmitter and receiver is presented in Figure 5.2. 

 

Figure 5.2: Plot of LQI values against d distances between Tx and Rx nodes in free space  

    During recordings, N number of LQI values where N=100 are taken at every recording 

point as seen in equation (5.1). The average of these values are deployed at that point in order 

to reduce the random effects of RF signals. 





N

i

iAVR LQI
N

LQI
1

1
        (5.1) 

These LQIAVR values are employed at every recording point in distance calculations and 

simply identified as “LQI values”. 

5.3 Curve Fitting  

    The relationship between measured LQI values and distances between transmitters and 

receivers is an important part of the localisation. The relationship between LQI and distance d 

values can be expressed by using a plot of LQI versus d distances. Relationship between LQIs 

and d distances shows a close correlation during localisation procedures (Grossmann, 2007) 

[98].  A curve fitting technique is utilised to plot the curve fitted on previous example 
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distribution of recorded LQI values against d distances. This curve is an exponential curve 

fitted with 95% confidence boundaries on the recorded LQI values with MATLAB as seen in 

Figure 5.3.  

 

Figure 5.3: Exponential Curve fitted on LQI values by MATLAB 

Fitted curve equation for the LQI data is presented in equation (5.2),  

)*exp(*)*exp(*)( xdcxbaxLQI       (5.2) 

where x is the d distance between a transmitter and a receiver  and the equation  constants are 

defined by  

a= 247.4,      b = -0.827,           

c= 119.8,      d= -0.036 

    A numerical analysis technique which is identified as a bi-sectioning algorithm is utilised to 

determine the distance between the unknown object receiver node and each transmitter node 

once its corresponding LQI value is known. This method is also called root finding method 

which repeatedly bisects the distance interval between transmitter and receiver. 

    Finally, the method selects a sub interval in which a root corresponding to an unknown 

distance must lie for further localisation procedures.  

    When an unknown LQI value is received from a transmitter and recorded in the computer, 

its corresponding x=d value will be calculated by inserting this LQI value in equation (5.2) 

and applying the bi-sectioning algorithm.  

    Trigonometric techniques will be employed with these d values to determine the locations 

of the unknown object nodes. WCL technique will also be employed at a later stage to refine 

the calculated positions of the unknown nodes. 
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5.4 Triangulation 

    Block diagram of a rectangular test area is shown in Figure 5.4. LQI values are recorded by 

a receiver on the mobile object and corresponding d distance for each LQI value is calculated 

by using the above mentioned numerical method. Unknown object node, P(x,y), could be 

anywhere in the test area. P(x,y) is identified as the position of the mobile object and it has 4 d 

values (dA, dB, dC, dD) at every location corresponding to their LQI values. 

    

Figure 5.4: Test area with triangles, object P and transmitters Bi 

Trigonometric equations corresponding to x and y coordinates of object P in B1B2B3B4 test 

area can be given by   

222

Adyx                          (5.3) 

222)5( Bdyx 
          (5.4) 

222 )3()5( Cdyx 
        (5.5) 

222 )3( Ddyx 
         (5.6) 

    B1B2 is along the x axis and B1B4 is along the y axis with B1 (0, 0) is the coordinate centre. 

Trigonometric solution of these equations in terms of known d distances realises the object 

coordinates (x, y).  This is the first stage of object location estimation and identified as 

trigonometric calculation stage.    

5.4.1 Triangular area Formation  

    The test area is divided into maximum number of sub areas in the form of triangles. The 

only condition is the existence of 3 transmitter nodes in each triangle at triangle corners. 

Coordinates of the unknown object P(x, y) are calculated with respect to these triangles. There 

are 4 triangular sub areas in the rectangular test area which are B1B2B4, B1B2B3, B1B3B4 and 
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B2B3B4 as seen in Figure 5.5. The unknown object node could be in any one of these 

triangles. Estimated object coordinates are identified as P’(x, y) in this first stage. 

 

Figure 5.5: Four triangle sub areas across the test area. 

    P’(x,y) coordinates can be inside or outside of any triangle across the test area. These 

coordinate equations for both cases are found to be the same as long as d values in both cases 

are different. A typical example can be shown for B1B3B4 triangle in Figure 5.6. In this study 

object coordinates are always considered in a triangle. Because if they are outside of a triangle 

they will always be inside of another adjacent triangle across the test area.  

 

Figure 5.6: Block diagram of B1B4B3 triangle and estimated P’(x,y) point is shown inside and 

outside the triangle 

    For example, an estimated object point P’(x, y) across the B1B2B3B4 test area can be inside 

B2B1B4 and B1B4B3 triangles as seen in Figure 5.7. But the same estimated object point is also 

outside the B2B3B4 and B1B2B3 triangles. 

Estimated object location can be calculated whether it is inside or outside of any triangle. The 

resultant coordinates will be determined for a particular triangle. Hence, estimated object 

coordinates are determined for each triangle as shown here. Coordinates of P’(x,y) in Figure 

5.7 can be identified as follows. 
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Figure 5.7: Position of estimated object point P’(x,y) with respect to triangle areas 

P’4(x,y) is outside B2B3B4 triangle and calculated as: 
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P’3(x,y) is inside B1B4B3 triangle and calculated as: 
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P’2(x,y) is outside B1B2B3 triangle and calculated as: 

)
6

9
,

10

25
(),(

2222
'

2


 cbba dddd

yxP       (5.9) 

P’1(x,y) is inside B2B1B4 triangle and calculated as:  
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yxP       (5.10) 

    da, db, dc, dd distance values which are deployed here are the estimated object distances to 

A,B,C,D transmitters corresponding to B1,B2,B3,B4 corners of the test area while calculating 

P’(x,y) in Figure 5.7.   Hence, estimated object coordinates can be numerically calculated by 

substituting object’s estimated d distances, (da, db, dc, dd), with respect to transmitters into 

equations (5.7) to (5.10).  

    It can be concluded that unknown object location P(x,y) is estimated for each triangle and 

these 4 estimated object locations corresponding to P(x,y) are defined as P’1(x,y), P’2(x,y), 

P’3(x,y) and P’4(x,y). 
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5.5 Weighted Centroid Localisation 

    WCL technique is deployed to improve the localisation accuracies a stage further in the 

proposed system. It introduces weights in localisation procedures (Blumenthal et al. 2007) 

[111]. Weight function is defined by wij and it is expressed in terms of distances between the 

estimated object P’(x,y) and transmitter nodes as given in equation (4.2). Graphical 

representations of an example triangle and P’(x,y) estimated object point whether it is inside 

or outside the triangle are shown in Figure 5.8.  

 

Figure 5.8: Graphical representation of B2B1B4 triangle and estimated P’(x, y) point inside 

and outside the triangle  

    Distances between P’(x,y) and the corners of the corresponding triangle are calculated and 

utilised to derive the weights. Weighted coordinates of the estimated object locations, P’(x,y), 

are calculated with equation (4.4). This stage is identified as second stage. 

    A new object location, Q’(x,y), is calculated as an example by using weighted estimated 

object location for B1B2B4 triangle as shown in equation (5.11). 
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    P’B1, P’B2, P’B3 and P’B4 are distances between the estimated object location P’(x,y) and 

the relevant triangle corners. Q’(x, y) weighted estimated object location is calculated for each 

triangle. Finally, resultant estimated object coordinates are calculated as the average value of 

4 Q’(x, y) coordinates as shown in equation (5.12).  





4

1

'
),(

4

1
),(

j

j yxQyxQ         (5.12)  



CHAPTER 5 LOCALISATION BY TRIANGULATION 

 

88 
 

    Position error e is the distance between the actual object position P(x, y) and the estimated 

object position Q(xe ,ye). It is expressed as  

22 )()( ee yyxxe 
        (5.13) 

    Positions of several unknown object locations are determined with the proposed system and 

their error margins with respect to actual object positions are calculated with equation (5.13). 

5.6 Implementation: 

    JENNIC JN5139 wireless sensor nodes are deployed in the experiments. Zigbee Home 

Sensor demo program is utilised to program JN5139 active devices to work as fixed 

transmitter nodes and mobile receiver nodes. The test bed is on an empty floor with a 

rectangular area of 5m x 3m. Any position in the rectangular test area is implemented as an 

object position P(x,y).  

Transmitters are placed at 4 corners of the test area. The unknown object with receiver is 

positioned at any point in the test area and interfaced to a computer. Object receiver receives 4 

LQI readings from 4 transmitters and transfers them to a database in the server. An 

application program, (AP), has been developed to control the entire data manipulation and 

calculation process.  

 AP measures 4 LQI values at every unknown location of the mobile object and calculates 

their 4 corresponding d values, (dA, dB, dC, dD) by using bisectioning algorithm and 

exponentially fitted curves on LQI distributions. See Table 5.1.  

 

 

 

 

Table 5.1:  A sample of Recorded LQI values and corresponding d values.  

5.6.1 Position estimation by triangulation 

    This is the 1st stage of localisation. Once 4 d values are calculated for each unknown 

location, they are utilised to calculate the estimated object coordinates P’1(x,y), P’2(x,y), 

P’3(x,y), P’4(x,y) by considering 4 triangles across the test area. Equations (5.7) to (5.10) are 

used during the calculations and estimated object coordinates are tabulated in Table 5.2. 

Unknown 

(x,y) 

position 

coordinates 

LQI values of mobile node at 

unknown positions 

 

d values calculated with bisectioning 

algorithm for each LQI values (m) 

LQIA LQIB LQIC LQID dA dB dC dD 

1 , 1 109 115 115 140 3.43 2.97 2.97 2.03 

1 , 2 110 110 110 150 3.43 3.43 3.43 1.18 

2 , 1 113 129 111 123 3.40 2.35 3.42 2.65 

3 , 0 113 125 109 130 3.40 2.34 3.43 2.34 

3 , 2 112 140 108 120 3.41 2.03 3.43 2.66 

4 , 1 113 121 117 111 3.40 2.65 2.96 3.43 
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Table 5.2: P’(x,y) estimated object coordinates for each triangle test area in first stage 

5.6.2 WCL Calculations: 

    This is the 2nd stage of localisation. Weighted centroid localisation technique is introduced 

with the estimated P’(x, y) points.  Distances between P’(x, y) and the corners of the 

corresponding triangle are calculated and used in weight calculations during final 

recalculation of P(x, y) values. These distance values are tabulated in Table 5.3; 

 

 

 

 

 

 

 

 

 

 Table 5.3: Distances between P’(x, y) and respective triangle corners  

    P’(x, y) coordinates are weighted by using relevant d values in Table 5.3 and identified as 

Q(x, y). Each unknown object location has 4 Q(x, y) values which are obtained by using WCL 

technique. Hence, the average of 4 Q(x, y) values is considered as the final position 

coordinates of the unknown object location.  

Unknown 

(x,y) 

position 

coordinat

es 

 

P’1, P’2, P’3, P’4  estimated positions calculated by using trigonometric methods 

P’1(x , y) P’2(x , y) P’3(x , y) P’4(x , y) 

1 , 1 2.7 , 2.77 2.81 , 1.5 2.03 , 2.78 2.03 , 1.5 

1 , 2 2.5 ,  3.21 2.4 , 1.5 1.44 , 3.24 1.45 , 1.5 

2 , 1 3.13 , 2.29 3.13 , 0.45 2.02 , 2.27 2.01 , 0.44 

3 , 0 3.13 , 2.53 3.13 , 0.44 1.85 , 2.55 1.84 , 0.43 

3 , 2 3.24 , 2.27 3.24 , 0.21 2.02 , 2.28 2.02 , 0.21 

4 , 1 2.96 , 1.5 2.95 , 1.20 2.78 , 1.5 2.78 , 1.20 

Unknown 

locations 

Calculated P’(x,y) points and their distances to respective 

triangle corners 

 

(1,1) 

P’1(2.7,2.7) P’2(2.8,1.5) P’3(2.0,2.7) P’4(2.0,1.5) 

da=3.94  

db=3.54  

dd=2.8 

da=3.17 

 db=2.66  

dc=2.66 

da=3.44 

 dc=2.97  

dd=2.04 

dc=3.32  

db=3.32  

dd=2.52 

 

(1,2) 

P’1(2.5,3.2) P’2(2.4,1.5) P’3(1.4,3.2) P’4(1.4,1.5) 

da=4.09  

db=4.09  

dd=2.51 

da=2.91 

 db=2.91  

dc=2.91 

da=3.55 

 dc=3.55  

dd=1.47 

dc=3.84  

db=3.84  

dd=2.09 

 

(2,1) 

P’1(3.1,2.2) P’2(3.1,0.4) P’3(2.0,2.2) P’4(2.0,0.4) 

da=3.88  

db=2.95  

dd=3.21 

da=3.16 

 db=1.92  

dc=3.16 

da=3.05 

 dc=3.05  

dd=2.14 

dc=3.92  

db=3.00  

dd=3.25 

 

(3,0) 

P’1(3.1,2.5) P’2(3.1,0.4) P’3(1.8,2.5) P’4(1.8,0.4) 

da=4.04  

db=3.16  

dd=3.16 

da=3.16 

 db=1.92  

dc=3.16 

da=3.16 

 dc=3.16  

dd=1.92 

dc=4.04  

db=3.16  

dd=3.16 

 

(3,2) 

P’1(3.2,2.2) P’2(3.2,0.2) P’3(2.0,2.2) P’4(2.0,0.2) 

da=3.99  

db=2.87  

dd=3.34 

da=3.27 

 db=1.74  

dc=3.27 

da=3.05 

 dc=3.05  

dd=2.14 

dc=4.07  

db=2.98  

dd=3.44 

 

(4,1) 

P’1(2.9, 1.5) P’2(2.9,1.2) P’3(2.7,1.5) P’4(2.7,1.2) 

da=3.33  

db=2.51  

dd=3.33 

da=3.21 

 db=2.35  

dc=2.70 

da=3.17 

 dc=2.66  

dd=3.17 

dc=2.83  

db=2.50  

dd=3.32 
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    A sample of them is presented for the reader as shown in Table 5.4. Experiments are 

repeated with many unknown object locations. Error calculations from all unknown positions 

revealed an average error distance of 1.1m as shown in Table 5.4.  

 

 

 

 

Table 5.4: Calculated object position coordinates and their error margins in second stage 

5.6.3 Different Test Area Shapes 

    Other simple shape test areas besides the rectangle can be studied with triangular sub areas. 

Some of these test area shapes can be square, trapezoid, pentagon, circle etc. Triangular sub 

sections can be arranged with respect to transmitter locations in these test areas. The area 

between 3 transmitters is identified as a triangle sub area across the test area. The shapes of 

these test areas are displayed in Figure 5.9. Hence, transmitters are organised in such a way 

that triangle sub areas are generated across the test areas in Figure 5.9.  

 

Figure 5.9: Different shaped test areas with transmitters Bi (i: number of transmitters) 

    Localisation procedures can be repeated with these sub areas and object coordinates can be 

estimated for each triangle sub area in 2 stages. Final estimated object coordinates are 

calculated by averaging the estimated weighted object coordinates which are obtained from 

all the triangle sub areas in a particular test area.  

    Another alternative is the segmentation of the test area. Rectangular or square sub segments 

can be organised across the test area according to its topology. Triangular sub areas can be 

arranged in segments and the triangulation technique can then be applied across each 

segment.  

Unknown 

locations 

 

Q1(x,y) 

 

Q2(x,y) 

 

Q3(x,y) 

 

Q4(x,y)  

Ave= 

(Q1+Q2+Q3+Q4)/4 

Error 

(m) 

(1 , 1) 1.5 , 1.1 3.5 , 1.0 1.5 , 2.2 3.0 , 2.0 2.4 , 1.6 1.5 

(1 , 2) 1.3 , 1.3 3.3 , 1.0 1.1 , 2.3 2.6 , 2.2 2.1 , 1.7 1.3 

(2 , 1) 1.8 , 1.0 3.6 , 0.8 1.4 , 2.1 3.2 , 1.8 2.5 , 1.4 0.6 

(3 , 0) 1.7 , 1.0 3.6 , 0.8 1.3 , 2.1 3.2 , 1.9 2.5 , 1.5 1.5 

(3 , 2) 1.9 , 0.9 3.7 , 0.7 1.4 , 2.1 3.3 , 1.8 2.6 , 1.4 0.7 

(4 , 1) 1.9 , 0.9 3.5 , 1.0 1.8 , 2.0 3.5 , 1.8 2.7 , 1.4 1.3 

                                                     Total average error  1.1 
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5.7 Discussions  

    In this chapter, a particular segmentation, identified as triangulation, was deployed across 

the test area. Triangle sub areas were organized with transmitter nodes at the triangle corners 

and these nodes must be at test area boundaries. No other shapes besides triangles are allowed 

in this technique. Unknown object receiver distances to transmitters were employed to 

calculate the estimated object coordinates P’(x, y) in first stage. In second stage, these 

estimated object coordinates were weighted with the distances between P’(x, y) and the 

triangle corners and the new estimated object coordinates Q(x, y) were calculated. Their 

average gives the final estimated location of the object P(x, y). 

