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ABSTRACT 

This PhD research is undertaken by supplication and includes 14 peer reviewed published 

articles over seven years of research at Curtin University as the body of this thesis. Further, 

additional publications by candidate relevant to the thesis have also been included and used in 

introduction, discussion and future recommendations sections. This thesis offers a thematic 

narrative for the publications included in this body of work. The subject of the publications 

covers Plug- in Electric vehicles (PEVs) and their contribution in Smart Grid and future 

Microgrids (MGs) with incorporation of Renewable Energy Resources (RERs) and Switched 

Shunt Capacitors (SSCs). I would like to emphasize that this PhD study has been undertaken 

over seven years of research work and investigations at Curtin University. The candidate’s 

publications represent her research outputs over these few years, acknowledging that, there has 

been significant development and changes in the field of Smart Grid and Microgrid and EVs 

over this time. The area of research remains dynamic reflecting innovations and changes to fill 

in the existing technological and system’s needs.  This piece of work tries to gather the previous 

research and present the existing gap to address number of priority issues and provide solutions 

and recommendations for further development. 

Smart Grid technology with the inclusion of EVs have increased significantly in the past 

decade.  The manufacturers continue to introduce new technologies with each new EV 

generation. These new generations of EVs represent a continued improvement to address 

limitations and market demands. As an example, Nissan Leaf introduced a new EV that can 

incorporate a modern lithium – acid battery as its source of power. Nissan Leaf EV battery 

chargers, Chevrolets, Mercedes Benz or Tesla are available in different type and level with 

different capacity, charging speed, harmonic contents and efficiency. Due to this large 

deployment of EVs, the electric utilities are becoming more concern about the impact of these 

new electric appliances on the performance, productivity, reliability and stability of the grid 
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especially with the integration of RERs. In response to the many negative impacts on power 

grids and control systems that are associated with uncontrolled EV charging, controlled 

centralized and decentralized methodologies for the basis of current innovations have been 

introduced.  

This PhD study focuses on a real- time EV charging coordination with the inclusion of EV 

charger harmonics and tries to address utilities’ concerns of grid power quality and 

performance with the application of SSCs dispatching. This body of work starts with proposing 

a real-time PEV coordination algorithm in published paper 1 and tries to enhance and modify 

the algorithm throughout this research to include the nonlinearities of charger harmonics as 

shown in publications of chapter 2 with the integration of RERs. In chapter 3, the incorporation 

of SSC dispatch in the real- time coordination approach has been shown. Chapter 4 presents 

further power quality improvement with the application of Active Power Filters (APFs) in the 

area of Smart Grids. In addition, a new method has been introduced in MicroGrids for power 

quality improvements.    
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 CHAPTER 1 INTRODUCTION 

Power system was originally an isolated and localised system that was first created by Thomas 

Edison in early 1882 and then was promoted all across the country.  At that time, there was a 

battle between two different types of systems: Direct Current (DC) and Alternating Current 

(AC). Thomas Edison was a proponent of DC systems and was competing with Nicolas Tesla 

who was promoting the AC system. In DC technology, the flow of electrons (current) is in one 

direction from generator to the load through a complete circuit. However, AC technology 

enables the flow of current to switch forth and back (The electricity grid, 2012; the war of the 

Currents, 2014).  The main and major advantages of AC system could be the possibility of 

transmitting power in high voltage (HV) and convert it to low voltage (LV) to distribute the 

power more efficiently at lower levels. This can be done through step down transformers. In 

addition, AC system can transfer power not only through 3 wires but also through 1 wire to 

reduce the total network losses. Therefore, Due to abovementioned main advantages, the so-

called DC system has been quickly replaced by AC system in early 1900 (The electricity grid, 

2012). 

The present electrical grid is an interconnected network to deliver electric power from the 

utilities/ producers to consumers. The main components of the conventional/current electric 

grid are: very high voltage (HV) AC plants generation stations, high voltage AC/ DC 

transmission lines (e.g., 400kV), medium voltage (MV) distribution systems (e.g., 20kV) and 

consumers. The generated power from generation side is carried and delivered through HV 

transmission lines and distribution network to the individual consumers of electric powers 

including industry, service sector and low voltage (LV) residential users. The control and 

monitoring of this traditional electric grid would be possible by mainly considering the 

1.1 Electric Power Grid 
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intelligence in the main locations and partly in substations. Remote loads in these conditions 

are nearly passive. This power grid might be more stable, operative, reliable (less power 

outage) and flexible with the use of two- way communication and information flows and 

enabling distributed intelligence systems in local electricity production (Colak et al, 2015, 

Liserre et al, 2010)  

In general, the challenges/ drawbacks of the traditional power grids are (Basu 2015): 

• For the so-called power grid, a centralised supervisory control is introduced to transfer 

and distribute the electricity and monitor the power system with almost no visibility on 

the substations. 

• In traditional power grid, supply always needs to follow the demand. If electricity 

demand increases, the supply needs to respond in a timely and efficient manner. With 

increase demand this may lead to the installation of more power generators/stations 

(infrastructure) and therefore increase the electricity costs.  

• Integration of smart appliances such as PEVs and RERs requires load balancing, 

overcoming the energy fluctuations and maintaining a stable power supply. 

Therefore, a modernized/smarter electricity grid is required for the future industry to address 

the issues and limitations caused by the advanced technology (Amin et al, 2005).   

The future electric grid is broadly known as Smart Grid which requires a complicated two-way 

communication backbone, to support bi-directional electric flows between smart apparatus, 

advanced telecommunications and computer technologies. This is to facilitate innovations in 

grid operation and control strategies by implementing demand side management.  The term 

Smart Grid reflects more than just the generation, transmission and consumer side of a power 

grid. Smart Grid is being pushed “to be modernized’ or “smarter” to deliver the required electric 

1.2 Smart Grid 
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power in a reliable and efficient manner to reduce the power/frequency outages and system 

losses as well as managing the power consumption and costs associated with the grid (Grid 

modernization, 2007). Smart Grid is also offering electrical energy storage for load balancing 

purposes as well as overcoming electric power variations created by renewable distributed 

generations (RDGs). Smart Grid is able to prevent extensive power network failures/outage 

and grid perturbations and allow the integration of Plugged-in Hybrid (PHEV) and Plugged- in 

Electric Vehicles (PEV). Smart Grid is environmental friendly and quite helpful in dealing with 

energy and reducing greenhouse gas emissions. It also reduces carbon emissions from the 

transportation and provides storage to dynamically provide a balance between the generation 

and load levels. This transformation of the electric power grid to a ‘smarter grid’ and therefore 

this modernization leads to great prospects and challenges to improve the present power 

system’s infrastructure to fulfil the delivery of electricity which requires strategic and 

controlled approaches and plans (Grid modernization, 2007). Overall, there are various 

challenges and great opportunities. Some of the Smart Grid challenges are listed below 

(Pierluigi 2014, Fang et al, 2012, Vardakas et al, 2017, Vrba et al, 2014, Bera et al, 2015): 

 Large-Scale Integration of Renewable Distributed Generations (RDGs). 

 Control and optimization of Microgrids, Minigrids and Smart Houses. 

 Dynamic Demand Response (DR) and Decentralized ICT-Based Control. 

 Distributed Energy Storage Systems and PEVs.  

 Advanced ICT Infrastructures and Solutions.  

 Multi-Agent Systems (MASs).  

 Cyber-attacks and Security of Data.  

There are also great opportunities with the new smarter power grid (Smart Grid Challenges and 

Opportunities, 2011, 20): 
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 “More efficient grid”. 

 “Enable electricity markets to flourish”.  

 “Higher penetration of intermittent power generation’s sources”. 

 A clean power. 

To summarize, not only utilities but also consumers and government are eagerly seeking for 

the great opportunities of new Smart Grid. Utilities are looking for more integration of load 

shedding tools such as smart appliances, PEVs/PHEVs, RERs, with new real- time and efficient 

management strategies. The new Smart Grid is expected to enable the required transformation 

and infrastructure. The consumers are also hoping to have less utility costs with the existing 

educational programs/strategies and two-way communication options in Smart Grid. The 

government tries to provide a secure network which can handle any possible issue (Smart Grid 

Challenges and Opportunities, 2014). 

Technologies within Smart Grids provide an extensive opportunity for the development of 

advanced applications for power use optimization.  Such technologies have the capacity to 

improve RDGs, energy storage and PEVs as well as Microgrids (MGs), smart buildings and 

homes with smart appliances and generation units such as rooftop PVs and rooftop wind 

turbines (Amin and Wollenberg, 2005, Mauri et al, 2009, Bruno et al, 2009). PEVs are 

becoming more popular due to their positive impact on greenhouse gas emissions and 

environment pollution. However, many electric utilities are concerned about the risks and 

impact of random (poorly predicted) PEV charging on the performance, stability, reliability, 

power quality and efficiency of the power grid (Su et al, 2012, Clement et al, 2010, A. Masoum 

et al, 2011, Deilami et al, 2010).  

1.3 Smart Grids Resources 
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Moreover, the amplitude and temporal variability of the operation of distribution networks and 

voltage profiles attributed to uncoordinated PEV charging is further complicated by the 

installation of RDGs such as distributed solar and wind generators. The main concerns are 

related to the reliability issues in modern power grid with the inclusion of renewable resources. 

As an example, the unpredictability of wind energy resources and the changeability of solar 

energy resources due to climate changes and sunlight availability have negative effect on grid 

reliability (Moslehi Khet et al, 2010).  The interaction between the different stochastic power 

profiles of both PEV charging and the utilisation of RDGs means that optimal power 

distribution solutions are required.   

The possible approaches to resolve this problem could be performing an improved/enhanced 

coordination of smart appliances, implementation of new PEV charging strategies, improving 

infrastructure and optimal sizing and control of RDGs. (Chen et al, 2017) have discussed that 

the coordinated PEV charging by itself could successfully minimize the operational risks and 

improve the efficiency of the grid. The automatic temporally coordinated PEV charging 

activities to optimize grid load profile control through, advanced customer demand 

management have also been widely reported (Rahimi et al, 2010 and Clement-Nyns et al, 

2010). In addition, many authors (Han et al, 2010,  Sortomme et al,  2011 and Pillai et al, 2011) 

have investigated the possibility of vehicle to grid (V2G) operation by offering ancillary 

services (frequency/voltage regulations) in order to improve the performance of Smart Grids.  

(Deilami et al, 2010) and (Masoum et al, 2011) presented an optimal PEV charging strategy in 

a multi-tariff environment that included low and medium voltage residential and distribution 

networks as well as the application of industrial and residential nonlinear loads. As PEV 

adoption and utilization are expected to grow within the next few years, it is necessary to 

continue to develop new online PEV coordination/optimization strategies.  Such strategies aim 

to improve the grid performance as well as the power quality of the network. This is to enhance 
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the grid reliability with the integration of RDGs while keeping the total harmonic distortions 

of voltage (THDv) of the overall system within the standard threshold of 5%.  However, in 

Smart Grids with large scale PEV deployment, the growing risk of the negative impact of PEV 

charging activities is more difficult to coordinate with an optimal online strategy. 

Uncoordinated PEV charging methods are not only costly to the power grid but also a risk “to 

the reliability and generation adequacy of the grid” (Zhaoyang 2014, p1). Also, the future 

infrastructure may not have the capacity for high penetration of PEVs if most of recharging 

happens during peak hours for example when PEV owners return home from work (Zhaoyang 

2014). 

To overcome this increased complexity, it is proposed that the application of Load Tap 

Changers (LTCs) and Switched Shunt Capacitors (SSCs) in the online PEV coordination be 

investigated. Further, it is important to consider injected current harmonics by EV chargers or 

industrial loads and their impact on power quality of Smart Grid. The harmonic distortion 

affected by these nonlinear loads may result in mal-operation and further reduction in power 

quality of the grid (Deilami 2018). Solutions to harmonic problems may be the installation of 

capacitor banks, passive filters, optimal scheduling of LTCs and SSCs and even active power 

filters (APFs). These solutions have already been discussed and introduced in many recent 

publications (Singh et al, 1999; Masoum et al, 2010; M.A.S. Masoum et al, 2015 and Sun et 

al, 2016) and the benchmark standard permissible current and voltage harmonic distortion 

levels in electric power systems has been defined by International standards (IEEE Std 519-

1992-1993). 

 PEV and EV Battery Chargers 

The popularity of PEVs may be due to their reduced fuel usage and greenhouse emissions 

(Yilmaz et al, 2013). Due to the advanced technology, the connection of PEVs to the grid may 

lead to more opportunities such as load balancing, reactive power compensation or storing 
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energy; however, their complications such as high cost involved, battery cycle life cannot be 

neglected. In general, PEV is a battery-operated vehicle compare to the conventional fuel- 

based cars.  Many manufacturers are now producing different types of electric or hybrid electric 

vehicles such as Nissan Leaf, BMW i3, Chevrolet Volts, Mitsubishi i-MiEV, Toyota Prius and 

Tesla (Wikipedia, 2017).  These different types of EVs are introduced with different charger 

technologies and therefore, different charging infrastructure (Watson et al, 2015). The 

discussion is more about the EV battery chargers and the required infrastructure to ease the 

charging methods. Table I shows different EV technologies and their charging power levels 

(SAE Electric Vehicle, 2010-2017; Yilmaz et al, 2013). 

Table I. Electric Vehicle Charging Technologies and Power Level. 

Charging Level Charger Location Expected 
Charging Rate 

Charging 
Time 

Vehicle 
Technology 

Typical Use of 
Method 

Level 1 
120 Vac (US) 

 

On- board 
Single phase 

1.4 kW (12 A) 
 

4-11 hours 
11-36 hours 

PHEVs (5-15 kWh) 
EVs (16-50 kWh) 

 

Home/Office 

Level 2 
240 Vac (US) 
400 Vac (EU) 

On- board 
single/three phase 

4 kW (17 A) 
8 kW (32 A) 19.2 

kW (80 A) 

1-4 hours 
2-6 hours 
2-3 hours 

PHEVs (5-15 kWh) 
EVs (16-30 kWh) 
EVs (3-50 kWh) 

Private/Public 
outlets 

Level 3 (Fast 
Charging) 

208- 600 Vac/Vdc 

Off- board 
Three- phase 

50 kW 
100 kW 

0.4-1 hours 
0.2-0.5 hours 

EVs (20-50 kWh) 
 

Commercial, 
Analogous to a 
filling station 

 

An Overview of EV Chargers- Electric cars may vary based on their charging infrastructure/ 

sockets for charging. Some types such as Nissan Leaf Mitsubishi have the facility of both AC 

charging and DC/fast charging. In other words, they are equipped with two types of sockets. 

Some others (for example Ford), do not have fast charging facility. The connections to the 

charging stations, the communications between the station and chargers and the rate of 

charging may also differ depends on the type of EVs and their charging methods (Watson et 

al, 2015). 
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DC- DC Converter

AC- DC Rectifier Boost Converter 
(PFC)

EV Battery Charger    
( On-board charger)

Grid

 

Fig.1. 1. Simple Schematic of EV Charging System 

 The battery chargers’ characteristics are important in developing EVs and their efficiency. In 

general, the operation of battery chargers is dependent on their infrastructure, charging and 

switching strategies (Yilmaz et al, 2013). EV battery chargers are classified within three 

charging levels of slow charging (Level 1), medium charging (Level 2) and fast DC charging 

(Level 3). PEVs can be plugged into an outlet and charged over night for a low charging at 

home. However, the primary charging method is known as Level 2 charging where a 240 V 

outlet is required. Level 3 or DC fast charging are considered for commercial and public usages 

(Yilmaz et al, 2013).  Many researchers investigated the EV chargers’ infrastructure with 

different charging levels and their associated harmonic current and voltage spectrums. Such 

research studies show that different type of EV battery chargers have totally different harmonic 

spectrums and the THD level of current and voltage vary with their level of charging and 

required voltages. 

