2,369 research outputs found

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    A Practical Approach for Coordination of Plugged- In Electric Vehicles To Improve Performance and Power Quality of Smart Grid

    Get PDF
    This PhD research is undertaken by supplications including 14 peer-reviewed published articles over seven years research at Curtin University. This study focuses on a real-time Plugged-in Electric Vehicle charging coordination with the inclusion of Electric Vehicle battery charger harmonics in Smart Grid and future Microgrids with incorporation of Renewable Energy Resources. This strategy addresses utilities concerns of grid power quality and performance with the application of SSCs dispatching, active power filters or wavelet energy

    Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft

    Online Coordinated Charging of Plug-In Electric Vehicles in Smart Grid to Minimize Cost of Generating Energy and Improve Voltage Profile

    Get PDF
    This Ph.D. research highlights the negative impacts of random vehicle charging on power grid and proposes four practical PEV coordinated charging strategies that reduce network and generation costs by integrating renewable energy resources and real-time pricing while considering utility constraints and consumer concerns

    Design methodology of smart photovoltaic plant

    Get PDF
    In this article, we present a new methodology to design an intelligent photovoltaic power plant connected to an electrical grid with storage to supply the laying hen rearing centers. This study requires a very competent design methodology in order to optimize the production and consumption of electrical energy. Our contribution consists in proposing a robust dimensioning synthesis elaborated according to a data flow chart. To achieve this objective, the photovoltaic system was first designed using a deterministic method, then the software "Homer" was used to check the feasibility of the design. Then, controllers (fuzzy logic) were used to optimize the energy produced and consumed. The power produced by the photovoltaic generator (GPV) is optimized by two fuzzy controllers: one to extract the maximum energy and another to control the batteries. The energy consumed by the load is optimized by a fuzzy controller that regulates the internal climate of the livestock buildings. The proposed control strategies are developed and implemented using MATLAB/Simulink

    Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids

    Get PDF
    Electric Vehicles (EV) usage is increasing over the last few years due to a rise in fossil fuel prices and the rate of increasing carbon dioxide (CO2) emissions. The EV charging stations are powered by the existing utility power grid systems, increasing the stress on the utility grid and the load demand at the distribution side. The DC grid-based EV charging is more efficient than the AC distribution because of its higher reliability, power conversion efficiency, simple interfacing with renewable energy sources (RESs), and integration of energy storage units (ESU). The RES-generated power storage in local ESU is an alternative solution for managing the utility grid demand. In addition, to maintain the EV charging demand at the microgrid levels, energy management and control strategies must carefully power the EV battery charging unit. Also, charging stations require dedicated converter topologies, control strategies and need to follow the levels and standards. Based on the EV, ESU, and RES accessibility, the different types of microgrids architecture and control strategies are used to ensure the optimum operation at the EV charging point. Based on the above said merits, this review paper presents the different RES-connected architecture and control strategies used in EV charging stations. This study highlights the importance of different charging station architectures with the current power converter topologies proposed in the literature. In addition, the comparison of the microgrid-based charging station architecture with its energy management, control strategies, and charging converter controls are also presented. The different levels and types of the charging station used for EV charging, in addition to controls and connectors used in the charging station, are discussed. The experiment-based energy management strategy is developed for controlling the power flow among the available sources and charging terminals for the effective utilization of generated renewable power. The main motive of the EMS and its control is to maximize usage of RES consumption. This review also provides the challenges and opportunities for EV charging, considering selecting charging stations in the conclusion.publishedVersio
    • …
    corecore