    Finally, this triangular sub-sectioning method is a newly introduced technique. Test area is 

divided into only triangular areas and the object location estimation was carried out with 

respect to all the triangles not just in one sub area as in segmentation. The effects of all the 

other triangles are included in the calculations. The error distance was around 1m during the 

experiments which is approximately equal to grid spacing.    

5.8 Conclusions:  

    Unknown object locations were determined by introducing triangle shaped sub areas across 

the test area. A combined triangulation and weighted approach was deployed. The test area 

was divided into sub areas in the shape of triangles and unknown position coordinates were 

calculated with respect to each triangle.  

   Other shapes and sizes of test areas can also be utilised indoors. But these shapes must be 

divided into triangle areas with a transmitter node at its corners. In this study, they are left 

unattended. During the first stage, each unknown object position (x, y), is estimated 4 times 

for 4 triangle sub areas.  

   Initially, received LQI values are calibrated in free space with respect to distances between 

transmitter and receiver nodes. Bisection algorithm is utilised and the distances between 

transmitters and receivers are calculated by using the generated fitted calibration curve.  

    In second phase, WCL technique is employed with the estimated object coordinates in the 

first stage. Distances between the estimated object coordinates in first stage and the corners of 

respective triangles are utilised in weight calculations. Finally, estimated object coordinates 

are weighted with respect to estimated object distances to transmitters. 

    The average error distance between the unknown object locations and final estimated object 

locations is found to be 1.1 m. This is similar to the localisation error values mentioned in the 
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literature. For example in (Bal et al. 2010) [116], average accuracy is 1-2m under similar 

conditions indoors. 

    In (Sugano et al. 2006) [101], the accuracies are around 1.5-2m. The accuracies obtained in 

this proposed system are at the lower end of the accuracy ranges for similar localisation 

systems in the literature.  

    Finally, triangular segmentation and trigonometric methods together with WCL method 

produce a hybrid technique of position calculation. Realisation of this hybrid technique and 

determination of d distances between transmitters and receivers by a numerical analysis 

technique are two new approaches in localisation procedures. Localisation accuracies 

obtained are very compatible with the results in the literature.  

    Hence, the triangulation technique and 2 stage localisation introduced here are the main 

contributions in this chapter. Object location is estimated by using distances calculated with 

bisectioning algorithm in 1st stage and it is re-estimated in 2nd stage by introducing a 

triangular weight mechanism. It is an acceptable new technique for position detection indoors. 

This study is published as a research paper in a journal [44].  
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CHAPTER 6 

LOCALISATION BY USING REFERENCE  

NODES 

 

 

6.1 Background  

    Localisation of wireless sensor nodes and tracking mobile targets with the help of wireless 

sensor networks have become two important areas in position detection technology [21, 22].  

    Localisation involves determining the location of a sensor node depending on other sensor 

nodes across the sensing area. Tracking mobile targets involves finding out the location of 

mobile targets based on WSNs with known positions. A number of WSNs are utilised as 

transmitters and receivers and some others with fixed locations are identified as reference 

nodes. These reference nodes assist in finding the target location together with transmitters 

and receivers. Hence the location of a mobile target can be detected easily by using the 

distributed reference (anchor) nodes without using any additional hardware.  

    Different algorithms are utilised with received radio signal amplitudes once they are 

received and stored in a database. k-Nearest Neighbourhood algorithm, (k-NN), is the most 

commonly used algorithm to determine the unknown target locations together with a weight 

mechanism between a target and reference node positions. At present, there are many types of 

location sensing systems each having their own strengths and limitations. RFID technology 

has several advantages over the others [32]. The most important advantage is their operation 

ability under difficult environmental conditions [33,122]. 

    The LandMarc localisation system, developed by (Lionel et al. 2004) [7], uses a number of 

fixed location transmitters as reference nodes across the test area. Object transmitters move 

among the reference nodes, transmitters have known locations, and the receivers are 

strategically placed around the boundaries of the test area. 

    Receivers receive transmissions from object transmitters and reference node transmitters. 

They convert the received RF signals into a known format such as RSSI or LQI and transfer 

them to a local computer. Localisation algorithms are applied to these received and stored 

RSSI or LQI values to determine the closest reference node position to the object location. 
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Environmental effects interfere with the received signals and generate incorrect signal 

readings. In this chapter, correction procedures are introduced for these effects and distance 

calculations are improved during localisation.  

    A localisation approach based on the application of reference nodes is introduced in this 

chapter. The aim is to implement a system by using reference node transmitters with known 

locations to calculate object locations easily. Correction procedures are included to achieve 

high localisation accuracies. Secondly, a new weight mechanism is introduced between 

transmitter and receiver nodes. Weights are related to environmental conditions and by 

applying carefully designed weight functions object locations are calculated more accurately. 

Weights are generated by utilising both signal distances and real distances between 

transmitters and receivers. A different topology with less number of reference nodes 

compared to the LandMarc system is introduced. Localisation accuracies are improved by 

utilising a new approach of using 2 stage k-NN algorithms.  

6.2 Reference Node Topology 

    In the classical LandMarc system, localisation accuracies are increased without introducing 

extra receivers (readers). Fixed location reference transmitter nodes are introduced instead to 

produce a location calibration. This approach helps to offset many environmental effects that 

contribute to signal deterioration since the reference nodes are also subject to the same effects 

in the environment. This is a costly approach due to the cost of extra reference transmitters. 

Scientists are trying to find a way to reduce the cost by reducing the number of reference 

transmitters with same accuracy levels. 

    In the LandMarc system, there are n receivers, m reference node transmitters and k number 

of object transmitters in the sensing area. Reference node transmitters are uniformly 

distributed across the sensing area and receivers are placed at locations where the transmitters 

can send RF signals comfortably as seen in Figure 6.1.  

Transmitted signal strength vector of the reference node transmitters is  

iR


= (T1, T2, T3....., Tm)                   where i  (1, n) 

iR


 is the signal strength of m reference node transmitters received by receiver i.  

Transmitted signal strength vector of the object transmitter can be shown as:  

jO


 = (S1, S2, S3....., Sn).                    where  j  (1, k)  

jO


 is the signal strength of  jth object transmitters received by receiver i, where i  (1, n).  
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    Euclidean distance E with signal strengths, between
jO


 and 

iR


 vectors is calculated. E 

represents the location relationship between reference node transmitters and object 

transmitters. Signal distance difference between the nearest reference node transmitter and 

object transmitter corresponds to smallest E value. 

 

Figure 6.1: Schematical view of Landmarc system. Square: Receivers, Circle: reference node 

transmitters, Triangle: object transmitters  

Hence if there are m reference node transmitters and one object transmitter, E


vector 

between them can be defined as  

iE


= {E1, E2, E3 ...Em}  

    k-NN algorithm is utilised to find the unknown object transmitter’s nearest reference node 

neighbours by comparing different E values. Generally, 4-NN algorithm is employed in 

nearest neighbourhood calculations. In this study, 3-NN algorithm is preferred in order to use 

additional simple triangulation methods during object position calculations.  

    Large number of reference node transmitters introduces a large amount of signal variations, 

heavy computation time and an increase in equipment cost. It is ideal to reduce the number of 

these nodes and in return employ software techniques to reduce the localisation errors. A new 

reference node topology is introduced in star formation with less reference nodes as seen in 

Figure 6.2.  

    Initially, a database is generated by the received signal strengths from reference node 

transmitters with respect to their coordinates. Object transmitter signal strengths are compared 

with the database and 3 smallest Euclidean distances which correspond to the 3 nearest 

reference node transmitters are determined. Coordinates of these reference node transmitters 

are averaged out to give the estimated object coordinates as shown in equation (6.1). 





3

1

),(.
3

1
),(

i

ii yxyx           (6.1) 
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Figure 6.2: Applied reference node topology. Square: A,B,C,D Receivers, Circle: 

T1,T2,T3,T4,T5 reference transmitters, triangle: objects 

    Introducing a weight function to ith reference node transmitter is another design factor. The 

object transmitter has different weights depending on the 3 nearest neighbourhood reference 

node transmitters. Hence wi is a function of E values for the object transmitter corresponding 

to the 3 nearest neighbourhood reference nodes. Empirically it is defined in equation (6.2) 

[44]. 





3

1
3

3

1

1

i i

i

i

E

E
w

          (6.2) 

Hence, estimated object coordinates are given by  





3

1

),(),(
i

iii yxwyx         (6.3) 

6.3 Improved LandMarc Localisation  

    3 Localisation procedures are utilised starting from recording the received signals until the 

determination of object locations. In each stage different algorithms are employed to obtain 

the final position of the object.  

6.3.1 Classical LandMarc 

    This stage describes the classical LandMarc technique. 3 nearest reference nodes to the 

object can be determined by using 3-NN algorithm and their coordinates are deployed to 

estimate the unknown object coordinates (x,y). This deployment is carried out by using 

weight functions shown in equation (6.2). Weight functions are applied between the object 
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and 3 nearest reference nodes by using Euclidean distances between them. Weighted object 

coordinates (x, y) are calculated accordingly with equation (6.3). 

6.3.2 Improved LandMarc 

    In this stage the improved LandMarc technique is described. Each of 3 nearest reference 

nodes is considered and its 3 trigonometrically closest reference nodes are utilised. 

Consequently, each nearest reference node now has 3 closest reference nodes among the total 

reference nodes across the sensing area.    

    For example, if the nearest reference nodes to the unknown object in the first stage are 

determined as T1, T4 and T5 than the closest reference nodes of T1 are T2, T5, T4 in the second 

stage as seen in Figure 6.2. Similarly; 

Closest reference nodes of T4 are T1, T5, T3, 

Closest reference nodes of T5 are T1, T2, T3, T4 as a special case.   

    A new object coordinate estimation method can be introduced by using previously 

determined closest reference nodes. Weights are calculated by using the Euclidean distances 

between the nearest and closest reference nodes. If the nearest node is T1 and its closest nodes 

are T2, T4 and T5, Euclidean distances for T1 become; 

Euclidean distance between T1and T2 is E12,  

Euclidean distance between T1and T4 is E14  

Euclidean distance between T1and T5 is E15.  

Euclidean distances for other nearest nodes can also be determined similarly. 

Hence the new estimated nearest reference node coordinates for T1 can be expressed with a 

weight mechanism deploying above Euclidean distances by using equation (6.4).  





3

1

'' ),(),(
i

iii yxwyx         (6.4) 

    Similarly, this can be repeated for each reference node transmitter T2, T3, T4. The only 

exception is the new estimated nearest reference node coordinates for T5. It can be expressed 

as: 





4

1

'' ),(),(
i

iii yxwyx

 

         (6.5) 
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    This is because there are 4 closest reference nodes for the nearest reference node T5. 

Consequently there will be 4 Euclidean distances and 4 weights in position calculations.  

New estimated nearest reference node coordinates with respect to T1(x1, y1) with its closest 

reference nodes T2(x2, y2), T4(x4, y4), T5(x5, y5) can be given as: 

),(
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                 (6.6)    

    Hence, if the nearest reference nodes to the unknown object, determined in the first stage, 

are T1, T4 and T5 then the new estimated nearest reference node coordinates are calculated 

with their closest reference nodes  and given as ),( '

1

'

11 yxT , ),( '

4

'

44 yxT and ),( '

5

'

55 yxT . 

     A difference parameter, ),( yx  , is introduced between the nearest reference node 

coordinates T1(x1,y1), T4(x4,y4), T5(x5,y5) in stage 1 and the new estimated nearest reference 

node coordinates T1 ),( '

1

'

1 yx , T4 ),( '

4

'

4 yx ,T5 ),( '

5

'

5 yx  in stage 2. These are shown as; 

),(),(),( '

1

'

11111 yxyxyx   

),(),(),( '

4

'

44444 yxyxyx   

),(),(),( '

5

'

55555 yxyxyx   

These differences are considered as the variation of nearest reference node coordinates. Their 

average values are defined as: 

 )(
3

1
),(

3

1
),( 421421 yyyxxxee yx          (6.7) 

Hence, estimated object coordinates in equation (6.1) are recalculated as  

),(),(),( yxnew eeyxyx             (6.8) 

    As the RSS measurement values which are received sequentially from object transmitter 

and reference node transmitters change; weights and ),( '' yx  coordinates also change 

accordingly. Consequently, ),( yx   and (ex,ey) quantities have new values and new estimated 

object positions with small variations are generated continuously in time domain.  
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6.3.3 Neighbourhood Weighted 

    In this stage, the neighbourhood weighted approach is described. Object localisation is 

attempted by utilising the previous low density sensor node distribution across the sensing 

area. Localisation accuracies are proposed to be improved by using special weight functions. 

These weight functions are introduced to identify the environmental factors which affect the 

RSSI or LQI recordings.  

    Weight functions can be implemented in several ways. Previously, weight calculations 

were solely based on Euclidean distances between the sensor nodes as seen in equation (6.4). 

A third approach is proposed to calculate the weights between wireless sensor nodes by using 

real physical distances and signal Euclidean distances together.  

    In the proposed approach, weights are calculated between the selected reference nodes. 

These selected nodes are the nearest reference nodes calculated with 3-NN algorithm in 

section (6.3.2). If the target object is surrounded by 3 nearest reference nodes, there will be 3 

different weights between these nodes as shown in Figure 6.3.  

 

Figure 6.3: Graphical view of reference nodes, T1, T2, T3, target object, Tgt, and weight 

distributions 

    Distances between reference nodes are known and fixed. Dist (Ti, Tj) refers to the real 

distance between two stationary nearest reference nodes Ti and Tj. The weight wij, between 

two nearest reference nodes Ti and Tj is given by  

),(

),(

ji

ji

ij
TTEucl

TTDist
w           (6.9) 

where i(1,2) and j(2,3) 

Eucl (Ti ,Tj) is the Euclidean distance between Ti and Tj reference node transmitters.  

Average value of weights are introduced as the environmental factor for the related 3 nearest 

reference nodes and defined as  
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)(
3

1
122313 wwwwAVE          (6.10) 

    Once WAVE is calculated, 231312 ,, www  weight values are compared with WAVE and only the 

ones equal to or above this value are considered. The one below is discarded and average 

weight value is considered instead of it in calculations. 

    Object location can be found by using wij weights around the object neighbourhood and 

Euclidean distances between the object and the relevant reference nodes. Object has 3 

neighbourhood weights, 231312 ,, www  , and 3 Euclidean distances between itself and 3 nearest 

reference nodes.  

    Euclidean distances between object transmitter and reference node transmitters are 

determined by using these transmitters and receivers across the test area. For example, 

Euclidean distance between object transmitter tag, Tgt, and reference transmitter tag, T1, can 

be defined by using received signal LQI values at A,B,C,D receivers as  

2

1

2

1

2

1

2

1

2

11 })()()(){(),( DTTgtCTTgtBTTgtATTgt LQILQILQILQILQILQILQILQITTgtEucl 

  

Hence real distances between the object and nearest reference nodes can be calculated by 

deploying the following equation; 

 
2

)(
).,(),(

yx

ii

ww
TTgtEuclTTgtDist


       (6.11) 

Dist(Tgt,Ti) refers to real distance between target object Tgt and nearest reference node Ti.  

i = (1,2,3) is the number of nearest reference node .  

wx and wy are two neighbouring weights for any nearest reference node Ti. 

    3 distance values m, n and p are calculated between the object and 3 nearest reference 

nodes as shown in Figure 6.3. The trilateration technique is employed by using these distances 

and nearest reference node coordinates, and final object position coordinates, (x,y), are 

calculated. 

6.4 External reference topology model 

    In the proposed approach, the object is surrounded by 3 nearest reference nodes topology as 

seen in Figure 6.3. The object will always be surrounded by 3 nearest reference nodes as long 

as it is within boundaries of T1, T2, T3, T4. Sometimes it is possible that the target object Tgt 

can be outside T1, T2, T3, T4 boundaries and outside the 3 nearest reference nodes topology. 

An example case is shown in Figure 6.4.  
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Figure 6.4: Graphical view of the object outside 3 nearest reference nodes T1, T5, T4  

    Object localisation procedures will be the same as in section (6.3.2). In the new topology, 

nearest reference nodes to the object are taken to be T1, T4 and T5 as seen in Figure 6.4. Their 

closest reference nodes will be the same as in section 6.3. Weight calculations and estimated 

nearest reference node coordinate calculations are carried out similarly and new estimated 

object coordinates will be determined by equation 6.8.  