As studies show, when an EV is connected to the power grid, the current absorb by the grid is 

not purely sinusoidal (Lorenzo 2014). Fig. 1.1 shows a simple topology of EV charging system. 

During the charging time, EV is connected to the grid via power electronic devices such as DC- 

DC converters or AC- DC rectifiers. These power electronic equipment, create additional 

harmonics to the voltage and currents and therefore, this harmonic distortion will be transferred 

to the grid. When chargers connect to the charging station and starts drawing current, they act 

as a nonlinear load causing distortion depending on the type of charger and the charging rate. 
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Therefore, the injected current drawn from utilities and its harmonic distortion varies based on 

the percentage of its individual harmonic current spectrum. In order to study this harmonic 

propagation, the EV chargers have been widely modelled and tested (Lorenzo 2014). For 

example, for Nissan Leaf the harmonic components for charging rates of Level 1, Level 2 and 

Level 3 charging are different (Steady State Vehicle Charging Fact Sheet, 2015). In all cases 

with different charging level, the 3rd harmonic is the dominant harmonic component as shown 

in Fig. 1.5 Due to the growth of EV demand, the injected harmonic current by EV battery 

chargers can have a detrimental impact on power quality of the grid. Power quality is an 

important factor for distribution network and their reduction may cause severe consequences 

such as voltage deviations, increasing power losses lack of continuous service to the consumers 

(Bass et al, 2013). It is necessary to keep the distortion level low to improve the power quality 

of the system and comply with the standard limits of IEEE standard 519. According to Nissan 

Leaf’s manufacturer’ report in 2015, “as the vehicle charger rate decreases” its ‘characteristics 

may also decrease such as:  efficiency, power factor, and total harmonic distortion. Although 

the power factor reduction can be ignored, the decrease in efficiency and increase in total 

harmonic distortion cannot be underestimated nor neglected but should be avoided when 

possible (Steady State Vehicle Charging Fact Sheet, 2015). Figs.1. 2- 1.4 show the efficiency, 

power factor and THDi for Nissan Leaf (24 kWh).  

 
 a) b) 
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Fig.1. 2. Efficiency of EV for a) level 1 charging (120 V) and b) level 2 charging (208 V) for Nissan Leaf (24 kWh).  

 
a)                                           b) 

Fig.1. 3. Power Factor of EV for a) level 1 charging (120 V) and b) level 2 charging (208 V) for Nissan Leaf (24 kWh). 

 

 
a)                                        b) 

  Fig.1. 4. THDi of EV for a) level 1 charging (120 V) and b) level 2 charging (208 V) for Nissan Leaf (24 kWh). 

 

 
a)                                        b) 

Fig.1. 5. Harmonic Components of three charging rates for a) level 1 charging (120 V) and b) level 2 charging (208 V). 
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 PEV Charging Approaches 

As discussed earlier, it is necessary to consider the impact of PEV charging activities on the 

operation of Smart Grids. The incorporation of PEVs as well as RERs into the developed Smart 

Grid necessitate new and proper design/ preparation. In preparation of the new design, the 

effect of PEV charging/discharging objectives, strategies, penetration rates and charging 

durations on grid performance as well as power quality conditions needs to be investigated. It 

can be observed that medium and moderate PEV penetrations can cause operation, reliability, 

stability and efficiency issues on both residential and distribution networks. Particularly, the 

negative impact of moderate PEV penetrations and their EV charger harmonics on LV 

residential and distribution networks and their power quality conditions need to be considered.  

Many investigations (Clement et al, 2010, Deilami et al, 2011, Masoum A.S. et al, 2011and 

Yilmiz et al, 2013) show that the random/uncontrolled PEV charging with moderate 

penetrations can lead to unacceptable increase in total power system losses, voltage variations 

and harmonic distortion especially during rush hours when PEV owners return home after work 

and wish to charge their EVs to get ready for their next trip early in the morning. (Kong et al 

in 2016) have discussed about the classifications of PHEV and PEVs and charging schemes in 

Smart Grid. Fig.1.6 shows an overview of charging schemes in Smart Grid (Kong et al, 2016). 
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PEV Charging Strategies

G2V Random Charging G2V Coordinated Charging G2V/V2G Charging/
Discharging

 Indirectly Coordinated 
Charging 

Coordinated Smart 
Charging 

Optimal OperationOptimal FinanceTemporal Load Shifting Spatial Load Shifting

Lower Cost/Public Stations 
in Selected Locations

Dynamic Price- Charging 
during off- Peak hours Online/Offline Charging Online/Offline Charging

 

Fig.1. 6. PEV Charging Schemes/ Strategies 

- Uncontrolled/Uncoordinated PEV Charging Strategy 

As discussed earlier, uncoordinated or random charging defines as plugging in the EVs and 

start charging straight away without any delay or create a fixed delay by the EV owner and 

start after the delay and continue until the EV is disconnected (Yilmiz et al, 2013, Van Vliet et 

al, 2011 and Galus et al, 2010). This type of charging is mostly in Level 1 charging and may 

cause some severe issues by increasing the load especially during peak hours. The 

investigations have shown that even with low PEV penetrations, random or uncoordinated 

charging may lead to voltage variations, increasing power losses, overloading in distribution 

transformers and reliability issues. 

To overcome these issues, different controlled/ coordinated offline and online strategies are 

introduced. This coordinated approach is based on educating the PEV customers to shift their 

electric vehicle charging loads to off peak hours by introducing coordinated charging schemes 

and defining charging zones with different tariffs. Therefore, the PEV owners are motivated to 
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charge their vehicles with a low tariff. Further, the use of time- variable tariffs by EV owners 

with Level 2 and 3 charging might be of helpful in this strategy (Yilmiz et al, 2013).   

- Controlled/ Coordinated Charging Strategy 

It has been discussed that this type of charging strategy is a smart charging strategy that seek 

reducing the cost of generating energy, and electricity bills, time management as well as 

increase customer satisfaction by optimizing the power demand and demand side management 

(Yilmaz et al, 2013).  

Generally, there are two different strategies for PEV coordination techniques: centralized PEV 

charging or decentralized (distributed) PEV charging (Vandael et al, 2013). In Decentralized 

PEV charging, PEV customers can decide about the time and rate of the charging for their own 

vehicles. In this scenario, the system operator has no direct control over the PEV charging. 

However, it is still possible to motivate the owners by offering dynamic pricing to delay their 

PEV charging activities to off peak hours when the tariffs are in low price (Zhongjing et al, 

2013, Vandael et al, 2013). On the other hand, centralized PEV charging allow the existing 

aggregator to perform and decide the charging time and rate for PEVs considering both PEV 

owner and system operators’ conditions and preferences (Zhongjing et al, 2013, Vandael et al, 

2013, Jin et al, 2013, and Foster et al, 2013).  The data is provided by smart meters and their 

real time information about PEVs charging status, their arrival and departure   time. This 

scenario can be implemented based on a dynamic or static coordination. In dynamic charging 

strategy, the PEVs are plugged in at any time and this is the aggregator which decides when to 

start the charging based on the updated information. However, the static charging needs the 

PEV charging schedules to be provided in advance.   

Over the last few years, many studies have been carried out to investigate different PEV 

coordination techniques. (Jin et al., 2013) propose a PEV charging that will optimize the cost 

associated with the aggregator and generation as well as customer demand. (Geng et al, 2015) 
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introduce a dynamic aggregator for optimizing the cost associated with PEV charging 

activities. Further, a three-step approach is proposed by (Vandael et al, 2013) to investigate the 

demand side management of PEVs charging loads.  (Linni et al, 2013) and (Gan et al, 2013) 

discuss about two different schemes for flattening the daily load curve: i) centralized charging 

ii) iterative decentralized charging.  Some researchers also propose an optimal PEV 

coordination considering a day- ahead tariff with V2G and ancillary services (Chenrui et al, 

2013, Rotering et al, 2011).  (Deilami et al, 2010) and (Richardson et al, 2012) consider PEV 

charging activities with random and coordinated strategies and look into voltage improvement 

and performance of the LV residential networks.  

In conclusion, many possible approaches have been undertaken in order to prepare the future 

Smart Grid or even Microgrid for the deployment of PEVs and any other RERs. The 

approaches include any online coordination approach which leads toward more efficient, stable 

and reliable grid.  

It is further discussed that online coordinated charging as part of smart charging, is often 

implemented/performed by defining an objective function as well as formulation of some 

operation conditions/constraints. In other words, an optimization algorithm is implemented to 

keep the performance and power quality of Smart Grid within the acceptable standard limits. 

The performance objective can be divided into optimal finance and optimal operation (Kong 

et al, 2016).  

Under the optimal finance, there are various objective functions that can be considered and 

formulated. The related objective functions may include minimization of power losses subject 

to voltage deviations or charger output power or maximization of profit subject to the energy 

supply or the grid limitations. Different optimization techniques can be implemented such as 

integer linear programming, Quadratic or Heuristic programming. (Clement et al, 2009) 

investigated stochastic programming (linear Programming) in their studies. Linear 
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programming is a special optimization technique/ mathematical program to find out the 

maximum or minimum profit/cost. Quadratic programming is a simple form of nonlinear 

programming which optimizes a Quadratic objective function. (Clement et al, 2010) introduced 

and analyzed Quadratic and dynamic programming. The optimization methods applied for 

minimization of the objective function (losses of the system).   

For optimal operation, minimization of load variation can be done by Genetic Algorithms or 

Quadratic programming. In addition, “maximizing fairness (avoiding overload)” is the second 

option that can be implemented by Heuristics programming (Alonso et al, 2014, Mets et al, 

2010, Rezaei et al, 2014). 

In this thesis, the online coordination strategy has been developed by defining required and 

relevant objective functions for optimal finance that have been solved by implementing few 

optimization techniques such as Maximum Sensitivity Selections (MSS), Genetic Algorithms 

(GAs) and Particle Swarm Optimization (PSO)  according to their applications. The Maximum 

Sensitivity Selections (MSS) approach is one of the most practical and fast solutions for online 

PEV coordination and has been implemented and tested in few publications of this thesis. This 

strategy is theoretically defined/constructed based on the Jacobian matrices using power 

mismatch equations. (Khaldi, 2004) introduced a new vectorized approach to find out the 

sensitivity matrices to deal with reactive power (Q) control and voltage stability (𝑉𝑉) in large 

power systems. Also, the analytical approaches for reactive power (Q) compensation and 

voltage control (𝑉𝑉) presented based on sensitivity analysis).  As noted previously, for 

Maximum Sensitivity Selection Approach of paper 1 in Chapter 2, the maximum sensitivity of 

system losses (the objective function of the problem) to the number of PEVs have been 

considered.  This is done by temporary activation of PEVs in the Newton Raphson Power Flow 

of the proposed algorithm and considering system losses perturbations. The sensitivity of the 

system losses due to each PEV can be extracted from the entries of the Jacobian matrix of the 
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power flow and stored in MSS vector. The Jacobian matrix consists of the partial derivatives 

of the system power losses and reactive power to the voltage magnitudes and angles (Khaldi, 

2004, Deilami, 2018): 

𝐽𝐽 =  �𝑅𝑅𝑅𝑅
{𝜕𝜕𝑆𝑆/𝜕𝜕𝜕𝜕} 𝑅𝑅𝑅𝑅{𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕}

𝐼𝐼𝐼𝐼{𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕} 𝐼𝐼𝐼𝐼{𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕}�            (1) 

In Chapter 3 (paper 11), the sensitivity of SSCs (reactive power) to the bus voltage profiles are 

also added to the original sensitivity approach of paper 1 Chapter 2.    The MSS approach of 

paper 11 uses DHPF algorithm to include the nonlinearities of the EV chargers and therefore, 

the entries of the MSS vector are taken from the real parts and imaginary parts of Jacobian 

matrix of DHPF. 

The equations for𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡,𝑖𝑖   and 𝑀𝑀𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 are: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 = 𝜕𝜕𝑄𝑄𝑡𝑡/𝜕𝜕𝑉𝑉𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑖𝑖𝑚𝑚               (2) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡,𝑖𝑖 = 𝜕𝜕𝑃𝑃𝑡𝑡,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/𝜕𝜕𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑖𝑖𝑚𝑚     (3) 

MSSt,i is the maximum sensitivity of system losses to the number of PEV d at node i at time t 

and MSSssc,i is the maximum sensitivity of reactive power of the system to the bus voltage. im 

is the summation of all PEVs and PPEV,j  is the power consumption at node i. 

Genetic Algorithm (GA) is another optimization method that has been implemented and tested 

in few publications of this thesis mainly in Chapter 3. This algorithm is a simple and near 

optimal solution method and works based on an iterative process. GA starts with an initial/ 

random population. The population consist of individuals called chromosomes. The population 

(chromosomes) will undergo transformations to create new generation under an iterative 

process. In general, Genetic Algorithm initiates with a random population and tries to improve 

the population through a repetitive algorithm of mutation, crossover, inversion and selection 
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operator. (Ulinuha et al, 2008). In this thesis, the application of GA has been presented for 

minimization of the losses (objective function).  The details of the objective functions, 

switching constraints and chromosomes have been discussed in Chapter 3. 

Particle Swarm Optimization (PSO) is also one of the methods that has been used as a solution 

for optimal finance and has been implemented to solve the objective function of paper 5 in 

Chapter 2. This optimization is also a type of iterative algorithm and tries to improve the 

solution depends on the quality of the initial given data. PSO is a multi- objective optimization. 

  Optimal Dispatch of LTC and SSCs  

In HV and large power systems, the electric power generation plants are responsible to produce 

and deliver energy and electricity to the consumers through transmission and distribution 

network. It is important to ensure the energy is delivered within the permissible and acceptable 

standard limits and voltage variations are minimized (Khaldi 2004). Reactive power 

compensation and therefore, the application of Switched Shunt Capacitors (SSCs) has been 

considered as one of the conventional approaches. This approach is able to deal with the effect 

of load variations on distribution networks such as poor voltage profiles, high power system 

losses, low efficiency, and low power quality considering harmonics. The most common 

control devices for coordinating reactive power are the transformers LTCs and SSCs. It is 

therefore essential to consider an optimal scheduling approach to control the switching 

operations of these control devices (Khaldi 2004).   

Many studies have already discussed and investigated the application of transformers 

LTCs/SSCs and their optimal dispatch on power quality and performance of the grid. In this 

optimal dispatch program, both sinusoidal and non-sinusoidal operation of distribution systems 

have been considered. Due to the nonlinearity of the LTCs and SSCs, this optimal dispatch 
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program is very complicated (Ulinuha et al, 2008, Ulinuha et al, 2011, Deng et al, 2002, Liang 

et al, 2001, Liang et al, 2003, and Deilami et al, 2010).  

