34 research outputs found

    Development of Efficient Soft Switching Synchronous Buck Converter Topologies for Low Voltage High Current Applications

    Get PDF
    Switched mode power supplies (SMPS) have emerged as the popular candidate in all the power processing applications. The demand is soaring to design high power density converters. For reducing the size, weight, it is imperative to channelize the power at high switching frequency. High switching frequency converters insist upon soft switching techniques to curtail the switching losses. Several soft switching topologies have been evolved in the recent years. Nowadays, the soft switching converters are vastly applied modules and the demand is increasing for high power density and high efficiency modules by minimizing the conduction and switching losses. These modules are generally observed in many applications such as laptops, desktop processors for the enhancement of the battery life time. Apart from these applications, solar and spacecraft applications demand is increasing progressively for stressless and more efficient modules for maximizing the storage capacity which inturn enhances the power density that improves the battery life to supply in the uneven times. Modern trends in the consumer electronic market focus increases in the demand of lower voltage supplies. Conduction losses are significantly reduced by synchronous rectifiers i.e., MOSFET’s are essentially used in many of the low voltage power supplies. Active and passive auxiliary circuits are used in tandem with synchronous rectifier to diminish the crucial loss i.e., switching loss and also it minimizes the voltage and current stresses of the semiconductor devices. The rapid progress in the technology and emerging portable applications poses serious challenges to power supply design engineers for an efficient power converter design at high power density. The primary aim is to design and develop high efficiency, high power density topologies like: buck, synchronous buck and multiphase buck converters with the integration of soft switching techniques to minimize conduction and switching losses sustaining the voltage and current stresses within the tolerable range. In this work, two ZVT-ZCT PWM synchronous buck converters are introduced, one with active auxiliary circuit and the other one with passive auxiliary circuit. The operating principle and comprehensive steady state analysis of the ZVT-ZCT PWM synchronous buck converters are presented. The converters are designed to have high efficiency and low voltage that is suitable for high power density application. The semiconductor devices used in the topologies in addition to the main switch operate with soft switching conditions. The viii Abstract topologies proposed render a large overall efficiency in contrast to the contemporary topologies. In addition the circuit’s size is less, reliable and have high performance-cost ratio. The new generation microprocessor demands the features such as low voltage, high current, high power density and high efficiency etc., in the design of power supplies. The supply voltage for the future generation microprocessors must be low, in order to decrease the power consumption. The voltage levels are dripping to a level even less than 0.7V, and the power consumption increases as there is an increase in the current requirement for the processor. In order to meet the demands of the new generation microprocessor power supply, a soft switching multiphase PWM synchronous buck converter is proposed. The losses in the proposed topology due to increasing components are pared down by the proposed soft switching technique. The proposed converters in this research work are precisely described by the mathematical modelling and their operational modes. The practicality of the proposed converters for different applications is authenticated by their simulation and experimental results

    A Novel AC-DC Interleaved ZCS-PWM Boost Converter

    Get PDF
    AC-DC converters with input power factor correction (PFC) that consist of two or more interleaved boost converter modules are popular in industry. PFC is a must in today’s AC-DC converters as their input current must meet harmonic standards set by regulatory agencies. With interleaving, the input current of each module can make to be discontinuous and the size of their input inductors since interleaving can reduce the high ripple in each module and produce a net input current with a ripple that is comparable to that achieved with a single boost converter module with a large input inductor. In high- frequency converters, so as to achieve low harmonic, fast dynamic response, low size, and high-power density the frequency should be increased. The drawback of increasing the switching frequency is increasing the switching losses. This is reason that why soft-switching methods should be used. The focus of the thesis is on zero current switching (ZCS) methods for IGBT converters. The auxiliary switch in the proposed converter is activated whenever a main converter switch is about to be turned off, gradually diverting current away from the switch so that it can turn off with ZCS and eliminate the switching losses. In addition, the auxiliary circuit is designed in a way that it can be activated only when the converter is operating with heavier loads and not used when the converter is operating with light load to maximize the overall efficiency. The operation of the novel converter will then be explained and the mathematical analysis in steady-state will be derived. Based on the results of the analysis, general design guidelines will be provided. Finally, the design procedure will be confirmed by experimental results obtained from the proof of concept prototype

    Performance Improvement of AC-DC Power Factor Correction Converters For Distributed Power System

    Get PDF
    In present situation, the increase in the utilization of computers, laptops,uninterruptable power supplies, telecom and bio-medical equipments has become uncontrollable as its growth is rising exponentially. Hence, increase in functionality of such equipments leads to the higher power consumption and low power density which provided a large market to distributed power systems (DPS). The development of these DPS posed challenges to power engineers for an efficient power delivery with stringent regulating standards; this is the motivation and driving force of this research work. The objective is to minimize the switching losses of front-end converters employed in DPS, with the primary aim of achieving nearly unity power factor operation of converters.Single-phase and three-phase rectifiers are increasingly used in the field of alternating current – direct current (AC-DC) power converters as front-end converters in DPS. For power factor correction (PFC) stage, conventional single-phase AC-DC PFC boost converter is the most suitable topology because of its inherent advantages. These PFC boost converters exhibit poor dynamic regulation of output voltage owing to low pass filter in the voltage feedback loop. Research effort has been made to mitigate this problem of AC-DC PFC boost converters. An extended pulse width modulation switching technique has been investigated and proposed especially for single-phase and three-phase AC-DC PFC boost converters to improve the dynamic response of output voltage during transient periods

    An enhanced model for small-signal analysis of the phase-shifted full-bridge converter

    Get PDF
    This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Development of Improved Performance Switchmode Converters for Critical Load Applications