6.5 Implementation 

    A test bed of 10mx6m in a hall, free of any major obstacles, is deployed. JN5139 wireless 

sensor node platforms are utilised in the experiments. These nodes offer low power 

consumption low processor time and low cost. They use Jennic’s ZigBee network standard 

with rapid application development with simple programming.  

    Small variations are experienced while recording the received signal strength values in the 

form of LQI values. It is well known fact that RSS values are affected by obstacles and walls. 

Hence object localisation based on RSSs imposes some limitations. The test area was 

carefully selected so that the walls were at a distance and there were no major obstacles along 

the signal paths. Large numbers of RSS values are recorded at every receiver and they are 

averaged out. Their average values are used in the computations. 5 Transmitter tags are used 

as reference nodes in star formation and 4 receivers are placed at the corners of the test area. 

A transmitter tag is also used on the object at unknown positions as seen in Figure 6.2. 

    During first LandMarc stage, 3-NN algorithm is used and 3 nearest reference nodes are 

determined for each object location. Average of 3 nearest reference node coordinates gives 

the estimated object coordinates. In the second stage, an improved LandMarc localisation 

system is employed. Initially, 3 nearest reference nodes are determined for each object as in 

the first stage. Trigonometric approach is deployed, later on, to select 3 closest reference 

nodes for each nearest reference node.  
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    New estimated reference node coordinates are calculated by using these closest reference 

nodes. The difference between the new estimated reference node coordinates and the nearest 

reference node coordinates are used as a correction factor for the 3-NN calculated object 

coordinates (x,y) in first stage. 

    In a hybrid weighted localisation, referred as neighbourhood weighted with 3-NN 

localisation, 3 nearest reference nodes are employed together with the physical and Euclidean 

distances between them.  

    A weight mechanism is proposed by using physical and Euclidean distances between 3 

nearest reference nodes. Once the distances m, n, p between the object and 3 nearest 

reference nodes are determined, object location coordinates are calculated by using 

trilateration techniques. Object localisation experiments are carried out and samples of 

estimated object coordinates are tabulated with 3 approaches in Table 6.1.  

Measurements  Coordinates (x,y) 

Object  (4 , 2) (3 , 5) (6 , 4) 

LandMarc  (2.8 ,2.3) (2.15, 4.76) (4.66 , 3.05) 

Improved LandMarc (3.6 , 2.6) (2.35, 5.42) (5.95 , 3.12) 

Neighbourhood Weighted (4.3 , 1.84) (2.64, 4.53) (6.18 , 3.78) 

Table 6.1: Estimated object coordinates at different locations with 3 approaches 

    Final estimated object location coordinates are observed to be in close agreement with 

actual object location coordinates. Localisation error e can be calculated as the distance 

between the actual object location and the estimated object location as seen Table 6.2. 

 

 

 

Table 6.2: Error calculations with 3 different approaches 

    Results in Table 6.2 reveal that the average localisation error of LandMarc system is around 

1.25 m while the average localisation errors of two new systems in the study are 0.79 m and 

0.40m. 

6.6 Discussions  

    In literature, the localisation methods using RF signals and WSNs generate positioning 

accuracies starting from 1 metre to several metres. Localisation techniques with higher 

accuracies in tens of centimetres introduce extra systems such as Ultrasonic or microwaves 

Measurements Error distances at object points 

Object coordinates (4 , 2) 

 

(3 , 5) 

 

(6 , 4) 

 

Average Error 

LandMarc  1.23m 0.88m 1.64m 1.252 m 

Improved LandMarc 0.72m 0.77m 0.88m 0.79 m 

Neighbourhood 

Weighted  

0.34m 0.59m 0.28m 0.40 m 
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next to WSN systems. This in return increases the cost factors. Hence WSNs and RF signals 

are utilised generally due to their cost effectiveness and convenient usage in any environment. 

In this study, a new reference node approach is utilized. The mathematical background is 

presented in the above sections. The algorithms introduced here produce impressive accuracy 

levels compared to other algorithms. Experimental proofs of these accuracies are given in 

Table6.2.  

    In Classical LandMarc topology, there is a uniform distribution of n reference transmitters 

and it has an average localisation accuracy of 1 to 2 metres in literature. The classical 

LandMarc approach in this chapter uses a symmetrical star distribution of reference nodes. 

Localisation accuracy achieved is around 1.25m. The results are in good agreement with the 

classical LandMarc technique.   

    The improved LandMarc approach has a positioning accuracy improvement compared to 

existing LandMarc approach. It uses 3-NN algorithm in two stages. In the first stage 3 nearest 

reference nodes are selected. Every nearest node has 3 closest nodes and the object locations 

are estimated with respect to these closest and nearest nodes. The error distance between 2 

calculations are added mathematically as a correction factor to the estimated object location 

coordinates by using nearest reference nodes. An accuracy level of 0.79m is achieved which 

is better than the classical LandMarc technique.  

    A second stage is introduced by using the above 3 nearest reference nodes here called the 

Neighbourhood Weighted approach.  It uses both actual distances and Euclidean distance in 

hybrid form. This approach compensates for the environmental conditions through the usage 

of weighted RSS values. These environmental conditions are mathematically formulated with 

the weight functions. The accuracy level achieved with this approach is 0.4m which is quite 

good compared to others.  

6.7 Conclusions  

    LandMarc localisation technique is a milestone in literature to calculate unknown object 

locations by using received RF signal strengths. Reference transmitter nodes are deployed in 

this technique to introduce known fixed locations besides the fixed receiver positions across 

the sensing area during calculations. Object transmitter nodes, on the other hand, have mobile 

positions and object localisation accuracies vary by around 1-2 metres depending on the 

environmental conditions.   

    In the study, k-NN algorithms together with weight mechanisms related to real and 

Euclidean distances are utilised to calculate the object coordinates. There are many different 
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weight mechanisms which are deployed in calculations to improve localisation accuracies. 

However, most of them suffer from irregular behaviour of RF signals. Many correction and 

smoothing techniques are applied on RSS signals to obtain better localisation accuracies.  

    Proposed approaches are different from localisation approaches in literature. In the second 

approach, 2 stage k-NN is introduced. The difference between the coordinates of nearest 

reference nodes in stage 1 and the new estimated nearest reference node coordinates in stage 2 

are used as a mathematical correction factor in determination of nearest reference tag 

coordinates. Results reveal that the error distances are reduced by 37% with improved 

LandMarc technique from classical LandMarc technique.   

    In the third approach, weight calculations are based both on real distances and Euclidean 

distances between the reference nodes. This neighbourhood weighted approach introduces a 

lower localisation complexity with respect to other systems. Results revealed that the error 

distances are reduced by 68% with the neighbourhood technique compared to the classical 

LandMarc technique. Experimentation is repeated many times and large numbers of object 

points are tested with these approaches. Results always reveal similar accuracy levels.  

     Experimental results clearly define significantly improved localisation accuracies 

compared to classical LandMarc localisation approach. These results can be taken as the 

empirical proof of the accuracy improvement with the proposed method in this chapter. 

   A future development would be to optimise the number of reference nodes and their 

topology and to include the environmental factors in computations for the best possible 

localisation accuracies. A conference paper is published from this study [47]. 
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CHAPTER 7 

VIRTUAL LOCALISATION 

 
 

 

7.1 Background  

    The localisation issue has received considerable attention in the area of wireless sensor 

nodes and pervasive computing of object positions [7]. There are many location systems 

developed by using RF technology [5, 6]. This technology utilises RSSI or LQI to track and 

detect object positions [10]. The read range of WSN transmitters is around 50 metres. They 

are located at strategic locations in sensing areas. Signal strengths in RSSI or LQI forms are 

received by the receivers and sent to server computers for further processing. 

    A fingerprint database is developed in this chapter by using the received signal strengths at 

predetermined multiple measurement points across the test area. These signal strengths are 

compared with the signal strengths received from objects at unknown positions across the test 

area. A number of measurement locations with nearest signal distances are determined as the 

nearest nodes to object locations. Weighted average value of the nearest node coordinates can 

be taken as the estimated unknown position coordinates. 

    Although the fingerprint database works well with many positioning systems, due to the 

random nature of RF signals and the relatively large distances between its grid points, signal 

receptions at grid points are affected. This has an impact on the recordings of the uniform 

RSSI or LQI values and the correlation between the readings are decreased. 

    A solution can be proposed to quantise the signal strengths between the measurement 

points and introduce a fingerprint database with closely recorded signal levels. This would 

reduce the signal strength uncertainties between the measurement points. The number of 

measurement points across the test area can be increased and more closely recorded signals 

can be obtained resulting in a larger fingerprint database. This physical increase in return 

takes more time and effort during measurements. 

    A Second approach, on the other hand, keeps the number of grid points the same and 

introduces virtual grid points between physical grid points without any additional time and 

effort. Hence, new LQI measurements are generated virtually and a new larger fingerprint 
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database is developed with real and virtual LQI measurements across the test area. The new 

approach does not utilise additional transmitters, receivers or grid measurement points. The 

system deploys only calculated virtual grid points which are integrated among physical grid 

points resulting in a larger number of LQI values across the test area [123]. In this technique, 

LQI measurements are carried out at grid points and recorded in a fingerprint database. Signal 

strengths between adjacent grid points are interpolated according to certain distribution 

functions. These distribution functions are named as taper functions and they are arranged 

according to the directions of RF radiations from transmitters. Linear and exponential taper 

functions are utilised in the study. The distance between the adjacent grid points are divided 

into an equal number of virtual grid points. Virtual distribution of LQI values at these virtual 

grid points are generated in linear and exponential form for each transmitter radiation. These 

virtual and real LQI values at virtual and real grid points produce a new fingerprint database. 

This fingerprint database is called a virtual fingerprint database [124]. Unknown position 

estimation is carried out by utilising the newly generated virtual fingerprint database and k-

NN algorithm across the test area. 

7.2 Fingerprint model 

    A number of wireless sensor transmitters and a receiver on the object are employed across 

the test area as shown in Figure 7.1. Bi transmitters transmit RF signals and their LQI values 

are recorded by the receiver on the object and receivers at grid points.  

 

Figure 7.1: Grid area showing a grid point G, an object P and Bi transmitters where i=1,2,3,4  

    Signal distance between object location P and grid point G in the fingerprint map is 

calculated by using LQI values recorded at respective positions. Fingerprint vector F


= (f1, f2, 

f3, f4), is identified as the total LQI values from Bi transmitters at a particular grid location G. 

Unknown object location fingerprint vector R


 is the LQI values recorded at point P and 

denoted as R


 = (r1, r2, r3, r4) . 
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    The fingerprint database is prepared by collecting F


 vectors from all the grid points during 

the off-line phase. The R


 fingerprint vector at point P is also deployed and sent to PC during 

the on-line phase. Unknown object position coordinates (x, y), are calculated by using k-NN 

and weighted k-NN algorithms as explained before. 

    Random behaviour of received signal strengths is reduced by filtering the received signal 

strength amplitudes during calculations. Sudden changes among the signals occur due to 

movements around the test area. These changes are also eliminated by using outlier 

techniques.  

7.3 Virtual Fingerprint  

    Transmitters transmit RF signals and these signals are received by a receiver on the object 

in the form of LQI values. A physical rectangular grid system is organised across the test area 

as seen in figure 7.1. These grids are organised across the test area with ample distances 

between them where RF radiation shows characteristics of signal variations. In order to 

include these effects in localisation calculations either several new LQI measurements are 

taken between grid points or virtual RF signal amplitudes are introduced between adjacent 

grid points. 

    Virtual RF signal amplitudes, namely virtual LQI values, are introduced at virtual grid 

points between adjacent grid points following a distribution function. These virtual LQI 

values with respect to their coordinates are identified as virtual fingerprints.  The locations of 

virtual grid points are defined empirically between every two adjacent grid points. A physical 

grid system and a single expanded grid cell across the test area are displayed in Figure 7.2. 

 

Figure 7.2: Physical grid space and virtual grids across each physical grid cell  
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    Each physical grid cell such as (L8L12L13 L9) is square in shape and is surrounded by 4 grid 

points. Each cell is further divided into n2 square shaped virtual grid cells. n virtual grid cells 

between two adjacent grid points are generated. The number of physical grid points is decided 

according to the size of the test area. Virtual grid points, on the other hand, are selected 

empirically to generate the best localisation accuracies. Since the coordinates of physical 

grid points are defined with respect to transmitter positions, the coordinates of virtual grid 

points can also be easily calculated.  

    LQI values at adjacent grid points are utilised to generate LQI values at virtual grid points 

between them once LQI measurements are recorded at physical grid points, the distribution of 

virtual LQI values between two adjacent grid points can be determined according to any 

distribution function. 

    The distance between two adjacent grid points is divided into n sections. n-1 number of 

virtual LQI values are generated between these two adjacent grid points according to 

deployed taper functions. Hence the physical grid space is divided into a finer virtual grid 

space. Virtual LQI values at virtual grid points and the measured LQI values at grid points 

produce a new fingerprint database. This fingerprint database is identified as a virtual 

fingerprint database.  

    Unknown object position detection is carried out by using the newly generated virtual 

fingerprint database and k-NN algorithms. Virtual Euclidean distances are utilised between 

the object location and the virtual grid points. k number of minimum virtual Euclidean 

distances are selected and their weighted coordinates are averaged out to determine the object 

location. In conclusion, the positioning technique, employed with the virtual grid system, is 

the same as the physical grid system. 

     An overview of the proposed system is presented in a block diagram as shown in Figure 

7.3. It is important that no additional wireless sensor nodes are employed across the test area. 

The technique introduces an increased number of LQI values due to denser virtual grid points 

without any extra effort. Hence, the fixed number of grid points and the fixed number of LQI 

data in the fingerprint database are abandoned in favour of larger the number of virtual grid 

points and virtual LQI data. 
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Figure 7.3: Block diagram of the proposed localisation system  

7.3.1 Linear Interpolation Function 

    Each physical grid cell is in square shape and is further divided into n x n square shaped 

virtual grid cells. The proposed approach uses a linear taper function which can be identified 

as a linear distribution function of LQI values at virtual grid points between two adjacent 

physical grid points. Linear taper function is utilised to calculate the virtual LQI values in 

every virtual grid point. Each physical grid cell has 4 LQI values at each grid point received 

from 4 transmitters. An empirical value of virtual grid cell number n=5 is selected between 

two adjacent grid points. For example, LQI values received from 4 transmitters at L3 grid 

point of grid cell B1L3L4L1 are defined as 
1

)0,5(

BLQI ,
2

)0,5(

BLQI ,
3

)0,5(

BLQI , 
4

)0,5(

BLQI . 

    Hence,
kLQI )0,0( ,

kLQI )0,5( , 
kLQI )5,5( and

kLQI )5,0(  identify the LQI values at 4 corners of the 

grid cell B1L3L4L1 with respect to transmitters. Transmitters at grid cell corners are defined as 

the k subscripts with LQI values where k = {B1,B2,B3,B4}. Transmitter coordinates can be 

seen in Figure 7.2. LQI values at virtual grid points along B1L3 horizontal boundary of the 

grid cell can be interpolated linearly in terms of LQI values at B1 and L3 grid points as: 

i
LQILQI

LQILQI

kk

kk

i .
5

)0,0()0,5(

)0,0()0,(


      (7.1) 

    
k

iLQI )0,(  defines the LQI value at ith virtual grid point with respect to kth transmitter. Virtual 

LQI values along B1L3 can be defined for B1 transmitter by substituting k=B1 and varying i 

between 0 and 5 in equation 7.1. These LQI values are displayed in Table 7.1. Virtual LQI 

values with respect to other transmitters can also be determined by varying k values along 

B1L3 boundary. Hence, there are 4 virtual LQI values for 4 transmitters at each i along B1L3. 
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 Grid 

number(i) 

LQI index LQI values Grid types 

0 1

)0,0(

BLQI
 

 

1

)0,0(

BLQI  B1 real grid point 

1 1

)0,1(

BLQI
 

 

1

)0,5(

1

)0,0(
5

1

5

4 BB LQILQI   Virtual grid point 

2 1

)0,2(

BLQI
 

 

1

)0,5(

1

)0,0(
5

2

5

3 BB LQILQI   Virtual grid point 

3 1

)0,3(

BLQI
 

 

1

)0,5(

1

)0,0(
5

3

5

2 BB LQILQI   

 

Virtual grid point 

4 1

)0,4(

BLQI
 

 

1

)0,5(

1

)0,0(
5

4

5

1 BB LQILQI   

 

Virtual grid point 

5 1

)0,5(

BLQI
 

 

 

1

)0,5(

BLQI  

 

L3 real grid point 

Table 7.1: LQI values at real and virtual grid points along B1L3 of B1L3L4L1 grid cell for B1 

transmitter 

    Similarly for B1L1 vertical boundary of the same grid cell, LQI values at virtual grid points 

can be interpolated linearly in terms of LQI values at B1 and L1 grid points as:  

j
LQILQI

LQILQI

kk

kk

j .
5

)0,0()5,0(

)0,0(),0(


      (7.2) 

    j is the number of virtual grid points. 
k

jLQI ),0( defines the LQI value at jth virtual grid point 

with respect to kth transmitter. Virtual LQI values along B1L1 can be defined for B1 transmitter 

by substituting k=B1 and j varies between 0 and 5 in equation 7.2. These LQI values are 

displayed in Table 7.2. 