(Deng et al, 2002) have presented the switching effects of SSCs on secondary bus voltage, 

lifetime of LTCs, and maintenance cost. The research shows an optimal solution to overcome 

the abovementioned issues related to the switching effects. The idea is to divide the daily load 

curve into several time intervals (four) to determine the best switching devices operating 

schedule. The main objectives of the optimal SSC scheduling are to minimize the total power 

system losses and control the voltage variations within the acceptable limits.  

LTCs are responsible to control the secondary bus voltage at the substation transformers to 

keep them within the acceptable system limits under any disturbance. However, this is not an 

ultimate solution for voltage profile improvement as they are capable of changing the 

secondary voltage level and set the voltage. Therefore, installation of shunt capacitors can help 

with the voltage regulation by injecting reactive power during peak hours. These shunt 

capacitors are installed in the secondary side of substations and feeders (Baran et al, 1999, 

Liang et al, 2001, and Liang et al, 2003).  Even though, the best solution is to simultaneously 

coordinate the two switching devices, this may complicate the optimization algorithm due to 

the nonlinearity of the process and objective function (Lu et al, 1977, Hsu et al, 1998 and Deng 

et al, 2001). To implement these optimal solutions, many clarifications and approaches have 

been developed over the past few years.   The primary solutions ignored the nonlinearity of the 

problem and therefore, the solution was not quite accurate. Later, number of practical 

approaches were developed by implementing the artificial intelligent (AI) algorithms which 

were precise but time consuming (Liang et al, 2001, Grainger, 1985 and Wu et al, 1995). 

(Uluniha et al, 2008) proposed a GA optimization algorithm to simultaneously control LTC 
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and SSCs to minimize the system losses over 24 hours (objective function) and improve the 

voltage profile while satisfying the operational constraints. 

- Application of Optimal Dispatch Program in Smart Power Grid Considering Harmonic 
Distortion- 

With increasing the popularity of PEVs and integration of RERs in consumers’ daily routine, 

an intelligent and modern power grid needs to be designed such that the efficiency and 

reliability of the grid are enhanced to meet not only the users’ satisfaction but also to satisfy 

the utilities requirements and expectations. Such technology requires a highly smart and 

modern power grid to ensure efficient and safe operation of power system apparatus. 

Obviously, there are many concerns about the utilization of new smart appliances including 

residential and distribution loads, PEVs, RERs such as wind and rooftop PV solar, PEV- CSs 

and Variable Speed Drives (VSDs). This is due to the application of variety of nonlinear loads 

and their injected current harmonics to the grid. Further, the capacity of the grid and, high 

demands and transformer over loadings need to be considered. Therefore, it is essential to 

consider the application of switching devices (LTCs/ SSCs) in the presence of harmonics to 

not only improve the voltage profiles and efficiency of the grid but also to control the harmonic 

distortion levels and power quality conditions. Many researchers have discussed the 

consequences of neglecting harmonic current injections which may lead to significant increase 

in power system losses and harmonic distortion levels (Uluniha et al, 2008; Ulinuha et al, 2011, 

Baghzouz et al, 2011, and Zobaa et al, 2004). The researchers also discussed the severity and 

complication of adding nonlinear loads and considering the harmonics in the optimal 

scheduling solutions (Uluniha et al, 2008, and Ulinuha et al, 2011).  The recent researchers 

have already started to develop and create new simple and practical solutions to resolve the 

complexity of the inclusion of harmonic distortion (Deilami et al, 2013, and Singh et al, 2016).  
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On the other hand, to enhance the performance of the grid (increasing reliability, enhance 

voltage profile, reduce cost of generation and system losses) and power quality (control the 

THDv level according to the standards), it is essential to cover the inclusion of PEVs and RDGs 

and their coordination approaches in both distribution and residential networks. Moreover, it 

is also necessary to consider the effects of harmonic distortion associated with nonlinear loads 

including EV chargers. Although, the investigations and studies have started to look into the 

application of optimal LTC and SSC dispatch on the grid performance, the nonlinearity of EV 

chargers and nonlinear loads with their harmonics have not been included. Therefore, the 

impact of LTCs and SSCs dispatching including injected current harmonics by nonlinear loads 

and EV battery chargers needs to be investigated and is an area for further consideration. One 

practical solution to the harmonic distortion and voltage fluctuation may be the use of an 

optimization algorithm for both PEV coordination and SSC scheduling.  In the literature, there 

have been new structural strategies for EV battery chargers such as the inclusion of Power 

Factor Correction (PFC) devices or smart control methods (Basu et al, 2004, Singh et al, 2016) 

to overcome the harmonic injection problems. On the other hands, new PEV coordination 

schemes have been recently introduced to enhance the Smart Grid performance and power 

quality simultaneously.  The new PEV coordination strategies necessitate the inclusion of 

current harmonics caused by their battery chargers and other industrial loads and simplify the 

charging scheduling program. The inclusion of harmonics not only causes distortion in the 

system but also effect the charging protocols such that the PEVs have delayed charging. For 

moderate and high PEV penetrations, the control process fails to fully charge all PEVs for their 

next travel before 8am and this may result in owners’ dissatisfaction. Therefore, an appropriate 

consideration should be taken to the application of SSCs scheduling in the online PEV charging 

coordination strategies to not only cover the power quality related issues but also the customer 

satisfaction in smart grid. The gap in the literature is the inclusion of nonlinearities of battery 
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chargers and large industrial products in the coordination strategies. This can be fixed by 

enhancing the scheduling programs to consider the harmonic distortion as well as the inclusion 

of day- ahead/ online SSC dispatch to improve the grid power quality and performance. This 

research first starts with introducing an online control strategy and then fills the existing gap 

by enhancing the recent online PEV strategies in the literature and proposing a simple and 

practical approach to ease both utilities and end users. 

- Application of Active Power Filters (APFs) and Custom Power Devices (CPDs) for 
Further Enhancement of Power Quality in Distribution Networks – 

According to many references, the installation of filters is one of the convenient solution 

approaches for mitigation of harmonics in a distorted system (Masoum et al, 2015). It is further 

discussed that different filters can be used to reduce the THD of the bus voltages based on their 

applications. Passive Power Filters (PPFs) are one of the common, simple and inexpensive 

filters that can be for harmonic mitigations. Although they are convenient to install, they can 

only compensate limited number of harmonics. Further, they are sensitive to nonlinear loads 

and network variations.   PPFs consists of a number of shunt connected branches. Each branch 

is tuned at a harmonic frequency (h=5, 7, 11, 13, 17). They can also help with power factor 

correction. (Masoum et al, 2015). 

Active Power Filters (APFs) are another type of filters which are capable of injecting equal and 

opposite harmonics. APFs are quite accurate and reduce the THD to a very limited number. 

However, they are expensive, complicated and can only compensate harmonics locally. There 

has been some research on the application of APFs and how they can improve the power grid 

power quality (Masoum et al, 2015). The high cost involved with the installation of these 

devices however, has limited their application into local systems. It is suggested that the de- 

rating the size of APFs can resolve the cost related issues and therefore, further improvement 

of power quality can be achieved. By de- rating the size, we are using smaller APFs (as an 
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example we can de-rate an APF by 10% or 20%) and therefore save the cost and still control 

the THDv within the acceptable boundary and not completely eliminate the harmonics.  This 

part of research will be discussed in chapter 4 of this thesis.  

Other types of filters are Hybrid Power Filters consisting of APFs and PPFs. The idea is to tune 

a large PPF at lower order harmonic and use a small APF to compensate higher order 

harmonics. Therefore, this type of filter is less expensive than APFs alone (Masoum et al, 

2015). 

Another possible solution for harmonic compensation is Active Power Line Conditioner 

(APLC) which is a class of Custom Power Device (CPD). CPDs are active power controllers 

for distribution systems and act same as Flexible AC transmission Systems (FACTs) for 

transmission systems.  CPDs are able to regulate the voltage and improve power quality of the 

power network (Sabin and Sannino, 2003). CPD is able to protect source from load by injecting 

reactive power and compensate harmonics. An example of this type of CPD is APLC which 

was very limited previously as the online data and system information was not accessible. 

However, this issue has been resolved by the installation of smart meters in Smart Grids 

(Moghbel et al, 2017).  APLCs are similar to shunt APFs. They are able to improve the power 

quality of the entire power system or in other words, global harmonic compensation. 

 Power System Harmonics 

Recent research studies have had a focus on design strategies to develop a smarter electric grid 

to accommodate large scale PEV penetrations. The incorporation of large- scale PEVs into 

distribution residential systems has been recognized as a factor that has the potential to disrupt 

both local and over all grid dynamics, reliability and responsiveness. Investigations to address 

the impact on the power grid due to different forms of PEVs deployment is a fertile area of 

ongoing research (Hernandez C. and Jorge E., 2015). The grid power quality and therefore, the 
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THD level is one area of specific research focus.  The harmonic currents caused by EVs may 

have complications and negative impacts not only in large distribution systems but also in small 

residential communities.  In addition to the residential impacts, nonlinear industrial loads inject 

harmonics into the system that can contribute to major power quality related issues such as 

increasing THDv level and power system losses, resonances, voltage variations, etc. Although 

the impact of non-linear industrial perturbations into the systems are recognized the potential 

for greater instability and potential risk lies with the unknown interaction from the residential 

utilization of mass EV use. For utilities to ensure a smooth power delivery without voltage 

variations and system losses, control and manage any harmonic distortion and power quality 

related issues is a growing point of concern.  

As noted above, one practical solution to respond to the nonlinearities of EV chargers and 

industrial loads is modifying the online coordination algorithm and GA based- optimal dispatch 

program. The traditional newton- based power flow was originally used for the online PEV 

coordination. This power flow does not include the harmonic current sources and only 

considers the fundamental frequency for the calculation of fundamental voltage profiles and 

system losses. In order to include the harmonic frequencies, a harmonic power flow program 

is needed. This is to include in the main optimization program for both online PEV coordination 

and optimal dispatch algorithm to compute harmonic voltages and currents, THD levels and 

harmonic power losses. Obviously, the inclusion of harmonic into large scale distribution 

systems with nonlinear industry loads and EV battery chargers may increase the complexity of 

the program and optimization algorithm (Zobaa 2004 and Zobaa, et al, 2004). In other words, 

the harmonic power flow calculations are complex and very time consuming (especially when 

an online strategy is required. There are two scenarios for harmonic power flow calculations.  
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- Coupled Harmonic Power Flow 

First scenario is the Coupled Harmonic Power Flow (Zobaa 2004 and Zobaa, et al, 2004). In 

this method, nonlinear loads and the coupling between their harmonic are exactly modelled. 

This harmonic calculation is very accurate as it considers the dependency and relation of 

harmonic voltages at each frequency on value of current (the magnitude and phase angle) at 

other harmonic orders. However, the computing time is very long resulting in a temporal lag 

response to the underlying perturbation. As a result, this solution is not a real-time solution for 

the optimal dispatch algorithm and online PEV coordination. The optimization algorithm for 

SSC scheduling and PEV coordination are a type of nonlinear iterative calculation and require 

a very fast and straight forward problem-solving scenario.  

- Decoupled Harmonic Power Flow (DHPF) 

The second category is a fast and simple method which considers the nonlinear loads as 

harmonic current sources injecting harmonics. This method is called Decoupled Harmonic 

Power Flow (DHPF). In this method, the couplings/ dependency between the harmonics are 

neglected and therefore, the computation time is fast comparing to the coupling method. The 

reference Baghzouz and colleagues, (1990) demonstrated that the accuracy of this method is 

also acceptable. 

Many studies (Baghzouz et al, 1990, Ulinuha et al 2006, Ulinuha et al, 2007 and Yue et al, 

2004) have widely used and implemented DHPF algorithm for power flow calculations of large 

scale systems with optimization program and achieving optimal solution where accuracy and 

speed are both important. The accuracy of this method has been tested and proved by many 

research works and resources (Ulinuha et al, 2008, and Zobaa et al, 2004). In order to 

implement this method, the power system distribution network is modelled by individual 

harmonic current sources and harmonic bus admittance matrices (Masoum et al, 2015). 
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Fig.1. 7. Equivalent Circuit of a power system with a nonlinear load connected at PCC. 

In this thesis, the DHPF method of previous researchers have been implemented and used for 

modelling the EV battery chargers and industrial nonlinear loads. The nonlinear loads are 

demonstrated (modelled and implemented in the design) as ideal current sources. These current 

sources inject harmonics into the system. The linear loads are also presented and designed as 

resistances. These resistances are shown in parallel with inductances. The whole system is 

modelled and works at fundamental frequency. In this method, it is first required to construct 

the harmonic bus admittance matrix at harmonic frequency.  

- Harmonic Bus Admittance Matrix 

The harmonic bus admittance matrices represent admittances at both fundamental and 

harmonic frequencies. This can be implemented by adjusting the admittances at fundamental 

frequency according to the harmonic order. 

𝑌𝑌(ℎ)𝑉𝑉(ℎ) =  𝐼𝐼(ℎ)           (4) 

The bus matrix is constructed by applying the famous Kirchhoff Current Law (KCL) at each 

node in the network to include all the bus voltages, currents, and branch impedances and 

admittances.  (ECE530, Analysis Techniques for Large Scale Electrical Systems, Professor 

Hao Zhu, Department of Electrical and Computer Engineering, University of Illinois, August 

2015.) 
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As above mentioned, the nonlinear loads (modelled as harmonic current sources) represent real 

power (𝑃𝑃𝑖𝑖) and reactive power (𝑄𝑄𝑖𝑖) . The harmonic voltages are calculated by running the 

DHPF. Losses and THDv levels of system.  

𝐼𝐼𝑖𝑖
(1) =  �(𝑃𝑃𝑖𝑖 + 𝑗𝑗𝑄𝑄𝑖𝑖)/𝑉𝑉𝑖𝑖

(1)�
∗
                                             (5) 

𝐼𝐼𝑖𝑖
(ℎ) =  𝐶𝐶(ℎ)𝐼𝐼𝑖𝑖

(1)                                                                (6) 

Where, C(h) is the ratio of the hth harmonic current to the fundamental current, P is real power, 

Q is reactive power, and V(h) is the harmonic voltage. 

The details and formulation of DHPF are also discussed and explained in the body of papers in 

(Chapter 2 and Chapter 4) of this thesis.  

- Standard Limitations for Current and Voltage Distortions (IEEE Standard- 519) 

According to IEEE- 519, there are two criteria to evaluate and determine the permissible limits 

for harmonic distortions. First, current harmonics limits that is measured based on harmonic 

current and refers to the allowable current harmonics that users can inject into network. It is 

measured by the following formulation: 

                    𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊 = ��∑ (𝐼𝐼ℎ )2𝐻𝐻
ℎ=2 � /𝐼𝐼1                          (7) 

Where, Ih is the hth harmonic current, H is the highest harmonic order and I is the fundamental 

current.  

Second, voltage harmonics limits that is measured in terms of harmonic voltage and refers to 

the allowable voltage harmonics limit that utility needs to supply for users. This term is defined 

based on following equation: 

                      𝑻𝑻𝑻𝑻𝑻𝑻𝒗𝒗 = ��∑ (𝑉𝑉ℎ )2𝐻𝐻
ℎ=2 � /𝑉𝑉1                         (8) 
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Where, vh is the hth harmonic voltage, H is the highest harmonic order considered and V is the 

fundamental voltage.  

