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1
Introduction

Combinatorial optimization is a branch of mathematics that deals with the
question how to determine a best possible solution among a given finite set
of alternatives. One of the fundamental problems in this field is the knapsack
problem: Imagine you want to go on a hiking trip and when packing your
knapsack, you realize that it is not possible to pack everything you wanted,
the knapsack is simply too heavy. You decide to assign a positive value to
each item depending on how important it is for your trip and pack only a set
of items that does not weigh more than you can carry such that the sum of the
packed items’ values is maximized. The knapsack problem is a special case
of the generalized assignment problem, for which we study several variants
throughout this thesis.

Although it is theoretically possible to obtain an optimal solution for a
combinatorial optimization problem by enumerating all feasible alternatives,
this is, in general, a hopeless endeavor as the number of possible alternatives
often exceeds the estimated number of atoms in the known universe. Some
combinatorial optimization problems allow for “efficient” algorithms that are
able to compute an optimal solution in polynomial time. Despite a lot of re-
search, there is still a large class of problems for which not a single polynomial-
time algorithm is known. In fact, the existence of polynomial-time algorithms
for these “hard” problems is still an open question (this problem, known as the
P-vs-NP problem, is one of the unsolved Millennium problems). However, it
is widely believed that no such algorithms exist.

This motivates the analysis of approximation algorithms that yield in poly-
nomial time a solution with a guaranteed performance ratio, i.e., the solution
is always within a range of the optimal solution. Our key results in this thesis
resort to randomized algorithms that use, in contrast to deterministic algo-
rithms, random decisions. One of the advantages of randomized algorithms is
that they often yield (in expectation) better approximation factors.

Another issue when dealing with optimization problems is that we rarely
have full information: Imagine that after successfully packing your knapsack,
you are finally sitting in your car and heading towards the start of your hike.
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1. Introduction

Unfortunately, you find a mud slide blocking the road. What should you do:
wait for a clearing vehicle or choose another route which is hopefully open to
traffic? Problems of this kind fall into the field of online optimization.

An online algorithm has no knowledge about the future and has to take a
decision right after a new piece of information is revealed. The quality of online
algorithms is measured by competitive analysis, which compares the value of
the algorithm’s solution to the value of the optimal solution achievable if all
data would be known beforehand.

For the combinatorial optimization problems analyzed in this thesis, we
make use of the mathematical structure inherent in these problems in order to
make statements about their computational complexity, design approximation
and online algorithms, and obtain results on their quality.

1.1 Preliminaries

In this section we give a short overview of important notations, definitions,
and results that we frequently use throughout this thesis.

For an overview on (integer) linear programming we refer to (Chvatal,
1983; Schrijver, 1998; Nemhauser and Wolsey, 1988). An introduction to
graph-theoretic concepts can be found in (Krumke and Noltemeier, 2005;
Ahuja et al., 1993; Korte and Vygen, 2007).

1.1.1 Complexity and Approximation

An instance of an optimization problem is given by a set X of feasible solutions
and an objective function f : X → R. In a maximization problem the task
is to find an x∗ ∈ X such that f(x∗) ≥ f(x) for all x ∈ X, and for the
corresponding decision problem we are given a value B ∈ R and need to decide
whether there exists an x∗ ∈ X such that f(x∗) ≥ B or not (for minimization,
“≥” is replaced by “≤”). If the set of feasible solutions is finite, i.e., |X| <∞,
we speak of combinatorial optimization problems.

In complexity theory, one wants to express the worst-case running time
of an algorithm as a function of the “input size”. The encoding length of
an instance of a problem is the number of binary bits that are necessary to
encode the instance. We say that an algorithm runs in polynomial time if its
running time can be bounded for all instances by a polynomial in the encoding
length. If we have an algorithm that is only polynomial with respect to a unary
encoding of the numeric data, we say that it runs in pseudo-polynomial time.

The class P consists of all decision problems that can be solved in polyno-
mial time. The class NP contains all decision problems which have for every
“yes” instance a certificate that can be verified in polynomial time. A deci-
sion problem is called NP-complete if it is contained in NP and any problem
in NP can be reduced to it in polynomial time. We say that an optimization

2



1.1. Preliminaries

problem is NP-hard if its corresponding decision problem is NP-complete. A
special class of NP-hard problems are the strongly NP-hard problems, which
remain NP-hard even if a unary encoding is used for the numeric data.

It is widely believed that P 6= NP, which would imply that there does not
exist a polynomial-time algorithm for any NP-hard problem. Therefore, one
is interested in approximations. The following definitions are for the case of
maximization problems, which we mostly consider throughout this thesis, but
they easily carry over to the minimization case as shown in the last paragraph
of this section.

A deterministic polynomial-time algorithm alg is a β-approximation al-
gorithm for an optimization problem (with 0 < β ≤ 1) if it yields for every
instance I a feasible solution alg(I) such that

alg(I) ≥ β · opt(I), (1.1)

where opt(I) denotes the optimal solution for instance I. For short, we also
write alg ≥ β · opt.

A special kind of approximation algorithms are the so called (fully) polyno-
mial time approximation schemes, which we abbreviate by (F)PTAS. A PTAS
yields for every ε > 0 and instance I a feasible solution PTAS(I, ε) with

PTAS(I, ε) ≥ (1− ε) · opt(I), (1.2)

and the running time is bounded by a polynomial in the encoding length of
the problem. For an FPTAS the running time is additionally bounded by
a polynomial in 1

ε . Under the assumption P 6= NP, a strongly NP-hard
problem admits neither an FPTAS nor a pseudo-polynomial algorithm.

In contrast to deterministic algorithms, randomized algorithms use random
decisions. A randomized polynomial-time algorithm alg (whose output de-
pends on some random variable X) is a β-approximation algorithm if it yields
for every instance I a feasible solution algX(I) such that

EX [algX(I)] ≥ β · opt(I), (1.3)

and we often write for short E[alg] ≥ β · opt.
For minimization problems, it is common to express the quality of an

approximation algorithm alg by means of a factor α ≥ 1, and, using the
same notation as in (1.1), we say that alg is an α-approximation algorithm
for a minimization problem if it holds for all instances I that

alg(I) ≤ α · opt(I).

Definitions (1.2) and (1.3) carry over accordingly.
For more details on computational complexity we refer to (Papadimitriou,

1993; Garey and Johnson, 1979). An introduction to approximation algo-
rithms is given in (Vazirani, 2001; Williamson and Shmoys, 2011).

3



1. Introduction

1.1.2 The Generalized Assignment Problem

The generalized assignment problem (gap) is one of the classical combinatorial
optimization problems and the starting point for the problems studied in this
thesis. It is defined as follows:

Definition 1.1 (gap).
An instance of gap is given by a set of items I = {1, . . . , n} and a set of bins
B = {1, . . . ,m}. An item i ∈ I yields a profit of pij ∈ Z and has a weight
of wij ∈ Z≥0 when assigned to bin j ∈ B. There is a capacity Bj ∈ Z≥0 for
the maximum amount of weight that can be assigned to each bin j ∈ B.

The task is to find an assignment of a subset of the items to the bins, i.e.,
every item is assigned to at most one bin, such that every bin’s capacity is
respected and the total profit is maximized.

gap has the following natural integer programming formulation:

max
∑
i∈I

∑
j∈B

pijxij (1.4a)

s.t.
∑
j∈B

xij ≤ 1 ∀ i ∈ I (1.4b)

∑
i∈I

wijxij ≤ Bj ∀ j ∈ B (1.4c)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ B. (1.4d)

Here, xij is one if and only if item i is assigned to bin j, constraints (1.4b)
ensure that every item is assigned to at most one bin, and constraints (1.4c)
ensure that all bin capacities are respected.

gap generalizes the (multiple) knapsack problem (cf. (Kellerer et al.,
2004)), where the items’ profits and weights do not depend on the bin they
are assigned to, i.e., pij = pi and wij = wi.

The bin packing problem (cf. Nemhauser and Wolsey (1988)) can also be
seen as a special case of gap: checking whether a set of items can be packed
into a given number of bins is equivalent to solving the corresponding gap
instance with unit profits, i.e., pij = 1.

Previous Work

gap is a well-studied problem in literature. A comprehensive introduction is
given in (Martello and Toth, 1990), a survey of algorithms can be found in
(Cattrysse and Van Wassenhove, 1992), and different variants of assignment
problems are summarized in (Pentico, 2007).

Cohen et al. (2006) show that any approximation algorithm for the knap-
sack problem with approximation factor 1

γ , for some γ ≥ 1, can be used to
obtain an approximation algorithm for gap with approximation factor 1

1+γ .

4



1.1. Preliminaries

gap is known to be APX-hard1 (Chekuri and Khanna, 2006), but there ex-
ists a deterministic 1

2 -approximation algorithm (Shmoys and Tardos, 1993;
Chekuri and Khanna, 2006). The currently best-known approximation factor
of 1 − 1

e + δ, for some small constant δ > 0, is achieved by a randomized
algorithm due to Feige and Vondrák (2006). If the profit of each item does
not depend on the bin it is assigned to, i.e., pij = pi, Nutov et al. (2006) show
how the randomized algorithm of Fleischer et al. (2011) can be derandomized
using the method of conditional expectations (cf. (Alon and Spencer, 1992))
to obtain a deterministic algorithm with approximation factor 1− 1

e .
Shmoys and Tardos (1993) study a minimization version of gap where all

items have to be assigned to some bin. Since already the feasibility problem is
NP-complete, they provide a dual (1, 2)-approximation that yields for every
feasible instance a solution that violates the capacity constraints by at most
a factor of 2 and the total costs are a lower bound on the optimal solution.

1.1.3 Configuration IPs and Randomized Rounding

Throughout this thesis, we will design approximation algorithms for general-
izations of gap that resort to randomized rounding based on a configuration
integer programming formulation. This is a well-known technique (cf., e.g.,
(Fleischer et al., 2011; Bampis et al., 2013)).

A configuration t of bin j is a subset of the items that can be assigned
to bin j, and we denote its profit by pt. We write T (j) for the set of all
feasible configurations for bin j, and we denote the disjoint union of all bins’
configurations by T :=

⋃̇
j∈BT (j). We then consider the configuration-based

integer programming formulation:

(IP) max
∑
t∈T

ptxt (1.5a)

s.t.
∑
t∈T (j)

xt = 1 ∀ j ∈ B (1.5b)

∑
t∈T :i∈t

xt ≤ 1 ∀ i ∈ I (1.5c)

xt ∈ {0, 1} ∀ t ∈ T. (1.5d)

Here, variable xt, for t ∈ T (j), is one if and only if configuration t is
selected for bin j. Constraints (1.5b) ensure that one configuration is selected
for each bin, while constraints (1.5c) ensure that each item is assigned to at
most one bin.

1APX contains all problems in NP that allow for a constant-factor approximation. A
problem is APX-hard if there exists a polynomial-time and PTAS-preserving reduction from
any problem in APX to this problem (cf. (Crescenzi, 1997)).

5



1. Introduction

The problem gap is given by defining the set of feasible configurations for
bin j as all subsets whose total weight does not exceed the capacity Bj , i.e.,

T (j) := {t ⊆ I :
∑
i∈t

wij ≤ Bj},

and setting the profit for a configuration t ∈ T (j) to the sum of the items’
profits, i.e.,

pt :=
∑
i∈t

pij .

Although the number of variables in (IP) is, in general, exponential in the
encoding length of the problem, it is sometimes possible to obtain an optimal
(or approximate) solution to its linear relaxation in polynomial time. This
depends on the underlying optimization problem.

We denote the linear relaxation of (IP) by (LP) and remark that the
integrality constraint (1.5d) is relaxed to xt ≥ 0 (as xt ≤ 1 is already implied
by the other constraints).

