9,860 research outputs found

    Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency

    Get PDF
    Cytosine DNA bases can be methylated by DNA methyltransferases and subsequently oxidized by TET proteins. The resulting 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) are considered demethylation intermediates as well as stable epigenetic marks. To dissect the contributions of these cytosine modifying enzymes, we generated combinations of Tet knockout (KO) embryonic stem cells (ESCs) and systematically measured protein and DNA modification levels at the transition from naive to primed pluripotency. Whereas the increase of genomic 5-methylcytosine (5mC) levels during exit from pluripotency correlated with an upregulation of the de novo DNA methyltransferases DNMT3A and DNMT3B, the subsequent oxidation steps turned out to be far more complex. The strong increase of oxidized cytosine bases (5hmC, 5fC, and 5caC) was accompanied by a drop in TET2 levels, yet the analysis of KO cells suggested that TET2 is responsible for most 5fC formation. The comparison of modified cytosine and enzyme levels in Tet KO cells revealed distinct and differentiation-dependent contributions of TET1 and TET2 to 5hmC and 5fC formation arguing against a processive mechanism of 5mC oxidation. The apparent independent steps of 5hmC and 5fC formation suggest yet to be identified mechanisms regulating TET activity that may constitute another layer of epigenetic regulation

    Chemical mapping of cytosines enzymatically flipped out of the DNA helix

    Get PDF
    Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in protein–DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in protein–DNA complexes

    Chemical mapping of cytosines enzymatically flipped out of the DNA helix

    Get PDF
    Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in protein–DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in protein–DNA complexes

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Error-prone repair induced by mutant DNA methyltransferases.

    Get PDF
    Organisms utilise cytosine-5 DNA methylation to expand their repertoire of genetic transactions. Structural studies of DNA cytosine-5 methyltransferase have revealed that DNA methyltransferases incorporate nucleotide flipping into their catalytic cycle in order to access the otherwise buried pyrimidine ring from within duplex DNA. Interestingly, substituting the catalytic nucleophile Cys with Gly can produce cytotoxic forms of the bacterial methyltransferases and cause rearrangements in the DNA. In this study the generality of the cytotoxic effect has been studied on both mono and multi-specific methyltransferases. The effect of dimerisation of methyltransferases on the rearrangement event and the specificity of DNA damage have been defined. The involvement of two DNA repair proteins RecA and UmuDC has been studied. The wild type and mutant multispecific methyltransferase (M.SPRI) has been transcribed and translated in vitro and the proteins studied using surface plasmon resonance technique. The experiments described here demonstrate for the first time how a high affinity, catalytically deficient DNA methyltransferase induces error-prone deletions in E.coli

    Gene up-regulation by DNA demethylation in 35S-gshI-transgenic poplars (Populus x canescens)

    Get PDF
    Gene expression levels of transgene 35S-gshI (γ-glutamylcysteine synthetase) cloned from E. coli, and the endogenous gene gsh1 of poplar (Populus x canescens) were upregulated by the DNA demethylating agent DHAC (5,6-dihydro-5'-azacytidine hydrochloride) (10-4 M for 7 days) in aseptic leaf discs cultures. Two 35S-gshI-transgenic (6lgl and 11ggs) and wild type (WT) poplar clones were used. The efficiency of gene upregulation was also analyzed under herbicide paraquat stress (4 x 10-7 M). Levels of gshI-mRNA and gsh1-mRNA were determined by RT-qPCR (reverse transcriptase quantitative PCR) after cDNA synthesis. For internal control, the constitutively expressed housekeeping poplar genes α-tubulin and actin were used, and the 2−HHCt method was applied for data analysis. In long term DHAC treatment (21 days), a morphogenetic response of de novo root development was observed on leaf discs in a wide concentration range of DHAC (10-8 to 10-6 M). Adventitious shoots (11ggs clone) also emerged from leaf discs after a combined treatment with DHAC (10-4 M) and paraquat (10-7 M). Shoots were dissected, rooted and transplanted in glass houses for further analyses for phytoremediation capacity. Since DNA methylation patterns are inherited (epigenetic memory), these poplar plants with increased gene expression levels of both transgene 35S-gshI and endogenous gene gsh1 provide novel plant sources for in situ application

    DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site

    Get PDF
    20 pages, 7 figures, 1 table.-- PMID: 19467223 [PubMed].-- PMCID: PMC2756644.-- NIHMSID: NIHMS130041.-- Printed version published Sep 15, 2009.Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors.Partial support for this work was provided by a grant from the NIH/NCI (R21CA91315) to J.K.C. and a fellowship from the Graduate College at UNMC to D.V.B. We are grateful to S. Kumar of New England Biolabs for providing us with Eschericia coli strain ER1727 containing the pUHE25HhaI plasmid. This research was also supported in part with funds from the Intramural Research Program of the NIH, Center for Cancer Research, NCI Frederick.Peer reviewe

    DNMTs are required for delayed genome instability caused by radiation

    Get PDF
    This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited - Copyright @ 2012 Landes Bioscience.The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.This study is funded by NOTE, BBSRC and the Royal Society Dorothy Hodgkin Research Fellowship
    corecore