In order to set the permissible limits, the ratio of short circuit current at PCC to rated 

fundamental load current is calculated:    

                𝑅𝑅𝑅𝑅𝑅𝑅 = |𝐼𝐼𝑆𝑆𝑆𝑆|/|𝐼𝐼𝐿𝐿|                                      (9) 

According to IEEE 519 standard, it is consumers’ responsibility to control the use of nonlinear 

loads such that THDi is within the acceptable limit. Then, utilities are required to control 

network harmonic voltages and keep the THDv within the acceptable standard limit of 5%.    

It has been discussed in the literature that smarter grid is moving towards networked 

Microgrids. Microgrids are capable to maintain the loads in service when utilities fail during 

power outages, increase reliability, reduce energy costs and save money in long term. 

Microgrids are defined as a group of interconnected loads and RERs with limits and boundaries 

that can be connected or disconnected to the grid. Microgrids, with or without any connection 

to the main grid, are widely used to service isolated or rural power networks. Microgrids are 

able to work with connection to the main electric grid. They can have single or multiple 

connection to the main grid. On the other hand, Microgrids can be disconnected from the grid 

and operate independently. In other words, they can work as “grid- connected” or “island 

mode” respectively (Hirsh et al, 2018).  Microgrids are now being considered not only to 

improve the reliability of the grid but also to enable addition of RERs to have a clean power 

energy and deliver electricity in rural areas where there is no centralized power related 

infrastructure (Hirsh et al, 2018). Many investigations discussed and studied different 

techniques for improving the power quality, stability and performance of Microgrids.  There 

1.4 Micro Grids (MGs) and Power Quality 
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have been different solutions such as real time power management of networked Microgrids 

by cyber communications networks (IEC- 61850) or hybrid islanding detection techniques for 

protection of Microgrids with single or multiple connections to the main power grid. The 

optimal placement/operation of standalone Microgrids in remote areas is a growing area of 

future research. In the loss of power or any rural emergency, Microgrids can be islanded 

(isolated). This strategy can be adopted by utilities that are under pressure to maintain reliable 

services and therefore islanding detection is one of the important part of interconnecting 

Microgrids research and development.  This technique can be implemented remotely or 

internally based on real-time or predicted signals from either the main Smart Grid or Microgrid. 

(Darvish et al, 2017, Yin et al, 2004, Khamisa et al, 2013 and Li et al, 2014). The remote 

islanding detection modes are expensive but beneficial for large Microgrids. For example, 

Supervisory Control and Data Acquisitions Systems (SCADA) (Darvish et al, 2017,  Khamisa 

et al, 2013) and Power Line Carrier Communication (PLCC) methods (Darvish et al, 2017, and  

Li et al, 2014) are common for remote approach.  On the other hand, there are different local 

islanding strategies of    passive, active or hybrid methods “by measuring the Smart Grid 

parameters such as voltage, frequency, current and harmonic distortions” (Darvish et al, 2017, 

1). In order to consider the power quality and reliability of Microgrids with multiple 

connections to the grid, a recent published paper (Darvish et al, 2018) proposes a new approach 

considering passive, active and communication islanding detections based on wavelet 

transformations. The required signals are measured at the Smart Grid side through a hybrid 

ANN- fuzzy algorithm process. The details and the contributions of this proposed technique 

have been discussed in the body (Akhlaghi et al, 2014, and Darvish et al, 2017) and discussions 

of this thesis (Chapter 4, Paper 14).   

1.5 Aims and Objectives of the Published Papers 
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The main objectives of thesis are to implement a practical online PEV controlled strategy for 

improvement of the performance and power quality of Smart Grid while considering the 

harmonic distortions caused by industrial nonlinear loads and nonlinear EV chargers. This 

research initially started with proposing a very fast and precise online coordination approach 

where the PEV charging activities were considered in a large distributed network. The research 

model was extended by including the nonlinear loads and nonlinear EV battery chargers 

injecting current harmonics in the distribution and residential feeders, respectively. The effect 

of harmonic distortions and low power quality were successfully compensated by integrating 

the optimal rescheduling of SSCs. Further improvement was considered by allocating Active 

Power Filters (APF) to reduce the cost of generation and system losses and increasing the 

efficiency of the grid. The main objectives are: 

• Objective 1: Online PEV Coordination Considering Harmonic Current Injections by EV 
Battery Chargers. 

• Objective 2: Improving Performance and Power Quality of Smart Grid with Nonlinear PEV 
Charging and Nonlinear Loads by Rescheduling of SSCs.  

• Objective 3: Further Power Quality Improvement by Siting and De-Rating of APFs or by 
the application of CPDs.  

 

This body of work is presented as series of 14 peer reviewed publications. The individual aims 

and objectives for each paper are summarized as follows: 

1. Paper 1: 
Deilami. S, Amir S. Masoum, Paul Moses, and Mohammad A.S. Masoum.  2011. “Real-
time Coordination of Plug-in Electric Vehicle Charging in Smart Grids to Minimize Power 
Losses and Improve Voltage Profile.” IEEE Transactions on Smart Grid 2(3): 456-467.  
 
Objective: to propose and develop a novel load management approach for online PEV 
coordination in Smart Grid. The proposed approach can successfully minimize the total 
cost of producing electricity and grid power losses.  

 
 
2. Paper 2: 
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Deilami. S, Amir S. Masoum, Mohammad A.S. Masoum, and Ahmed Abu-Siada. 2013. 
“Performance of Heuristic Optimization in Coordination of Plug-In Electric Vehicles 
Charging.” IBIMA Publishing Journals, International Journal of Renewable Energy and 
Biofuels. USA. 1-15, Article ID 898203, DOI: 10.5171/2013.898203. 
 
Objective: To introduce a Heuristic Load Management (H-LMA) for controlled 
/coordinated PEV charging to minimize the network power losses by re- optimizing the 
system at certain time intervals as well as regulating the bus voltages profiles. The approach 
considers the PEV owners preference and substation transformer loading levels.  

 
3. Paper 3: 
Deilami. S. 2018. “Online Coordination of Plug-In Electric Vehicles Considering Grid 
Congestion and Smart Grid Power Quality. “Energies.1-17, Vol. 11, Issue 9, Article ID-
36962, DOI: 10.3390/en11092187. 
 
Objective: To include the harmonic distortions caused by nonlinear EV battery chargers 
in PEV coordination operation. Therefore, the current harmonics injected by EV charger 
will be included in the MSS based PEV coordination approach (Paper 1) to investigate their 
impact on overall grid operation and power quality conditions.  

 

4. Paper 4: 
Panahi. D, Sara Deilami, Mohammad A.S. Masoum, and Syed. M. Islam.  2015. 
“Forecasting Plug-In Electric Vehicles Load Profile using Artificial Neural Networks.” 
Australasian Universities Power Engineering Conference (AUPEC 2015), Wollongong, 
NSW, Australia, 1-6. 
 

Objective: To recognize the driving patterns and forecast the daily arrival of PEV and their 
load cycles using the historical data collected for each vehicle over the past two years. The 
forecasted daily load curves including their harmonic current spectrums are used for the 
next steps of this research. 
 
5. Paper 5: 
Naghibi. B, Mohammad A.S. Masoum, and Sara Deilami.  2018. “Effects of V2H 
Integration on Optimal Sizing of Renewable Resources in Smart Home based on Monte 
Carlo Simulations.” IEEE Power and Energy Technology Systems Journal 5 (3): 73 – 84. 
DOI: 10.1109/JPETS.2018.2854709. 
 
Objective: To propose optimal sizing of rooftop PV, Wind Turbine (WT) and Battery   
Storage Systems (BSS) in smart homes including PEVs with the help of Vehicle to Home 
(V2H) and Home to Grid (H2G) operations. For optimal sizing of RERs and BSS, a rule- 
based Home Energy Management System (HEMS), Monte Carlo simulations and PSO 
have been incorporated. 

 

6. Paper 6: 

https://doi.org/10.1109/JPETS.2018.2854709


31 
 

Deilami. S, and Mohammad A.S. Masoum. 2013. “Optimal Dispatch of LTC and Switched 
Shunt Capacitors in Smart Grid with Plug-In Electric Vehicles.” IEEE Power Engineering 
Society General Meeting PES GM, Vancouver, British Columbia, Canada, 1-7. 
 
 
Objective: To investigate the inclusion of PEV charging activities in the optimal dispatch 
of LTC and SSCs to mitigate the detrimental impacts of uncoordinated PEV charging on 
voltage profile and network losses.  
 
7. Paper 7: 
Deilami. S, Amir S. Masoum, Nasim Jabalameli, and Mohammad A.S. Masoum. 2013. 
“Optimal Scheduling of LTC and Switched Shunt Capacitors in Smart Grid with Electric 
Vehicles and Charging Station.” 8th International Conference on Electrical and 
Electronics Engineering (ELECO 2013). Bursa, Turkey, 162-166. 
 
 
Objective: To analyse and investigate the inclusion of PEV- CSs in the optimal GA 
rescheduling of SSCs program. The aim is to improve the performance of Smart Grid in 
the presence of PEV Charging Stations (CSs) by implementing the optimal SSCs dispatch 
algorithm.  
 

8. Paper 8: 
Deilami. S. 2015. “LTC and Shunt Capacitor Switching in Smart Grid: Sensitivity to Plug- 
In Electric Vehicle Forecasts.” International Journal of Electrical, Electronics and Data 
Communication, ISSN: 2320-2084 3(2). 
 
Objective: To assess the sensitivity to PEVs forecasts and their probable errors on the 
performance of LTC and SSCs. 

 
9. Paper 9: 
Deilami. S, Mohammad A. S. Masoum, Ahmed Abu-Siada, and Syed M. Islam.  2014. 
“Optimal Scheduling of LTC and Switched Shunt Capacitors in Smart Grid Concerning 
Overnight Charging of Plug-in Electric Vehicles.” Applied Engineering Sciences, ed. Wei 
Deng, 65-70. London UK, CRC Press is part of The Taylor & Francis Group: CRC Press, 
2014. (Book Chapter). 

 
Objective: To investigate the behaviour of Charging Station activities and the impact of 
PEV charging activities on the THDv level, efficiency and losses especially during peak 
load hours. The aim is to analyse and compare different charging techniques including 
uncontrolled/ random PEV strategy, controlled online MSS based PEV charging and 
inexpensive overnight MSS based coordination on the performance of Smart Grid.  

 
10. Paper 10: 
Deilami. S, Bahman Naghibi, and Keyhaneh Janfeshan. 2014. “LTC and Switched Shunt 
Capacitor Scheduling in Smart Grid with Electric Vehicles and Wind Distributed 
Generation Systems.” Australasian Universities Power Engineering Conference (AUPEC), 
Perth, WA, 1-6. 
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Objective: To assess the inclusion of RDGs in Smart Grid considering industrial nonlinear 
loads and PEVs which leads to a significant decrease in grid efficiency and the quality of 
electric power. In this study, the required grid energy at high PEV penetrations are being 
partially supplied by WDGs installed in distribution system. 

 
11. Paper 11: 
Deilami. S. 2018. “Online Coordination of Plugged- in Electric Vehicles and Optimal 
Rescheduling of Switched Shunt Capacitors in Smart Grid Considering Battery Charger 
Harmonics.” IEEE Power and Energy Technology Systems Journal 5(4): 1- 9. DOI: 
10.1109/JPETS.2018.2880762. 
 
 
Objective: To assess the inclusion of nonlinear EV battery chargers and nonlinear 
industrial loads in SG and propose a practical solution to improve the power quality 
conditions and meet PEV owners’ satisfaction by fully charging all PEVs before their next 
day trip.  
 
 
12. Paper 12: 
Deilami. S, Mohammad A. S. Masoum, and Moayed Moghbel.  (2016). “Derating Active 
Power Filters Considering Network and Bus Voltage Total Harmonic Distortions.” IEEE 
EEEIC 2016. Italy, Florence, 1-6. 
 
Objectives: To present a simple practical approach for further improvement of power 
quality and mitigation of THDv considering de- rating APFs. The aim is to install APFs at 
the point of common couplings (PCCs) of nonlinear loads to compensate for the injected 
current harmonica at the PCCs and reduce the THDv of the whole network and keep the 
associated costs in minimum. This approach represents the idea of de rating the size of 
APFs to keep the THDv level within the acceptable limit recommended by IEEE- 519 
standards instead of designing the APF to completely eliminating the injected current 
harmonics of nonlinear loads at their point of common couplings (PCCs).   
 
 
13. Paper 13: 
Moghbel. M., Mohammad A. S. Masoum, Alireza Fereidouni, and Sara Deilami. 2017. 
“Optimal Sizing, Siting and Operation of Custom Power Devices with STATCOM and 
APLC Functions for Real-Time Reactive Power and Network Voltage Quality Control of 
Smart Grid”, IEEE Transactions on Smart Grid 9(6): 5564 – 5575. 
DOI: 10.1109/TSG.2017.2690681. 
 
Objective: To present an online coordination approach with the application of CPDs with 
STATCOM and APLCs to regulate the voltage profile and improve the overall power 
quality of Smart Grid. A new particle swarm optimization (PSO) algorithm is proposed for 
optimal siting/ sizing and online control of multiple CPDs. 
 
 
14. Paper 14: 
Kermany. S.D, Mahmood Joorabian, Sara Deilami, Mohammad A. S Masoum, 2017. 
“Hybrid Islanding Detection in Microgrid with Multiple Connection Points to Smart Grids 

https://doi.org/10.1109/TSG.2017.2690681
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using Fuzzy-Neural Network.” IEEE Transactions on Power Systems 32(4): 2640 – 2651. 
DOI: 10.1109/TPWRS.2016.2617344. 
 
Objective: To propose a new hybrid islanding detection approach for Microgrids with 
connections to Smart Grids. This study proposes another avenue of power quality 
improvement in the area of Smart Grid. The proposed approach will be tested and 
implemented on Microgrid with Smart Grid connections by application of artificial neural 
network (ANN) and Fuzzy Logic algorithm. The idea is to prove that islanding detection 
of Microgrids can accurately detect and perform the islanding and improve the power 
quality of the grid. 
 
 

The abovementioned objectives are classified into different steps that need to be completed 

throughout this body of work.  

• Objective 1 includes 3 steps (1- 3) and 5 papers (1-5).  

• Objective 2 refers to step 4 and 6 papers (6-11) and  

• Objective 3 refers to step 5 and 3 papers (12-14).   

 

Fig. 1.8 shows the flow of the proposed algorithm including the steps, objectives and related 

papers.  

The following steps are considered to complete the whole objectives of this thesis: 

Prior to each stage the review of the current and contemporary literature on Optimal Dispatch 

of LTC and SSCs and PEV Coordination Strategies was undertaken. 

Step 1: Online PEV Coordination to Minimise Generation Cost and Power System Losses.  

Step 2: Inclusion of harmonic distortions such as the injected current harmonics by battery 

chargers and nonlinear loads in the online PEV coordination of Step 1. 

Step 3: Forecasting/Prediction of the Residential Feeder Daily Load Curves and Their Current 

Harmonics Spectrums based on the Virtual PEV Coordination of Step 2. 