 

 

 

 

 

 

Table 7.2: LQI values at real and virtual grid points along B1L1 of B1L3L4L1 grid cell for B1 

transmitter 

    k value can be varied and virtual LQI values with respect to other transmitters can be 

determined similarly along B1L1 boundary. A schematic representation of linear LQI 

distributions along B1L3 and B1L1 boundaries of the grid cell B1L3L4L1 for transmitter B1, is 

given in Figure 7.4. 

Grid 

number(j) 

LQI index LQI values Grid types 

0 1
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BLQI
 

 

1
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BLQI  B1 real grid point 
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1
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1
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5

1

5

4 BB LQILQI   Virtual grid point 
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1
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5

3 BB LQILQI   Virtual grid point 
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1

)5,0(

1
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5
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Virtual grid point 
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5
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)5,0(

BLQI
 

 

 

1
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L3 real grid point 



CHAPTER 7 VIRTUAL LOCALISATION 

 

111 
 

 

Figure 7.4: Linear LQI distributions are displayed along the grid cell boundaries a) B1L3 and 

B1L1, b) L4L3 and L4L1 for B1 transmitter. Each dotted arrow represents a virtual LQI value.  

    Virtual LQI values at boundaries L1L4 and L3L4 of the grid cell B1L3L4L1 can also be 

determined for B1 transmitter similar to B1L3 and B1L1. Once virtual LQI values for all the 

grid cell boundaries are determined, virtual LQI values at virtual grid points inside the grid 

cell can be calculated with respect to these boundary values.  

    For j=1 and i varies between 0 and 5, virtual LQI values can be calculated for kth 

transmitter by using the following LQI boundary values. 

)(
5

1
)0,0()5,0()0,0(

kkk LQILQILQI     and  )(
5

1
)0,5()5,5()0,5(

kkk LQILQILQI   . 

Similarly, for i=1 and j varies between 0 and 5, virtual LQI values can also be determined by 

using the following LQI boundary values. 

)(
5

1
)0,0()0,5()0,0(

kkk LQILQILQI      and   )(
5

1
)5,0()5,5()5,0(

kkk LQILQILQI   . 

These boundary LQI values with respect to grid cells are be displayed in Figure 7.5.  

    When j=1 and i varies between 0 and 5 along the horizontal line parallel to B1L3 , virtual 

LQI values can be determined as shown in Table 7.3 for B1 transmitter. 

 
Figure 7.5: LQI boundary values for j=1, i = 0 to 5 and i=1, j= 0 to 5 for kth transmitter    
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Grid No (i , j) LQI values (horizontal to B1L3) 
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5
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5
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Table 7.3: LQI values for j=1, i=0 to 5 for B1 transmitter in B1L3L4L1 grid cell 

   Similarly, when i=1 and j varies between 0 and 5 along the vertical line parallel to B1L1, 

virtual LQI values can also be determined as shown in Table 7.4 for B1 transmitter.  

    These Virtual LQI calculations will be repeated for each horizontal and vertical line along i 

and j directions in the grid cell. As a result, there will be 2 virtual LQI values generated for 

each virtual grid point (i, j). Average of two virtual LQI values is taken as the final virtual 

LQI value at that inner virtual grid point (i, j) for k transmitter.  

Grid No (i , j) LQI values (horizontal to B1L4) 
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Table 7.4: LQI values for i=1, j=0 to 5 for B1 transmitter in B1L3L4L1 grid cell 

7.3.2 Exponential-Linear Interpolation Function 

    Transmitted LQI values decrease with respect to distance between a wireless sensor 

transmitter and a receiver. A best fit curve on the experimental LQI distribution can be shown 

as an exponential function in the form of aexp(-bx). This is presented in the implementation 

section. Due to exponential decreasing properties of LQI values between transmitters and 



CHAPTER 7 VIRTUAL LOCALISATION 

 

113 
 

receivers across the grid space, LQI values received at grid points are also assumed to be 

exponentially decreasing along the directions of transmissions at the grid cell boundaries. 

These assumptions are presented schematically in Figure 7.6 and Figure 7.7 for B1 transmitter 

along the boundaries of B1, L3, L4, L1 grid cell.  

   

Figure 7.6: Schematic view of Exponential LQI interpolation functions a) B1L1 and L1L4, 

b)B1L3 and L3L4 cell boundaries for LQI transmissions of B1 transmitter 

Figure 7.7: Schematic view of Exponential LQI interpolation functions a) B1L1 and B1L3, 

b)L1L4 and L3L4 cell boundaries for LQI transmissions of B1 transmitter  

    Coordinates of virtual grid points are calculated with respect to transmitter coordinates. 

There are k number of LQI values arriving from k transmitters recorded at each physical grid 

point. They generate virtual exponential LQI distributions between 2 adjacent grid points 

along the cell boundaries. Grid cell B1L3L4L1 is considered for the realisation of virtual LQI 

values at virtual grid points as an example.  

    LQI value received from B1 transmitter at grid point B1 is identified as
1

)0,0(

BLQI and it 

decreases exponentially towards L3 and L1 adjacent grid points. Similarly LQI value received 
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from B2 transmitter at grid point L3 is identified as
2

)0,5(

BLQI  and this value decreases 

exponentially towards B1 and L4 grid points. 

    The decrease of LQI values is identified with exponential taper function between two LQI 

values coming from the same transmitter at 2 adjacent grid points. The taper function for LQI 

values, transmitted from B1 transmitter, between B1 and L3 is shown in Figure 7.8 and 

expressed as;  

1
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
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    On the other hand, exponential taper function for LQI values between B1 and L3, 

transmitted from B2 transmitter, is shown in Figure 7.9 and expressed as;  
2
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)5(2

),(

2

)0,5( )( B

aa

axB

aa

B

a LQIeLQILQI  

    

 

Figure 7.8: Graphical view of exponential taper function between B1 and L3 together with 4 

virtual grid points for B1 transmission 

 

Figure 7.9: Graphical view of exponential taper function between B1 and L3 together with 4 

virtual grid points for B2 transmission 

    Virtual LQI values along B1L3, B1L1, L1L4 and L3L4 boundaries can be calculated by using 

exponential taper functions as shown in Figures 7.6 and 7.7. These virtual LQI values are 
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tabulated in Table 7.5. Each grid corner B1, L1, L3 and L4 is considered as the RF transmission 

source during calculations. Virtual grid points are located at incremental steps of 1 unit along 

the grid boundaries. Origin of the coordinate system is taken as (a,a) in Table 7.5.  

    Once the virtual LQI values are determined for one transmitter around the grid cell 

boundaries, other virtual LQI values can also be determined for other transmitters around the 

same boundaries. Boundary LQI values of a grid cell are utilised to calculate the internal 

virtual LQI values of the grid cell.  Virtual LQI values on two cell boundaries facing opposite 

each other are considered and the virtual LQI values are calculated between them by using 

linear interpolation technique. Final virtual LQI value is derived by averaging the two 

resultant LQI values obtained horizontal and vertical directions 

Table 7.5: LQI values at real and virtual grid points around the grid cell boundaries for B1 

transmissions. }{ 1
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aa LQILQIP   1
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aaLQIR   

 7.3.3 Exponential – Exponential Interpolation function 

    Previously, exponential taper functions were utilised and virtual LQI values were 

calculated along the grid cell boundaries. Inside the grid cell, determination of virtual LQI 

values was carried out by using linear interpolation functions. Two cell boundaries facing 

each other were considered. Virtual LQI values at these boundaries facing each other 

oppositely were taken as the upper and lower limits of a linear function. Virtual LQI values 

were calculated along these linear functions in both x and y directions.  

    In this section, exponential taper functions along the two facing cell boundaries such as 

B1L3 and L1L4 are utilised. 2 virtual LQI values are facing opposite to each other along these 

two taper functions. A 3D view of these exponential functions and LQI values are displayed 

in Figure 7.10. Exponential taper function between B1(a,a) and L3(a+5,a) along the boundary 

B1L3 is given as  

Grid 

locations 

along X 

LQI values 

B1L3 Boundary 

LQI values 

L1L4 Boundary 

Grid 

locations 

along Y  

LQI values 

B1L1 Boundary 

LQI values 

L3L4 Boundary 

a 1
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B

aaLQI  
1

)5,(

B

aaLQI   
a 1

),(

B

aaLQI  
1

),5(

B

aaLQI   

a+1 BAe 1  FEe 1   a+1 DCe 1  RPe 1  

a+2 BAe 2  FEe 2  a+2 DCe 2  RPe 2  

a+3 BAe 3  FEe 3  a+3 DCe 3  RPe 3  

a+4 BAe 4  FEe 4  a+4 DCe 4  RPe 4  

a+5 BAe 5  FEe 5  a+5 DCe 5  RPe 5  
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Similarly, exponential taper function between L1(a,a+5) and L4(a+5,a+5) along the boundary 

L1L4 parallel to B1L3 is given as  
1
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Figure 7.10: Schematic view of Exponential LQI interpolation functions inside the grid cell 

B1L3L4L1 boundaries for LQI transmissions of B1 transmitter  

Exponential taper functions along vertical B1L1 and L3L4 boundaries are also given as  
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    Exponential taper function parallel to B1L3 across the virtual grid cell can be expressed by 

using the above taper function along B1L3 boundary. For example exponential taper functions 

starting at (a, a+1) and (a, a+2) can be expressed as in Table 7.6 

Exponential taper functions at (a,a+1) and (a,a+2) parallel to B1L3 Start 

point 
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Table 7.6: Exponential taper functions parallel to B1L3 boundary across the grid cell where 

M= )( 1
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aa LQILQI  and N= )( 1
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    Exponential taper functions parallel to B1L3 along x axis and parallel to B1L1 along y axis 

can be derived. The intersection points of these taper functions are the virtual LQI values at 

virtual grid points across the physical grid cell B1L3L4L1. 
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7.4 Implementation 

    JENNIC JN5139 wireless sensor nodes are deployed in the study. Zigbee Home Sensor 

program is used to program JN5139 active devices to work as both transmitter and receiver 

WSNs respectively [115,116]. JN5139 receiver [100], on the object is interfaced to a 

computer via a wired link for data transmission. A rectangular area of 12mx20m in a sports 

hall is selected and unknown object locations are confined in this rectangular grid area. The 

area was not free of obstacles. There was sports equipment lying around and people were 

moving around during the measurements. Wireless Sensor transmitters are placed at the 

corners of the rectangular area. Recordings of LQI values coming from transmitters are 

collected by a wireless sensor receiver sequentially placed at each grid point.  

    Power consumption by the sensors during the construction of the fingerprint map and 

computations is negligible. The wireless sensors are active devices and their onboard battery life is 

around 1 month. Total LQI measurements, data collection and recording of the fingerprint database 

takes only 1-2 hours. Construction of the database and the localisation computations take place in the 

server computer. Hence the only electric power used by the sensors is to transmit the LQI values.  

    For a grid area of 12mx20m, 24 grid points are arranged with a grid space of 4 metres.  There are 96 

LQI entries recorded in the fingerprint database with 4 LQI readings at each grid point from 4 

transmitters. Each entry in the database includes a mapping of the grid coordinate (x,y) and 4 LQI 

values at that point. Wireless receiver on the object receives 4 LQI values from 4 transmitters from its 

4 channels and transmits them to server computer via a wired link. There is no onboard memory at the 

receiver and these values are stored sequentially in an access database in the server computer. The 

server computer has sufficient memory space to manipulate these LQI values for position calculations. 

Received signal strengths can vary depending on the environmental effects. These variations are 

reduced by averaging 100 recorded LQI values at each measurement point for each transmitter. 

Averaged LQI values and the position coordinates are employed to generate the fingerprint map in the 

server. LQI recordings of the object receiver at unknown locations are also carried out similarly to 

generate object fingerprint vectors. An example basic fingerprint database is shown in Figure 

7.11.  

  



CHAPTER 7 VIRTUAL LOCALISATION 

 

118 
 

  

Figure 7.11: Part of the basic fingerprint database in server memory 

7.4.1 Linear Interpolation  

    Each Grid cell is further divided into 5x5 virtual grid cells. Therefore there are a total of 

15x25=375 virtual grid cells and 26x16 =416 real plus virtual grid points and 416 LQI values 

from each transmitter across the test area. 

    The virtual grid space is 0.8 meters and is used as 1 unit distance in calculations. Calculated 

distances are multiplied by 0.8 to convert them into real distances. Initially, k-NN and 

weighted k-NN algorithms are utilised to determine the unknown object locations by using the 

basic fingerprint database with 24 grid points for comparison purposes. The same localisation 

algorithms are deployed with the virtual fingerprint database generated with linear taper 

function. Unknown object coordinates are calculated and results are presented in Table 7.7.  

 

Unknown 

object 

positions 

Estimated object position coordinates using basic fingerprint and virtual fingerprint (linear taper function) databases  

1-NN  X,Y 2-NN  X,Y 3-NN  X,Y 4-NN  X,Y Weighted 4-NN  X,Y 

 

X Y 
Basic 
finger 
print 

Linear taper 
Function 
  

Basic 
finger 
print 

Linear taper 
Function 
 

Basic 
finger 
print 

Linear taper 
Function 
 

Basic 
finger 
print 

Linear taper 
Function 
 

Basic 
finger 
print 

Linear taper 
Function 
 

2 2 1 3 0  3.8 0 3 0.3   3.5 1 2 0.3  3.7 0 4 0.4  4.1 0.9  2.9 0.5  3.6 

2  3 1 4 0  5.5 1 5 0.2  4.5 0 3 0   4.7 0  4 0.1  5.2 0.5 4.5 0.2  4.5 

3  5 2 4 1.1  8.0 2 3 1.3   7.6 2 6 1.2  7.1 2 3 0.9 9.0 2.1 3.3 1.4 8.6 

4  4 0 12 5.8  3.2 4 8 5.2  2.4 7 9 5.4  2.4 6 7 5.3 1.6 5.8 7.31 5.8  2.0 

0  8 4 12 2.4  10 4  6 2.4 9.8 5  5 2.4 9.2 4  7 1.4  9.8 4.14 7.5 2.5  9 

8  8 8 12 8  6.4 8 12 8  6.6 8  9 7.2  6.4 9  9 7.2 7.1 9.8  9.2 7.2 7.4 

12  8 12 12 11  6.6 12 10 10.5  6.8 11 11 10.4  7.1 10 8 10.5  6.7 10.3 8.8 10.6 6.8 

4  12 8  8 5.6  12.2 6 12 4.6  13.2 5 11 4.8  13.2 6 11 5.6 13.2 6.36 10.2 5.6 13.6 

8  12 8  8 6.4  14 6  8 7.4  13 5 11 6.5  13.6 5 11 6.2  14 7.01  8.8 6.6  13.8 

4  16 8 12 5.4 14.4 8 10 5.6 17.6 8 12 5.7 18 7 13 4.4 16.6 7.43 12.3 5.3  17 

Table 7.7: Estimated object position coordinates using basic fingerprint database and virtual 

fingerprint database with linear taper function  
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7.4.2 Exponential linear Interpolation  

     RF signal amplitudes decrease with the distance between transmitters and receivers. 

Generally, this decrease is in exponential form. Initially, wireless sensor receivers are placed 

in front of wireless sensor transmitters. The distance between them is increased in steps of 1 

metre and RF signal amplitudes recorded by the receiver in the form of LQI values are plotted 

against distance. A best fit curve reveals an exponential distribution function of aexp(-bx) as 

seen in Figure 7.12.  

 

Figure 7.12: Plot of LQI values versus distance between a receiver and a transmitter with 

their fitted curve 

    In order to reflect these characteristics in a virtual world, virtual grid points are generated 

by using an exponential taper function between 2 adjacent grid points around grid cell 

boundaries. Exponential Taper functions are applied in x and y directions of grid cell 

boundaries and object coordinates are calculated as shown in Table 7.8. 