In the following, we assume that we are given a β-approximation algorithm
for solving the linear relaxation (LP), i.e., we can obtain in polynomial time
a fractional solution xLP with objective value∑

t∈T
ptx

LP
t ≥ β · optLP, (1.6)

where optLP denotes the optimal solution of (LP).
We can then use xLP for a randomized rounding procedure and consider

the resulting values xLP
t as the probabilities for using configuration t ∈ T (j) for

bin j. More precisely, we select for every bin j a configuration independently
at random, where configuration t ∈ T (j) is selected with probability xLP

t .
Note that, by constraints (1.5b), (xLP

t )t∈T (j) defines a probability distribution
for every bin j.

Since we select exactly one configuration for each bin, the resulting vector
xIP ∈ {0, 1}|T | obtained by our randomized rounding (where xIP

t = 1 if and
only if configuration t is selected) then satisfies constraints (1.5b), i.e., exactly
one configuration is chosen for each bin, and we have for the expected profit
of the rounded solution that

E
[∑
t∈T

ptx
IP
t

]
=
∑
t∈T

ptE
[
xIP
t

]
=
∑
t∈T

ptx
LP
t

(1.6)
≥ β · optLP. (1.7)

However, the solution xIP is, in general, not a feasible solution for (IP)
since it may violate constraints (1.5c) (an item might be assigned several
times to different bins).

It now depends on the underlying optimization problem if it is possible
to design a polynomial-time procedure that obtains, based on xIP, a feasible
solution and guarantees a constant approximation factor.

6



1.1. Preliminaries

1.1.4 Online Optimization

While classical optimization theory assumes that we are given complete knowl-
edge about the problem instance, online optimization deals with optimization
problems in the presence of uncertainty. An online algorithm has to take a
series of decisions without complete knowledge about the future. New infor-
mation is revealed piece by piece and an online algorithm has to take a decision
immediately after a new piece of information is presented. This means that
for a finite sequence σ = (r1, . . . , rn) of requests, it has to produce a sequence
(a1, . . . , an) of answers, where answer ai may only depend on r1, . . . , ri.

Competitive analysis, as introduced by Sleator and Tarjan (1985), is a
popular measure for the quality of online algorithms. It compares for every
instance σ the value alg(σ) of an online algorithm alg with the objective
value opt(σ) of an optimal offline algorithm, which knows the complete se-
quence σ in advance.

In the following, we consider minimization problems. A deterministic on-
line algorithm alg is said to be c-competitive (with c ≥ 1) if it holds for all
request sequences σ that

alg(σ) ≤ c · opt(σ). (1.8)

While some authors allow for an additional additive constant, we consider this
strict version of competitiveness.

The competitive ratio of an online algorithm is defined as the infimum over
all c such that the algorithm is c-competitive.

Online optimization can also be seen as a game between an online player
and an adversary. The adversary presents a sequence of requests which he
processes using the optimal offline algorithm and aims at maximizing the
competitive ratio, while the online player chooses a strategy that minimizes
the worst-case ratio.

A randomized online algorithm ralg is a probability distribution X over
the set of deterministic online algorithms. ralg is c-competitive against an
oblivious adversary if it holds for every request sequence σ that

EX [ralg(σ)] ≤ c · opt(σ).

Here, the entire request sequence must be constructed by the adversary before
any request is processed. There are other adaptive adversary models, but we
restrict ourselves in this thesis to the oblivious adversary, which is also the
most-studied model in the literature.

Yao’s Principle (Yao, 1977) is an important result for proving lower bounds
on the competitive ratio of randomized algorithms. It states that it suffices
to choose a suitable probability distribution over the set of request sequences
such that no deterministic online algorithm “performs well” in expectation.
Formally, it is given as follows:

7



1. Introduction

Theorem 1.2 (Yao (1977)). If there is a probability distribution p̄ over the set
of request sequences such that it holds for all deterministic online algorithms
alg that

Ep̄ [alg(σ)] ≥ c · Ep̄ [opt(σ)] ,

then c is a lower bound on the competitive ratio achievable by any randomized
online algorithm.

For maximization problems, we replace (1.8) by alg(σ) ≥ 1
c ·opt(σ), and

the other definitions carry over accordingly.
More details on online optimization can be found in (Borodin and El-

Yaniv, 1998; Fiat and Woeginger, 1998).

1.2 Outline
In Chapter 2 we consider a variant of the generalized assignment problem
(gap), where all items have unit weight, and we have the additional constraint
that the amount of space used in each bin is restricted to be either zero (if the
bin is not used) or above a given lower bound, the minimum quantity (if the
bin is used). It is known that this problem does not admit a PTAS, but no
further approximation results were known so far (Krumke and Thielen, 2013).

Initially, we study the special cases of bin-independent and item-indepen-
dent profits. While the first case can be solved optimally using dynamic
programming, a similar formulation for the second case has only pseudo-
polynomial running time, and we show that there exists a (1

3 − ε)-approxi-
mation for every ε > 0. For the general case, we present a randomized algo-
rithm that is based on a configuration integer programming formulation. We
show that the linear relaxation can be solved in polynomial time and yields
an appropriate probability distribution for a randomized rounding procedure.
While the rounded solution is, in general, infeasible, we show how it can be
turned into a feasible solution with high probability by a two-stage procedure
while guaranteeing a constant approximation factor: for every c ≥ 2, our solu-
tion is feasible with probability at least 1− 1

c , and we obtain an approximation
factor of 1

2c−1 · (1−
1
e ).

In Chapter 3 we consider a generalization of gap. We relax the hard
constraints for the bin capacities and introduce for every bin a cost function
that is convex in the total load on this bin. These costs are subtracted from the
profits of assigned items, and the task is to find an assignment maximizing the
resulting net profit. This setting generalizes the work of (Barman et al., 2012;
Antoniadis et al., 2013), where a knapsack problem with additional convex
costs is studied.

We show that even restricted cases of our problem remain strongly NP-
hard and identify two cases that can be solved in polynomial time. Further-

8



1.2. Outline

more, we present a (1− 1
e )-approximation algorithm for the general case that

resorts to a randomized rounding procedure. In order to turn the rounded so-
lution into a feasible solution, we define appropriate estimators that linearize
the convex costs.

In Chapter 4 we consider a variant of the separable assignment problem
(sap). As in gap one wants to find a maximum-profit assignment of a subset
of the items to the bins. However, sap can model more general packing
constraints of the bins. In the setting we study, every item is allowed to be
assigned at most k times to different bins. We show that for this problem a
randomized ((1 − 1

ek
)β)-approximation algorithm exists whenever the single

bin subproblem admits a β-approximation. This generalizes the result known
for the case k = 1 (Fleischer et al., 2011). Finally, we show that it is possible
to derandomize this algorithm if the profits of the items do not depend on the
bin they are assigned to.

In Chapter 5 we consider the problem of scheduling intervals on identical
machines, where each interval can be seen as a job with fixed start and end
time. The goal is to accept a maximum cardinality subset of the given intervals
and assign these intervals to the machines subject to the constraint that no
two intervals assigned to the same machine overlap. This problem is a special
case of sap.

We analyze a novel online version of this problem where, initially, a set of
potential intervals and an upper bound k on the number of failing intervals is
given. If an interval fails, it can neither be accepted by the online algorithm
nor by the adversary. An online algorithm learns that an interval fails at the
time when it is supposed to be started. If a non-failing interval is accepted, it
cannot be aborted and must be processed non-preemptively until completion.
For a single machine, we prove a lower bound of k on the competitive ratio for
deterministic algorithms and present a (k + 1)-competitive online algorithm.
We show that even randomization does not help to obtain a competitive ratio
better than Ω(log k) and give a randomized (log(k+2))-competitive algorithm
for laminar sets of intervals. Moreover, we show how this algorithm can be
generalized to multiple machines, where we also obtain a competitive ratio of
log(k + 2) for the laminar case.

In Chapter 6 we consider the k-Canadian traveller problem (k-ctp), which
asks for a shortest path between two nodes s and t in an undirected graph.
However, up to k edges may be blocked, and an online algorithm learns that
an edge fails when reaching one of its endpoint.

It is known that no randomized online algorithm for k-ctp can achieve a
competitive ratio better than k+ 1, even on graphs where all paths are node-
disjoint (Westphal, 2008). We show that this bound is tight by constructing
a randomized online algorithm for this case that achieves a competitive ratio
of k + 1 against an oblivious adversary and is therefore best possible. This
is the first result on randomized algorithms for k-ctp. Furthermore, we con-
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1. Introduction

sider a setting of the k-ctp where blocked edges might become reopened after
some time that is unknown to the online algorithm. We present a (2k + 3)-
competitive algorithm for this problem and show extensions to the traveling
salesman problem with such a recoverable blockage scenario.

1.3 Credits
Most of the results presented in Chapter 2 were obtained jointly with Clemens
Thielen and Stephan Westphal and have been published in the Proceedings of
the 38th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2013) (Bender et al., 2013a). An error in the first version of
this paper was pointed out to us by Alexander Souza and corrected in the
accompanying erratum (Bender et al., 2013b).

The idea to use linear estimators for a randomized rounding procedure in
Chapter 3 has been developed together with Stephan Westphal, and parts of
this chapter appeared in the Proceedings of the Third International Symposium
on Combinatorial Optimization (ISCO 2014) (Bender and Westphal, 2014).

Chapter 4 contains material from joint work with Clemens Thielen and
Stephan Westphal that has been published in Information Processing Letters
(Bender et al., 2015b).

Initial ideas for Chapter 5 were obtained in cooperation with Clemens
Thielen and Stephan Westphal, and parts of this chapter have been submitted
for publication (Bender et al., 2015a).

The analysis of the randomized online algorithm presented in Chapter 6
has been developed together with Stephan Westphal and has been published
in the Journal of Combinatorial Optimization (Bender and Westphal, 2013).
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2
The Generalized Assignment Problem with
Minimum Quantities and Unit Weight Items

Recently, Krumke and Thielen (2013) introduced the generalized assignment
problem with minimum quantities (gap-mq), which is a generalization of gap
where the total weight of items assigned to each bin must be either zero (if
the bin is not used) or above a given lower bound, the minimum quantity
(if the bin is used). This additional restriction can be motivated from many
practical applications. Consider, e.g., power plants that will always produce
a base load of energy if they run that cannot be undercut.

In this chapter we consider the special case of gap-mq where all items
have unit weight (wij = 1), which we denote by gap-mq-unit. This can
be motivated, e.g., by the assignment of students to seminars (cf. (Krumke
and Thielen, 2013)): A number of students want to participate in a seminar
and declare their preferences for all seminars that are possibly offered. The
students correspond to the items in our setting and the seminars to the bins.
As every student occupies exactly one spot in a seminar if he is assigned,
all items have unit weight. The goal is to assign students to seminars such
that their total satisfaction is maximized, where the students’ preferences are
modeled by the profits. Naturally, every course has an upper bound on the
number of participants, e.g., due to the room size or the number of available
time slots for presentations. Furthermore, a seminar can only take place if it
has at least a minimum number of participants.

From a theoretical point of view, gap-mq-unit is also interesting to study.
While it is known that gap-mq-unit does not allow for a PTAS, there are no
further results on the approximability of this problem.

Previous Work

The generalized assignment problem with minimum quantities (gap-mq) was
introduced by Krumke and Thielen (2013). They show that the general version
of gap-mq (with arbitrary weights) does not admit a polynomial-time approx-
imation algorithm unless P = NP, but there exists a dual (1,2)-approximation
(which yields a solution that violates the minimum quantity and capacity con-
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2. Generalized Assignment with Minimum Quantities and Unit Weights

straints at most by a factor of 2 and the total profit is an upper bound on the
optimal solution).

There are a number of other problems involving minimum quantities that
have been researched in literature.