1.6 Methodology 

https://doi.org/10.1109/TPWRS.2016.2617344


34 
 

Step 4: Improve Overall Power Quality of Smart Grid by Rescheduling of the Existing LTC 

and SSCs Considering the Forecasted Residential Feeder Loads of Step 3.   

Step 5: Further Power Quality Improvement by Siting and De-Rating of APFs at the Worst 

Operating Condition and Control Operation of CPDs in Smart Grid. 

 

  Step 3- Forecasting Residential Feeders Daily Load 
Curves & Current Harmonics Spectrums based on 

the Online PEV Coordination of Step 2

Step 2- Nonlinear Online PEV Coordination 
Considering EV charger Harmonics 

De- rating APFs 

B) Optimal Sizing, Siting and Operation 
of CPDs in SG with PSO algorithm

Step 4-  Rescheduling  LTC /SSCs for Next Day Switching 
Schedule Considering Forecasted Data of Step 3

Set Optimal LTC /SSCs Switching 
Schedules for the Next 24-  Hours.

 

Install APFs at the 
Selected Nodes

 

Step1-  Online MSS based PEV Coordination 

Objective 1
Chapter 2 ( Papers 1- 5 )

Objective 2
Chapter 3 (Papers 6 - 11)

Objective 3

Step 5- A) Siting and Derating of 
APFs at the Worst Operating Condition

C)  Hybrid Islanding Detection and 
Improving the Power Quality in MGs

Chapter 4 (Papers 12-14)
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Fig.1. 8. The proposed algorithm for online PEV coordination to improve the performance and power quality of the Smart 
Grid with rescheduling of LTCS/SSCs and de- rating APFs considering nonlinear loads and EV chargers harmonics. 
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This thesis includes 6 chapters: 

Chapter 1-This chapter provides the background, research history and current status of Smart 

Grid. It introduces the electric power grid from early stages and its enhancement throughout 

the past recent years to be adopted with the need and requirements of present environment.  It 

demonstrates the necessity and intentions of governmental regulations to move towards more 

sustainable technologies such as hybrid and plug- in electric vehicles to reduce the emissions 

and environment pollutions. It also covers the innovative two-way communication backbone 

of Smart Grid which enables the rapid applications of renewable energy resources (RERs) and 

smart appliances especially PEVs. In addition, the challenges of the operation of PEVs and 

their charging activities on distribution and residential systems such as voltage variations, 

power losses, and harmonic distortions reducing efficiency of the power grids will be discussed 

and proposed solutions including online coordination of PEVs and application of LTC, SSC 

and APF will be investigated. A series of already peer reviewed and scientific publications will 

be referenced in this chapter. 

Chapter 2- This chapter includes the first objective of this thesis and five related published 

papers (Publications 1-5) as presented in Fig. 1.8. 

The aim is to perform PEV charging such that the costs associated with generation and losses 

are reduced without transformer overloading and voltage regulation issues while the overall 

and node total voltage harmonic distortions THDv are within the permissible limit of 5% (IEEE 

Std 519-1992, 1993). Paper 1 proposes and develops a new online strategy for PEV 

coordination in a large Smart Grid network including distribution and residential feeders.  In 

second paper, a heuristic load management approach is also investigated. The main concern of 

1.7 Thesis Outline 
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this paper is to seek the impact of system operation constraints and parameters such as time 

intervals and performance, accuracy and speed of PEV coordination to successfully reduce the 

burden on local distribution circuits as well as cost of premature failures of transformers. In 

paper 3, the proposed online MSS based approach of paper 1 (step 1) will be enhanced and 

modified to a nonlinear MSS algorithm to include the current harmonics injected by EV battery 

chargers to investigate their impact on power quality and performance of the grid. Paper 4 

introduces the prediction and forecast of residential feeders’ daily load curves by recognizing 

the driving patterns and forecasting the PEV load cycles on a daily basis. The required historic 

data gathered for PEVs over the past two years. This forecasted information of load demands 

is incorporated in the next steps of the thesis with the inclusion of their current harmonic 

spectrums.  Paper 5, presents a new rule- based algorithm with Monte Carlo simulations and 

Particle Swarm Optimization algorithm to optimally include and size the RERs including 

rooftop PV, WTs, BSS and EVS in a home area network. This optimization minimizes the 

annual costs of household electricity. The analysis reveals different options such as eliminating 

BSS considering EVs and therefore, reduce the annual electricity costs. 

Chapter 3- This chapter refers to the second objective of this thesis and includes six peer 

reviewed published papers (Publications 6, 7, 8, 9, 10 and 11). In general, the aim of this 

chapter is to reschedule the 24-hours switching of LTC and SSCs for simultaneous voltage 

regulations and harmonic current mitigations at the fundamental and harmonic frequencies, 

respectively. In this approach, the forecasted daily load curves and harmonic current spectrums 

are considered for rescheduling the existing LTC and SSCs. The first six papers (6- 11) 

demonstrate the application of LTC and SSC in Smart Grid with online PEV coordination 

without EV charger harmonics. The last paper presents the inclusion of EV charger harmonics 

and their impact on Smart Grid. Paper 6 studies the inclusion of PEV charging activities in the 

optimal dispatch of LTC and SSCs and compare the controlled and uncontrolled PEV charging 
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with and without the scheduled optimal SSCs dispatch on the performance of the grid.  Paper 

7 investigates the inclusion of charging stations (CSs) in the Smart Grid and the improvement 

of the grid performance by implementing the optimal dispatch of SSCs. Paper 8 demonstrates 

the sensitivity to PEVs forecasts and their probable errors on the performance of LTC and SSC. 

Paper 9 represents a comprehensive research on the PEV charging activities with different 

strategies including random/uncoordinated PEV charging, online MSS based PEV coordinated 

charging and an inexpensive overnight MSS based strategy. This publication represents a book 

chapter and includes a variety of possible scenarios to compare the impact of different 

strategies on the power quality and performance of the grid. Paper 10 assesses the inclusion of 

RDGs in Smart Grid considering industrial nonlinear loads and PEVs. Paper 11 investigates 

the application of optimal dispatch of SSC re-scheduling with the consideration of the 

sensitivity of the reactive power to the bus voltages in the nonlinear online MSS based 

algorithm in order to keep the harmonic distortion levels caused by nonlinear loads (nonlinear 

industrial and EV chargers) within the standard limits of 5%.  

Chapter 4-This chapter investigates a new practical technique with the application of APFs 

for further power quality improvement of Smart Grid.  It covers the third objective of this 

thesis (Fig.1.8) including three peer reviewed publications (Publications 12, 13, and 14).  

Papers 12 and 13 discuss that with increasing the penetrations of PEVS to moderate or high 

level, the second objectives of this study might not sufficiently improve the power quality of 

the Smart Grid. Therefore, they propose new strategies to further improve the power quality 

conditions of the grid with high penetrations of PEV charging and/or large numbers of 

nonlinear loads. Paper 12 proposes the installation of a number of APFs at selected buses while 

also reducing their ratings.  This is to control the harmonic currents within the permissible 

limits of IEEE-519 standards rather that fully compensating them.  
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Paper 13 presents an online coordination technique with the application of CPDs with 

STATCOM and APLC to regulate the voltage profile and improve the overall power quality 

of Smart Grid. This is done by proposing two new particle swarm optimization (PSO) 

algorithms for optimal siting/sizing and online control of multiple CPDs. The first algorithm 

will determine the optimal locations/sizes of CPDs (for the worst operating condition) and the 

second one will compute the harmonic/fundamental reference currents to control and 

coordinate the CPDs by using the smart meter information. The simulation results show the 

improvement of THD of the voltages as well as voltage profiles.  

Paper 14 includes a novel and new avenue for power quality improvement for Microgrids with 

Smart Grid connections. The approach considers the hybrid islanding detection method by the 

application of artificial neural network (ANN) and fuzzy logic algorithm.  

Chapter 5-This chapter provide the summary and discussion of the thesis including the 

simulation results analysis, strength and gaps of the research to not only provide practical 

solutions for industry-based projects but also open avenues for continuing and developing the 

area of PEVs and their incorporation in future Smart Grids and Microgrids.  

Chapter 6- The last chapter presents the conclusion and outcome of this research as well as 

the gaps and limitations of the research. It also provides future recommendations for continuing 

the subject of PEVs and their incorporations in future Smart Grid. 
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 Chapter 2: Paper 1- 5 

 

  Step 3- Forecasting Residential Feeders Daily Load 
Curves & Current Harmonics Spectrums based on 

the Online PEV Coordination of Step 2

Step 2- Nonlinear Online PEV Coordination 
Considering EV charger Harmonics 

De- rating APFs 

B) Optimal Sizing, Siting and Operation 
of CPDs in SG with PSO algorithm

Step 4-  Rescheduling  LTC /SSCs for Next Day Switching 
Schedule Considering Forecasted Data of Step 3

Set Optimal LTC /SSCs Switching 
Schedules for the Next 24-  Hours.

 

Install APFs at the 
Selected Nodes
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Objective 1
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Real-time Coordination of Plug-in Electric Vehicle Charging in 
Smart Grids to Minimize Power Losses and Improve Voltage 

Profile.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deilami. S, Amir S. Masoum, Paul Moses, and Mohammad A.S. Masoum.  2011. “Real-time 
Coordination of Plug-in Electric Vehicle Charging in Smart Grids to Minimize Power Losses and 
Improve Voltage Profile.” IEEE Transactions on Smart Grid 2(3): 456-467. 
DOI: 10.1109/TSG.2011.2159816.  

2.1 Paper 1 

https://doi.org/10.1109/TSG.2011.2159816
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The research study presented in this paper has been published by IEEE Transactions in Smart 

Grid in 2011.   

 

All Authors of this article conceived the conception and design. I gathered and analysed the 

data with the guidance of the co- authors. I led the writing of the manuscript. All authors 

contributed to the drafts of the paper and gave the final approval for final submission and 

publication. This paper is the first section of chapter 2 and is a reproduction of the published 

manuscript by IEEE Transactions in Smart Grid. I also acknowledge that the system 

information and the EV data have been used in 2011 in my Master by research degree as part 

of input information only for another research study. This information is available in Chapter 

5 pages 65-68 and 72-75. The data has been used because in 2011, there were limited types of 

EV battery chargers only to be used in this field of research.  

 

 

This published paper develops a new real- time PEV coordination strategy in Smart Grid 

network including MV distribution and LV residential feeders. This new online strategy is 

based on MSS coordination and consider the maximum sensitivity of the system losses to the 

number of PEVs as well as customer priorities. The main contributions of the paper are 

improving the grid performance and minimizing the cost of generating energy and losses of the 

network. The simulation results show the effectiveness of the proposed control strategy in the 

improving of the losses and voltage profiles of the network. The system information and EV 

battery charger data were limited in 2011 and there were limited types of EVs. Recently, many 

different EVs have been launched by different manufacturers with variety of control strategies 

for battery chargers.    
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Performance of Heuristic Optimization in Coordination of 

Plug-In Electric Vehicles Charging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deilami. S, Amir S. Masoum, Mohammad A.S. Masoum, and Ahmed Abu-Siada. 2013. 
“Performance of Heuristic Optimization in Coordination of Plug-In Electric Vehicles Charging.” 
IBIMA Publishing Journals, International Journal of Renewable Energy and Biofuels. USA. 1-15, 
Article ID 898203, DOI: 10.5171/2013.898203. 

 

2.2 Paper 2 

http://dx.doi.org/10.5171/2013.898203


44 
 

 

The research study presented in this paper has been published by International Journal of 
Renewable Energy and Biofuels in 2013. 
 
 
 
All Authors of this article conceived the conception and design. I gathered and analysed the 

data. I led the writing of the manuscript. All authors contributed to the drafts of the paper and 

gave the final approval for final submission and publication. This paper is the second section 

of chapter 2 and is a reproduction of the published manuscript by International Journal of 

Renewable Energy and Biofuels.  

 

 

 

This paper presents a Heuristic Load Management algorithm (H-LMA) for coordinated PEV 

charging. The idea is to re- optimize the system at certain time intervals and not focusing on 

the improvement of the optimization algorithm. This research emphasises on the impact of the 

operation constraints as well as input parameters such as time intervals, speed and accuracy of 

the coordinated PEV charging loads. The main objectives and contribution of this paper are to 

reduce the costs and risks involved in the transformer premature aging and failures as well as 

lowering the burden on the load distribution circuits. In this strategy, the PEV owners’ priorities 

and substation transformer loading levels are considered. The simulation results prove that the 

proposed management algorithm is able to regulate the voltage profiles and power system 

losses of the network.   
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Online Coordination of Plug in Electric Vehicle Considering 

Grid Congestion and Smart Grid Power Quality 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Deilami. S. 2018. “Online Coordination of Plug-In Electric Vehicles Considering Grid Congestion 
and Smart Grid Power Quality. “Energies.1-17, Vol. 11, Issue 9, Article ID-36962, 
DOI:10.3390/en11092187. 
 
 
 

2.3 Paper 3 



47 
 

The research study presented in this paper has been published by Energies in 2018. 

 
 
I am the sole author of this paper. The contribution only belongs to the author for conception 

and design of methodology, writing the paper, submission and final approval. This paper covers 

the third section of chapter 2 and is a reproduction of the published manuscript in Energies. 

 

 

This paper which has been recently published, aims at filling the existing gap of this research 

area of work. The coordinated strategies of the literature ignore the battery chargers and 

nonlinear loads’ harmonics in the coordinated PEV charging activities.  This study relies on 

the first paper of this research (paper 1) with the use of MSS coordination strategy and includes 

the harmonic distortions caused by nonlinear EV battery chargers and industrial loads in EV 

controlled strategy. The current harmonics injected by the EV chargers and nonlinear loads 

will be included in MSS coordination technique and therefore, a nonlinear PEV coordination 

approach will be presented. The main contribution is to investigate the impact of harmonics on 

overall system performance and power quality of grid considering large scale integration of 

PEVs.   As shown by simulation results, the nonlinear online PEV coordination approach can 

control the THDv of the network while charging all the PEVs before their next day trip for low 

and medium PEV penetrations. However, it cannot satisfy the PEV owners’ desire in fully 

charge their vehicles for high PEV penetrations. A simple strategy of installation of PPFs has 

been used to resolve the issue. However, a practical, global and simple solution needs to be 

considered. This solution has been proposed and implemented in the next chapter of the thesis. 
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Forecasting Plug-In Electric Vehicles Load Profile using Artificial 
Neural Networks 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panahi. D, Sara Deilami, Mohammad A.S. Masoum, and Syed. M. Islam.  2015. “Forecasting Plug-
In Electric Vehicles Load Profile using Artificial Neural Networks.” Australasian Universities 
Power Engineering Conference (AUPEC 2015), Wollongong, NSW, Australia, 1-6. 
DOI: 10.1109/AUPEC.2015.7324879. 
 

  

2.4 Paper 4 

https://doi.org/10.1109/AUPEC.2015.7324879
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This paper has been published and presented in AUPEC Conference 2015.  

 
I was the co- supervisor of the main author. All Authors of this article conceived the conception 

and design. I helped with the writing of the manuscript. All authors contributed to the drafts of 

the paper and gave the final approval for final submission and publication. This paper is the 

fourth section of chapter 2 and is a reproduction of the published manuscript in AUPEC 

conference.  