 

Unknown 

object 

positions 

Estimated object position coordinates using basic fingerprint and virtual fingerprint (Expo-linear taper function) databases 

1-NN  X,Y 2-NN  X,Y 3-NN  X,Y 4-NN  X,Y Weighted 4-NN  X,Y 

 

X Y 
Basic 
finger 
print 

Expo. Linear 
taper 
function 

Basic 
finger 
print 

Expo. Linear  
Taper 
function 

Basic 
finger 
print 

Expo. Linear 
Taper 
function 

Basic 
finger 
print 

Expo. Linear 
Taper 
function 

Basic 
finger 
print 

Expo. Linear 
Taper 
function 

2 2 1 3 0.9 1.3 0 3 1.2 1.4 1 2 1.0 0.9 0 4 1.3 0.9 0.9  2.9 0.9 1.3 

2  3 1 4 1.2 1.3 1 5 0.8  1.4 0 3 1.3  1.2 0  4 1.2  1.5 0.5 4.5 1.4  1.6 

3  5 2 4 2.2 3.5 2 3 1.8  3.7 2 6 1.7  4.1 2 3 2.6  2.7 2.1 3.3 2.1 2.8 

4  4 0 12 4.5 2.4 4 8 5.3  2.4 7 9 6.4 3.1 6 7 3.2  2.2 5.8 7.31 5.3 3.2 

0  8 4 12 1.7 8.6 4  6 1.3  9.6 5  5 1.6  9.3 4  7 1.4 10.0 4.14 7.5 1.7  9.1 

8  8 8 12 7.1 6.7 8 12 6.5  6.6 8  9 6.6 6.8 9  9 6.8 6.7 9.8  9.2 7.3 6.2 

12  8 12 12 11  7.1 12 10 10.7 6.9 11 11 10.4 6.7 10 8 11.2 6.9 10.3 8.8 10.4 6.7 

4  12 8  8 4.8 10.8 6 12 5.5 10.7 5 11 5.4 13.4 6 11 5.6 11.6 6.36 10.2 4.6 13.7 

8  12 8  8 7.1 10.6 6  8 6.8 10.7 5 11 6.5 10.8 5 11 6.2 10.8 7.01  8.8 6.4 13.8 

4  16 8 12 5.0 14.7 8 10 4.7 14.7 8 12 5.5 17.3 7 13 5.1  14.6 7.43 12.3 5.7 14.0 

Table 7.8: Estimated object position coordinates using basic fingerprint database and virtual 

fingerprint database with exponential linear taper function 
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7.4.3 Exponential-Exponential Interpolation  

    Exponential Taper functions are applied in x and y directions of grid cell boundaries as 

before. Previously, virtual LQI values at virtual grid points inside the grid cell are calculated 

by linear interpolation along x and y directions.  

    In this case, virtual LQI values at virtual grid points inside the grid cell are calculated by 

using exponential interpolation along x and y directions as shown in Figure 9.10. A virtual 

database is developed by using these newly generated virtual LQI values. Object positions are 

calculated with this virtual database and shown in Table 7.9. 

 

Unknown 

object 

positions 

Estimated object position coordinates using basic fingerprint and virtual fingerprint (Expo-Expo taper function) databases 

1-NN  X,Y 2-NN  X,Y 3-NN  X,Y 4-NN  X,Y Weighted 4-NN  X,Y 

 

X Y 
Basic 
finger 
print 

Expo. Expo 
taper 
function 

Basic 
finger 
print 

Expo. Expo.  
Taper 
function 

Basic 
finger 
print 

Expo. Expo. 
Taper 
function 

Basic 
finger 
print 

Expo. Expo. 
Taper 
function 

Basic 
finger 
print 

Expo. expo 
Taper 
function 

2 2 1 3 1.3 1.5 0 3 1.5 1.5 1 2 1.3 1.2 0 4 1  1.2 0.9  2.9 1  1.5 

2  3 1 4 1.3 2.3 1 5 1.2 2.2 0 3 1.5  1.8 0  4 1.5  1.8 0.5 4.5 1.2  1.9 

3  5 2 4 2.2 3.2 2 3 2  4.1 2 6 2.5  4 2 3 2.4 3.5 2.1 3.3 2.1  3.2 

4  4 0 12 4.7 3.1 4 8 5  3.1 7 9 5.4 3 6 7 3  3.2 5.8 7.31 5  3.1 

0  8 4 12 0.7 8.8 4  6 1  9 5  5 1  8.6 4  7 1 9 4.14 7.5 1   9 

8  8 8 12 7.0 6.9 8 12 6.6  7 8  9 7  7 9  9 7  7.2 9.8  9.2 7   7.2 

12  8 12 12 11.2  7.0 12 10 11 7.1 11 11 11  7 10 8 11 7 10.3 8.8 11  7 

4  12 8  8 4.6  11 6 12 4.5 11 5 11 4.7 13 6 11 4.7  11 6.36 10.2 4.5  13 

8  12 8  8 7.0  11 6  8 7  11.2 5 11 7.2 11 5 11 7  11 7.01  8.8 7  13.5 

4  16 8 12 4.7  15 8 10 5.2 15 8 12 4.5  17 7 13 5  15 7.43 12.3 5   15 

 Table 7.9: Estimated object position coordinates using basic fingerprint database and virtual 

fingerprint database with exponential-exponential taper function  

    Location estimation error, e, is defined by the linear distance between unknown object 

coordinates (xt,yt) and their estimated coordinates (xe,ye). Error calculation results between 

actual and estimated average object coordinates are tabulated in Table 7.10. It can be 

concluded that the best localisation results are achieved with exponential-exponential 

interpolation function. 

7.5 System Evaluation 

    The virtual localisation approach is a novel localisation technique which is introduced in 

this chapter. Its mathematical analysis is given in detail in section 7.3. It is a well known fact 

that if the number of grid points is increased in a fingerprint map, localisation accuracies are 

also improved as a result. Unfortunately, increasing the grid numbers and the signal 

measurements at these grids is rather time consuming and costly. Therefore, the idea of 

creating virtual grid points and virtual measurements at these grid points across the fingerprint 

map is employed in this study.   
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Object Error calculations between object  and average estimated object positions 

X  Y Basic 

fingerprint 
 

Error 

(m) 
Virtual 

Fingerprint 

(Linear taper) 

Error 

(m) 
Virtual 

Fingerprint 

(Exp.Lin taper) 

Error 

(m) 
Virtual 

Fingerprint 

(Exp. Exp taper) 

Error 

(m) 

2  2 0.5   3 1.8  0.3  3.8  2.5 1.0  1.2 1.3 1.2  1.3 1 

2   3 0.5   4.1  1.9  0.1  4.9 2.7 1.2   1.4 1.8 1.3  2 1.2 

3   5 1.5   2.8 2.7 1.2   8.0 3.5 2.0  3.3 2.0 2.2  3 2.1 

4   4 4.5   8.6 4.6 5.5   2.3 2.3 4.9   2.6 1.6 4.6  3.1 1 

0   8 4.2   7.5 4.2 2.2  12.1 4.7 1.5   9.3 1.5 0.9  8.8 1.2 

8   8 8.5   10.2 2.2 7.5   6.8 1.3 6.8   6.6 1.8 6.9  7 1.4 

12   8 11.1   9.9 2.0 10.6   6.8 1.8 10.7  6.8 1.8 11  7 1.4 

4   12 6.3   10.4 2.8 5.2   13.1 1.6 5.3  12.2 1.3 4.6  11.8 0.6 

8  12 6.2   9.4 3.1 6.6   13.6 2.1 6.5  11.3 1.7 7  11.5 1.1 

4   16 7.6   11.8 5.5 5.2   16.7 1.4 5.6  15.0 1.9 4.8  15.4 1 

Total ave error(m) 3.1  2.4  

 

 

 
 

 

1.7  1.2 

Table 7.10: Overall error calculations for basic and virtual fingerprint databases. Estimated average 

object coordinates are tabulated for each fingerprint technique  

   There is  only one  virtual technique worth mentioning in the literature,  where  a linear  

distribution of  LQI values  are  employed across the virtual grid  space (Y. Zhao et al. 2007) 

[125]. In this technique several virtual reference nodes are introduced in classical Landmarc 

system and an elimination technique is used to eliminate most unlikely reference nodes. It is a 

different technique than the one used in this study.  The technique introduced in this chapter 

uses all the grid points to introduce virtual grid points across the total test area and not several 

virtual reference grid points. Furthermore LQI distributions are in linear and exponential 

forms across the total virtual grid space. 

    The proposed positioning system uses a number of transmitters and a receiver as in basic 

fingerprint localisation systems. The originality lies in the introduction of virtual grid points 

with specific LQI interpolation functions between the physical grid points. Initially, 

localisation with classical fingerprint mapping technique is deployed and localisation 

accuracies of approximately 1 grid space are obtained in general. The number of physical 

fingerprint points is increased across the sensing area and the localisation accuracies are 

improved compared to coarse distribution of fingerprint points. 

    The key idea of the proposed approach is to obtain more accurate object localisation by 

keeping the same fingerprint map but increasing the number of grid points. One solution to 

increase the positioning accuracy is to add more grid points which will be more labour 

intensive and time consuming. A better solution will be to simulate a larger number of grid 

points by introducing virtual grid points and keeping the same number of real grid points.   

    The proposed system has the following advantages. Firstly, the hardware cost is the same 

as fingerprint localisation systems. Secondly, the number of measurement points 

corresponding to grid points in the test area is unchanged and only extra virtual grid points are 



CHAPTER 7 VIRTUAL LOCALISATION 

 

122 
 

introduced between these grid points. Hence less time and effort is spent during the off line 

phase.  Both real and virtual grid points are used together to generate a new denser fingerprint 

database for location determination. 

    Shortcomings of the virtual grids are their numbers across the sensing area. In theory, 

higher grid densities give greater localisation accuracies. In practice, there is a trade off 

between localisation accuracies and the number of virtual grid points. In the study, optimum 

localisation accuracies are obtained with 4 virtual grid points between two adjacent real grid 

points. This is obtained by dividing the distance between two adjacent real grid points into 

n=5 equal sections. During calculations, a total number of 416 grid points are deployed. 24 of 

them are real and 392 of them are virtual. If the number of virtual grid points is changed by 

making n>5 or n<5, a deterioration is observed in localisation accuracies. This is confirmed 

by experimental results.  

    Once the virtual grid space is determined, LQI values at physical grid points are 

interpolated between the virtual grids by introducing different interpolation functions. Finally, 

the virtual fingerprint database is compared with the unknown fingerprint signatures of the 

objects to determine the object locations. Experimental results of the object localisation with 

virtual fingerprint map reveal that the localisation accuracies are better compared to using 

physical fingerprint map. 

7.6 Conclusions  

    In general, basic fingerprint localisation systems, in literature, generate localisation errors 

of around 1 grid space. In this study, classical fingerprint approach is utilised to compare with 

the proposed approaches. Fingerprint approach has an average localisation error of 3.1 metres 

which is slightly less than grid spacing of 4 metres. Application of taper functions and 

introducing virtual LQI values between grid points produce better localisation accuracies.  

    Linear interpolation technique has an average localisation error of 2.4 metres where the 

LQI values are linearly distributed between the virtual grid points. Exponential-linear 

interpolation technique, has an average error of 1.7metres. Virtual LQI distribution is 

exponential along the grid cell boundaries and linear within the grid cell. Exponential-

exponential interpolation technique on the other hand, has an average error of 1.2 metres and 

virtual LQI distributions are exponential both along the grid cell boundaries and inside the 

grid cell. Exponential-exponential interpolation technique gives the minimum error of the 3 

proposed approaches.  
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    In this study, the main contribution is the localisation by using virtual fingerprinting. 

Position detection is implemented in the confined area of a sports hall. But the same technique 

can be generalised in any indoor area.  Environmental conditions affect the LQI reception by 

the receivers. Although signal amplitude randomness is introduced among the LQI values,          

these random signal amplitudes decrease with respect to distance and it is still a valid physical 

condition. The fitted curves on these decreasing LQI distributions can be in linear or 

exponential format. These curves are taken as examples in virtual LQI distributions across the 

virtual fingerprint map.  

   Hence there is no relationship between the randomness of LQI values and the virtual grid 

points. Furthermore, signal filtering is employed to reduce the random effects on the recorded 

LQI values during measurements at physical grid points. It is observed that the proposed 

approaches improve localisation accuracies in large indoor areas. In future studies, different 

indoor areas will be tested with this new technique. A conference and a journal paper are 

published from this study [47,48]. 
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STATIC & DYNAMIC SEGMENTATION 

 
 

 

8.1 Background  

    Fingerprint based localisation approach utilises a number of grid points across the indoor 

sensing area. RF signal strengths are measured at every grid point arriving from the 

surrounding transmitters and a fingerpring map is generated. Received signal strengths from 

the object position are compared with the signal strengths at grid positions across the 

fingerprint map. Minimum signal distances between the transmitters and object positions are 

selected and deployed in object position identification. 

    During these procedures, the total sensing area is utilised and all the recordings at grid 

points are checked against the signal strengths arriving from the object position. This takes a 

lot of computation time and effort to estimate the object location.  To reduce the computation 

time and effort and to speed up the position estimation, localisation calculations are 

concentrated in selected sub areas across the sensing area. Each sub area is termed a segment, 

and division of the test area into segments is called segmentation [126]. The idea of 

segmentation is introduced to search for the object location in a localised way. In 

identification of sub areas, there are basically two kinds of segmentation defined as static and 

dynamic segmentation. 

    In static segmentation, the sensing area is divided manually into a number of segments 

according to area topology. A unique feature function is identified for each segment with 

respect to signal strengths received across that sub area [127,128]. This feature function 

displays an RSSI interval for each transmitter across the relevant segment. An object location 

vector is compared with the feature functions of the segments and the feature function which 

includes the object location vector is determined. The segment whose feature function 

contains the object location vector is identified as the object segment. Localisation algorithms 

are utilised to estimate the unknown object location in the object segment. 
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    In dynamic segmentation, segments are determined automatically across the entire test area. 

Segment feature functions are realised similarly by selecting a range of RSSI values for each 

transmitter. Standard deviation of received RSSI values at each fingerprint point is utilised for 

each transmitter. ± average STDT interval for each transmitter across the total sensing area is 

employed to determine the feature functions of the segments.  

    A fingerprint point on the sensing area boundary is chosen as the reference point and its 

RSSI ± average STDT interval for each transmitter is utilised to determine the other 

fingerprint points in its segment. Fingerprint points with the majority of their RSSI values in 

RSSI ± average STDT intervals of reference point are considered to be in the reference point 

segment. Once the reference point segment boundary is determined, another fingerprint point 

is selected adjacent to its borderline and similar operation is carried out with the fingerprint 

points outside the previous segment. These operations are repeated and several segments are 

generated automatically across the sensing area. Once the segment boundaries are determined, 

object location vector is compared with segment feature functions. A segment is selected as 

an object segment which contains the object location vector at the start of object localisation. 

Unknown object location is determined by using localisation algorithms across the object 

segment. During the object localisation procedures there are 3 phases; Creation of a basic 

fingerprint database, a feature identification phase and a position estimation phase. 

8.2 Static Segmentation 

8.2.1 Fingerprint Creation Phase 

    Wireless sensor transmitters are strategically placed indoors around the sensing area. A 

receiver at each grid point receives the signal packets from transmitter nodes and sends them 

to the server PC to establish the fingerprint map during offline phase. The unknown object 

receiver also receives the broadcasted signal packets and measures the signal strength values 

of each received packet and sends them to the server PC during the online phase.   

     Segment determination takes place during an intermediate phase between offline and 

online phases since offline phase is used to collect fingerprint data and online phase is used to 

calculate the object locations. It is also possible to join the data collection and segment 

determination phases under offline phase. 

    RSS values received at grid points are also sent to the server PC and arranged in a database 

with respect to T transmitters as shown in Table 8.1. Assume that there are H number of T 

transmitters and N number of grid points.  
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Table 8.1: Basic Fingerprint database with rss values at every grid point  

8.2.2 Feature Identification Phase 

    In each segment, a unique feature is assigned based on RSSI values collected at grid points 

from transmitter nodes {T1,T2,T3,.........TH} . There are Am segments where m=1,2,3,4,....M, 

M is the total number of segments. Each segment has a feature FA. These can be tabulated in 

Table 8.2. 

Segment 

Number 

Grid locations 

(xi , yi) 

Corresponding 

segments 

Features 

1 (x1 , y1) ........... (xp , yp) A1 FA1 

2 (xp+1 , yp+1) ...... (xq , yq) A2 FA2 

3 (xq+1 , yq+1) ...... (xt , yt) A3 FA3 

... …. …. …. 

... …. …. …. 

M (xr+1 , yr+1) ...... (xN , yN) AM FAM 

 Table 8.2: Features and segments for grid locations.  

    p , q , t and r in Table 8.2 represent the number of grid points across each segment. A 

unique feature function is identified for each segment. Each feature function, FAm, is a set of 

categories for segment Am based on RSSI values received from transmitters Tj= 

{T1,T2,T3,T4,.......,TH}. It can be expressed as: 

 }..........,,{
321 Hm TTTTA SSSSF         (8.1) 

jTS  is the range of RSSI values for transmitter Tj.  