The minimum-cost flow problem has been generalized by adding minimum
quantity constraints for each arc (Seedig, 2011; Krumke and Thielen, 2011;
Zhu et al., 2011), i.e., the flow on an arc has to be either zero or above the
minimum quantity. This problem does not admit a polynomial-time approx-
imation algorithm unless P = NP, even on series-parallel graphs (Krumke
and Thielen, 2012). The maximum flow problem with minimum quantities
was studied in (Thielen and Westphal, 2013). In general, it does not allow for
a polynomial-time approximation algorithm unless P = NP, but there exists
a ( λ

2λ−1)-approximation if all arcs have the same minimum quantity λ.
In (Assmann, 1983; Assmann et al., 1984) the bin covering problem with

minimum quantity constraints is analyzed. In this problem, one is given a set
of items, each with a size independent of the bin it is assigned to, and the task
is to assign all items to bins such that the number of bins used is maximized.
However, if a bin is used, it has to be filled at least to some threshold T . The
best approximation algorithm presented in (Assmann et al., 1984) guarantees
an asymptotic ratio of 3

4 . This result was improved in the following by Csirik
et al. (2001) and Jansen and Solis-Oba (2003) to obtain an asymptotic PTAS
and an asymptotic FPTAS, respectively.

Chapter Outline

In this chapter we consider gap with additional minimum quantity restric-
tions for the bins and unit weight items. A formal definition of the problem
gap-mq-unit, some initial observations, and important previous results can
be found in Section 2.1. We first analyze two special cases: If the profits are
bin-independent (pij = pi), the problem can be solved in polynomial time
using dynamic programming as shown in Section 2.2. In Section 2.3 we see
that, although a similar dynamic programming formulation can be used to
solve the case of item-independent profits (pij = pj), its running time is only
pseudo-polynomial. This problem is NP-hard, and we give, for every ε > 0,
a (1

3 − ε)-approximation. We complement these results by showing that this
variant becomes polynomially solvable if, in addition, all bins have the same
capacity and the same minimum quantity (Bj = B, qj = q).

The case of arbitrary profits is analyzed in Section 2.4. We present a
randomized approximation algorithm that uses a configuration-based integer
program. The linear relaxation of this program is shown to be polynomially
solvable and a fractional solution can be used as a probability distribution for
a randomized rounding procedure. We show how the rounded solution can be
turned into a feasible solution with high probability by a two-stage procedure
while guaranteeing a constant approximation factor.
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2.1. Problem Definition and Preliminaries

Figure 2.1: Illustration of a feasible solution for gap-mq-unit. The thick
lines correspond to the minimum quantities.

2.1 Problem Definition and Preliminaries

Formally, the generalized assignment problem with minimum quantities and
unit weight items (gap-mq-unit) is defined as follows:

Definition 2.1 (gap-mq-unit).
An instance of gap-mq-unit is given by a set of items I = {1, . . . , n} and a
set of bins B = {1, . . . ,m}, where every bin j ∈ B has a minimum quantity
qj ∈ Z≥0 and a capacity Bj ∈ Z>0 with qj ≤ Bj. If item i ∈ I is assigned to
bin j ∈ B, it yields a profit of pij ∈ Z≥0.

The task is to find a feasible assignment of a subset of the items to the
bins, i.e., every item is assigned to at most one bin, and the number of items
in each bin j ∈ B is either zero (if bin j is not used) or at least qj and at most
Bj (if bin j is used), such that the total profit is maximized.

An illustration of a feasible assignment of an instance of gap-mq-unit is
given in Figure 2.1.

Since there are in total n items, solving an instance of gap-mq-unit where
Bj > n for some bin j is equivalent to solving the instance with Bj = n. We
summarize this observation for later reference in the following:

Observation 2.2. For all instances of gap-mq-unit it holds, without loss of
generality, that Bj ≤ n for all j ∈ B.

If we drop the minimum quantity condition (by setting qj = 0 for all
j ∈ B), the problem can be solved in polynomial time. This can, e.g., be seen
by considering the integer programming formulation (1.4) for gap: if wij = 1,
the constraint matrix is totally unimodular and the right-hand side is integer,
and, thus, it suffices to solve the linear relaxation to obtain an integer solution
(Hoffman and Kruskal, 1956).

Based on formulation (1.4), the most natural integer programming formu-
lation for gap-mq-unit is given by introducing an additional variable yj for
each bin j (that attains the value one if and only if bin j is used) as follows:
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2. Generalized Assignment with Minimum Quantities and Unit Weights

max
∑
i∈I

∑
j∈B

pijxij (2.1a)

s.t.
∑
j∈B

xij ≤ 1 ∀ i ∈ I (2.1b)

qjyj ≤
∑
i∈I

xij ≤ Bjyj ∀ j ∈ B (2.1c)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ B (2.1d)
yj ∈ {0, 1} ∀ j ∈ B. (2.1e)

Here, constraints (2.1c) ensure that if a bin is used, it satisfies both the
minimum quantity and the capacity condition.

Although this formulation might be sufficient for many practical purposes,
its integrality gap can become arbitrary large, as the following result shows.
Thus, it is not applicable for the design of LP-based approximation algorithms,
and we will make use of another formulation in Section 2.4.

Proposition 2.3. The integer programming formulation (2.1) has an un-
bounded integrality gap.

Proof. Consider an instance of gap-mq-unit consisting of n items and n bins
with qj = Bj = n for all bins j and profits given by

pij =
{

1, if i = j

0, else.

In an optimal solution of (2.1) all items have to be assigned to one bin in
order to ensure feasibility. In this case, only one item contributes to the profit
and we have opt = 1.

In the linear relaxation of (2.1), constraints (2.1d) and (2.1e) are replaced
by 0 ≤ xij ≤ 1 and 0 ≤ yj ≤ 1, respectively. In this case, we can choose
yj = 1

n for all j, and xij = 1 for i = j (and xij = 0, otherwise), and we
obtain a feasible solution with total profit optLP = n. For n→∞, the claim
follows.

In (Krumke and Thielen, 2013) it was shown by a gap-preserving reduction
from 3-bounded 3-dimensional matching that there exists a constant ε0 > 0
such that it is strongly NP-hard to approximate gap-mq-unit within a factor
smaller than (1 + ε0) (even if all profits pij are in {0, 1} and the minimum
quantities and bin capacities of all bins are fixed to three). In particular,
under the assumption P 6= NP, there exists no PTAS. Furthermore, even the
case of unit profits, i.e., pij = 1, was shown to be NP-hard. This implies
that the problem of deciding whether all items can be assigned to the bins is
NP-complete. We summarize these results in the following:
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Theorem 2.4 (Krumke and Thielen (2013)). gap-mq-unit ...

(i) ... does not admit a PTAS, unless P = NP.

(ii) ... is NP-hard for unit profits (pij = 1).

Remark 2.5. Note that the encoding length of gap-mq-unit depends on the
kind of instance we consider:

For an arbitrary instance of gap-mq-unit, the encoding length is a poly-
nomial in n and m as there are n different items and m different bins for
which profits, minimum quantities, and capacities need to be stored.

If we assume, as in the second part of Theorem 2.4, that all items are
identical, i.e., pij = 1, it suffices to store the number of items. The encoding
length is therefore a polynomial in logn and m.

2.2 Bin-Independent Profits (pij = pi)
In this section we consider the case where the profit of assigning item i to
bin j does not depend on the bin, i.e., pij = pi. We show that this problem
can be solved in polynomial time using dynamic programming.
For k ∈ {1, . . . ,m} and l ∈ {0, . . . , n}, we define

fk(l) =


1, if there exists a subset S ⊆ {1, . . . , k} of the first k bins

such that exactly l items can be assigned to bins S
0, else.

In order to obtain an optimal solution, we need to determine a maxi-
mal l∗ ∈ {0, . . . , n} such that fm(l∗) = 1, i.e., we want to find the maximum
number of items that can feasibly be assigned to some subset of the bins. As
we assume that the profit of an item does not depend on the bin it is assigned
to, the total profit is then given by the sum of the l∗ most profitable items.
Next, we deal with the question how to compute the values fk(l).

For every l ∈ {0, . . . , n}, we can easily compute f1(l) by checking whether l
items can be assigned to the first bin and set

f1(l) =
{

1, if l = 0 or q1 ≤ l ≤ B1

0, else.

In order to compute fk+1(l), we use a recursive argument and assume that
we have previously computed fk(i) for all values i ∈ {0, . . . , n}.

There are two possible cases, when we have fk+1(l) = 1: In the first case,
we have fk(l) = 1, i.e., l items can already be assigned to some subset of the
first k bins and no item needs to be assigned to bin k+ 1. In the second case,
we have fk(l− l′) = 1 for some l′ ≤ l with qk+1 ≤ l′ ≤ Bk+1. Then, l− l′ items
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2. Generalized Assignment with Minimum Quantities and Unit Weights

can be assigned to some of the first k bins, and the remaining l′ items can be
assigned to bin k + 1.

Otherwise, l items cannot be assigned to bins 1, . . . , k+1, i.e., fk+1(l) = 0.
Thus, we can compute fk+1(l) using the following rule:

fk+1(l) =


1, if fk(l) = 1 or

fk(l − l′) = 1 for some l′ ≤ l with qk+1 ≤ l′ ≤ Bk+1

0, else.

Since the bin capacities are at most n (cf. Observation 2.2), determining
fk+1(l) given fk(i) for all i ∈ {0, . . . , l} takes at most O(n). Thus, the total
running time of this dynamic program is O(mn2).

Note that the encoding length of an instance of gap-mq-unit with pij = pi
is polynomial in n and m (cf. Remark 2.5). Thus, we obtain the following
result:

Theorem 2.6. For bin-independent profits (pij = pi), gap-mq-unit can be
solved in polynomial time using dynamic programming.

So far, we were only concerned with computing the maximum total profit
that can be achieved. If we are interested in the underlying assignment, we
need to keep track of the number of items that are assigned to each bin
throughout the procedure. Recall that it does not make a difference to which
bin an item is assigned.

In the following, let Sk(l) be a k-dimensional vector, where the j-th entry
contains the number of items assigned to bin j ∈ {1, . . . , k} in the solution
corresponding to fk(l). Initially, we have for l ∈ {1, . . . , n},

S1(l) =
{
l, if q1 ≤ l ≤ B1

0, else,

and recursively we can set

Sk+1(l) =


(Sk(l), 0), if fk(l) = 1
(Sk(l − l′), l′), if fk(l − l′) = 1 for some l′ with qj ≤ l′ ≤ Bj
(0, . . . , 0), else.

2.3 Item-Independent Profits (pij = pj)
In this section we consider the case that the profit of assigning item i to bin j
does not depend on the item, i.e., pij = pj .

Note that, similar to Remark 2.5, the encoding length of this variant is
no longer polynomial in n. As it suffices to store the number of items, it is
a polynomial in logn, and it follows by the second part of Theorem 2.4 that
this variant is NP-hard:

16



2.3. Item-Independent Profits

Corollary 2.7. gap-mq-unit with item-independent profits (pij = pj) is
NP-hard.

2.3.1 Dynamic Program

By Corollary 2.7 we know that there does not exist a polynomial-time algo-
rithm unless P = NP. However, we can use a dynamic program similar to
the one from Section 2.3 to solve this case in pseudo-polynomial time.

For k ∈ {1, . . . ,m} and l ∈ {0, . . . , n} we define πk(l) as the maximum
profit that can be achieved if up to l items can be assigned to some subset of
the first k bins.

For k = 1, we can easily check whether l items can be assigned to the first
bin. In this case, every item contributes p1 to the total profit, and we compute

π1(l) =
{
l p1, if q1 ≤ l ≤ B1

0, else.