 

 

This study covers a simple approach for prediction and forecast of residential feeders’ daily 

load curves by recognizing the driving patterns and forecasting the PEV load cycles on a daily 

basis. In order to gather the PEV load data, the historical data for each vehicle has been 

collected for the past two years and used in the proposed algorithm.  The main objectives of 

this paper are to predict the load cycles and clarifying the driving patterns of PEVs. An ANN 

algorithm has been implemented and applied to forecast the arriving rime and daily PEVs’ 

travel distance. The forecasted results of this study can be easily used for other study purposes, 

management, and coordination and operation strategies for EVs in Smart Grid.  

This forecasted information of load demands was required for the next steps of the thesis with 

the inclusion of their current harmonic spectrums.   
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Effects of V2H Integration on Optimal Sizing of Renewable 
Resources in Smart Home based on Monte Carlo Simulations 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Naghibi. B, Mohammad A.S. Masoum, and Sara Deilami.  2018. “Effects of V2H Integration on 
Optimal Sizing of Renewable Resources in Smart Home based on Monte Carlo Simulations.” IEEE 
Power and Energy Technology Systems Journal 5 (3): 73 – 84. 
DOI: 10.1109/JPETS.2018.2854709. 
 

  

2.5 Paper 5 

https://doi.org/10.1109/JPETS.2018.2854709
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This paper has been published by IEEE Power and Energy Technology Systems Journals in 

2018.  

I was involved in this research study as the co- supervisor of the main author who was 

completing his HDR studies. All Authors of this article conceived the conception and design. 

I helped in writing of the manuscript. All authors contributed to the drafts of the paper and gave 

the final approval for final submission and publication. This paper covers the fifth section of 

chapter 2 of this thesis and is a reproduction of the published manuscript in IEEE Power and 

Energy Technology Systems Journals. 

This study introduces a new strategy for optimal sizing and siting of RERs including rooftop 

PV, WTs, BSS and EVS in a home area network. To do this, a rule- based algorithm, a Monte 

Carlo simulation as well as PSO have been implemented in two steps to first find the optimal 

size of RERs in a home area and then site and operate. This optimization minimizes the annual 

costs of household electricity. Different case studies and options have been studied to find out 

the optimal combination of the RERs.  The analysis and simulation result present different 

options such as eliminating BSS considering EVs and therefore, reduce the annual electricity 

costs. 
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 Chapter 3: Paper 6-11 
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Optimal Dispatch of LTC and Switched Shunt Capacitors in 
Smart Grid with Plug-In Electric Vehicles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deilami. S, and Mohammad A.S. Masoum. 2013. “Optimal Dispatch of LTC and Switched Shunt 
Capacitors in Smart Grid with Plug-In Electric Vehicles.” IEEE Power Engineering Society 
General Meeting PES GM, Vancouver, British Columbia, Canada, 1-7. 
DOI: 10.1109/PESMG.2013.6672609. 

 

 

  

3.1 Paper 6 

https://doi.org/10.1109/PESMG.2013.6672609
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This paper has been published and presented in IEEE Power Engineering Society General 

Meeting PES in 2013. 

As the main author, I was fully involved in the conception and design of the mythology of this 

paper.  I led the writing of the manuscript. All authors contributed to the drafts of the paper and 

gave the final approval for final submission and publication. This paper covers the first section 

of chapter 3 of this thesis and is a reproduction of the published manuscript in IEEE Power 

Engineering Society General Meeting PES in 2013. 

 

 

This study investigates the integration of PEV charging loads in the optimal dispatch of LTC 

and SSCs program. In order to include the PEV and daily residential loads, a forecast of 

residential feeders and PEVs were required. The residential loads were forecasted considering 

different PEV penetrations not only by random activities but also by the use of coordination 

technique of paper 1. Then this forecasted data has been used in the day- ahead optimal dispatch 

of SSC/LTCs. The aim is to show the impact of random/ uncontrolled charging and compare 

with the effect of MSS coordinated PEV charging with and without the scheduled optimal SSCs 

dispatch on the performance of the grid.  The simulation results show the effectiveness of the 

proposed practical approach in improving the performance of the grid. 
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Optimal Scheduling of LTC and Switched Shunt Capacitors in 
Smart Grid with Electric Vehicles and Charging Station. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deilami. S, Amir S. Masoum, Nasim Jabalameli, and Mohammad A.S. Masoum. 2013. “Optimal 
Scheduling of LTC and Switched Shunt Capacitors in Smart Grid with Electric Vehicles and 
Charging Station.” 8th International Conference on Electrical and Electronics Engineering 
(ELECO 2013). Bursa, Turkey, 162-166. DOI: 10.1109/ELECO.2013.6713824. 

 

 

3.2 Paper 7 

https://doi.org/10.1109/ELECO.2013.6713824


60 
 

This paper has been published and presented in 8th International Conference on Electrical and 

Electronics Engineering in 2013. 

As the main author, I was fully involved in the conception and design of the mythology of this 

paper.  I led the writing of the manuscript. All authors contributed to the drafts of the paper and 

gave the final approval for final submission and publication. This paper covers the second 

section of chapter 3 of this thesis and is a reproduction of the published manuscript in 

International Conference on Electrical and Electronics Engineering. 

 

 

This paper is the continuation of paper 6 of this thesis and studies the inclusion of charging 

stations (CSs) in Smart Grid. In this study, the impact of SSCs and PEVs with different 

penetrations have been investigated for both uncontrolled and controlled charging activities. 

Then the effect of day ahead LTC/SSC scheduling on the performance of grid has been tested. 

For this purpose, the Charging Stations charging loads have been individually considered and 

first predicted to be added in in the optimal dispatch program. The simulation results show the 

improvement of the grid performance by implementing the optimal dispatch of SSCs.  
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LTC and Shunt Capacitor Switching in Smart Grid:            
Sensitivity to Plug- In Electric Vehicle Forecasts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Deilami. S. 2015. “LTC and Shunt Capacitor Switching in Smart Grid: Sensitivity to Plug- In Electric 

Vehicle Forecasts.” International Journal of Electrical, Electronics and Data Communication, ISSN: 

2320-20843(2). http://www.iraj.in/journal/journal_file/journal_pdf/1-109-142286759810-14.pdf. 

3.3 Paper 8 

http://www.iraj.in/journal/journal_file/journal_pdf/1-109-142286759810-14.pdf
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This paper has been published in International Journal of Electrical, Electronics and Data 

Communication in 2015. 

I am the sole author of this paper. The contribution belongs to the author for conception and 

design of methodology, writing the paper, submission and final approval. This paper covers 

the third section of chapter 3 and is a reproduction of the published manuscript in International 

Conference on Electrical and Electronics Engineering. 

 

 

This study presents the sensitivity to the PEV forecasts and the errors associated with the 

prediction of the daily residential feeders and random arrival of the PEV charging loads in the 

optimization program.  The sensitivity of the PEV forecasting and their integration in the 

optimization program as initial input are assessed and their impacts on the performance of the 

day ahead optimal dispatch of LTC and SSCs are investigated.  This research focuses on the 

GA optimization approach for optima dispatch program considering the forecasted input data. 

The simulation results show different case studies and the sensitivity of the system to the 

predicted data. 
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Optimal Scheduling of LTC and Switched Shunt Capacitors in 
Smart Grid Concerning Overnight Charging of Plug-in Electric 
Vehicles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deilami. S, Mohammad A. S. Masoum, Ahmed Abu-Siada, and Syed M. Islam.  2014. “Optimal 
Scheduling of LTC and Switched Shunt Capacitors in Smart Grid Concerning Overnight Charging of 
Plug-in Electric Vehicles.” Applied Engineering Sciences, ed. Wei Deng, 65-70. London UK, CRC 
Press is part of The Taylor & Francis Group: CRC Press, 2014. (Book Chapter). 
http://hdl.handle.net/20.500.11937/42135. 

 

  

3.4 Paper 9 
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This research work is a book chapter and has been published in Applied Engineering Sciences 

by Taylor & Francis Group in 2014. 

As the main author, I was involved in the conception and design of the methodology. I led the 

writing of this paper. All authors contributed in the draft, submission and final approval. This 

research work covers the fourth section of chapter 3 and is a reproduction of the published book 

chapter in Applied Engineering Sciences by Taylor & Francis Group. 

 

This book chapter investigates different approaches for coordination of PEV charging loads 

with different penetrations considering PEV CSs. The day- ahead optimal dispatch of LTC and 

SSCs are also included in order to improve the performance and power quality of the grid. In 

this study, the inclusion of industrial nonlinear loads in the distribution system and their 

harmonic spectrum is only considered in the optimal LTC and SSCs program and therefore, 

the PEV coordination program neglects the effects of harmonics in PEV charging activities. 

Further, the harmonic currents injected by EV battery chargers are neglected in both PEV 

coordination and GA optimal LTC/SSCs program. Different approaches have been presented 

and compared in this book chapter: First, random uncontrolled/ uncoordinated PEV charging 

strategy is tested. Then, the real- time MSS based coordination strategy is implemented. In the 

next step, the possibility of an inexpensive overnight coordination approach is investigated and 

compared with other methods. The simulation results can clearly show the different approaches 

and their impacts on the power quality, efficiency and system losses considering the behaviour 

of Charging Stations activities. 

 

  



67 
 

“Publication has been removed due to copyright restrictions”. The content can be accessed via 

http://hdl.handle.net/20.500.11937/42135. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/20.500.11937/42135


68 
 

 

 

 

 

 LTC and Switched Shunt Capacitor Scheduling in Smart Grid 
with Electric Vehicles and Wind Distributed Generation Systems. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deilami. S, Bahman Naghibi, and Keyhaneh Janfeshan. 2014. “LTC and Switched Shunt Capacitor 
Scheduling in Smart Grid with Electric Vehicles and Wind Distributed Generation Systems.” 
Australasian Universities Power Engineering Conference (AUPEC), Perth, WA, 1-6. 
DOI: 10.1109/AUPEC.2014.6966570. 

 

  

3.5 Paper 10 
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This paper has been published and presented in AUPEC 2014.  

As the main author, I was involved in the conception and design of the methodology. I led the 

writing of this paper. All authors contributed in the draft and final approval. This research work 

covers the fifth section of chapter 3 and is a reproduction of the published manuscript in 

AUPEC 2014. 

In this paper, the integration of wind turbine in Smart Grid has been investigated.  The Charging 

Stations and industrial nonlinear loads have also been included.  In order to increase the 

efficiency and quality of the grid, the forecasted PEV charging loads (residential feeders) have 

been included in the optimal day- ahead schedule of LTC/SSCs. In this study, at high PEV 

penetrations, the grid energy has been partially supplied by WDGs. The simulation results show 

the negative impacts of uncontrolled PEV charging on the grid performance in the presence of 

harmonics and how the integration of the WDGs can help to improve the overall performance 

and efficiency of the grid.    
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Online Coordination of Plugged- in Electric Vehicles and Optimal 
Rescheduling of Switched Shunt Capacitors in Smart Grid 

Considering Battery Charger Harmonics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Deilami. S. 2018. “Online Coordination of Plugged- in Electric Vehicles and Optimal Rescheduling of 
Switched Shunt Capacitors in Smart Grid Considering Battery Charger Harmonics.” IEEE Power and 
Energy Technology Systems Journal 5(4): 1- 9. DOI: 10.1109/JPETS.2018.2880762. 
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This paper has been recently published in IEEE Power and Energy Technology Systems 

Journal in 2018.  

I am the sole author of this paper. The contribution belongs to the author for conception and 

design of methodology, writing the paper, submission and final approval. This paper covers 

the sixth section of chapter 3 and is a reproduction of the published manuscript in IEEE Power 

and Energy Technology Systems Journal.  

This paper is the continuation of paper 3 of chapter 2 with the inclusion of the SSCs.  In this 

study, the impacts of EV charger harmonics and nonlinear industrial loads harmonics are also 

considered in Smart Grids.  The simulation results of paper 3 revealed that the inclusion of EV 

charger harmonics with high penetrations may lead to customer dissatisfaction. Although, the 

real- time PEV coordination approach can control the THDv of the system, it cannot guarantee 

the fully charge of PEVs before their next day trip in early morning. To solve the issue, not 

only the nonlinearities of EV chargers are included in online coordination strategy, but also, 

the rescheduling of SSCs are considered in the approach. To do this, the algorithm, includes 

the maximum sensitivity of losses to the number of PEVs as well as maximum sensitivity of 

the reactive power to the number of capacitors. This can be a practical and better solution for 

resolving the issue of customer satisfaction. The aim is to fully charge the PEVs before 8am. 

As indicated in the simulation results, the program can control THDv within the acceptable 

limit of 5% by postponing the charging schedules to off- peak hour and successfully charge all 

the PEVs before their next day trip. It is further discussed that the iteration process can resolve 

the issues associated with the forecasting errors and random PEV activities.  
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 Chapter 4: Paper 12-14 

 

  Step 3- Forecasting Residential Feeders Daily Load 
Curves & Current Harmonics Spectrums based on 

the Online PEV Coordination of Step 2

Step 2- Nonlinear Online PEV Coordination 
Considering EV charger Harmonics 

De- rating APFs 

B) Optimal Sizing, Siting and Operation 
of CPDs in SG with PSO algorithm

Step 4-  Rescheduling  LTC /SSCs for Next Day Switching 
Schedule Considering Forecasted Data of Step 3

Set Optimal LTC /SSCs Switching 
Schedules for the Next 24-  Hours.

 

Install APFs at the 
Selected Nodes

 

Step1-  Online MSS based PEV Coordination 

Objective 1
Chapter 2 ( Papers 1- 5 )

Objective 2
Chapter 3 (Papers 6 - 11)

Objective 3

Step 5- A) Siting and Derating of 
APFs at the Worst Operating Condition

C)  Hybrid Islanding Detection and 
Improving the Power Quality in MGs
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De-rating Active Power Filters Considering Network and Bus 
Voltage Total Harmonic Distortions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deilami. S, Mohammad A. S. Masoum, and Moayed Moghbel. 2016. “Derating Active Power Filters 
Considering Network and Bus Voltage Total Harmonic Distortions.” IEEE EEEIC 2016. Italy, 
Florence, 1-6. DOI: 10.1109/EEEIC.2016.7555858. 

4.1 Paper 12 

https://doi.org/10.1109/EEEIC.2016.7555858
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This paper has been published and presented in IEEE EEEIC 2016. 

As the main author, I was involved in the conception and design of the methodology. I led the 

writing of this paper. All authors contributed in the draft and final approval. This research work 

covers the first section of chapter 4 and is a reproduction of the published manuscript in IEEE 

EEEIC 2016. 

This research study presents the new and simple idea of installation and de- rating of APFs at 

in distribution networks to not only reduce the THDv of the network but also to overcome the 

issues related to the cost of these devices.   The APFs are very accurate and can compensate 

for the injected current harmonics at the point of common coupling (PCCs) however, they are 

really expensive. This paper investigates the practicality of installation of these devices 

considering de- rating the actual size. Simulation results indicate that this conventional 

approach, can fully compensate the THDvs; however, this is a very expensive strategy and may 

not be feasible especially for small systems. Further to this, they are not effective on regulating 

the voltage profiles of the system. As a future direction, CPDs are considered as an optimal 

solution. The application of CPDs are discussed in the next section of this chapter (paper 13).  
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Optimal Sizing, Siting and Operation of Custom Power Devices 
with STATCOM and APLC Functions for Real-Time Reactive 
Power and Network Voltage Quality Control of Smart Grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Moghbel. M., Mohammad A. S. Masoum, Alireza Fereidouni, and Sara Deilami. 2017. “Optimal 
Sizing, Siting and Operation of Custom Power Devices with STATCOM and APLC Functions for Real-
Time Reactive Power and Network Voltage Quality Control of Smart Grid”, IEEE Transactions on 
Smart Grid 9(6): 5564 – 5575. DOI: 10.1109/TSG.2017.2690681. 