    Each range is defined by an interval of RSSI values around the mean of received RSSI 

values from each transmitter Tj across a particular segment. This can be shown as:  

upperTlower RSSImeanRSSIRSSI
J

   

Grid  

number  

Grid locations 

(xi , yi) 

RSS values 

1 x1 , y1 rss1
T1 , rss1

T2 , rss1
T3 , …………. , rss1

TH 

2 x2 , y2 rss2
T1 , rss2

T2 , rss2
T3 , …………. , rss2

TH 

3 x3 , y3 rss3
T1 , rss3

T2 , rss3
T3 , …………. , rss3

TH 

4 x4 , y4 rss4
T1 , rss4

T2 , rss4
T3 , …………. , rss4

TH 

.. …. …. 

.. …. …. 

.. …. …. 

N xN , yN rssN
T1 , rssN

T2 , rssN
T3 , ………... , rssN

TH 
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    There are m different segments and m different feature functions one for each segment. 

Each feature function has feature ranges for all the transmitters. For example if R 

{r1,r2,r3,....rz} represents the grid points in a given segment Am, then there is a set of features 

FAm that distinguishes segment Am from other segments. Hence,
jTS  is considered as the range 

of RSSI values for transmitter Tj at grid point R in a segment Am. An example can be given as

dBmSdBm
jT 6070  . 

8.2.3 Position Estimation Phase 

    In this phase, the object location is estimated. Each segment has a feature function 

identified by RSSI ranges for all the transmitters. Segments are manually organized in 

rectangular shapes according to the topology of the sensing area. RSSI ranges for transmitters 

are determined as the identifying features of each segment. Mean, (
jmTAmean ), and STD ,      

(
jmTAstd ), of RSSI values for each transmitter across each segment is calculated.  

    A typical feature function 
mAF  of segment Am is defined by the individual ranges of RSSI 

values for Tj transmitters ( ie. j=4). It is shown as;  
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    Object location vector, Oj ={RSSI’
T1, RSSI’

T2, ....., RSSI’
TH}, received from transmitters T= 

{T1,T2,T3,T4,.......,TH}, is recorded at object location. Elements of object location vector are 

ranged with feature functions of the segments.  

    If the elements of Oj are in the related ranges of the feature function of a specific segment, 

then that segment is identified as the object segment where the object is located.  

    Once the object segment is determined, object location vector and the fingerprint location 

vectors in the object segment are utilised to determine the object location by using k-NN and 

weighted k-NN algorithms. Software algorithm for the object localisation by using static 

segmentation is shown in Figure 8.1. 
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Begin  
Step(1) : Object receiver collects RSSI values ,(rssiT1,rssiT2, rssiT3....rssiTH), 

from transmitter nodes (T1,T2,T3…TH) . 

Step(2) : Find the correct segment by comparing collected  object RSSI 

values and segment unique feature functions.
}..........,,{

321 Hm TTTTA SSSSF   

Step(3) : Calculate Eucliden distances between the RSSI values at grid 

points and the object RSSI values in the selected segment . 

Step(4) : Sort the Euclidean distance values in ascending order. 

Step(5) : Select k smallest Euclidean distances and their  corresponding grid 

points. 

Step(6) : Calculate the estimated object point by using k-NN and weighted k-

NN algorithm.  

End 

 

Figure 8.1: Algorithm to estimate the object locations by using static segmentation 

8.3 Dynamic Segmentation 

    Fingerprint localisation approach utilises the total sensing area while static segmentation 

reduces the number of grid points during the object localisation and a lesser number of 

fingerprint location vectors are utilised across the relevant segment. Unique feature function 

is assigned to each segment representing the RSSI ranges for all the transmitters across that 

segment. 

    Dynamic segmentation also utilises segments across the sensing area. But segments are 

selected automatically. A sequential method is introduced to determine the segments. RSSI 

ranges of transmitters at a selected reference grid point are compared with RSSI values at 

other grid points. Initially, a fingerprint database is constructed by using fingerprint location 

vectors at grid points across the sensing area. Mean and STD of recorded RSSI values for 

each transmitter across the total sensing area are calculated by using fingerprint location 

vectors at grid points.  

    A reference grid point is selected manually as the starting point of sequential checking with 

other grid points. RSSI values received at this reference point from all the Tj transmitters are 

utilised to introduce a reference feature function. Feature ranges of reference feature function 

are defined by 
jjT TREF STDRSSI   and shown as; 

}..........,,{
321 Hj TTTTT rrrrR              (8.3) 

where  
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fingerprint location vector at each grid point can be identified by 

 J

TH

J

T

J

T

J

TJ RSSIRSSIRSSIRSSIF ,........,, 321             (8.5) 

where J represents the grid number.  

    Each fingerprint location vector, FJ , is compared with the elements of reference feature 

function ,RTj , and checked whether FJ ϵ RTj . 

    If the 75% elements of FJ are in RTj ranges then the grid point with particular fingerprint 

location vector is considered to be in the same segment with reference grid point.  

    Grid points with FJ vectors satisfying FJ ϵ RTj condition are selected and defined as the first 

segment S1 across the sensing area. An example selection is presented in Figure 8.2.  

 

Figure 8.2: 1st and 2nd segments across the sensing area. Grid 1 and grid 4 are the reference 

grids for 1st and 2nd segments respectively. 

    If n1 numbers of grid points are selected among N number of grid points, they are identified 

as first segment S1 and stored in a database S1. Hence (N-n1) numbers of grid points are 

subjected to selection of the next segment. 

    A random grid point adjacent to S1 segment is selected as a new reference grid point and a 

new reference feature function ,R’Tj , is generated as ;  
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}..........,,{ '''''

321 H
j TTTTT rrrrR                     (8.6) 

where  
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    Similarly, each element of reference feature function, R’
Tj , and Fj fingerprint location 

vector elements of (N-n1) grid points are compared with each other. Grid points with Fj 

vectors satisfying Fj ϵ R'
Tj condition are selected and identified as the second segment S2 

across the sensing area. If the number of grid points is n2 in segment S2 , the same procedure 

is repeated for {N-(n1+n2)} grid points to find the next segment. Segments which are 

generated with this sequential method across the total sensing area are presented 

schematically in Figure 8.3.  

 

Figure 8.3:  Example segments generated across the sensing area by using dynamic 

segmentation 

    Once Sm dynamic segments ,where m= 1,2,3…..M , are determined across the sensing area, 

overall MEAN and STD of RSSI values received from each transmitter are calculated across 

each segment.  

    A segment feature function is generated by using these overall MEAN and STD values for 

each segment. Ranges of segment feature function can be shown as;   

JmJmJJmJm TSTSTTSTS stdmeanRSSIstdmean         (8.8) 
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    Similarly object location vector is compared with segment feature functions and the object 

segment is determined by inclusion of object location vector elements in segment feature 

function ranges. Once object segment is determined, object location vector and the fingerprint 

location vectors in object segment are utilised to estimate the object location by using k-NN 

and weighted k-NN algorithms. An application program is developed to generate dynamic 

segmentation. Software algorithm for the object localisation by using dynamic segmentation 

is shown in Figure. 8.4 

Begin  

Step(1) : Select reference grid point in N grid points . 

Step(2) : Determine Mean and STD of RSSITj values for total sensing area. 

Step(3) : Generate feature function RTj for reference grid point . 

Step(4) : Check fingerprint vector FJ ϵ RTj. 

Step(5) : Determine first object segment S1. 

Step(6) : Repeat procedure for next segments. 

Step(7) : Determine object segment among the segments. 

Step(8) : Estimated object point in object segment by using k-NN and 

weighted k-NN algorithm.  

End 

Figure 8.4: Algorithm to estimate the object location by using dynamic segmentation   

8.4 Implementation  

    Applications of fingerprint localisations by using static and dynamic segmentation across 

the sensing area are described to determine the unknown object locations. Classical 

fingerprinting technique is also presented for comparison reasons. RSSI data transmission and 

collection are carried out by employing wireless transmitters and receivers. A server is used to 

collect the data and carry out the feature identification of segments. Object location detection 

is made across the object segment. A GUI is generated for all the operations.  

8.4.1 Experimental test bed 

    Sensing area with 20mx10m dimensions and 2m grid space is employed during 

measurements. The area is free of any obstacles and experiments are conducted with line of 

sight measurements. Jennic JN5139 wireless sensor nodes are utilised as transmitters and 

receivers. 4 transmitters, Tj, are stationed at the corners of the sensing area and fingerprint 

location vector at each grid point contains 4 RSSI values. Object location vectors are 

collected at several object points. Measurements of RSSI values at each grid point are carried 

out and a fingerprint database is prepared with all the grid points.  
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8.4.2 Classical fingerprint approach  

    Initially, fingerprint mapping approach is utilised and unknown object locations are 

determined. Object location vectors at several object points are compared with fingerprint 

location vectors by using Euclidean distances. Classical k-NN and k-NN weighted algorithms 

are deployed and object locations are calculated. They are later compared with segmentation 

results. Selected object localisation results are presented in Table 8.3.  

 

 

 

 

 

Table 8.3: Examples of estimated object coordinates by using k-NN algorithms across the 

total sensing area with dimensions 20mx10m with grid space of 2 m. 

8.4.3 Static segmentation  

    3 Segments are organised across the sensing area and identified as C1, C2, and C3 as shown 

in Figure 8.5. There are 66 Fingerprint Location vectors for 66 grid points.  

 

Figure 8.5: Sensing area, 20mx10m, with 3 segments C1,C2,C3.(grid space is 2 m)  

     Segments C1 and C3 have 24 grid points each and segment C2 has 18 grid points. Overall 

Mean and STD of RSSI values received from each transmitter are calculated for each 

segment. A segment feature function for each segment is determined by using equation (8.2). 

Experimental segment feature functions for 3 segments are given in Table 8.4.  

 

 

Object 

Coor. (x,y) 

 

2-NN 

estimate 

3-NN 

estimate 

4-NN 

estimate 

4-NN weighted 

estimate 

Ave. estimated  

obj coord. 

Error  

(m) 

 18 , 6 19 , 9 17 , 8 16 , 7 16.3 , 7.2 17.0 , 7.8 2.0 

9 , 6 8 , 7  9 , 7 11 , 7 10.3 , 7.3  9.5 , 7.1 1.3 

3 , 5  5 , 7  4 , 7 5 , 6 4.3 , 6.6 4.6 , 6.6 2.2 

2 , 5 3 ,7 3 , 6 2.5, 7  3.4 , 6.4  2.9 , 6.6 1.8 

17 , 5 19 , 6  18 , 7 15 , 15 18.7 , 7.4  17.6 , 6.6 1.7 

Average error  1.8 
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Table 8.4: Feature functions for segment C1 ,C2 ,C3 and 4 transmitters 

    Object segments are identified as explained in section 8.2 and estimated object coordinates 

with respect to actual object locations are calculated by using k-NN and weighted k-NN 

algorithms. A number of experiments are carried out. Selected object coordinates together 

with their estimated object locations are displayed in Table 8.5. 

 

 

 

 

Table 8.5: Estimated example object coordinates with static segmentation 

Graphical display of object coordinates (18,6) , (9,6) , (3,5) and their estimated values by 

using static segmentation is given in Figure 8.6. 

   

Figure 8.6: Graphical view of estimated object locations with static segmentation. Object is 

Red dot 

    An experimental result of static segmentation is presented in a test area of 20mx12m in 

Figure 8.7 as an example. Object coordinates are (8,8) and the average estimated object 

coordinates are calculated by AP as (7.4 , 9.1). The error distance is 1.2m. 

C1 feature function  C2 feature function C3 feature function 

 -84 ≤ RSSIA ≤ -74   -83 ≤ RSSIA ≤ -81   -73 ≤ RSSIA ≤ -56  

-75 ≤ RSSIB ≤ -65  -79 ≤ RSSIB ≤ -72 -74 ≤ RSSIB ≤ -72  

-74 ≤ RSSIC ≤ -67  -81 ≤ RSSIC ≤ -73 -76 ≤ RSSIC ≤ -70  

-78 ≤ RSSID ≤ -72 -72 ≤ RSSID ≤ -70 -73 ≤ RSSID ≤ -68 

Segments Object 

Coord.  

(x , y) 

2-NN 

estimate 

3-NN 

estimate 

4-NN 

estimate 

4-NN 

weighted 

estimate 

Average 

Estimate  

Obj coord. 

Error  

(m) 

C3 18 , 6 18 , 8 18 , 6 15 , 6 17.9 , 6.7 17.2 , 6.6 1 

C2  9 , 6  8.2 , 5.1 8.1 , 5.1 8.3 , 5.2  8.3 , 5  8.2 , 5.1 1.2 

C1  3 , 5  2.1 , 4.3 2.2 , 4.2  2.2 , 4.4  2.3 , 4.2  2.2 , 4.2 1.1 

C1  2 , 5 1.1 , 4 0.9 , 3.9 1.2 , 4.1  0.8 , 4.2 1 , 4 1.4 

C3  17 , 5 16.1 , 4.1 16.3 , 4 16.2 , 4.2 15.8 , 3.9 16.1 , 4 1.3 

Average error  1.2 
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Figure 8.7: Experimental results of static segmentation in a 20mx12m test area. Object 

location is (8,8)  

Flow chart of a software program, used in static segmentation, is presented in Figure 8.8.  

 

Figure 8.8: Flow chart of the software used for static segmentation 

8.4.3.1 Static segmentation with different topology  

    Static segmentation approach is repeated for different indoor topologies. Test areas in 

different shapes and sizes are employed and similar methodology is applied. Some of the 

example localisation results for different object points are displayed here. An object location 

estimation is carried out in an L shaped test area with a grid space of 1mx1m. Initial 
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fingerprint mapping is carried out across the grid points. 5 segments are organised and their 

feature functions are determined. Object coordinates, (2,5), are estimated by using 2-NN , 3-

NN and 4-NN algorithms. Average estimated object location is calculated as (2.0 , 4.51) with 

an error distance of 0.5m. The results are shown in Figure 8.9.  

 

Figure 8.9: L shape test area with a grid space of 1mx1m. Object is at (2,5) 

Feature functions of 5 segments which are employed during the experiments are given in 

Figure 8.10. 

 

Figure 8.10 Feature functions of 5 segments with 6 transmitters. 

    Another test area with a T shape topology is utilised during the experiments. 6 transmitters 

are used and 4 segments are organised across the area. After generating the fingerprint 

mapping, segment feature functions are determined. Object segment C2 for object location 

(5,3) is defined. Similar k-NN algorithms are applied and the example object location is 

estimated. Average estimated object location is calculated as (4.43, 3.61) with an error 

distance of 0.83m. See Figure 8.11. 
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Figure 8.11: T shape test area with a grid space of 1mx1m. Object is at (5,3) 

Feature functions for the T shape test area with 4 segments are presented in Figure 8.12 for 6 

transmitters. 

 

Figure 8.12: Feature functions of 4 segments with 6 transmitters. 

8.4.4 Dynamic segmentation  

    Dynamic segmentation is utilised by calculating the STD of RSSI values received from 

each transmitter across the sensing area. All RSSI values received at each grid point from one 

transmitter are used to calculate the STD value for that transmitter across the total sensing 

area. Hence there will be the same number of STD values as transmitters.  

    In an example case, grid point 1 in Figure 8.5 is selected as the reference grid point. STD 

value for each transmitter, Tj , across the sensing area is used together with RSSIREF value of 

each transmitter at reference point to generate reference feature function with feature ranges 

of TjREF STDRSSI
Tj
 . Fingerprint location vectors at other grid points are compared with 

reference feature function. Grid points, {1,2,3,7,8,9,13,14,15,19,20}, whose Fingerprint 

location vectors are included within the reference feature function are considered to be in 

segment 1 as shown in graphical example in Figure 8.2.  
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    In this example, Grid point 4 at segment 1 boundary, is selected as the new reference grid 

point. Similar procedures are followed as in segment 1 and new grid points which are within 

the new reference feature function are determined.  

    Collection of these new grid points, {4,5,6,10,11,12,16,17,18,23}, is identified as segment 

2. Feature functions for segments 1, 2 and 3 are determined and their corresponding RSSI 

ranges for each transmitter are presented as shown in Table 8.6. 

 

 

 

Table 8.6: Calculated feature functions for 3 dynamic segments F1,F2,F3 across the sensing area 

8.4.5 Environmental effects on dynamic segments   

    During calculations, the majority of the grid points are located in the correct segments. Due 

to the random nature of the recorded RSSI values, in rare cases, grid points from a remote part 

of the sensing area can be included in the current segment. This takes place due to the 

inclusion of remote grid points’ fingerprint vectors in the feature function of the current 

segment. For example, under normal conditions, grid points 33 and 34 are not included in 

segment 1 in Figure 8.2. In order to eliminate these cases, once the grid points in the current 

segment are determined, these grid points are checked and the remote grid points among them 

are discarded. If the remote grid point coordinates are adjacent to other grid points, they is 

included in the current segment. Otherwise they are excluded from the current segment.  