Recursively, we can compute πk+1(l) if we are given the values πk(i) for
i ∈ {0, . . . , l}. We make use of the fact that the profits are item-independent,
and check how many items should be assigned to bin k+ 1, where every item
yields a profit of pk+1. Thus, we have

πk+1(l) = max

πk(l), max
l′∈{qk+1,...,Bk+1}:

l′≤l

{
πk(l − l′) + l′ pk+1

} . (2.2)

The optimal solution is then given by πm(n), and we can obtain the un-
derlying optimal assignment analogously to Section 2.2. Since we can again
assume that the bin capacities are at most n (cf. Observation 2.2), determin-
ing the maximum in (2.2) takes at most O(n logn). Thus, the total running
time of the dynamic program is O(mn2 logn), and we obtain the following
result:

Theorem 2.8. For item-independent profits (pij = pj), gap-mq-unit can be
solved in pseudo-polynomial time using dynamic programming.

2.3.2 Approximation Algorithm

In this section we design an approximation algorithm for gap-mq-unit with
pij = pj .

A Note on the Knapsack Problem

First, we show a property of the knapsack problem, which will turn out to be
useful later on. It relates the optimal solution of a knapsack instance to the
total profit that could be achieved if more capacity was available.
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0 B 2B 3B 4B

. . .

(c− 1)B cB

Figure 2.2: Illustration for the proof of Lemma 2.9: a fractional assignment
of the items to c knapsacks of capacity B each, where fractionally assigned
items are shown in grey.

Lemma 2.9. Consider an instance of the knapsack problem (with items I,
profits pi and weights wi for all i ∈ I, and knapsack capacity B). Let I ′ ⊆ I
be a subset of the items such that

∑
i∈I′ wi ≤ cB for some c ∈ Z>0. Then,

there exists a solution for the knapsack problem yielding a profit of at least
1

2c−1
∑
i∈I′ pi.

Proof. As the total weight of all items in I ′ is at most cB, we can assign
all these items fractionally to at most c knapsacks of capacity B each, where
there are at most c−1 items that are fractionally assigned. This is illustrated
in Figure 2.2.

Note that we can assume that there is no item with weight exceeding B,
i.e., wi ≤ B for all i ∈ I (otherwise, we could simply discard i from the set of
items as it can never be packed). We can then remove all fractionally assigned
items from the c knapsacks used so far, and put each of them into its own
(additional) knapsack, which yields an integral assignment of all items to at
most 2c− 1 knapsacks (of capacity B each).

Since all items in I ′ together have a profit of
∑
i∈I′ pi, this implies that the

items in the most profitable one among these 2c − 1 knapsacks have a profit
of at least 1

2c−1
∑
i∈I′ pi, and the claim follows.

Observe that the proof of Lemma 2.9 is constructive in the sense that it
yields a set of items with the desired property. Even computing an optimal
solution for the knapsack instance (which is possible in polynomial time by
dynamic programming if the bin capacity is bounded by a polynomial in the
encoding length of the problem, cf. (Kellerer et al., 2004)) does not yield a
better bound in general, as the following example shows.

Example 2.10. Choose some integer c ≤ bB/2c+1
2 , and consider a knapsack

instance with 2c − 1 items of weight bB/2c + 1 and profit 1, and knapsack
capacity B.

Since bB/2c+ 1 > B/2, at most one item can be packed into a knapsack of
capacity B. However, the total weight of all items is

(2c− 1) (bB/2c+ 1) ≤ cB + 2c− (bB/2c+ 1) ≤ cB,
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B′opt

Bopt

Figure 2.3: Illustration for the proof of Lemma 2.11.

and, thus, even an optimal solution for the knapsack problem can achieve only
a factor 1

2c−1 of the total profit of all items.

Approximation Algorithm for pij = pj

Next, we bound the total capacity of the bins used in an optimal solution.
This will turn out to be useful in the analysis later on.

Lemma 2.11. If pij = pi, there exists an optimal solution where the total
capacity of all bins that are used is at most 2n.

Proof. Let Bopt ⊆ B be the set of bins that are used by opt and assume that
their total capacity exceeds 2n, i.e.,

∑
j∈Bopt Bj > 2n.

We now start removing bins from Bopt in non-decreasing order of prof-
its pj until we remain with a subset B′opt ⊆ Bopt with

∑
j∈B′opt

Bj ≤ 2n. By
Observation 2.2 it follows that

∑
j∈B′opt

Bj ≥ n, i.e., B′opt offers enough space
to accommodate all items.

Recall that the profits are item-independent, i.e., there is a profit pj asso-
ciated with each bin that is gained for every item that is assigned to bin j.
Thus, moving the items that have previously been assigned to Bopt \ B′opt to
B′opt yields a feasible solution without decreasing the profit. This is illustrated
in Figure 2.3.

Our approximation algorithm is based on solving a particular instance of
the knapsack problem, which we denote by kp:

The items of kp correspond to the bins of our problem, and the profit of
item (bin) j is defined as pj := pjBj , its weight is wj := Bj , and the knapsack
capacity is set to B := n. Choosing an item j in kp then corresponds to
opening bin j and filling it to its capacity Bj with items.

We can then solve this instance approximately by applying the well-known
FPTAS for the knapsack problem (cf. (Kellerer et al., 2004)), and we obtain,
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for every ε > 0, in time polynomial in the encoding length of the problem
and 1

ε a solution B′ ⊆ B such that∑
j∈B′

Bj =
∑
j∈B′

wj ≤ B = n, (2.3)

∑
j∈B′

pjBj =
∑
j∈B′

pj ≥ (1− ε) · optKP, (2.4)

where optKP denotes the optimal solution of kp.
If we fill, in our instance of gap-mq-unit, the bins B′ to their capacity, all

minimum quantities and capacities are trivially respected. By (2.3) we assign
at most n items in total, i.e., we have a feasible assignment. Furthermore,
(2.4) yields a lower bound on the total profit of this assignment, which we will
use in the following.

Next, we show that an optimal solution for kp with knapsack capacity set
to B = 2n (which we denote by opt2n

KP) yields an upper bound on the optimal
solution opt of our problem gap-mq-unit with pij = pj .

Lemma 2.12. It holds that opt2n
KP ≥ opt.

Proof. By Lemma 2.11 we know that we can assume that opt uses bins of
total capacity at most 2n. Hence, the set of bins that are used by opt is also
a feasible solution for our problem kp if we set the capacity to B = 2n, and
the claim follows.

We are now ready to show the performance guarantee of our algorithm,
which is the main result of this section.

Theorem 2.13. For gap-mq-unit with item-independent profits (pij = pj),
there exists, for every ε > 0, a (1

3 − ε)-approximation with running time poly-
nomial in the encoding length of the problem and 1

ε .

Proof. If we apply Lemma 2.9 with c = 2 to kp, it follows that

optKP ≥
1
3 · opt2n

KP, (2.5)

where optKP and opt2n
KP denote, as before, the optimal solutions for kp with

B = n and B = 2n, respectively.
Combining (2.4), (2.5), and Lemma 2.12, we see that our solution B′ yields

a total profit of

∑
j∈B′

pjBj ≥ (1− ε) · optKP ≥
1
3 · (1− ε) · opt2n

KP ≥
(1

3 − ε
)
· opt.
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2.3.3 Identical Minimum Quantities and Capacities

If we assume, in addition to pij = pj , that for all bins minimum quantities
and capacities are the same, i.e., qj = q and Bj = B for some q and B, we
can compute an optimal solution in polynomial time as we will show below.
In the following, we assume that the bins are sorted in non-increasing order
of profits p1 ≥ · · · ≥ pm.

As all bins are identical, the dn/Bemost profitable bins have a total capacity
of dn/Be · B ≥ n, i.e., they can accommodate all n items. In fact, an optimal
solution only uses, without loss of generality, (a subset of) theses bins: Assume
an additional bin dn/Be + 1 was used in an optimal solution. Then we could
increase the profit by moving the items assigned to this bin to bins 1, . . . , dn/Be.
We summarize this in the following:

Observation 2.14. When determining an optimal solution, it suffices to con-
sider the dn/Be most profitable bins.

If n/B ∈ Z, filling all bins to their capacity B is obviously optimal. Now,
let n/B 6∈ Z. For this case, we can obtain an optimal solution by the following
procedure: We fill bins 1, . . . , bn/Bc to their capacity B. Then, there are
l := n−B·bn/Bc < B remaining items that are not assigned, and we distinguish
the following cases:

Case 1: If l ≥ q, we fill bin dn/Be with all remaining q ≤ l ≤ B items and
obtain an optimal solution. This is illustrated in Figure 2.4(a).

Case 2: If l < q, the remaining items alone do not suffice to fill bin dn/Be to its
minimum quantity. The question of interest is thus whether to use this
bin or not, and we choose the better of the following two alternatives:

a) If bin dn/Be is not used, the l remaining items are dropped and
do not contribute to the total profit. This is illustrated in Fig-
ure 2.4(b).

b) If bin dn/Be is used, it is filled to its minimum quantity q by “shift-
ing” items from bins 1, . . . , bn/Bc. There are B − q items that can
possibly be shifted from any of the previous bins, where bins are
considered in non-decreasing order of profits. This is illustrated in
Figure 2.4(c).
Note that moving more items does not make sense as it cannot be
optimal to close a bin in favor of opening an identical bin which
yields only less profit per item. By the same argument it holds
in this case that the last bin dn/Be is never assigned more than q
items.
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(a) Case 1.

(b) Case 2a. (c) Case 2b.

Figure 2.4: Illustration of the different cases in the optimal solution for
identical minimum quantities and capacities. The thick lines correspond to
the minimum quantity.

Hence, we obtain the following result:

Theorem 2.15. For item-independent profits (pij = pj) and identical mini-
mum quantities (qj = q) and capacities (Bj = B), gap-mq-unit can be solved
in polynomial time.

2.4 Approximation Algorithm for the General
Case

In this section we present an approximation algorithm for the case of arbitrary
profits pij . The algorithm resorts to randomized rounding based on a configu-
ration integer programming formulation as described in Section 1.1.3. Before
we present our algorithm in detail, we give a brief overview of the different
steps of our procedure and its analysis. For an illustration of the algorithm
see Figure 2.5.

In Section 2.4.1 we show that, although our integer programming formula-
tion has an exponential number of variables, its linear relaxation can be solved
in polynomial time by column generation. We then use a solution to the linear
relaxation as a probability distribution for our algorithm that selects for each
bin a configuration independently at random.

The set of chosen configurations will, in general, not correspond to a fea-
sible solution. Hence, in order to obtain a feasible integral solution, we apply
a clean-up procedure that works in two steps as described in Section 2.4.2: In
the first step, we discard a subset of the bins opened in order to ensure that
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(a) Solution obtained after the ran-
domized rounding.
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(b) Step 1: Removing configurations
such that #places used ≤ #items.
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(c) Step 2: Removing multiple copies
of items ...
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(d) ... and filling freed places with
unassigned items.

Figure 2.5: Illustration of the randomized rounding algorithm.

the overall occupied space (i.e., the total number of places used in the bins)
is at most n. In the second step, we then replace remaining multiply assigned
items in the solution by unassigned items in order to obtain a feasible integral
solution. Our solution is feasible with high probability and we have a constant
approximation factor.

2.4.1 Randomized Rounding Procedure

gap-mq-unit can be modeled as a configuration integer program (cf. (1.5)).
We therefore define the set of feasible configurations for bin j as the union of
the empty set and all subsets of the items with cardinality at least qj and at
most Bj , i.e.,

T (j) := {t ⊆ I : qj ≤ |t| ≤ Bj} ∪ {∅}.

As before, T :=
⋃̇
j∈BT (j) denotes the disjoint union of all bins’ configurations.

If we set the profit of a configuration t ∈ T (j) to

pt :=
∑
i∈t

pij ,

gap-mq-unit is then given as follows:

(IP) max
∑
t∈T

ptxt (2.6a)

s.t.
∑
t∈T (j)

xt = 1 ∀ j ∈ B (2.6b)

∑
t∈T :i∈t

xt ≤ 1 ∀ i ∈ I (2.6c)

xt ∈ {0, 1} ∀ t ∈ T. (2.6d)

We denote by (LP) the linear relaxation of (IP) (recall that (2.6d) is relaxed
to xt ≥ 0).