 

 

4.2 Paper 13 
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This paper has been published in IEEE Transactions on Smart Grid in 2017. 

 

All authors conceived the conception and design of the methodology. I was the co supervisor 

of the main author who was completing his HDR studies. This paper has also been partially 

used in main author’s thesis. All authors contributed in the draft submission and final approval. 

This research work covers the second section of chapter 4 and is a reproduction of the published 

manuscript in IEEE Transactions on Smart Grid. 

This research work investigates the application of CPDs (STATCOM and APLC) for further 

improvement of the power quality and performance of the grid. The optimal sizing and siting 

of the CPDs have been done by implementing PSO algorithm to first size and locate the devices 

under worst operating conditions and then operate the algorithm and calculate both harmonic 

and fundamental reference currents. This has been done by the use of smart meter information 

and online voltage data. The simulation results show the effectiveness of the proposed 

approach. 
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Hybrid Islanding Detection in Microgrid with Multiple 
Connection Points to Smart Grids using Fuzzy-Neural 

Network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kermany. S.D, Mahmood Joorabian, Sara Deilami, and Mohammad A. S Masoum. 2017. “Hybrid 
Islanding Detection in Microgrid with Multiple Connection Points to Smart Grids using Fuzzy-Neural 
Network.” IEEE Transactions on Power Systems 32(4): 2640 – 2651. 
DOI: 10.1109/TPWRS.2016.2617344. 

4.3 Paper 14 

https://doi.org/10.1109/TPWRS.2016.2617344
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This paper has been published in IEEE Transactions on Power Systems in 2017. 

 

All authors conceived the conception and design of the methodology. The author was a visiting 

scholar to the research area and laboratory. All authors contributed in the draft submission and 

final approval. This research work covers the third section of chapter 4 and is a reproduction 

of the published manuscript in IEEE Transactions on Power Systems. 

This paper investigates improving power quality and reliability in an advanced Microgrids 

network. This strategy considers Microgrids with multiple connections to the grid and presents 

a new hybrid islanding detection strategy that aims in further improvement of system power 

quality. To do this, an ANN and fuzzy logic optimization algorithm has been proposed and 

tested considering the new wavelet energy technique to perform better islanding and improve 

the power quality. The simulation results prove the effectiveness of the proposed strategy. 
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 Chapter 5: Summary and Discussion 

The main objective of this thesis is to propose a new practical approach for online PEV 

charging coordination while considering the power quality of Smart Grid. The inclusion of 

smart appliances such as PEVs and RERs and their coordination strategies create a significant 

impact on the grid performance and power quality of network. In recent years, researchers have 

investigated these negative impacts and tried to address the issues of harmonic distortion 

associated with EV chargers and nonlinear loads. However, these programs have never been 

included in the controlled PEV charging activities. This gap needs to be filled by inclusion of 

harmonic sources in the PEVs’ control strategies to improve the efficiency, reliability and 

power quality of the grid by increasing the accuracy of the practical solutions. This thesis aims 

at filling this gap by developing the PEV coordination to also consider the harmonics created 

by EV chargers as well as nonlinear industrial loads. This research has been initiated by first 

proposing an online, accurate and very fast coordination technique to improve the grid 

performance and efficiency by reducing the costs associated by losses and generating energy. 

This study has been proposed and simulated in paper 1 of this research. To the best of my 

knowledge, this novel coordination technique has been the most effective and fast strategy over 

the past few years. Many other optimization methods have been tested and compared in 

literature by authors of this paper as well as other researchers.  Even though, the proposed 

online MSS based optimization algorithm is not a global optimization technique to lead to a 

global solution, it is still a very effective and accurate strategy compared to other optimal 

solutions. This is due to the novelty of the load management approach for online controlled 

PEV charging in Smart Grid including MV distribution and LV residential feeders. This real- 

time control strategy considers the PEV owner preferred charging time frames (priority groups) 

and system operation constraints such as total system demands, voltage variations and system 
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power losses. The algorithm successfully reduces the cost of generating electricity and power 

losses and enhances the voltage profiles. 

The research theme in paper continues with the content of the second paper. In this paper, a 

different management approach has been tested and implemented. The focus of this paper is 

not necessarily on the improvement of the optimization algorithm. This method introduces a 

heuristic strategy and seek for the impact of operation constraints and parameters such as time 

intervals, accuracy and speed of controlled PEV charging activities. This approach aims at 

reducing the burden on the load distribution circuits and costs/risks associated with the 

transformer premature failures.  

Paper 3 tries to improve and modify the online PEV coordination strategy of paper 1 to include 

harmonic distortions created by nonlinear EV battery chargers as well as nonlinear industrial 

loads. The online MSS based optimization technique of paper 1, can successfully reduce the 

overall costs but ignores the impact of harmonics associated with EV chargers and nonlinear 

loads in the online controlled program and therefore, the impact of grid power quality were not 

included. The new idea is to consider harmonic current injections in coordination strategy. To 

do this, a harmonic power flow is required to calculate the harmonic voltage and currents, 

harmonic system losses as well as THDv of the entire system. As the power quality is an 

important factor in Smart Grid, an appropriate consideration needs to be taken. In this paper, 

the harmonics are modelled as individual current sources injecting harmonics and their 

coupling are neglected due to the complexity of the optimization algorithm. The so-called 

DHPF has been included in the process as a fast and relatively accurate harmonic power flow. 

This approach has been selected as the coordination algorithm is an online strategy and 

necessitate a fast and precise calculation. Therefore, a nonlinear online MSS based 

optimization algorithm (NOL- MSSCA) is introduced in this paper. As indicated in the 
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simulation results, the algorithm can manage to fully charge all PEVs at low and medium PEV 

penetration while controlling the harmonic distortion by controlling the THDv level within the 

acceptable limit of 5%. This is done by shifting the PEVs charging schedules to off- peak hours 

and therefore, not only the power quality problems are resolved but also the PEV owners are 

satisfied. However, at moderate and high PEV penetrations especially during rush- hours, the 

algorithm cannot achieve the customer satisfaction as PEVs may not be fully charged before 

8am in the morning to be ready for their next day trip. As a simple approach for this issue, 

installation of PPFs at the worst voltage buses are proposed.  

There are many practical solutions for resolving the issue of power quality and customer 

satisfaction such as considering APF, CPDs and SSCs. The recent researches have already 

started to investigate these different solutions and their challenges/ opportunities to enhance 

the power quality of the grid. However, the application of integrating these devices in to the 

coordination program and their impact on the charging schedules and customer satisfaction has 

never been investigated. This part of work starts with the installation of PPFs as a simple 

solution in this published paper and continue implementing other methods throughout next 

publications in the following chapters of this thesis. Inclusion of abovementioned devices may 

have complexity, significant impact on the grid and drawbacks. Therefore, a proper scheduling/ 

optimal solution may be required to effectively help the grid with saving energy and satisfying 

PEV owners’ desire which has been discussed and covered in chapter 3 as the second objective 

of this PhD. As part of the practical strategy for grid performance and power quality 

improvement, rescheduling of SSCs and their integration in the online PEV algorithm is 

required.  

The second objective of thesis, requires some input information and initial data such as PEV 

data and load demand history which has been provided by forecasting of PEV charging loads 
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in the first chapter. Paper 4 of chapter 2 introduces a forecasting method to predict the daily 

load pattern of randomly PEVs and distribution transformer loading. The proposed strategy 

aims at predicting the load cycles and identifying the driving patterns of PEVs. This is done by 

implementing ANN which is capable of forecasting the arrival time and daily PEV travel 

distance. ANN uses the historical data for each EV that is collected over the past two years. 

The forecasted results can be used for coordination, management and operation purposes.  

Further to findings of the abovementioned publications, a novel optimal solution has been 

presented and implemented in paper 5 for integration of RERs in the home area network. As 

mentioned in the literature, the integration of RERs has been significantly increased and is one 

of the important factors that needs to be considered with the inclusion of PEVs. This research 

work has tried to apply a novel rule- based algorithm with the application of Monte Carlo 

simulations and PSO to come up with a balance between the RERs and PEVs in Smart Grid. 

This optimal strategy reduces the annual electricity costs of a household with presenting 

different options/sizes of RERs such as eliminating BSS and therefore, reducing the costs 

involved while considering PEV.  

As discussed before, the proposed solution approach of this study for power quality 

improvement and customer satisfaction is to incorporate the online PEV charging coordination 

algorithm in an optimal SSCs dispatch program. This refers to the second objective of this 

thesis which is rescheduling of LTC and SSCs over 24-hours for voltage regulations and 

harmonic mitigations. It is challenging to consider both algorithms as the LTC/SSCs 

scheduling algorithm is an off- line problem that selects the LTC/SSCs switching for the next 

day where the PEV coordination is an on-line controlled charging. Therefore, this study offers 

a simple strategy to run the online PEV coordination algorithm and incorporate the forecasted 

load demands including the PEVs as the input of the existing LTC/SSCs scheduling program. 
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Paper 6 starts with the inclusion of PEV charging activities in the optimal dispatch program for 

LTC and SSCs to mitigate the negative impacts of uncontrolled PEV charging on the system 

losses and voltage profiles. As presented in the simulation results, the uncoordinated PEV 

charging especially without the inclusion of LTC and SSCs lead to severe voltage variations 

and system losses. Also, the results prove that the inclusion of PEV charging activities 

especially with the MSS based coordinated forecast, can significantly improve the voltage 

profile and system performance and reduce the system power losses.  

Paper 7 also considers the same approach in the existence of PEV Charging Stations. In this 

study, the PEV charging stations and their load profiles are also forecasted and included in the 

SSCs dispatch program.  The results show detrimental impact of uncoordinated charging on 

the grid performance in the presence of Charging Stations.  Obviously, the optimal dispatch 

algorithm can successfully improve the grid performance considering controlled EV charging.  

It has been discussed that the inclusion of forecast program in the optimization algorithm may 

lead to errors and probable issues associated with the forecasted daily load curves and random 

arrival of PEVs as the initial/ input data. Paper 8 of this thesis investigates the errors associated 

with the PEV forecasting and their incorporation as the initial input. To do this, the sensitivity 

of the optimization algorithm to the PEV forecast is investigated and assessed. In this paper, a 

GA optimization algorithm for LTC and SSCs rescheduling is implemented considering the 

forecasted PEV data and the sensitivity to this forecast on the performance of the LTCs and 

SSCs are investigated as shown in the simulation results. 

Further to abovementioned research and assessments, this book chapter (paper 9) covers the 

idea of PEV coordination and optimal LTC/SSCs program considering Charging Stations and 

their charging activities as well as nonlinear industrial loads. In this chapter, the inclusion of 

nonlinear loads in the distribution network and their harmonic spectrum in the optimal LTC 
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and SSCs program is considered. However, the harmonic currents injected by EV battery 

chargers are neglected in both PEV coordination and GA optimal LTC/SSCs program. 

Different scenarios are considered and compared in this book chapter:  

i) A random uncoordinated PEV charging strategy is tested.  

ii) Online MSS based coordination algorithm (OL-MSSCA) is performed.  

iii) An inexpensive overnight MSS based coordination algorithm (ON-MSSCA) is 

implemented.   

This is a different approach for PEV charging coordination.  The simulation results show the 

behaviour of Charging Stations activities and the impact of different techniques on the THDv 

level, efficiency and losses especially during peak load hours. 

Perceptibly, ignoring the harmonics in the PEV online coordination may increase the 

forecasting errors. This is due to the fact that the harmonic spectrums initiated by nonlinear 

loads (EV chargers and industrial loads) are not considered in the coordination program and 

their generated PEV daily load curves. As a result, the forecasted PEV daily load curves 

generated by this algorithm ignores the harmonics and may cause discrepancy in the actual 

results.  

According to the literature, RERs are becoming very popular in the new smart grid topology. 

This published paper (paper 10) assesses the inclusion of wind distributed generations in 

distribution systems considering the industrial nonlinear loads and PEV- Charging Stations. 

This could lead to a significant decrease in grid efficiency and the quality of electric power. 

Therefore, the optimal rescheduling of LTCs and SSCs in Smart Grid is performed. In this 

research, the required grid energy at high PEV penetrations are being partially supplied by 

WDGs installed in distribution system. The online MSS based PEV coordination algorithm of 
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paper 1 is performed while considering Charging Stations and low order odd current harmonics 

injected by nonlinear loads. The WDGs are considered as negative PQ loads. As indicated by 

results, the uncontrolled/uncoordinated PEV charging reduces the performance of the grid 

especially with the harmonic injection of nonlinear load. Therefore, the optimal dispatch of 

LTC and SSC can significantly improve the system performance, losses and voltage profile. 

Finally, the WDGs can improve the overall performance especially the system losses and cost 

of generating energy. Therefore, the application of SSC rescheduling is being tested once again. 

So far, the application of LTC and SSCs scheduling has been tested in different conditions and 

scenarios such as including the industrial nonlinear loads, PEV- Charging Stations and even 

the WDGs. However, none of the abovementioned scenarios considers the impacts of EV 

battery charger harmonics on the performance and power quality of the grid especially with 

grid congestion. The inclusion of EV charger harmonics has been initially included in the 

online PEV controlled program by enhancing/modifying the MSS based algorithm of paper 1 

in chapter 1. This was with the inclusion of DHPF algorithm in the online PEV coordination 

of paper 1. The modified version is called nonlinear MSS based PEV coordination and is 

previously thoroughly discussed, proposed and tested in published paper 3 of chapter 1. To 

complete and solve the main objective of this thesis, it is necessary to include the nonlinearities 

of EV battery chargers and industrial loads in the proposed online PEV controlled strategy and 

SSC rescheduling algorithm. In this scenario, the nonlinear online PEV controlled strategy is 

performed to generate the residential feeders’ daily load curves populated with the PEVs and 

their harmonic spectrums as well as harmonics associated with the industrial nonlinear loads. 

In other words, the forecasted PEV load curves data also includes the harmonic spectrums. 

Paper 11 proposes a new online strategy for this nonlinear online PEV coordination and SSC 

rescheduling. In this approach not only the PEV coordination program but also the SSC 

dispatch algorithm includes the harmonic distortions created by EV chargers and nonlinear 
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industrial loads. This can be considered as a second and better option for solving the power 

quality and customer satisfaction issues. As discussed earlier in paper 3 (chapter 2), the 

nonlinear online PEV coordination approach can enhance the power grid performance and 

quality for low and moderate PEV penetrations by shifting the PEV loads to the off- peak hours. 