    For example, grid points (1,7,13,19,2,8,14,20,3,9,15,33,34) in figure 8.5 are initially 

selected in segment 1. Proximity of each grid point is checked along x and y directions with 

each other. Firstly, those points that are adjacent to each other along the x direction are found 

to be (1,7,13,19) , (2,8,14,20) and (3,9,15). Secondly, the same procedures are carried out 

along the y direction and grid points (2,1,3), (8,7,9) , (14,13,15) and (20,19) are found to be 

adjacent. On the other hand, grid points ,(33,34), are found to be isolated from the rest of the 

grid points.  

    Hence two groups of grid points are generated. These groups are 

(1,2,3,7,8,9,13,14,15,19,20) and (33,34). Finally the two groups are compared in size and the 

largest group is taken as segment 1. Grid points in the smaller group are sent back for the 

segment reselection process. Once the grid points of a segment are decided, the boundaries of 

Feature Segments Transmitter A Transmitter B Transmitter C Transmitter D 

F1 Segment 1 -50< RSSIA  <-46 -70<RSSIB <-62 -67<RSSIC <-62 -65<RSSID <-55 

F2 Segment 2 -61< RSSIA  <-46 -67<RSSIB <63 -70<RSSIC <-60 -60<RSSID <-45 

F3 Segment 3 -66< RSSIA  <-53 -66<RSSIB <-61 -76<RSSIC <-63 -47<RSSID <-43 
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the segment are drawn for the user’s attention. A Flow chart of the software used for dynamic 

segmentation is displayed in Figure 8.13.  

 

Figure 8.13: Flow chart of the software used for dynamic segmentation 

8.4.6 Object localisation in dynamic segments  

    Once the segment areas and their grid points across the sensing area are realised as shown 

in Figure 8.3, localisation of the objects is carried out. The mean and STD of RSSI values for 

each transmitter are calculated across each segment. A segment feature function for each 

segment is realised, similarly, by using equation (8.8). 

    Object location vector is compared with segment feature functions of the segments. In case 

of an inclusion of object location vector by a segment feature function, the object is 

considered to be in that segment. Object coordinates are estimated by applying k-NN 

algorithms with object location vector and fingerprint location vectors at grid points in related 

object segment. Selected examples of estimated object coordinates by using dynamic 

segmentation are presented together with actual object coordinates in Table 8.7. 

 

 

 

 

Table 8.7: Estimated object coordinates and error distances with dynamic segmentation and 

k-NN algorithms. (Test area is 20mx10m with grid space of 2m)  

segments Object 

Coor. (x , y) 

2-NN 

estimate 

3-NN 

estimate 

4-NN 

estimate 

4-NN 

weighted 

estimate 

Average 

Estimated 

obj coord. 

Error  

(m) 

1 3 , 5 2.0 , 4.3 1.9 , 4.4 1.9 , 4.4 2.5 , 4.5 2 , 4.4 1.1 

1 9 , 6 8.3 , 5.4 8.4 , 5.3 8.5 , 5.5 8.3 , 5.4 8.3 , 5.4 0.9 

2 4 , 8 5.0 , 8.4 4.9 , 8.3 4.9 , 8.3 4.9 , 8.4 4.9 , 8.4 1.0 

3 17 , 5 16.4, 4.4 16.3 , 4.5 16.5 , 4.6 16.3 , 4.3 16.4 , 4.4 0.8 

5     16 , 2 15.3 , 1.4 15.4 , 1.3 15.2 , 1.6 15.4 , 1.3 15.3 , 1.4 0.9 

6 18 , 6 17.3 , 5.5 17.4 , 5.4 17.4 ,5.4 17.5 , 5.3 17.4 , 5.4 0.8 

Average error  0.9 
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Graphical examples of object position detection by using dynamic segmentation are presented 

in Figure 8.14 and Figure 8.15. 

 

Figure 8.14: Object localisation by using dynamic segmentation. Object position is (4,8), 

estimated average object position is (4.9, 8.4). 

 

Figure 8.15: Object localisation by using dynamic segmentation. Object position is (14,5), 

estimated average object positon is (14.8 , 4.3).  

Feature functions of 6 dynamic segments corresponding to 4 transmitter ranges for Figure 

8.14 and 8.15 are given in Figure 8.16. 

 

Figure 8.16: Feature functions of six dynamic segments in object localisation 

    In dynamic segmentation, a reference grid point is selected and a feature range of  

TiREF STDRSSI
Ti
  for each transmitter is calculated. It is also possible to vary the width of these 

ranges by introducing a constant multiplier of “α” with 
iTSTD  where 1≤ α ≤ 2. This will in 

return change the number of dynamic segments. For example, segment number becomes 5 
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when α=1.2 as shown in Figure 8.17. Feature functions of 5 segments are given in Figure 

8.18. 

 

Figure 8.17: Object localisation by using dynamic segmentation, object position is (11,1), 

estimated object position is (11.3,0.2) . 

 

 

Figure 8.18: Segment feature functions for dynamic segmentation, object position is (11,1)  

Similarly, segment number becomes 4 when α=1.8 as shown in Figure 8.19. Feature functions 

of 4 segments are given in Figure 8.20. 

 

Figure 8.19: Object localisation by using dynamic segmentation, object position is (4,8), 

estimated object position is (4.9,7.6) 

 

Figure 8.20: Segment feature functions for dynamic segmentation, object position is (4,8)  
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Example object localisation results by using dynamic segmentation in Figure 8.15, Figures 

8.17, Figure 10.19 are tabulated in Table 8.8.  

No of 

Segment 

Object 

coordinates 

2-NN 3-NN 4-NN Weighted 

4- NN 

Ave 

Coord. 

Error 

(m) 

 

6 14 , 5 14.7 , 4.3 15 , 4.2 14.9 , 4.3 14.9 , 4.4 14.8 , 4.3 1 

5 11 , 1 11.4 , 0.3 10.6 , 0.3 11.7 , 0.2 11.6 , 0.3 11.3 , 0.2 0.9 

4 4 , 8 5 , 7.8 4.9 , 7.7 5.1 , 7.3 4.8 , 7.8 4.9 , 7.6 1.0 

Average error = 

 

0.95 

 Table 8.8: Dynamic segmntation results with different number of segments 

8.5 System Evaluation 

       The idea of segmentation is introduced to search for the object location in a reduced 

computation time and to increase the accuracy of the position estimation. Initially, any indoor 

tracking area can be divided into segments according to its topology and the object search 

algorithm can be applied in one segment once the segment is selected. The selection process 

is carried out by considering the grid points across the test area and the RSSI values recorded 

at these grid points.  

    Fingerprint localisation systems in literature have localisation accuracies of around the grid 

size of their fingerprint maps. The static segmentation approach, introduced here, achieves an 

overall positioning accuracy of 1.2 metres. Dynamic segmentation gives better accuracy 

results of 0.9 metres while the classical fingerprint approach has a positioning accuracy of 1.8 

metres. 

    In this chapter, a manual method, called static segmentation, is introduced where RSSI 

values at each grid point are averaged out to generate mean and STD values for each 

transmitter in each segment. A range of average mean ± STD values is calculated for each 

transmitter. 4 ranges for 4 transmitters are identified as the feature function for each segment 

in the localisation process. 

    Object location vector is searched within the ranges of feature functions of all the 

segments. Once a match is obtained, k-NN algorithm is applied with the object location 

vector and fingerprint location vectors of object segment to determine the object location. 

    Automatic determination of segments is identified as dynamic segmentation. A grid point 

preferably at the corner of the test area is considered as a reference point to start the 

segmentation. Mean and STD of RSSI values for each transmitter are calculated across the 

total test area. Mean of recorded RSSI values for each transmitter at the reference point is also 

calculated and  a range of mean ± STD is determined for each transmitter .   
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    A search is made with the RSSI values of all the transmitters at other grid points with these 

ranges. If RSSI values of transmitters at any grid point is within the ranges of the reference 

grid point then the corresponding grid point is considered in the same segment as the 

reference grid point.  

    Once the boundaries of segments are determined, local mean± STD ranges are utilised for 

all the segments and object location vector is compared with them. Object segment is found 

when there is a match between the local segment mean± STD range and the object location 

vector for each transmitter. k-NN algorithms are employed to localise the object position in 

the object segment.  

    Manual segment selection has the freedom of defining any section of the test area 

according to the structure of the indoor area. Accuracies obtained with the proposed system 

justify the manual selection as a valid segment selection. Dynamic segmentation, on the other 

hand, does not need any intervention and automatically decides on the segments. It gives good 

localisation accuracies.  

8.6 Conclusion 

    Localisation techniques with static and dynamic segmentation are proposed in this chapter. 

Theoretical analysis of the segmentations are given in sections 8.2 and 8.3. The results show 

encouraging accuracy levels compared to other localisation accuracies. Localisation 

accuracies are evaluated based on two factors. Firstly, recordings of the RSSI values are 

carried out very carefully during the off-line phase of the experiments. They are recorded 

many times and averaged out to reduce the random behaviours among them. Outliers are also 

discarded from the mainstream recordings. Secondly, realisation of segments is carried out by 

using mean and STD of RSSI values corresponding to each transmitter.  

    Feature functions of the segments are developed with RSSI ranges for each transmitter. 

They are compared with object location vectors to pinpoint the object segment. Once the 

object segment is deployed, k-NN algorithms are employed to find the unknown object 

location in that segment. 

    The proposed segmentation approaches offer good localisation accuracies. Segmentation 

methods reduce the computation size and time to locate the objects. Differently shaped and 

sized segments can be introduced with respect to topology of indoor locations and the object 

locations can be estimated. The study in this chapter is published as a conference paper [50]. 
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9.1 Conclusions  

The purpose of this study is to investigate various localisation techniques and to determine the 

techniques which generate the best positioning accuracies. Different techniques are utilised 

throughout the study and they are summarised as follows. 

 Fingerprint based localisation,  

 Centroid and weighted centroid,  

 Adaptive centroid localisation,  

 Triangular localisation,  

 Neighbourhood referencing,  

 Virtual fingerprint based localisation,  

 Static and dynamic segmentation,  

    Additionally, LQI and RSSI characteristics are studied. Wireless sensor node radiation 

beam patterns are recorded and analysed. Relationships between radiation distances and LQI / 

RSSI values are investigated. Recorded LQI and RSSI values are calibrated with respect to 

distances.  

    Each localisation technique has its own advantages and disadvantages. Experimental results 

reveal that there are a few localisation techniques which give good positioning accuracies. 

Positioning accuracies achieved in this study are summarised in Table 9.1 in the presentation 

order of techniques utilised in this thesis.   

    As observed in Table 9.1, the best localisation accuracies are achieved with reference 

neighbourhood weighted localisation technique with error distances of 0.40 m. Error distances 

between the estimated object and the object positions are 0.77m with adaptive centroid using 

a gird space of 1m. Virtual fingerprint technique with exponential taper function gives 1.2m 
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accuracy for a grid space of 4m. Other localisation techniques introduce error distances 

between 0.8m and 2.4 m with respect to their grid spacing.   

 

Localisation techniques 

Accuracies  
(average error 

distance)  

Fingerprint 4-NN                                                   (grid space is 1m)       0.82m 

Fingerprint weighted 4-NN                                    (grid space is 1m)       0.81m 

Weighted centroid                                                  (grid space is 1m)  0.91m 

First level adaptive centroid                                  (grid space is 1m)            0.90m 

Second level adaptive centroid                               (grid space is 1m)              0.77m 

Triangular localisation                                          (grid space is 1m)                    1.10m 

Reference LandMarc (star)                                    (grid space is 2m)                            1.25m 

Reference Improved LandMarc                              (grid space is 2m)                           0.79m 

Reference Neighbourhood weighted                      (grid space is 2m)                          0.40m 

Virtual fingerprint (linear taper)                           (grid space is 4m)                            2.40m 

Virtual fingerprint (exp-lin taper)                         (grid space is 4m)                           1.70m 

Virtual fingerprint (exp-exp taper)                        (grid space is 4m)                           1.20m 

Static segmentation                                                (grid space is 2m) 1.20m 

Dynamic segmentation                                           (grid space is 2m) 0.90m 

Table 9.1: localisation techniques versus achieved accuracies 

    Grid spacing is an important factor during localisation procedures. Larger grid spaces 

represent sparse data recording at these grids and generate larger positioning errors. 

Localisation data must be recorded densely or denser data recording must be simulated across 

the test areas. Overall localisation accuracies and calculated error distances are approximately 

close to grid spacing. Experiments and position calculations, in this study, generally verify 

this hypothesis. This is in close agreement with similar localisation techniques in literature. 

    Another important factor which affects the accuracy of position detection is the 

environmental conditions along the RF propagation path. Any obstacles and walls indoors 

attenuate and reflect the radio signals and generate false readings or recordings. Hence data 

recording must be carried out under careful conditions and extra care must be taken during 

experiments. 

     Classical fingerprint based systems collect RSS values in LQI or RSSI forms in a server 

computer and organise them as databases with respect to signal positions or detection orders. 

Unknown object location fingerprints are compared with the location fingerprints in the 

database by using Euclidean distance models. Number of nearest fingerprints is selected by 

using k-nearest neighbourhood algorithm. The average values of their position coordinates are 

chosen as the estimated object location. 

    An improvisation to basic k-NN technique is introduced by using weight functions in the 

calculations. These functions are utilised with the coordinates of the nearest fingerprint points 
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with respect to signal distances. Shorter signal distances have more effects than the longer 

signal distances in the calculations. Weight functions increase the effects of longer distances 

next to shorter signal distances. Weight functions are inversely proportional to the distances 

between transmitters and receivers. 

    The basic fingerprint database contains the location fingerprint at every grid point across 

the tracking area. In general, the distribution of grids hence the measurements of RSS values 

are very coarse and this affects the localisation accuracy. The basic physical fingerprint 

database is organised as a virtual fingerprint database by introducing virtual grid points 

between physical grid points and virtual measurement values at these points. Every grid cell 

in the basic fingerprint is divided into a number of virtual sub cells. Consequently, the number 

of fingerprint readings is virtually increased across the test area. Linear and exponential 

interpolation algorithms are utilised across the distribution of signal strengths between 

adjacent physical grid points.  

    Similar k-NN and weighting k-NN techniques are applied to localise the unknown object 

positions. Localisation accuracies with an exponential interpolation algorithm is better than 

the standard fingerprint results.  

    In basic centroid localisation, the object location is determined as the average of the 

transmitter coordinates. This is a coarse position detection and it is improved by using weight 

functions between each transmitter and receiver pair. Hence weighted centroid localisation 

technique produces localisation accuracy better than centroid localisation. 

    An adaptive centroid localisation approach is utilised by using environmentally adapted 

RSSI values. Mean and standard deviation of RSSI values are used to develop a range of 

RSSI values to reduce the randomness among them. Another improvement is introduced by 

choosing a transmitter location where the minimum variations of RSSI values are received as 

the origin of the relative coordinate system. The distance values between the object receiver 

and transmitters are employed and the unknown object position is determined in a relative 

coordinate system. Calculations are transferred to a real coordinate system later and the object 

location is determined with a positioning accuracy of around 0.77m.  

    Segmentation is a localisation technique which divides the test area into areas of RSSI 

ranges. The test area is segmented into a number of sub areas and the range of RSSI values for 

transmitters in each sub area is defined. In the fingerprint localisation technique, a search 

mechanism is used to search an object fingerprint among the grid fingerprints. This search is 

done across the total grid space and in return takes a longer time.  
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    In order to reduce this search time and effort, object RSSI recordings are checked with 

feature function of each sub area. A match between the object RSSI recordings and a segment 

feature function identifies the object segment. Finally, once the object segment is known, 

localisation procedures are only carried out in this sub area. Achieved positioning accuracy 

levels with static segmentation are around 1.2m and with dynamic segmentation are around 

0.9m.  

    Neighbourhood weighted localisation technique is another technique which gives high 

accuracy levels. RSSI values and the physical distances are employed to determine the 

weights between the object and transmitters. 3 nearest nodes are selected with 3-NN 

algorithm and 3 closest nodes of each nearest node are deployed to calculate the object 

locations. Achieved accuracy levels are around 0.4m.  

9.2 General discussion  

    A quick search of the literature reveals that there are many wireless localisation techniques 

developed for indoor areas. These techniques use different types of wireless sensor nodes with 

different properties and characteristics. Wireless sensor nodes with only basic transmitter and 

receiver properties generate positioning accuracies of around the utilised grid space. 