23



2. Generalized Assignment with Minimum Quantities and Unit Weights

Solving the Linear Relaxation

We now show that, even though the number of variables in (IP) is, in general,
exponential in the encoding length of the instance of gap-mq-unit, we can
solve (LP) in polynomial time.

To this end, it suffices to show that we can find a column of (LP), i.e., a
configuration, with maximum reduced costs in polynomial time (this problem
is also called the pricing problem). This follows, e.g., by results of (Mehlhorn
and Ziegelmann, 2000; Minoux, 1987), and is based on the observation that a
linear program can be solved in polynomial time if and only if its separation
problem can be solved in polynomial time (cf. (Grötschel et al., 1988)): If we
consider the dual program to (LP), which is given by

(DLP) min
∑
j∈B

yj +
∑
i∈I

zi (2.7a)

s.t. yj +
∑
i∈t

zi ≥ pt ∀ t ∈ T (j) ∀ j ∈ B (2.7b)

zi ≥ 0 ∀ i ∈ I, (2.7c)

the separation problem of (DLP) asks for some given y and z (with z ≥ 0),
whether (2.7b) holds for all t ∈ T (j) and for all j ∈ B, or if there exists
a bin j′ ∈ B and a configuration t′ ∈ T (j′) such that yj′ +

∑
i∈t′ zi < pt′ .

This problem can be solved by determining a column of (LP) with maximum
reduced costs, i.e., by solving

max
j∈B

max
t∈T (j)

pt − yj −
∑
i∈t

zi. (2.8)

If this value is larger than 0, we have found a violating constraint, and
otherwise, (2.7b) holds for all t ∈ T (j) and for all j ∈ B. Hence, if we can
solve the pricing problem in polynomial time, we can also solve (DLP) and by
duality theory also (LP) in polynomial time, and we have:

Theorem 2.16. If the pricing problem of (LP) can be solved in polynomial
time, then (LP) can be solved in polynomial time.

In the following, we describe how the pricing problem (2.8) can be solved
in our setting in polynomial time.

For each bin j ∈ B, finding a configuration t ∈ T (j) of maximum reduced
costs is equivalent to solving

max
t∈T (j)

∑
i∈t

(pij − zi)︸ ︷︷ ︸
=:p′i

, (2.9)

which is a knapsack problem with n unit-weight items, knapsack capacity Bj ,
profit p′i := pij − zi for item i, and an additional minimum quantity con-
straint qj .
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2.4. Approximation Algorithm for the General Case

This single bin version of gap-mq-unit can be solved by greedily selecting
the item i with maximum value p′i until we have either selected Bj items,
or the next item i satisfies p′i < 0. If this procedure returns an infeasible
configuration with less than qj items, we continue selecting the item i with
maximum value p′i (which is from now on always negative) until we have
selected exactly qj items. If the resulting total profit is non-negative, we are
done. Otherwise, the empty configuration is optimal. This is summarized in
Algorithm 2.1.

Algorithm 2.1 Greedy algorithm for gap-mq-unit with |B| = 1
1: Sort the items in non-decreasing order of profits p′1 ≥ · · · ≥ p′n and initial-

ize A := ∅, i := 1.
2: while |A| < Bj do
3: if p′i < 0 and |A| ≥ qj then
4: if

∑
a∈A pa < 0 then

5: A := ∅
6: end if
7: break
8: else
9: A := A ∪ {i}, i := i+ 1
10: end if
11: end while
12: return A

Lemma 2.17. For a single bin (|B| = 1), gap-mq-unit can be solved in
polynomial time by Algorithm 2.1.

Proof. Let A and O be the sets of items accepted by alg and opt, respec-
tively.

If O = ∅, the profit of any feasible subset of the items is non-positive. In
particular, the profit of the qj best items is non-positive, and the statement
in step 4 is satisfied for |A| = qj , i.e., alg sets A = ∅ in step 5 and returns
this solution.

If O 6= ∅, we know that opt accepts the |O| ∈ {qj , . . . , Bj} most profitable
items with

∑
i∈O pi ≥ 0, and accepting more items would violate the bin

capacity Bj or decrease the total profit. alg also accepts the items O and
terminates afterwards.

In order to determine a column of (LP) with maximum reduced costs, we
solve the pricing problem (2.9) for every bin j, which yields one configuration
for each bin. If we choose out of these configurations the one which maxi-
mizes −yj + (2.9), we obtain an optimal solution to the pricing problem (2.8).
By Theorem 2.16 and Lemma 2.17 we thus obtain:
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2. Generalized Assignment with Minimum Quantities and Unit Weights

Theorem 2.18. (LP) can be solved in time polynomial in the encoding length
of gap-mq-unit.

The Randomized Rounding Step

We can use an optimal fractional solution xLP ∈ [0, 1]|T | of (LP) to perform a
randomized rounding as described in Section 1.1.3: We choose for each bin j
a configuration independently at random, where a configuration t ∈ T (j)
is chosen with probability xLP

t . The resulting vector xIP ∈ {0, 1}|T | (where
xIP
t = 1 if and only if configuration t is chosen) then satisfies constraints (2.6b),

and for the expected profit of the rounded solution it holds (as shown in (1.7)),
that

E
[
profit(xIP)

]
= E

[∑
t∈T

ptx
IP
t

]
=
∑
t∈T

ptE
[
xIP
t

]
=
∑
t∈T

ptx
LP
t = optLP,

where we denote by optLP the optimal solution of (LP) and write for short
profit(x) :=

∑
t∈T ptxt. Hence, we have the following:

Observation 2.19. The vector xIP ∈ {0, 1}|T | obtained from the randomized
rounding process satisfies constraints (2.6b) and E[profit(xIP)] = optLP.

Observe that xIP is, in general, not a feasible solution to (IP) since it may
violate constraints (2.6c) (an item might be assigned several times to different
bins). In particular, the total number of items assigned to bins in the solution
xIP may be larger than n (when counted with multiplicities). We will come
back to this issue in the next section.

2.4.2 Obtaining a Feasible Solution

As we have seen, the solution xIP is, in general, not feasible for (IP), and we
now show how we can turn it into a feasible solution (with high probability)
while only decreasing the expected profit by a constant factor.

Our procedure works in two steps: In the first step, we discard (in some
cases) a subset of the bins opened in xIP in order to ensure that the total
number of places used in the bins is at most n. Formally, the number of places
used by xIP in bin j is defined as

∑
t∈T (j) |t| · xIP

t , i.e., items that are assigned
to multiple bins are also counted multiple times. In the second step, we then
replace all remaining multiply assigned items in the solution by unassigned
items in order to respect the minimum quantity constraints and, thus, obtain
a feasible integral solution.

First Step

We start by describing the first step of the procedure where we discard a subset
of the bins. In the following, let c ≥ 2 be an arbitrary but fixed integer. We
distinguish two cases:
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2.4. Approximation Algorithm for the General Case

Case 1: If the number of places used in xIP is at most cn, we can obtain a
subset of the configurations of xIP such that the total number of places
used is at most n, and the expected profit is at least 1

2c−1 · profit(xIP)
(the proof is given below).

Case 2: If the number of places used in xIP exceeds cn, we discard none of
the configurations and leave the solution unchanged (and infeasible).

The lower bound for the profit in Case 1 can be seen by the following
argument:

Given the vector xIP ∈ {0, 1}|T | obtained from the randomized rounding
process, we consider the following instance of the knapsack problem: The
objects that can be packed into the knapsack are the configurations t ∈ T
with xIP

t = 1, i.e., the configurations selected by xIP. The weight of object t
is the number |t| of items contained in configuration t, and its profit is the
profit pt of configuration t. The knapsack capacity is set to n.

As we assume in Case 1 that the total number of places used in the bins
in xIP is at most cn, the sum of the weights of all objects in the knapsack
instance is at most cn. Thus, it follows by Lemma 2.9 that there exists a
set of objects, i.e., a subset of the configurations in xIP, with total weight at
most n and profit at least a fraction 1

2c−1 of the sum of all objects’ profits.
This computation can be performed in polynomial time based on the idea of
the proof of Lemma 2.9:

We therefore place all the objects t ∈ T with xIP
t = 1 (in a random order)

in a large knapsack of capacity cn. As described before, we can then find an
integral assignment of all items to at most 2c−1 knapsacks of capacity n each
(cf. Figure 2.2). Since the sum of all items’ profits is profit(xIP), choosing
one of these 2c − 1 knapsacks uniformly at random then yields an expected
profit of at least 1

2c−1 · profit(xIP).
In Case 2, the solution remains unchanged. Thus, together with Observa-

tion 2.19 we have:

Observation 2.20. The solution obtained after the first clean-up step has
expected profit at least 1

2c−1 · optLP.

Second Step

After the first step, there might be still some items that are assigned to mul-
tiple bins. Therefore, we remove in the second step each multiply assigned
item from all bins but the one where it yields the highest profit. The following
analysis shows that we lose at most a factor of (1 − 1

e ) in the total profit by
this removal process.

We fix an item i and denote by yij the probability that item i is assigned to
bin j after the first clean-up step. We assume, without loss of generality, that
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the bins are sorted by non-increasing profit of item i, i.e., pi1 ≥ pi2 ≥ · · · ≥ pim.
Hence, item i is assigned to bin 1 in the second step with probability yi1 and
it yields a profit of pi1.

Observe that the bins’ configurations are initially chosen independently
at random and the first clean-up step does not cause any dependencies. The
events “item i is assigned to bin j after the first clean-up step” are therefore
independent for j = 1, . . . ,m, and the probability that item i is assigned to
bin 2 in the second step is given by (1−yi1) yi2. In this case, it contributes pi2
to the total profit. By applying the same argumentation for the remaining
bins, we see that the expected profit obtained from item i is then given as

yi1pi1 + (1− yi1)yi2pi2 + · · ·+
m−1∏
j=1

(1− yij)yimpim

≥
(

1−
(

1− 1
m

)m) m∑
j=1

pijyij

≥
(

1− 1
e

) m∑
j=1

pijyij .

Here, we used the arithmetic-geometric mean inequality and the fact that
(1− 1

m)m ≤ 1
e for all m ≥ 1 (cf. (Goemans and Williamson, 1994)).

Since the total expected profit is the sum of the expected profits obtained
from each item, we can perform this procedure separately for every item, and
altogether, we obtain a solution with expected profit at least

∑
i∈I

(
1− 1

e

) m∑
j=1

pijyij =
(

1− 1
e

)∑
i∈I

m∑
j=1

pijyij .

≥ 1
2c− 1

(
1− 1

e

)
optLP,

where the last inequality follows from Observation 2.20.
After the removal of multiply assigned items, some of the bins that are

opened may not be filled to their minimum quantities anymore, i.e., our solu-
tion is not feasible.

In Case 1, we constructed our solution such that the total number of places
used after the first step was no more than the number n of available items.
Hence, for each item i that is assigned to l ≥ 2 bins, there must be l− 1 items
that were not assigned to any bin after the first step. Thus, we can refill the
l−1 places vacated by deleting copies of item i with items that were previously
unassigned. Doing this for all multiply assigned items yields a feasible solution
that respects the minimum quantities of the bins.

Observe that the procedure of filling freed places does not decrease the
total profit since we assume that all profits pij are non-negative.
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Observation 2.21. The solution obtained after the second clean-up step has
expected profit at least 1

2c−1 ·
(
1− 1

e

)
· optLP and is feasible in Case 1.

Observe that this last step is, in general, not possible in Case 2, and our
algorithm will end up with an infeasible solution. However, we can bound the
probability of this “bad” event. Therefore, we make use of Markov’s inequality
(cf. (Mitzenmacher and Upfal, 2005)), which is a well-known estimate for the
tail probability:

Theorem 2.22 (Markov’s inequality). If X is a non-negative random vari-
able, then it holds for all a > 0 that

Pr(X ≥ a) ≤ E [X]
a

.