    Get PDF
    Emerging portable applications and the rapid advancement of technology have posed rigorous challenges to power engineers for an efficient power delivery at high power density. The foremost objectives are to develop high efficiency, high power density topologies such as: buck, synchronous buck and multiphase buck converters, with the implementation of soft switching technology to reduce switching losses maintaining voltage and current stresses within the permissible range. Demand of low voltage power supply for telecom system leads to narrow duty cycle which compels to increase operating switching frequency. Design of conventional buck converter under narrow duty cycle is quite objectionable since it leads to poor utilization of components as well as it degrades the system efficiency. A high switching frequency operation reduces the switch conduction time that leads to large increase in switching losses and increases the control complexity. Therefore, duty cycle has to be extended and at the same time switching losses have to be minimized. Transformer based topology can be used to extend the duty cycle. But to reduce switching losses soft switching techniques should be implemented. An isolated buck converter with simple clamp capacitor scheme is proposed to reduce switching losses and to extend duty cycle by optimizing the turn ratio. Extended duty cycle impose limit on dead time. Dead time has to be controlled with respect to duty cycle to reduce body diode conduction loss and to avoid the shoot through conditions in our proposed topology. The proposed clamp capacitor scheme control the dead time as well as provide better efficiency with reduction in switching losses maintaining ripples within the allowable range

    A New ZCS-PWM Full-Bridge Boost Converter

    Get PDF
    The objective of this thesis is to propose, analyze, design, implement, and experimentally confirm the operation of a new Zero-Current-Switching PWM dc-dc full- bridge boost converter that does not have the drawbacks ofpreviously proposed circuits of the same type. In this thesis, the general operating principles of the converter are reviewed, and the converter’s operation is discussed in detail and analyzed mathematically. As a result of the mathematical analysis, key voltage and current equations that describes the operation of the auxiliary circuit and other converter devices have been derived. The steady state equations of each mode of operation are used as the basis of a MATLAB program that is used to generate steady-state characteristic curves that shows the effect that individual circuit parameters have on the operation of the auxiliary circuit and the boost converter. Observations as to their steady-state characteristics are made and the curves are used as part of a design procedure to select the components of the converter, especially those of the auxiliary circuit. An experimental full-bridge PWM dc-dc boost converter prototype is built based on the converter design and typical waveforms are presented. The efficiency of the proposed converter operating with the auxiliary circuit is compared to that of a standard PWM dc-dc full-bridge boost converter and the increased efficiency o f the proposed converter is confirme

    Development of efficient power supply For low voltage high current Applications

    Get PDF
    In order to meet demands for faster and more efficient data processing, modern microprocessors are being designed with lower voltage implementations. The continuous packing of more devices on a single processor chip is increasing its current demands calling for an aggressive power management. These demands, in turn require special power supplies to provide lower voltages with higher currents capabilities for microprocessors. This work presents a modified low voltage high current Voltage Regulator Module (VRM) technology for desktop computers, and portable applications. The developed advanced VRM has advantages over conventional ones in power efficiency and reliability. The SMPS outputs of desktop computers are mainly5,12. Considering the factor of distribution loss for today’s processors +12V input supply is used instead of +5V and then it is step down to 1.2V. To make this dc/dc conversion efficient at lower voltages, synchronous converter is an obvious choice because of lower conduction loss in the diode. Primarily the various losses occurring in Synchronous Buck Converter (SBC) is analyzed mathematically. The results conclude the dominance of the switching loss on the high side MOSFET. ZVT, the most efficient among the soft switching techniques is employed to the SBC. The suggested Zero Voltage Transition (ZVT) Single Phase SBC is simulated using PSIM for design values of 3.3V, 12A output and switching frequency 200 kHz. The proposed converter exhibits an efficient performance in comparison with the conventional converter. Additionally, the resonant auxiliary circuit in ZVT, which conducts for a short period of time, is also devoid of the switching loss. The simulation results are then verified experimentally by developing a prototype of the proposed converter for a switching frequency of 200 kHz

    Analysis and design of a dual series-resonant DC-DC converter

    Get PDF
    DC-DC conversion systems are vital components in DC distribution systems, renewable energy generation systems, telecommunication systems, and portable electronics devices. The extensive applications of DC-DC converter have resulted in continuous improvement in the topologies and control methods in these converters. The challenge is to build a converter that improves factors such as efficiency of conversion and power density with a simple topology, which incorporates simplified switching and control schemes and fewer numbers of active and passive components to reduce the manufacturing cost. This thesis addresses this challenge by proposing an alternative topology of a DC-DC converter based on dual series-resonant circuits. The proposed topology operates under zero voltage switching (ZVS) and zero current switching (ZCS) conditions to reduce the switching losses. It achieves two degrees of freedom (i.e., duty ratio and switching frequency) to control the output voltage of the converter, which results in both step-down and step-up voltage conversions. The number of active components is limited to two semiconductor switches and two rectifying diodes, which reduces the manufacturing cost of the converter. Detailed analytical analysis is carried out using the extended describing function methodology to characterize the steady state and small signal operation of the converter. Small-signal transfer functions are developed and used to propose a simple closed-loop control scheme to control the output voltage of the converter. An experimental 10 V, 40 W prototype of the proposed converter is built and tested to investigate its operation and confirm its features. The improvement in the efficiency of the converter and power transfer capability of the proposed dual series-resonant converter compared with the traditional single series-resonant circuit, which is used in the interleaved topologies are experimentally verified. In addition, soft switching operation of the converter is realized and a simple control scheme is developed to control the output voltage of the converter. A detailed and step-by-step design procedure is developed, which can be used to customize the design of the converter for different levels of power and voltage. It is shown that the proposed dual series-resonant DC-DC converter provides significant improvement regarding power density, efficiency of power conversion, simplicity of switching and control schemes, and reduced number of converter components resulting in a low cost and compact converter
    corecore