The idea of shifting the PEV charging activities to off- peak hours could be operational when 

the PEV penetrations are not high and therefore all PEV owners are still able to fully charge 

their vehicles before the designated time of 8am. In high PEV penetrations, the algorithm may 

not manage to charge all PEVs before their next travel at 8am.  The simulation results of paper 

3 (chapter 2) shows that with penetrations of 47% (high penetration), number of PEVs are left 

unchanged. Paper 3 of chapter 2 proposes PPFs installation to resolve the issues. However, 

paper 10 proposes the application of SSCs rescheduling considering harmonics and the 

inclusion of sensitivity of reactive power (Q) to the bus voltage.  The proposed PEV 

coordination strategy of paper 3 was based on maximum sensitivity of system losses to the 

number of PEVs. In this paper, the sensitivity of the reactive power to bus voltages are also 

included. The switched capacitors are installed and switched according to their primary day-

ahead schedules based on Genetic Algorithm optimization. This is to improve the bus voltages 

(grid enhancement) and the THDv (grid power quality). Therefore, the sensitivity of reactive 

power of the system can be investigated.  It is further discussed that the iteration of the solution 

approach can resolve the issues associated with the forecasting errors and random PEV arrivals 

used as initial data for SSCs rescheduling optimization algorithm.  It can be observed that the 

results are more accurate, and algorithm can successfully satisfy the PEV owners’ desire. 

The third objective of this thesis investigates a new practical strategy with the application of 

APFs to further improve the power quality of Smart Grid. As discussed before, with large PEV 

deployment and large number of nonlinear loads in residential and distribution feeders, even 

with the nonlinear approach of objective 2 cannot sufficiently reduce the THDv to the 
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acceptable boundary of 5%. A further consideration is required to safely accept the inclusion 

of smart appliances, RERs and industrial nonlinear load without the reliability, power quality 

and performance issues. Paper 12 proposes the new idea of installation and de- rating of APFs 

at selected buses to resolve the issues.  The APFs can compensate for the injected current 

harmonics at the point of common coupling (PCCs) and therefore, reduces the THDv of the 

whole system. Although the conventional approach of installing APFs in all buses can fully 

compensate the THDv, this is a very expensive strategy and may not be feasible especially for 

small systems. Paper 12 proposes the new idea of de- rating of these devices under the worst 

operating condition. This simple practical approach de- rate the size of APFs to control the 

THDv level within the permissible limit. Such strategy designs the APFs to control the THDv 

of total network within the allowable boundary rather than fully eliminating the injected current 

harmonics of nonlinear loads at their PCCs.  The simulation results show further improvement 

of power quality and mitigation of THDv.  

In paper 13, the application of CPDs with STATCOM and APLC has been proposed for voltage 

regulations and power quality improvement of the grid. A new PSO based algorithm has been 

proposed for sizing/siting and online control of multiple CPDs. Two PSO algorithms have been 

used to first determine the optimal size and locations of CPDs under the worst operating 

conditions and second, to calculate the harmonic and fundamental reference currents to 

coordinate and control the CPD using smart meter information. The simulation results indicate 

the grid power quality and voltage profile improvement in Smart Grid. 

Paper 14 considers a slightly different topology and system network. The idea is to follow the 

advanced technology and investigate and assess the power quality improvement and reliability 

not only in Smart Grid but also on future Microgrids. This approach considers a Microgrid with 

connections to the Smart Grid and proposes a new hybrid islanding detection approach to 

further improvement of the power quality. In this study, the application of ANN and fuzzy 
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logic optimization algorithm has been tested to protect the Microgrids by the new hybrid 

islanding detection technique that is capable to perform islanding and improve power quality 

of the grid. This strategy works based on a combination of passive, active and communication 

islanding detections by the application of wavelet energy transform. In this study, the 

probability of islanding is measured in the Smart Grid side for a Microgrids with multiple 

connections to the grid. The contribution of this paper in comparison with the previous 

investigations are first in the consideration of multiple connections to the grid. Secondly, this 

method is performing limited number of active islanding detections in cases where one of the 

probability of islanding values higher than the defined limit. It is further discussed that the 

proposed method relies on the measured utility current and voltages signals.  And more 

importantly the power quality of Microgrids is improved using the new wavelet energy 

transform technique. The simulation results assess the performance of the proposed approach.  

 Conclusion 

In overall, the main contributions, limitation and future directions of this PhD thesis are 

concluded and thoroughly discussed in the three following sections: 

This thesis presents the development of research productivities that highlights an innovative 

and practical approach to support the overall power quality and performance of the grid in both 

MV distribution and LV residential networks.  This scheme mainly focuses on the 

transformation of the Smart Grid to a “Smarter Grid” and the infrastructure to enable the 

integration of smart appliances such as PEVs as well as RERs with an adaptive and intelligent 

control strategy/ optimization.  This strategy aims at first integrating large- scale PEV 

penetrations and RERs into Smart Grid while considering system operation conditions and 

secondly offering grid energy storage for load balancing and mitigating energy power 

6.1 Significance of Research and Contribution 
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variations caused by RERs. Thirdly, the proposed algorithm can optimally increase the 

customer (PEV’s owners) satisfaction within the predefined power system constraints and 

limitations. 

Overall, the main contributions of this body of work is to develop a practical, simple and novel 

strategy to keep- up with advanced technology and growth of PEVs. The aim is: 

 First- to develop and implement an online PEV controlled algorithm based on Maximum 

Sensitivities Selection (MSS) Optimization to minimize the cost of generating energy by 

integrating retail electricity prices and PEV owner priority charging selections/zones (grid 

performance) as presented in paper 1.   The online PEV coordination algorithm of paper 1 is a 

novel strategy which is tested on a large scale modified IEEE Smart Grid system including LV 

residential feeders. The data for daily load curves and residential feeders are from a real suburb 

in WA. This innovative strategy has been compared with different optimization techniques in 

the literature and it is still one of the most practical, fast and accurate methods which have ever 

been proposed and implemented.   The published paper has been cited and implemented in 

many studies and practical industrial works over the past few years. The part of the system 

information and system input data has been used not only in many transactions and peer 

reviewed articles but also has been the base of the whole research of the candidate throughout 

her academic activities. The system information and EV technical data of this paper has been 

also used in candidates’ Master of Philosophy for another application and a different research 

objective (Deilami. S, 2010, pages 65-68 and 72-75). This online PEV coordination strategy is 

further developed and modified to consider the injected current harmonics by EV battery 

chargers and nonlinear loads in the real-time PEV coordination (paper 3). 

Second- Now that the control strategy and algorithm is developed and tested, the PEV 

coordination approaches are included in both distribution and residential networks by optimal 

rescheduling of LTC and SSCs considering the forecasted residential feeders’ load curves and 
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their current harmonic spectrums to enhance the performance, reliability and power quality of 

Smart Grid. The Optimal dispatch/rescheduling is implemented to minimize power system 

losses, voltage variations and total harmonic distortion (THD). Further, PEVs are also 

coordinated to minimize the cost associated with generating electricity and enhance the voltage 

profiles (node voltages) of the residential feeders over the 24 hours.   According to this 

approach, the typical load profiles of the residential feeders with uncontrolled PEV charging 

as well as PEV- CSs and RDGs are forecasted (simulated) and then included in a Genetic 

Algorithm model. This Genetic Algorithm model is to implement optimal dispatch of LTC and 

SSC in the presence of harmonics in MV distribution networks as well as EV battery chargers 

in LV residential networks.   The EV charging activities at charging stations not only affects 

the capacity of the grid but also the quality of the supply even at low PEV penetration during 

rush hours.   The idea of implementing optimal dispatch program in the PEV coordination 

strategies, is very effective in improving the power quality of the Smart Grid. The switched 

shunt capacitors perform as passive filters and help in suppressing harmonic distortion. This 

strategy can be suggested as a cost- effective option compare to the expensive active power 

filters (APFs) or even to decrease active filters sizing to be used in future smarter grids. 

Third - Further improvement of power quality by online PEV coordination with rescheduling 

of LTC/SSCs is proposed by de- rating of APFs considering harmonics. 

This simple approach is to install APFs at the point of common couplings (PCCs) of nonlinear 

loads to compensate the injected current harmonics and reduces the THDv of the whole 

network to meet the permissible standard level and not by eliminating the THDv and therefore, 

the cost and size of APFs will be reduced. 

The proposed control strategy is an industrial application that provides demand response and 

leads towards reducing the cost of energy and electricity bills as well as considering customer 

satisfaction. The improvement of power quality is also assessed and applied on isolated 
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Microgrids by implementing discrete wavelet transform using neural networks and fuzzy 

systems. The control operation of Microgrids, is a new avenue in the field of Smart Grids which 

has been started by researchers. This research paper represents a new and advanced version of 

Microgrids supported by Smart Grids and enables openings for future investigations and 

studies. 

The contributions of thesis have been presented and assessed in series of peer reviewed 

publications listed in Table I. The research outputs of this thesis (peer reviewed publications in 

this thesis) have been continuously cited and in some special cases (for example paper 1), the 

citation is over 800 times as of November 2018. The input data of residential feeders are 

obtained from a real residential suburb in WA and the work was supported by industry 

(Western Power).  

Further, there are more relevant publications of the author in the area and subject of this thesis 

that are not included in the body of this work but available in list of author’s publications 

(Appendix B). 

It has been discussed that the area of Smart Grid or Smarter Grid is very vast and immense. In 

order to keep – moving up with the growth of technology, the researchers need to continue to 

fill the existing gaps and to provide and prepare the grid with enhanced efficiency, reliability 

and stability. This preparation provides the new Smart Grid for integration of large- scale smart 

appliances and RERs.  

The aim of this thesis was looking into the gaps over the past few years especially considering 

industry needs in order to put this research into practice by proposing new control strategies 

that could successfully address their requirements.  Obviously, the research can never stop and 

6.2 Limitations 
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needs moving on to cope with the growing technology. There are limitations and special needs 

in this body of work as it cannot cover all aspects of smart energy.  

An appropriate consideration needs to be taken while considering this body of work. The first 

and important factor is the advanced smart technology itself that cannot be totally covered. 

Given the fact that the control strategy of paper 1 has been continuously cited and used over 

the past few years, it is important to consider number of limitations about this study. The system 

information about the size and type of batteries are related to the time of publishing this paper. 

Manufacturers have been rapidly come up with new type of PEVs with advanced 

specifications. As an example, there are new manufacturers with different types of EVs with 

new control strategies and power electronic control devices for Power Factor Correction. 

Therefore, it is important to update the data and this information accordingly. In addition, there 

are integrated EV battery types that can be used for industrial applications. Having said that 

the proposed online approach can still perform with the updated new PEV technology.  One 

other limitation is the PEV charging levels that are not considered in this paper. Nowadays, the 

charging levels are different and therefore, the size, efficiency and charging methods are not 

considered. This paper focuses on the online coordination approach with a fixed PEV charging 

rate. It has been shown that PEVs can use different charging methods and can be charged in 

different stations (in their parking stations, shopping centers or charging stations). This 

limitation has been considered in paper 3 where a real PEV (Nissan Leaf) has been tested with 

level 2 charging.  

Another limitation/gap of this thesis is the frequency response and the possible contribution of 

EVs to a dynamic frequency control strategy. The primary frequency response can also be 

considered by EV charging strategies with large scale penetrations of DERs to create a balance 
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between the load and the source. This research is currently under investigation by candidate 

and a paper is being finalized to be submitted to a journal articles.  

Further, the variable charging is out of scope of this study and can be counted as a limitation 

that is not covered. In addition, the customer satisfaction is considered by the online 

coordination strategy and a separate constraint is not included. This is an area that could be 

added. In the literature, there are some publications which focus on variable charging and 

customer satisfaction factor. 

In second part of the thesis (objective 2), the rescheduling of SSCs are considered. In this study, 

the SSCs scheduling is an off-line approach based on a day- ahead scheduling. This is one of 

the limitation to this research. The candidate considers this limitation and is currently 

investigating the practical approaches to solve this problem. Further, the switching constraint 

need to be considered as an important factor/constraint for online SSCs scheduling. This is 

important as the online switching may not be practical as it may reduce the switching life time 

need to be restricted. 

In general, the research should continue to progress and cover a comprehensive aspect of this 

topic.  Such research requires an applicable electricity market design and development for an 

advanced day-ahead scheduling to also incorporate the policies and financial aspects of the 

design. This is important to increase public awareness and encouragement to participate in 

smart charging activities. Further to this, the capital investment and government policy for this 

new growing technology is yet to be clearly identified (Hernandez C. Jorge E. 2015).  

The nature of Smart Grid is intensely multidisciplinary and not only involves electric power 

systems and related engineering but also requires the integration of computer engineering, 

6.3 Future Directions 
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economical/financial precautions as well as control engineering.  This necessitates group of 

researchers from any related discipline to work together on both challenges and prospects to 

come up with innovative and adaptive approaches for the present Smart Grid to be prepared 

for any forthcoming and advanced technology. Therefore, one of the main future directions of 

this work could be the inclusion of computer-based control strategy with the IT and internet 

support to enhance the real- time coordination approaches of smart appliances. Further, it is 

important to consider the industry inputs and governmental financial purposes in the 

optimization approaches. These enhanced solutions can apply on new Microgrids with the 

inclusion of PEVs or Charging Stations to present/ implement solution for reliability and 

stability conditions.  One example could be the recent publication of the author 

(Derakhshandeh. S. Y. et al, 2013). This research investigates a dynamic coordination approach 

for RERs and EVs in industrial Microgrids. The published paper uses dynamic optimal power 

flow for electricity and heat generation scheduling and EV coordination in industry considering 

solar PVs generation. The aim is reducing the overall cost of industry Microgrid in grid 

connected and standalone modes. In this approach, the nature of the scheduling algorithm has 

changed from a simple hourly power flow to an advanced dynamic version by the inclusion of 

PEVs’ dynamic constraints.  

Other future instructions may also be considered in the field of Smart Grid, Microgrid and 

power quality as listed below: 

- Application of Proposed Strategy in Smart Grid 

1- The NOL - MSSCA may also be modified to include coordinated G2V applications. 

2- The proposed strategy of this thesis can also be adapted to consider THDi of EV charger 

harmonics. The THDv and THDi can be defined as new objective functions to cover 

more aspects of EV charger harmonics in power industry. 
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3- The proposed 4-Step approach for optimal dispatch of LTC/SSCs in distorted Smart 

Grid with PEVs charging loads can also be modified to simultaneously perform both 

online coordination of electric vehicle charging and optimal scheduling. This will 

definitely complicate the dispatch/controlled process, however, it may considerably 

improve the correctness and quality of the solution approach. 

4- The proposed algorithm can also be improved to also maximize the EV owners’ 

satisfaction without violating operation conditions.  This could be a new load 

management strategy to also reduce the peak load demand. This may require 

modifications to model PEV charging patterns based on the stochastic behavior of 

vehicle owners. 

5- Optimal Sizing/Siting of RDGs and Energy Storage Systems. 

6- EV charging approaches for Primary Frequency Response. 

- Application of Proposed Strategy in Microgrid (MG) 

1- The nonlinear online PEV coordination algorithm should be enhanced and developed 

for Microgrid configurations with the integration of RERs and broader variety of loads 

such as entertainment technology, home security networks, home area systems and 

smart appliances. The main focus can be the improvement of performance, efficiency 

and power quality of Smart Grid connected to the Microgrids. 

2- Considering Online Power Management of Networked Microgrids enabled by IEC-

61850-Based Cyber Communication Network. 

3- The NOL - MSSCA can be modified for optimal placement and operation of standalone 

Microgrids in remote areas. 
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