In order to apply Theorem 2.22 to our problem, we define the random
variable X as the number of places used in xIP for which we have

E [X] = E
[∑
t∈T
|t| · xIP

t

]
=
∑
t∈T
|t| · E

[
xIP
t

]
=
∑
t∈T
|t| · xLP

t

=
∑
i∈I

∑
t∈T :i∈t

xLP
t

(2.6c)
≤ n. (2.10)

If we set a := cn, it thus follows that

Pr (X > cn) ≤ Pr (X ≥ cn) ≤ E [X]
cn

(2.10)
≤ n

cn
= 1
c
. (2.11)

Hence, our algorithm outputs a feasible solution with probability at least
1 − 1

c . Together with Observation 2.21 and the fact that optLP ≥ opt we
obtain:

Theorem 2.23. For every c ≥ 2, the randomized rounding algorithm yields
an expected profit of at least 1

2c−1 ·
(
1− 1

e

)
·opt and outputs a feasible solution

with probability at least 1− 1
c .

As an alternative to Markov’s inequality, estimates for the tail probabili-
ties can also be obtained using Chernoff-Hoeffding bounds (cf. Mitzenmacher
and Upfal (2005)). These bounds are often stronger in certain settings, and
there are estimates for different variants that have in common that the ran-
dom variable of interest X is required to be the sum of independent random
variables X1, . . . , Xm.

If we define for our problem for every bin j the random variable Xj as the
number of places used in bin j (in the solution xIP from the randomized round-
ing), we have that the total number of places used in xIP is X =

∑m
j=1Xj .

Note that X1, . . . , Xm are independent as the configurations are chosen inde-
pendently for each bin.
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While the classical Chernoff bound assumes that we have independent 0-1-
random variables, this is not the case in our setting, and we make use of the
extension to bounded random variables due to Hoeffding (1963):

Theorem 2.24 (Hoeffding’s inequality). Let X1, . . . , Xm be independent ran-
dom variables with Xj ∈ [aj , bj ] for all j ∈ {1, . . . ,m}, and X :=

∑m
j=1Xj.

Then,

Pr(X − E [X] ≥ α) ≤ e
−2α2∑m

j=1(bj−aj)2
.

As every bin’s capacity is at most n (cf. Observation 2.2), we can apply
Theorem 2.24 with aj := 0, bj := n, and α := (c− 1)n, and obtain

Pr(X ≥ cn) = Pr(X − n ≥ (c− 1)n)
(2.10)
≤ Pr(X − E [X] ≥ (c− 1)n)

≤ e
−2(c−1)2n2

mn2 = e
−2(c−1)2

m =: Hm(c). (2.12)

As we can see, the bound Hm(c) obtained in (2.12) depends on m, and
it holds for fixed c that Hm(c) → 1 for m → ∞, i.e., for large m the tail
bound becomes weak. However, for a fixed m, the exponential decrease of Hm

ensures that there exists a value c′(m) such that Hm(c) ≤ 1
c for all c ≥ c′(m)

as illustrated in Figure 2.6. This means that there are cases where (2.12)
yields sharper estimates for our problem than the Markov bound (2.11).

0 c

1

2 106

Figure 2.6: Illustration of the estimates for the tail probabilities as a function
of c obtained from Markov’s inequality (2.11) (solid line) and Hoeffding’s
inequality (2.12) for m = 1 (dotted line), m = 5 (dashed line), and m = 20
(dash-dotted line).

2.5 Conclusions
In this chapter we considered the problem gap with unit weight items and an
additional minimum quantity constraint for the bins. We first analyzed the
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2.5. Conclusions

two special cases of item-independent and bin-independent profits. For the
general case of arbitrary profits, we presented a randomized approximation
algorithm.

The performance guarantee of our algorithm does, however, depend on a
value c, which can be interpreted as the trade-off between high probability for
a feasible solution and good approximation factor. If we want to ensure that
we obtain a solution that is always feasible, we need to choose c = m (every
bin’s capacity is at most n, and, thus, there can also be at most mn places to
be occupied by the algorithm after the randomized rounding). The approxi-
mation factor we derived in Theorem 2.23 depends in this case on the valuem.
It thus remains an open question whether there exists a (randomized) approx-
imation algorithm with constant approximation factor that always outputs a
feasible solution.

In contrast to most related problems in literature (cf. (Fleischer et al.,
2011)), the sets of feasible configurations of our problem are not an indepen-
dence system, i.e., after removing an item from a bin, the packing for this bin
might not be feasible anymore. As we have seen, this makes the procedure
of obtaining a feasible solution from the rounded solution more difficult. In
the context of assigning students to seminars one could think of other prob-
lems with this property: if we wish to arrange groups that are in some sense
balanced (e.g., with respect to previous performance or gender of the partic-
ipants), not every subset of a feasible group is again feasible. It would be
interesting to study further problems of this kind.
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3
The Generalized Assignment Problem with

Convex Costs

In this chapter we consider a natural generalization of gap by dropping the
“hard” constraints for the bin capacities and introducing for every bin j a
cost function cj that depends on the total weight of items assigned to this
bin. Then, we define the net profit of a solution as the sum over all profits for
assigned items minus the costs incurred by the bins. We focus our attention
on the class of convex cost functions and call the resulting problem generalized
assignment problem with convex costs (gap-cc).

The motivation for considering convex cost functions stems from schedul-
ing problems that are concerned with energy-efficient computing environ-
ments, which is known as speed scaling (cf. (Albers, 2010)). If the workload
on a processor increases, it has to run at a higher speed and, thus, its energy
consumption increases. This dependence follows approximately the cube-root
rule, which states that the energy consumption increases cubic in the speed.

Most optimization problems that have been researched in this field so far
have “hard” constraints, e.g., minimizing the total energy consumption such
that all jobs are completed, or minimizing the flow time given a fixed energy
budget (cf. (Albers, 2010)). Pruhs and Stein (2010) note that it would be of
more practical relevance to consider an objective function that takes both the
rewards that are earned for a job and a convex cost function depending on the
current workload into account. This would, e.g., allow to model the situation
of the operator of a large data center that has to decide whether to accept
or reject requests for computation times on his servers. In our setting, the
requests correspond to the items and the servers to the bins.

Previous Work

Special cases of gap-cc have been subject to recent research. Barman et al.
(2012) consider the case |B| = 1 and provide a 1

3 -approximation algorithm
that first sorts the items in non-increasing order of value-to-weight ratio and
then applies a greedy procedure. Furthermore, they analyze the problem
under different additional feasibility constraints and show that the related
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online problems (where the items arrive over time and an immediate decision
whether to accept or reject the item has to be made without knowledge about
future items) allow for competitive ratios that are only a constant factor worse
than for the corresponding problems without the convex cost function.

Antoniadis et al. (2013) improve upon the results in (Barman et al., 2012)
and show how the ideas of the 1

3 -approximation algorithm can be modified
and analyzed to guarantee an approximation factor of 1

2 . Furthermore, they
propose a dynamic program and show how this can be scaled in order to obtain
an FPTAS. For the case of concave cost functions, they show that the problem
can be solved optimally in polynomial time by a greedy procedure.

Chapter Outline

In this chapter we consider a generalization of the problem gap where we
drop the capacity constraints for the bins and add convex cost functions to
the objective function that depend on the load on each bin. A formal definition
of this problem gap-cc and some preliminaries can be found in Section 3.1.
In Section 3.2 we consider the single bin version of gap-cc, before we deal
in the remainder of this chapter with the case of multiple bins. We show
strong NP-hardness for restricted cases in Section 3.3, and we identify two
polynomially solvable cases in Section 3.4. For the general case we present in
Section 3.5 an approximation algorithm based on randomized rounding of a
configuration integer program. In order to turn the rounded solution into a
feasible solution, we define appropriate estimators that linearize the convex
costs.

3.1 Problem Definition and Preliminaries

The generalized assignment problem with convex costs (gap-cc) is formally
defined as follows:

Definition 3.1 (gap-cc).
An instance of gap-cc is given by a set of items I = {1, . . . , n} and a set
of bins B = {1, . . . ,m}. If item i ∈ I is assigned to bin j ∈ B, it yields a
profit of pij ∈ Z≥0 and increases the load of bin j by the weight wij ∈ Z>0.
For each bin j there is a convex, non-decreasing cost function cj : R≥0 → R≥0
with cj(0) = 0, and we assume that cj can be evaluated in constant time. For
pairwise disjoint subsets I1, . . . , Im ⊆ I, the assignment of items I1, . . . , Im to
bins 1, . . . ,m, respectively, yields a total net profit of

π(I1, . . . , Im) :=
∑
j∈B

∑
i∈Ij

pij − cj

∑
i∈Ij

wij

 .
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The task is to find an assignment of a subset of the items to the bins, i.e.,
every item is assigned to at most one bin, such that the total net profit is
maximized.

This can be summarized in the following non-linear integer program:

max
∑
j∈B

(∑
i∈I

pijxij − cj

(∑
i∈I

wijxij

))
(3.1a)

s.t.
∑
j∈B

xij ≤ 1 ∀ i ∈ I (3.1b)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ B. (3.1c)

In Definition 3.1 we require the cost functions cj to be convex. If we allow
for arbitrary non-convex cost functions, the following result shows that we
cannot hope for the existence of constant-factor approximation algorithms:

Theorem 3.2 (Antoniadis et al. (2013)). For gap-cc with arbitrary (non-
convex) cost functions, there does not exist a constant-factor approximation
algorithm (even for a single bin), unless P = NP.

Note that gap-cc contains gap as a special case, e.g., by choosing the
cost function for bin j as

cj(w) =
{

0, if w ≤ Bj
Mj(w −Bj), else,

(3.2)

as illustrated in Figure 3.1. Here, the constantMj :=
∑
i∈I pij+1 ensures that

in an optimal solution the load on bin j is no more than the bin capacity Bj
in gap. Hence, we have even for piecewise-linear cost functions the following:

Observation 3.3. gap-cc contains gap as a special case.

Note that it is, besides this negative result, possible to model gap-cc as
a linear integer program:

Since the weights are by assumption integer, it suffices to evaluate cj at
the integer points 0, 1, . . . ,Wj , where Wj :=

∑
i∈I wij . If we interpolate the

cost function cj using these points, we obtain a piecewise linear function c̄j

consisting of Wj pieces φ1
j , φ

2
j , . . . , φ

Wj

j with φlj(x) = aljx+ blj for some values
alj , b

l
j ∈ R.
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w

cj(w)

0

Mj

Bj Bj + 1

Figure 3.1: Using cost functions cj as given in (3.2) shows that gap is a
special case of gap-cc.

The function c̄j is again convex, we have that c̄j(x) = maxWj

l=1 φ
l
j(x) for

all x ∈ {0, 1, . . . ,Wj}, and we can rewrite (3.1) using standard arguments as

max
∑
j∈B

(∑
i∈I

pijxij

)
− zj

s.t.
∑
j∈B

xij ≤ 1 ∀ i ∈ I

zj ≥ φlj

(∑
i∈I

wijxij

)
∀ j ∈ B, l ∈ {1, . . . ,Wj}

xij ∈ {0, 1} ∀ i ∈ I, j ∈ B
zj ≥ 0 ∀ j ∈ B.

Note that, however, the number of interpolation points (and thus also the
number of constraints in this program) is exponential in the encoding length
of gap-cc.

If we wish to restrict ourselves to a constant number of interpolation points,
we are not guaranteed to obtain an optimal solution anymore. In fact, even
dropping one interpolation point can imply that we do not find a solution with
positive net profit as the following example shows:

Example 3.4. Suppose there is a single bin with cost function c1(w) = w2

and two items that both yield a profit of p11 = p21 = 2 and have a weight of
w11 = w21 = 1. One can easily see that an optimal solution would accept one
of the two items yielding a total net profit of 1.