Similarly, basic Jennic JN5139 and JN5121 WSN devices are employed in this research and 

positioning accuracies of around 0.4m to 2.4m are obtained relative to grid spacing of 2m and 

4m.  

    In literature, in order to improve these accuracy levels to below 0.1m, a second parallel 

system is often introduced with the wireless sensor nodes. For example a well known system, 

Cricket, uses an ultrasonic system next to an RF system. RF signals are used between 

transmitters and receivers for synchronisation of time measurements. Ultrasonic signals are 

transmitted and received to calculate the distances. Hence the distances can be accurately 

determined between the transmitters and receivers. The accuracy levels with these systems are 

around 0.1 m. If one requires further accuracy, optical and interferometric sub-systems are 

introduced with RF systems. Accuracy levels are around 2cm to 3cm with these systems. 

    An important factor in localisation techniques is the cost factor. Higher positioning 

accuracies require expensive systems and this increases the cost. Hence a correlation must be 

made and an optimum point must be found between the cost and operational requirements.  

    Some wireless sensor nodes are purpose built to contain two different signals, onboard 

memories, processor units and 2 way communication properties with different power levels. 
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These nodes are more effective at recording and processing the RF signals. They have many 

operational properties to allow signal and data trafficking between them.  

    Jennic JN5139 wireless sensor nodes are utilised in this study. These devices have simple 

communication and data transfer facilities between transmitters and receivers. They have no 

advanced signal control features. Improved models such as Jennic JN5168 have onboard 

advanced features such as time of flight engine etc. for data processing and localisation. 

    Fingerprint based localisation systems rely on how carefully the fingerprint database is 

prepared and how accurately the unknown location fingerprints are taken. In both cases, a 

number of RSS readings must be taken and their random behaviour must be reduced by using 

filtering and averaging techniques or algorithms such as an adaptive centroid algorithm.   

    An adaptive centroid localisation approach introduces a selection of RSSI values. RSSI 

values which are within the mean ±STD interval are considered for positioning. A constant 

environmental attenuation factor is introduced related to environmental conditions on the 

selected RSSI values. New environmentally adapted RSSI values are generated by using this 

constant factor. This factor can be changed according to different environments.   

    Virtual localisation is an important approach to determine the RF signal amplitudes 

between the fingerprint nodes. Researchers usually measure the signal strengths at grid nodes 

but they have no information between these nodes. If the grid points are far apart, this affects 

destructively object localisation accuracies. One way to counter this is to introduce a large 

number of grid points and relevant RSSI measurements, but all these costs can be reduced by 

introducing virtual grid points and their RSS values with respect to special taper functions. 

Linear and exponential taper functions are employed and virtual RSSI distributions are 

developed across the test area.  

    The localisation process reveals a positioning error of 1.2m by using an exponential-

exponential taper function with 416 virtual grid points while basic fingerprint gives an error 

of 3.1m with 24 physical grid points. A test area of 20mx12m with a grid space of 4m is used 

during the experiments. Hence the error levels of virtual fingerprint localisation are better 

than the basic fingerprint localisation results. 

    A neighbourhood weighted algorithm approach is another technique with low error 

margins. This algorithm is used with the well-known LandMarc localisation technique. 

Transmitter reference nodes are placed in star formation across the test area. Weighted 3-NN 

algorithm is utilised between the reference nodes. Weights are introduced between reference 

nodes by using both Euclidean distances and physical distances. Distances between the object 
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and the reference nodes are calculated with these weights. Triangulation techniques are 

employed to determine the object’s coordinates.  

    Static and dynamic segmentation approaches are utilised to determine the object locations. 

An initial object search is carried out among the static or dynamic segments across the test 

area. Once the object segment is defined, object localisation is concentrated only in that 

segment. Localisation algorithms are applied with the fingerprint data across the object 

segment. Positioning accuracies are around 1.2m for static and 0.9m for dynamic 

segmentation with a grid space of 2m.  

 9.3 Outcomes 

    Many localisation approaches are developed in literature. Minimum accuracy levels 

achieved by using basic wireless sensor nodes are around 1 to 4 metres depending on the grid 

spacing and indoor topology. The main purpose of this study is to develop novel localisation 

systems with positioning accuracy levels around 1 metre or less by using basic Jennic wireless 

sensor nodes in rectangular indoor areas. 

    This study has introduced many new localisation approaches to enhance the localisation 

accuracies based on received signal strengths in LQI and RSSI form. Triangulations, 

trilateration, segmentation and virtual techniques are adapted to develope accurate object 

localisation. Many new developments are included such as determination of weight functions 

using Euclidean and physical distances, virtual fingerprinting using linear and exponential 

taper functions, neighbourhood weighting with reference nodes, environmental adaptivity and 

dynamic segmentation.  

    The objectives of this study are presented in the first chapter and they are successfully 

achieved throughout the work. Achievement of each objective is listed as follows. 

9.3.1 Outcome 1: Research Literature 

    An extensive literature review is carried out in Chapter 1. More than 400 related 

publications are studied and the subject of object localisation is thoroughly investigated. 

Existing published research reveals that the localisation accuracies are around 1 to 4 metres 

depending on the grid spacing with simple wireless sensor nodes indoors. Very few 

publications dealt with Jennic devices and ZigBee standards. In this study, the main aim was 

to set up real life localisation systems with Jennic devices indoors and calculate the object 

positions as accurately as possible. Several localisation systems are introduced and tested. 

Their accuracy levels are compared with the accuracy levels in literature. 
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9.3.2 Outcome 2: Localisation systems 

    Design considerations of localisation systems are given in Chapter 2. Localisations 

techniques are investigated such as triangulation, trilateration, TOA, TDOA, AOA. Range 

free and range based localisation systems are studied. Fingerprint and LandMarc systems are 

summarised. RSS values are utilised in the majority of all localisation systems. They have 

Omni-directional properties and they can be detected conveniently from all directions. 

    RSS based localisation approaches are preferred in scientific community. Hence, RSS 

based localisation systems are implemented in this study. RSS values are received in LQI 

format from experimental Jennic devices and converted into RSSI format by software in the 

server. Different algorithms are developed to determine the object locations accurately across 

the indoor areas. 

9.3.3 Outcome 3: LQI characteristics and Fingerprint localisation 

    Wireless sensor nodes transmit and receive radio signals in free space. Their antennas are 

omni-directional and RF signals propagate in all directions from transmitter antennas. 

Transmitter radiation beam patterns of experimental Jennic devices are plotted in Chapter 3. 

It is observed that they have generally spherical propagation patterns in all directions. Hence, 

uniform propagation of RF signals in all directions is assumed in the experiments for Jennic 

wireless sensor nodes.  

    A fingerprint based localisation approach is proposed. A fingerprint map is constructed 

across the test area. The system implemented gives a positioning accuracy of 0.82m by using 

k-NN algorithms. During the offline phase, extreme care is taken while recording the RSS 

data to avoid random amplitude variations. Experiments are always carried out in test areas 

where the majority of the obstacles are eliminated. Received LQI and RSSI values are filtered 

out before object position detection.  

9.3.4 Outcome 4: Optimum weight functions 

    Localisation systems use weight functions to improve the localisation accuracies. Higher 

weights have more contribution to localisation accuracies. Different empirical weight 

functions are researched in indoor areas in Chapter 3 and localisation experiments are carried 

out with these functions. Some of the weight functions are designed with Euclidean distances; 

other weight functions are designed with real distances between transmitters and receivers. 

    In this study, experiments show that weights which are designed with the cube of (1/de) 

where de is the Euclidean distance between transmitters and receivers produce better 

positioning accuracies. Similarly, weight functions which use (1/d) where d is the actual 
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distance between transmitters and receivers also generate better localisation accuracies with 

centroid localisation techniques.  

9.3.5 Outcome 5: Weighted centroid localisation 

    A weighted centroid algorithm is utilised to determine the object locations in Chapter 4. 

Weights are calculated with respect to object distances from the transmitters. Object 

coordinates are determined by deploying these weights and the transmitter coordinates in the 

test area. Positioning accuracy levels of around 0.91m are achieved. 

9.3.6 Outcome 6: Adaptive centroid localisation 

    A new approach is proposed by using centroid localisation adaptively in Chapter 4. RSSI 

values are affected by environmental conditions. These conditional effects are included 

adaptively with RSSI values. Mean and STD of RSSI values are used and ranges of RSSI 

values are determined. Localisation is carried out in 2 phases.  

    In first phase, a range of RSSI values in mean ± STD range is selected. An environmental 

threshold factor is identified and multiplied with the selected RSSI values. Object locations 

are estimated in phase 1 and average positioning accuracies of 0.9m are obtained.  

    A second phase is introduced after phase 1. A second similar selection process is 

introduced with RSSI values within the above range of mean ± STD. A new environmental 

threshold constant is identified and estimations of object locations are carried out. Average 

localisation accuracies of 0.77m are obtained.  

9.3.7 Outcome 7: Triangular localisation 

    A new localisation approach is proposed by using triangular segmentation across the test 

area in Chapter 5. Localisation has two stages. In the first stage, the test area is divided into 

an optimum number of triangles. LQI measurements are carried out at object locations. These 

measurements are converted into measurement distances by using a bi-sectioning algorithm 

with curve fitting procedures. Measurement distances are utilised with trigonometric methods 

and object locations are calculated. In the second stage, object location calculations are 

refined by introducing the weighted centroid localisation technique within the triangular sub-

areas across the test area. Second level object localisation generates an average localisation 

accuracy of 1.1m. 

9.3.8 Outcome 8: Reference node localisation 

    A novel localisation approach is proposed in Chapter 6 by using transmitter reference 

nodes in star formation across the sensing area. This is similar to the LandMarc localisation 

system with different reference node topologies. The system uses less reference nodes. 
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Initially, LandMarc localisation system is utilised and an average object localisation accuracy 

of 1.2m is obtained. An improved LandMarc localisation system is introduced by selecting 3 

nearest reference nodes to the object and 3 closest reference nodes to each nearest node. 

Localisation procedures between them reveal an average localisation accuracy of 0.79m. A 

hybrid weighted localisation approach employs a neighbourhood weighted 3-NN algorithm to 

determine the object locations. The proposed approach achieves an average positioning 

accuracy of 0.40m. 

9.3.9 Outcome 9: Virtual localisation 

    A virtual localisation approach is proposed with fingerprint mapping in Chapter 7. 

Preparation of a large fingerprint database is time and effort consuming. On the other hand, 

large numbers of grid points are needed for better object accuracies. Hence, virtual grid points 

between physical grid points are organised. RSSI values are determined at these virtual grid 

points with respect to specific RSSI distribution functions. These distribution functions are 

linear and exponential functions. They are used to distribute RSSI values between grid points 

at virtual grid points. Application of fingerprint localisation techniques with virtual fingerprint 

databases gives better accuracies compared to basic fingerprint localisation. Minimum 

average positioning accuracy obtained is 1.2m in a rectangular indoor area of 4m grid space. 

9.3.10 Outcome 10: Static segmentation 

    A new segmentation approach is proposed for indoor localisation in Chapter 8. Initially, 

the sensing area is divided manually into sub areas called segments. Each segment is 

identified by a feature function. Each feature function is composed of RSSI ranges of 

transmitters across the segment area. RSSI values recorded from transmitters with the object 

receiver are compared with these feature functions to see whether these values are included by 

any feature function or not. Once the object RSSI values are included in a feature function; 

this feature function and its segment is identified as the object segment. Localisation 

procedures are carried out only in that object segment. The average localisation accuracy 

achieved with static segmentation is 1.2m.  

9.3.11 Outcome 11: Dynamic segmentation 

    A novel method of dynamic segmentation approach is proposed in Chapter 8 where the 

segments are generated automatically across the test area. Once the fingerprint map is 

generated across the grid points, one grid point is selected as a reference grid point by its 

mean and STD values of RSSI values from transmitters.  
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     A feature function is generated from these mean and STD values of the reference point. 

The search is carried out with RSSI values of other grid points whether they are included in 

the feature function of the reference point or not. In case of inclusions, those grid points and 

the reference point are considered as the first segment. Another grid point is selected as the 

next reference grid point adjacent to the first segment and the procedures are repeated.  

    Similarly, object RSSI values are compared with the feature functions of segments and the 

object segment is determined. Localisation procedures are carried out in the object segment to 

find the object location. The average 1ocalisation accuracy achieved with dynamic 

segmentation is 0.9m  

9.4 Potential improvements of the research 

    In this study, several localisation approaches are implemented to determine the location of 

unknown objects with high accuracy indoors. Experimental areas contained a small number of 

obstacles. There are concrete walls at a distance surrounding the test area. RSS recordings in 

LQI format are carried out in large numbers at grid points and object locations. Experiments 

are repeated several times.  

    In view of the research work, various suggestions are brought forward and they are listed as 

follows: 

1) During measurements, Jennic JN5139 WSN transmitters and receivers are utilised 

as source or destination according to the nature of experiments. One improvement 

would be to use wireless access points during data transfer to the base computer. 

Currently wired connections are used and this introduces physical difficulties and 

limitations. The number of transmitters and receivers are limited during 

experiments due to availability. Their numbers can be increased and denser node 

distributions can be utilised. This, in return, can assist to increase positioning 

accuracies. It also gives the opportunity to test larger areas indoors.  

2) Jennic JN5139 devices are basic transmitters and receivers. They communicate 

with each other to transmit and receive LQI values. Hence there is a need to 

convert them to RSSI values for the application of some localisation algorithms. 

RSSI values define the RSS power in dBm and LQI values give an 8-bit 

representation of power. Hence, RSSI is preferred in accurate measurements. 

Other devices such as RF-Code communicate with each other and the server 

directly using RSSI values. These devices have power management and Wi-Fi 

capabilities. These advanced functions generate time savings and efficient 



CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

 

153 
 

position calculations. Therefore, use of RF-Code devices can be a great advantage 

during experiments instead of Jennic devices.  

3) Localisation procedures are carried out after LQI data is received and recorded in 

a database with present Jennic JN5139 devices. Next generation Jennic devices 

such as JN5168 have many improvements compared to JN5139. These devices 

have expansion boards, internet facility through a router, time of flight engine etc. 

Usage of these devices introduces better experimentation and intervention free 

data collection. As a result, localisation accuracies will be improved due to 

improved data collection.  

4) Localisation accuracies can be improved by deploying wireless sensor nodes with 

dual transmission media. An example system is called Cricket which uses both RF 

and ultrasonic signals. Application of these signals between transmitters and 

receivers helps to determine the distances between them by using time of flight 

procedures. The distance between transmitter and receiver can be calculated 

electronically. Trigonometric methods are employed to find the coordinates of the 

unknown receiver by using these distances. An improvement would be the 

inclusion of Cricket devices in the experiments. Object localisation accuracies will 

be around a few centimetres. 

5) Another improvement is to visualise the indoor objects in real time with PDAs 

and smartphones. Accurate positioning data can be interfaced to these devices 

through Wi-Fi and the indoor object position can be displayed with graphical 

visualisation techniques in real time.  

6) Best accuracy improvements can be obtained by using optical and interferometric 

techniques. These techniques are rather costly. Positioning accuracies achieved 

with these systems are less than 2cm. Inclusion of these techniques and related 

devices in the experiments would increase the positioning accuracies. 

7) Finally, object localisation is thoroughly investigated with Jennic JN5139 devices 

and a complete proposal can be suggested to locate objects in simple topology 

indoors.  

  LQI recordings, arriving from transmitters, are received by receivers. These 

recordings are stored in databases in a server computer.  

  Outliers are removed from recorded LQI values. 
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  LQI values are measured several times and recorded in a data base. 

Average of LQI values are taken to reduce the random variations among 

them. This generates a filtering and smoothing effects of LQI values.  

  LQI values are calibrated with respect to distances and environmental 

conditions across the test area. 

  LQI values are converted to RSSI values for adaptive localisation. 

  RSSI values can be adaptively arranged so that only those within the 

adaptive range can be employed for localisation.  

 LQI data recorded at object locations are also subjected to data correction 

and distances between object receiver and transmitters are determined as 

measurement distances. 

    Once LQI data is determined at grid points and at object locations, all localisation 

procedures in this study are recommended for position detection. They have good localisation 

accuracies with respect to grid spacing. They can be utilised according to required accuracies 

in indoor areas. 

    Several of these procedures attract attention due to high localisation accuracies achieved 

with respect to grid spacing during the study. These are:  

 Reference neighbourhood weighted, (0.4m) 

 Adaptive centroid (0.77m)  

 Dynamic segmentation (0.90m) 

    The user can choose any one of these according to his/her indoor requirements. It can be 

possible to achieve a position detection accuracy of around 0.4m with simple Jennic JN5139 

devices successfully. Localisation accuracy levels achieved with these devices and deployed 

techniques are quite encouraging considering similar advanced systems in literature.  
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