10,490 research outputs found

    The Covering Canadian Traveller Problem Revisited

    Get PDF
    In this paper, we consider the k-Covering Canadian Traveller Problem (k-CCTP), which can be seen as a variant of the Travelling Salesperson Problem. The goal of k-CCTP is finding the shortest tour for a traveller to visit a set of locations in a given graph and return to the origin. Crucially, unknown to the traveller, up to k edges of the graph are blocked and the traveller only discovers blocked edges online at one of their respective endpoints. The currently best known upper bound for k-CCTP is O(?k) which was shown in [Huang and Liao, ISAAC \u2712]. We improve this polynomial bound to a logarithmic one by presenting a deterministic O(log k)-competitive algorithm that runs in polynomial time. Further, we demonstrate the tightness of our analysis by giving a lower bound instance for our algorithm

    FACTORS INFLUENCING THE EVOLUTION OF YOUTH TRAVEL

    Get PDF
    Youth travel is an important part of global tourism, consequently, getting to know the evolution of this form of tourism requires an approach of the aspects regarding the permissive and restrictive factors that influence the youth travel dynamic worldwide. In terms of the factors that influence youth travel, we highlighted these two categories of factors (permissive and restrictive) and, within each category, we tried to singularize the influence of every factor over youth travel.tourism, youth travel, factors influencing evolution of youth travel, general factors, specific factors, factors that favour the development of youth travel, factors that restrict the development of youth travel

    Field Testing of a Stochastic Planner for ASV Navigation Using Satellite Images

    Full text link
    We introduce a multi-sensor navigation system for autonomous surface vessels (ASV) intended for water-quality monitoring in freshwater lakes. Our mission planner uses satellite imagery as a prior map, formulating offline a mission-level policy for global navigation of the ASV and enabling autonomous online execution via local perception and local planning modules. A significant challenge is posed by the inconsistencies in traversability estimation between satellite images and real lakes, due to environmental effects such as wind, aquatic vegetation, shallow waters, and fluctuating water levels. Hence, we specifically modelled these traversability uncertainties as stochastic edges in a graph and optimized for a mission-level policy that minimizes the expected total travel distance. To execute the policy, we propose a modern local planner architecture that processes sensor inputs and plans paths to execute the high-level policy under uncertain traversability conditions. Our system was tested on three km-scale missions on a Northern Ontario lake, demonstrating that our GPS-, vision-, and sonar-enabled ASV system can effectively execute the mission-level policy and disambiguate the traversability of stochastic edges. Finally, we provide insights gained from practical field experience and offer several future directions to enhance the overall reliability of ASV navigation systems.Comment: 33 pages, 20 figures. Project website https://pcctp.github.io. arXiv admin note: text overlap with arXiv:2209.1186

    Nookapingwa (1893-1956)

    Get PDF
    Nookapingwa was one of the best hunters and most experienced dogsled travellers in northernmost Canada and Greenland during the first half of the 20th century. He played a crucial role in the European exploration of the Queen Elizabeth Islands and northern Greenland, having acted as a guide and hunter for such explorers, scientists and government officials as Donald B. MacMillan, Lauge Koch, officers for the royal Canadian Mounted Police (notably Inspector A.H. Joy and Staff-Sergeant H.W. Stallworthy), Edward Shackleton and David Haig-Thomas. He was instrumental in many of their achievements and sometimes their survival. Nookapingwa was born in the summer of 1893 in the Thule district of northern Greenland. ... [This profile chronicles his participation in and contribution to various expeditions in and around Greenland and the District of Franklin. He was renowned for his ability to hunt, to navigate through difficult terrain and conditions and survival skills.] Several geographic features have been named after Nookapingwa: Nookap Island (off th north coast of Devon Island); Mount Nukap (1783 m) and Nukap Glacier (both near the head of Gilman Glacier, northern Ellesmere Island); Nukapingwa Glacier and Nukapinwa River (north of Borup Fiord, northern Ellesmere Island)