If we used an estimate c̃1 (instead of c̄1) for the cost function with only
two interpolation points 0 and 2, i.e., c̃1(w) = 2w, it would be optimal (with
respect to c̃1) to assign none of the items, which yields a actual net profit of 0.
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3.2 The Single Bin Case
In this section we consider the single bin version of gap-cc, i.e., |B| = 1,
which corresponds to the knapsack problem with convex costs. Therefore, we
also denote this problem in the following by kp-cc. As there is only one bin,
we write for short wi and pi for the weight and profit of item i, respectively,
and denote the cost function of the knapsack by c.

By Observation 3.3, kp-cc contains the knapsack problem as a special
case and is therefore NP-hard. We show that it remains NP-hard even if the
cost function is quadratic, and we have that the weight of each item equals its
profit, i.e., wi = pi for all items i.

Theorem 3.5. kp-cc is NP-hard, even if the weight of each item i equals
its profit (wi = pi) and the cost function is quadratic.

Proof. We perform a reduction from subset-sum, which is known to be NP-
complete (cf. (Garey and Johnson, 1979)). An instance of subset-sum is
given by a set A and integers ai ∈ Z≥0 for all i ∈ A and some B ∈ Z≥0. The
task is to decide whether there exists a subset A′ ⊆ A such that

∑
i∈A′ ai = B.

We construct an instance of kp-cc as follows: Consider the cost function
c(w) = w2

2B , and define for every i ∈ A an item i ∈ I with pi := wi := ai. The
net profit of a subset I ′ ⊆ I is given by

π(I ′) =
∑
i∈I′

ai − c

∑
i∈I′

ai

 =
∑
i∈I′

ai −
1

2B

∑
i∈I′

ai

2

.

Note that

0 ≤ 1
2B

∑
i∈I′

ai −B

2

= 1
2B

∑
i∈I′

ai

2

−
∑
i∈I′

ai + B

2

implies that π(I ′) ≤ B
2 for all subsets I ′ ⊆ I and π(I ′) = B

2 if and only if∑
i∈I′ ai = B.

Next, we identify two special cases that can be solved in polynomial time:

Proposition 3.6. kp-cc can be solved in polynomial time if all items have
the same weight (wi = w) or the same profit (pi = p).

Proof. If all items have the same weight, we sort the items in non-increasing
order of profits, and greedily add items to our selection as long as the total
net profit increases.

Assume this did not yield an optimal solution, i.e., there are items i and i′
with pi > pi′ , where i is not chosen by opt, but i′ is. Then, exchanging i by i′
would increase the net profit.

The case that all items have the same profits can be solved analogously
by sorting the items in non-decreasing order of weights.
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Although Theorem 3.5 rules out the possibility of a polynomial-time al-
gorithm for solving kp-cc (assuming P 6= NP), we show next that there
exists an algorithm with pseudo-polynomial running time, which is based on
the ideas of the dynamic program known for the classical knapsack problem
(cf. Kellerer et al. (2004)).

Our algorithm works as follows: We set an upper bound Pmax :=
∑
i∈I pi,

and define for all k ∈ {1, . . . , n} and l ∈ {1, . . . , Pmax} the value fk(l) as the
minimum total weight of a subset S ⊆ {1, . . . , k} of the first k items that
yields a profit of exactly l, i.e.,

fk(l) := min
{∑
i∈S

wi : S ⊆ {1, . . . , k} and
∑
i∈S

pi = l

}
. (3.3)

If the minimum does not exist, we set fk(l) :=∞. By assumption the cost
function c is non-decreasing, and it follows that under all assignments which
yield a profit of l the one with minimal total weight also incurs minimal total
costs. Thus, we obtain an optimal solution for kp-cc by computing

max
l∈{0,...,Pmax}

l − c(fn(l)).

The values fk(l) can be determined by

f1(l) =
{
w1, if l = p1

∞, else,

and the recursion formula

fk+1(l) = min{fk(l), fk(l − pk+1) + wk+1}.

As there are nPmax values that need to be determined and each one can
be determined in constant time, the total running time of this procedure is
O(nPmax). Note that the encoding length of an instance of kp-cc is only
polynomial in log(Pmax), and thus we have:

Proposition 3.7. kp-cc can be solved in pseudo-polynomial time using dy-
namic programming.

Independently of our work, Antoniadis et al. (2013) proposed a different
dynamic programming formulation. We believe that our formulation is more
natural. However, their formulation has the advantage that it uses a stronger
upper bound (for the net profit), and it can be scaled appropriately in order
to obtain an FPTAS:

Theorem 3.8 (Antoniadis et al. (2013)). There exists an FPTAS for the
single bin version of gap-cc.
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3.3 Complexity
We have already seen in Observation 3.3 that gap-cc contains gap as a
special case. In this section we show strong NP-hardness for restricted cases
of gap-cc that use, in particular, more realistic cost functions.

Theorem 3.9. gap-cc is strongly NP-hard, even if the cost functions of all
bins are identical (cj = c) and quadratic, the weight of an item is the same
for each bin (wij = wi), and either

(i) the weight of each item equals its profit (wi = pi), or

(ii) all items have the same profit (pij = p).

Proof. We perform a reduction from 3-partition, which is known to be
strongly NP-complete (cf. Garey and Johnson (1979)). In an instance of
3-partition we are given non-negative integers a1, . . . , a3m, B ∈ Z≥0 such
that B

4 < ai <
B
2 for all i ∈ {1, . . . , 3m} and

∑3m
i=1 ai = mB. The task is

to decide whether there exists a partition into sets of three elements each,
i.e., ∪̇mj=1Uj = {1, . . . , 3m} with |Uj | = 3 for all j ∈ {1, . . . ,m} such that∑
i∈Uj ai = B for all j ∈ {1, . . . ,m}.
Given an instance of 3-partition, we construct an instance of gap-cc,

where every bin j ∈ {1, . . . ,m} has the same convex, quadratic cost function cj
with cj(w) := w2

2B .
In (i), where it has to hold that wi = pi for all items i, we define an item

i ∈ I with wi := pi := ai for all i ∈ {1, . . . , 3m}. The net profit when assigning
I1, . . . , Im ⊆ I to bins 1, . . . ,m, respectively, is then given as

π(I1, . . . , Im) =
m∑
j=1

∑
i∈Ij

ai −

(∑
i∈Ij ai

)2

2B

 ,
and we show next that it attains the value mB

2 if and only if there exists a
3-partition:

It is easy to verify that if there is a 3-partition, then the corresponding
assignment yields a net profit of mB2 .

Vice versa, assume there is an assignment I1, . . . , Im with a total net profit
of mB2 . Analogously to the proof of Theorem 3.5, it holds that the contribution
of every bin j to the total net profit is at most B

2 . Thus, we have for all
bins j ∈ {1, . . . ,m} that

∑
i∈Ij

ai −

(∑
i∈Ij ai

)2

2B = B

2 ,

which is equivalent to
∑
i∈Ij ai = B.
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3. The Generalized Assignment Problem with Convex Costs

In (ii), where it has to hold that pij = p, we define an item i ∈ I with
wi := ai and pi := p := c (n ·maxiwi)+1 for all i ∈ {1, . . . , 3m}. Note that we
assume that the cost function can be evaluated in constant time, and, hence,
p can be determined in constant time. This “large” profit ensures that all
items have to be assigned to some bin in an optimal solution, and we show
that there exists an assignment with net profit π∗ := np − mB

2 if and only if
there exists a 3-partition:

If there is a 3-partition, it follows by definition that the corresponding
assignment yields a net profit of π∗.

If there exists an assignment with net profit π∗, convexity of the cost
functions implies that the load on every bin j is exactly B: Let B + δj be the
load on bin j, where

∑
j∈B δj = 0. Then, the total costs incurred are

mB

2 =
∑
j∈B

cj(B + δj) = 1
2B

(
mB2 + 2B

∑
j∈B

δj︸ ︷︷ ︸
=0

+
∑
j∈B

δ2
j

)

= mB

2 + 1
2B

∑
j∈B

δ2
j ,

which implies that δj = 0 for all j. Thus, there exists a 3-partition.

Observe that, when using a similar reduction from partition instead of
3-partition, we can see that the problem is also (weakly) NP-hard for two
bins under the previous assumptions.

Corollary 3.10. Under the assumptions of Theorem 3.9, gap-cc is NP-
hard, even for two bins, i.e., |B| = 2.

In particular, the case of constant profits, which can be solved in polyno-
mial time for the single bin case (Proposition 3.6), becomes NP-hard for two
bins.

3.4 Polynomially Solvable Cases
We have seen that gap-cc is strongly NP-hard under the assumptions of
Theorem 3.9. In this section we identify two special cases of gap-cc that can
be solved in polynomial time.

3.4.1 A Round-Robin Algorithm for Identical Cost
Functions, Unit Weights, and Bin-Independent Profits
(wij = w, pij = pi, cj = c)

If we consider the special case where we assume that the profits do not de-
pend on the bin (pij = pi), all cost functions are identical (cj = c), and the
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1 2 3
4 5 6

7 8 . . .

Figure 3.2: Illustration of a round-robin assignment of Algorithm 3.1.

weights are constant (wij = w), the problem can be solved in O(n logn) by
Algorithm 3.1.

The idea of the algorithm is to sort the items in non-increasing order of
profits and then keep on adding them to the bins in a round-robin manner,
i.e., item i is assigned to bin (i mod m) + 1 (see Figure 3.2) as long as the net
profit increases.

Algorithm 3.1 Round-Robin Algorithm for pij = pi, wij = w, cj = c

1: Sort the items I in non-increasing order of profits, i.e., p1 ≥ p2 ≥ · · · ≥ pn.
2: for i = 1, . . . , n do
3: if the net profit increases when item i is assigned to bin (i mod m) + 1

then
4: assign item i to bin (i mod m) + 1
5: end if
6: end for

Theorem 3.11. If the profits do not depend on the bin (pij = pi), the weights
are constant (wij = w), and all bins have the same cost function (cj = c),
gap-cc can be solved in O(n logn) by Algorithm 3.1.

Proof. We assume, without loss of generality, that wij = 1 (if this does not
hold, we simply scale the common weight w appropriately and modify the cost
functions).

Observe that an optimal solution assigns, without loss of generality, items
to the bins such that the loads of the bins differ by at most one: otherwise,
the items could be reassigned such that this property holds and the net profit
is increased (since the profits do not change and the cost functions are convex
and identical for all bins). Hence, we can assume that an optimal solution is
given in a round robin-manner.

Since the net profit function can be evaluated in constant time, the running
time is dominated by the time needed for the sorting of the items, which can
be done in O(n logn).
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s

i1

i2

i3

b1

b2

t

0

0

0

−p11−p12

−p21

−p22

−p
31

−p32

c1(1)

c1(2)− c1(1)

c1(3)− c1(2)

c2(3)− c2(2)
c2(2)− c2(1)

c2(1)

0

Figure 3.3: Illustration of the network for three items and two bins. The
labels on the arcs correspond to the costs. Arc (t, s) has capacity∞, all other
arcs have capacity 1.

3.4.2 A Minimum-Cost Flow Model for Item-Independent
Weights (wij = wj)

The problem gap-cc can also be solved in polynomial time if we restrict it to
have weights that do not depend on the items, i.e., wij = wj . In this case, we
can model it as a minimum-cost flow problem.

Therefore, consider the following network: There is a node for every item i
and for every bin j and two additional nodes s and t. There are arcs from s to
all items with costs 0. Furthermore, there is an arc between item i and bin j
with costs −pij , and there are n parallel arcs connecting bin j with the sink t
that have costs of cj(a)−cj(a−1) for a ∈ {1, . . . , n}, respectively, representing
the additional costs incurred by the a-th unit of weight on bin j. All of these
arcs have unit capacity. Finally, there is an arc connecting t with s at cost 0
and capacity ∞. This network is illustrated in Figure 3.3.

