5,600 research outputs found

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    30th International Conference on Electrical Contacts, 7 – 11 Juni 2021, Online, Switzerland: Proceedings

    Get PDF

    Semiconductor devices in solid-state/hybrid circuit breakers: current status and future trends

    Get PDF
    Circuit breakers (CBs) are the main protection devices for both alternating current (AC) and direct current (DC) power systems, ranging from tens of watts up to megawatts. This paper reviews the current status for solid-state circuit breakers (SSCBs) as well as hybrid circuit breakers (HCBs) with semiconductor power devices. A few novel SSCB and HCB concepts are described in this paper, including advantage and limitation discussions of wide-band-gap (WBG) devices in basic SSCB/HCB configuration by simulation and 360 V/150 A experimental verifications. Novel SSCB/HCB configurations combining ultra-fast switching and high efficiency at normal operation are proposed. Different types of power devices are installed in these circuit breakers to achieve adequate performance. Challenges and future trends of semiconductor power devices in SSCB/HCB with different voltage/power levels and special performance requirements are clarified

    Fault Protection In DC Distribution Systems Via Coordinated Control of Power Supply Converters and Bus Tie Switches

    Get PDF
    A new fault protection method responds to the current needs of emerging dc power distribution systems by coordinating electronic power converters and mechanical contactors to rapidly isolate short circuit faults while maintaining continuity of power to loads. This work is important because the increasing performance, higher efficiency, and decreasing cost of electronic power converters have spurred a rediscovery and proliferation of dc power distribution systems. Although dc distribution offers advantages such as higher transmission efficiency, higher power density, higher reliability, and ease of interfacing asynchronous sources, enthusiasm for adopting dc technologies suffers from widespread concern over the means to protect dc distribution systems against short-circuit faults. The developed fault protection method rapidly limits the fault current, de-energizes the main distribution bus, reconfigures the bus via mechanical contactors, and re-energizes the system. The entire process can be accomplished fast enough to comply with the requirements of CBEMA and IEEE standards on power quality. A fast and reliable fault detection method has been developed in order to coordinates power converters and contactors. With this method the source power converters independently enter into current-limiting mode as soon as they recognize a fault condition. The bus segmentizing contactors autonomously decide whether to open or not based on their local interpretation of time-to-trip curves as functions of apparent equivalent circuit resistance. This method allows converter and contactors to coordinate to provide fault protection for dc distribution systems independently on communication failures. Simulation and experimental results show that fault current can be limited within few milliseconds, faults can be isolated within 20 ms and that the system can be re-energized within 100 ms. Moreover, this work provides system design considerations and limitations on components and system parameters

    Development of DC Circuit Breakers for Medium-Voltage Electrified Transportation

    Get PDF
    Medium-voltage DC (MVDC) distribution is an enabling technology for the electrification of transportation such as aircraft and shipboard. One main obstacle for DC distribution is the lack of adequate circuit fault protection. The challenges are due to the rapidly rising fault currents and absence of zero crossings in DC systems compared to AC counterparts. Existing DC breaker solutions lack comprehensive consideration of energy efficiency, power density, fault interruption speed, reliability, and implementation cost. In this thesis, two circuit topologies of improved DC circuit breakers are developed: the resonant current source based hybrid DC breaker (RCS-HDCB) and the high temperature superconductor fault current limiter based solid state DC breaker (HTS-FCL-SSDCB). The RCS-HDCB utilizes a controllable resonant current source based upon wide bandgap (WBG) switches that enable low loss and fast fault interruption due to the fast switching speed. The voltage applied by the controllable resonant current source is much lower than the rated voltage of the DC breaker, allowing the utilization of significantly lower voltage rated WBG switches. The conduction path\u27s sole component is a fast-actuating ultra-low resistance vacuum interrupter for high efficiency during normal operation. As the second DC breaker concept, the HTS-FCL-SSDCB is subdivided into a fault current limiter (FCL) and solid state DC breaker (SSDCB). The FCL is based upon a high temperature superconductor cable which has natural fault current limiting capabilities while having negligible insertion losses for normal load currents. The SSDCB utilizes WBG switches to decrease conduction losses compared to Silicon-based breakers. The FCL reduces fault current such that the number of semiconductive switches in the SSDCB is minimized. Both breakers feature a metal-oxide varistor device in parallel to clamp overvoltages and dissipate energy after fault interruption. Modeling, simulation, and analysis in electrical and thermal domains are conducted to verify the functionality of the DC circuit breakers. The simulation results confirm the feasibility of these two DC breakers in their proposed applications of 2.4 kV electric aircraft and 20 kV shipboard MVDC distribution systems

    Protection of Future Electricity Systems

    Get PDF
    The electrical energy industry is undergoing dramatic changes: massive deployment of renewables, increasing share of DC networks at transmission and distribution levels, and at the same time, a continuing reduction in conventional synchronous generation, all contribute to a situation where a variety of technical and economic challenges emerge. As the society’s reliance on electrical power continues to increase as a result of international decarbonisation commitments, the need for secure and uninterrupted delivery of electrical energy to all customers has never been greater. Power system protection plays an important enabling role in future decarbonized energy systems. This book includes ten papers covering a wide range of topics related to protection system problems and solutions, such as adaptive protection, protection of HVDC and LVDC systems, unconventional or enhanced protection methods, protection of superconducting transmission cables, and high voltage lightning protection. This volume has been edited by Adam Dyƛko, Senior Lecturer at the University of Strathclyde, UK, and Dimitrios Tzelepis, Research Fellow at the University of Strathclyde

    Resistive Solid State Protective Device

    Get PDF
    Abstract: This thesis describes and explains different fault to characterize fault specifically for DC distribution systems and DC Microgrids fed by synchronous generators. This will result in a testbed for static and intermittent line-to-line faults, and in future work, various types of ground faults. Automaton allows for repeated testing at various voltage levels and precise control over intermittent fault generation. The fault generator is implemented with an IGBT H-bridge topology. Its physical implementation and benefits are described. Experimental results are shown for static line-to-line fault. This testbed will be used to help develop closed-form expressions. Once fault currents are characterized and closed-form expressions are made, adequate protection systems can be designed. finally, this paper will include the simulation and experimental results of line-to-line fault characterization with a DC smoothing capacitor, and intermittent faults of various times

    Direct current hybrid breakers : a design and its realization

    Get PDF
    The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called ‘hybrid breakers’, would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That countercurrent opposed the main current in the breaker by superposition in order to create a forced currentzero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase 10kV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault-recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the currentzero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300:s to separate the main breaker contacts. Furthermore, a maximum peak current injection of kA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of 5kA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically
    • 

    corecore