    Efficient Routing for Disaster Scenarios in Uncertain Networks: A Computational Study of Adaptive Algorithms for the Stochastic Canadian Traveler Problem with Multiple Agents and Destinations

    Get PDF
    The primary objective of this research is to develop adaptive online algorithms for solving the Canadian Traveler Problem (CTP), which is a well-studied problem in the literature that has important applications in disaster scenarios. To this end, we propose two novel approaches, namely Maximum Likely Node (MLN) and Maximum Likely Path (MLP), to address the single-agent single-destination variant of the CTP. Our computational experiments demonstrate that the MLN and MLP algorithms together achieve new best-known solutions for 10,715 instances. In the context of disaster scenarios, the CTP can be extended to the multiple-agent multiple-destination variant, which we refer to as MAD-CTP. We propose two approaches, namely MAD-OMT and MAD-HOP, to solve this variant. We evaluate the performance of these algorithms on Delaunay and Euclidean graphs of varying sizes, ranging from 20 nodes with 49 edges to 500 nodes with 1500 edges. Our results demonstrate that MAD-HOP outperforms MAD-OMT by a considerable margin, achieving a replan time of under 9 seconds for all instances. Furthermore, we extend the existing state-of-the-art algorithm, UCT, which was previously shown by Eyerich et al. (2010) to be effective for solving the single-source single-destination variant of the CTP, to address the MAD-CTP problem. We compare the performance of UCT and MAD-HOP on a range of instances, and our results indicate that MAD-HOP offers better performance than UCT on most instances. In addition, UCT exhibited a very high replan time of around 10 minutes. The inferior results of UCT may be attributed to the number of rollouts used in the experiments but increasing the number of rollouts did not conclusively demonstrate whether UCT could outperform MAD-HOP. This may be due to the benefits obtained from using multiple agents, as MAD-HOP appears to benefit to a greater extent than UCT when information is shared among agents

    Efficient Routing for Disaster Scenarios in Uncertain Networks: A Computational Study of Adaptive Algorithms for the Stochastic Canadian Traveler Problem with Multiple Agents and Destinations

    Get PDF
    The primary objective of this research is to develop adaptive online algorithms for solving the Canadian Traveler Problem (CTP), which is a well-studied problem in the literature that has important applications in disaster scenarios. To this end, we propose two novel approaches, namely Maximum Likely Node (MLN) and Maximum Likely Path (MLP), to address the single-agent single-destination variant of the CTP. Our computational experiments demonstrate that the MLN and MLP algorithms together achieve new best-known solutions for 10,715 instances. In the context of disaster scenarios, the CTP can be extended to the multiple-agent multiple-destination variant, which we refer to as MAD-CTP. We propose two approaches, namely MAD-OMT and MAD-HOP, to solve this variant. We evaluate the performance of these algorithms on Delaunay and Euclidean graphs of varying sizes, ranging from 20 nodes with 49 edges to 500 nodes with 1500 edges. Our results demonstrate that MAD-HOP outperforms MAD-OMT by a considerable margin, achieving a replan time of under 9 seconds for all instances. Furthermore, we extend the existing state-of-the-art algorithm, UCT, which was previously shown by Eyerich et al. (2010) to be effective for solving the single-source single-destination variant of the CTP, to address the MAD-CTP problem. We compare the performance of UCT and MAD-HOP on a range of instances, and our results indicate that MAD-HOP offers better performance than UCT on most instances. In addition, UCT exhibited a very high replan time of around 10 minutes. The inferior results of UCT may be attributed to the number of rollouts used in the experiments but increasing the number of rollouts did not conclusively demonstrate whether UCT could outperform MAD-HOP. This may be due to the benefits obtained from using multiple agents, as MAD-HOP appears to benefit to a greater extent than UCT when information is shared among agents
    • 

    corecore