Observe that we can assume all weights to be 1 (as argued in the proof of
Theorem 3.11, we can modify the cost functions otherwise), and since the cost
functions are convex and non-decreasing we have that 0 ≤ cj(a)− cj(a− 1) ≤
cj(b)− cj(b− 1) for all a ≤ b. Thus, a minimum-cost circulation in the given
network corresponds to an assignment of items to bins with maximum net
profit.

In order to solve gap-cc for wij = wj , we simply need to compute a
minimum-cost circulation in the given network. Since the minimum-cost flow
problem can be solved in polynomial time (cf. Ahuja et al. (1993)) and the
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graph has m+ n+ 2 = O(m+ n) nodes and n+ 2mn+ 1 = O(mn) arcs, we
obtain the following result:

Theorem 3.12. gap-cc can be solved in polynomial time if the weights do
not depend on the item (wij = wj).

3.5 Approximation Algorithm for the General
Case

In this section we design an approximation algorithm for the case of arbi-
trary profits. Following the general scheme as described in Section 1.1.3, it is
based on randomized rounding of a configuration integer programming formu-
lation. The linear relaxation of this program can be solved approximately by
an FPTAS and the resulting fractional solution yields a suitable probability
distribution for a randomized rounding procedure. However, the rounded so-
lution is, in general, infeasible and in order to turn it into a feasible solution,
we define appropriate estimators that linearize the convex costs.

3.5.1 Randomized Rounding Procedure

Besides the straight-forward formulation (3.1), gap-cc can also be formulated
as a configuration-based integer linear program (cf. (1.5)).

Although it might lead to negative net profits, it is allowed to assign any
subset of the items to each of the bins, i.e., the set of feasible configurations
for bin j is given by

T (j) := 2I .

As before, we write T :=
⋃̇
j∈BT (j) for the disjoint union of all bins’ configu-

rations. Denoting the net profit of a configuration t ∈ T (j) by

πt :=
∑
i∈t

pij − cj

(∑
i∈t

wij

)
,

gap-cc is given as follows:

(IP) max
∑
t∈T

πtxt (3.4a)

s.t.
∑
t∈T (j)

xt = 1 ∀ j ∈ B (3.4b)

∑
t∈T :i∈t

xt ≤ 1 ∀ i ∈ I (3.4c)

xt ∈ {0, 1} ∀ t ∈ T. (3.4d)
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We denote again the linear relaxation of (IP) by (LP) (recall that (3.4d)
is relaxed to xt ≥ 0).

Observe that (LP) has an exponential number of variables (|T | = m 2n).
However, we can use a result by Fleischer et al. (2011) that shows how an
approximation for (LP) can be obtained using an approximation algorithm
for the single bin subproblem, i.e., the problem of finding an optimal config-
uration for a fixed bin (we give a proof for a generalization of this result in
Section 4.2.1):

Theorem 3.13 (Fleischer et al. (2011)). If there exists an FPTAS for the
single bin subproblem, then there exists an FPTAS for solving the linear re-
laxation (LP).

As we have already stated in Theorem 3.8, Antoniadis et al. (2013) de-
signed an FPTAS for the single bin subproblem. This yields together with
Theorem 3.13 the following result:

Corollary 3.14. There exists an FPTAS for solving (LP).

Our randomized rounding can then be performed as described in Sec-
tion 1.1.3: For a fixed ε > 0, we first solve (LP) approximately as described
above using the FPTAS and obtain a fractional solution xLP ∈ [0, 1]|T | in
time polynomial in the encoding length of the problem and 1

ε . Then, we
choose for each bin j a configuration independently at random, where con-
figuration t ∈ T (j) is chosen with probability xLP

t . The resulting vector
xIP ∈ {0, 1}|T | (where xIP

t = 1 if and only if configuration t is chosen) then
satisfies constraints (3.4b) and the expected net profit of the rounded solution
is given (as shown in (1.7)) by

E
[
net-profit(xIP)

]
= E

[∑
t∈T

πtx
IP
t

]
=
∑
t∈T

πtE
[
xIP
t

]
=
∑
t∈T

πtx
LP
t

≥ (1− ε) · optLP, (3.5)

where optLP denotes the optimal solution of (LP), and we use the notation
net-profit(x) :=

∑
t∈T πtxt. Hence, we have:

Observation 3.15. The vector xIP ∈ {0, 1}|T | obtained from the randomized
rounding process satisfies (3.4b) and E[net-profit(xIP)] ≥ (1− ε) · optLP.

Observe that xIP does, in general, not fulfill (3.4c) since an item might be
assigned to more than one bin.
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wt′

wt′
wt
· cj(wt)

cj(wt′)

wt

cj(wt)

Figure 3.4: Illustration of the linearized costs as given in Definition 3.16 and
Lemma 3.17 for configurations t (with total weight wt) and t′ ( t (with total
weight wt′).

3.5.2 Obtaining a Feasible Solution

In order to turn xIP into a feasible solution of (IP), we need to remove multiple
copies of items from the bins they are assigned to. In classical gap, where
cj ≡ 0 for all j, the straightforward way of doing this is to delete each item
from all bins it is assigned to except for the one where it yields the highest
profit (cf. (Fleischer et al., 2011)).

Due to the non-linear cost functions cj , one also has to take the cost
increase caused by the items’ weights into account. One natural way to do
this is to “linearize” the costs by charging every item an amount of the costs
proportional to its weight as illustrated in Figure 3.4. This motivates the
following definition:

Definition 3.16. For a configuration t ∈ T (j), we define the net profit con-
tribution of item i with respect to configuration t as

µti :=


pij − wij∑

k∈t
wkj

cj

(∑
k∈t

wkj

)
, if i ∈ t

0, else.

Note that for each t ∈ T the net profit contributions of all items with
respect to t sum up to the net profit of configuration t, i.e.,∑

i∈t
µti = πt. (3.6)

Moreover, the following result shows that we can use the net profit contribu-
tions with respect to a configuration in order to obtain a lower bound on the
net profit of any subset of the configuration:
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Lemma 3.17. For every configuration t′ ⊆ t, we have∑
i∈t′

µti ≤ πt′ .

Proof. For t′ = t, the result holds by (3.6). For t′ ( t, let j denote the bin to
which configuration t corresponds, i.e., t ∈ T (j). Observe that for 0 ≤ x < y
the convexity of cj and the assumption that cj(0) = 0 imply that

cj(x) = cj

((
1− x

y

)
0 + x

y
y

)
≤
(

1− x

y

)
cj(0)︸ ︷︷ ︸

=0

+x

y
c(y) = x

y
c(y). (3.7)

If we choose x :=
∑
i∈t′ wij and y :=

∑
i∈twij (which satisfy 0 ≤ x < y

since we assume that wij > 0 for all i, j and t′ ( t), this shows that

cj

∑
i∈t′

wij

 ≤ ∑
i∈t′ wij∑
i∈twij

· cj

(∑
i∈t

wij

)
. (3.8)

Using this inequality, we obtain

∑
i∈t′

µti =
∑
i∈t′

pij −
∑
i∈t′ wij∑
k∈twkj

· cj

∑
k∈t

wkj

 ≤∑
i∈t′

pij − cj

∑
i∈t′

wij

 = πt′ .

In order to decide to which bin a multiply assigned item remains assigned,
we now use the net profit contributions we defined above. If an item i is
assigned to multiple bins, we delete it from all bins except for the one where
the expression

Eij :=

∑
t∈T (j):
i∈t

µtix
LP
t

yj
(3.9)

is maximal. Here, we denote by yj :=
∑
t∈T (j):i∈t x

LP
t the probability that

item i is assigned to bin j. Note that for the classical gap it holds that
µti = pij for all t ∈ T (j), i.e, Eij = pij (which coincides with the removal
procedure of Fleischer et al. (2011)).

The expression Eij can be interpreted as the conditional expectation of
the net profit contribution of item i in bin j given that the configuration
chosen for bin j contains i. To make this notion more precise, we define for
an integral vector x ∈ {0, 1}|T | (that is possibly infeasible for (3.4)) the net
profit contribution of item i in bin j as

µji (x) :=
∑

t∈T (j):
i∈t

µtixt,

46



3.5. Approximation Algorithm for the General Case

and, analogously, the net profit contribution of an item i is defined as the sum
over all bins, i.e.,

µi(x) :=
∑
t∈T :
i∈t

µtixt =
∑
j∈B

µji (x). (3.10)

Note that we then have that

Eij = E
[
µji (x

IP) | configuration chosen for bin j contains item i
]
. (3.11)

We denote by x̄IP the feasible solution we obtain after removing multiple
copies in our rounded solution xIP (as defined above). In the following, we
want to bound the expected net profit contribution of item i in x̄IP from below
(summing over all items will then yield a lower bound for the expected actual
net profit of our solution x̄IP).

Let i ∈ I be an arbitrary but fixed item and number the bins in non-
increasing order of (3.9) such that Ei1 ≥ Ei2 ≥ . . . ≥ Eim.

With probability y1 the configuration that is chosen for bin 1 contains
item i. In this case, item i is assigned to bin 1 and (as we will show in more
detail below) its expected net profit contribution is at least Ei1.

With probability (1 − y1)y2 the configuration chosen for bin 1 does not
contain item i, but the one for bin 2 does (this holds since the configurations
for the bins are chosen independently). In this case, item i is assigned to bin
2 and its expected net profit contribution is at least Ei2. This argumentation
can be applied in the same way to the remaining bins:

We consider for each j ∈ {1, . . . ,m} the set Sj of outcomes of the random
variable xIP for which the configurations chosen for bins 1, . . . , j − 1 do not
contain item i, but the one for bin j does.

As the configurations are chosen independently for each bin, it holds that

Pr(Sj) =

j−1∏
k=1

(1− yk)

 yj . (3.12)

Furthermore, we have for the expected net profit contribution of item i
in x̄IP conditioned on Sj :

E
[
µi(x̄IP) | Sj

]
=

∑
k∈B

E
[
µki (x̄IP) | Sj

]
(3.13)

= E
[
µji (x̄

IP) | Sj
]

(3.14)

≥ E
[
µji (x

IP) | Sj
]

(3.15)
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= E
[
µji (x

IP) | configuration chosen for bin j contains i
]

(3.16)
(3.11)= Eij . (3.17)

Here, the first equality (3.13) is due the definition of µi and linearity of
the conditional expectation.

Equality (3.14) holds since the condition Sj implies that x̄IP
t = 0 for all

configurations t ∈ T \ T (j) with i ∈ t: The configurations chosen by xIP for
bins 1, . . . , j − 1 do not contain item i. As the configuration chosen by xIP

for bin j contains item i, the assumption that the bins are numbered in non-
increasing order of (3.9) then implies that further copies of the item in bins
j + 1, . . . ,m are deleted. Therefore, item i is only contained in bin j (in
solution x̄IP).

Inequality (3.15) is valid since for every t ∈ T (j) with i ∈ t that is chosen
in xIP, x̄IP chooses a subset t′ ⊆ t for bin j. As we argued above, the condi-
tion Sj implies that i ∈ t′, and by (3.8) it holds that µt′i ≥ µti, i.e., i has in t′
at least the same net profit contribution as in t.

Finally, (3.16) holds since the expected net profit contribution of item i
in bin j (in the solution xIP obtained from the randomized rounding) is inde-
pendent of the random choices for configurations of the other bins.

The events S1, . . . ,Sm cover all cases where item i is contained in the final
solution x̄IP. Thus, we obtain by (3.12) and (3.17) that the expected net profit
contribution of item i in x̄IP is

E
[
µi(x̄IP)

]
=

m∑
j=1

Pr(Sj) · E
[
µi(x̄IP) | Sj

]

≥
m∑
j=1

j−1∏
k=1

(1− yk)

 yjEij

≥
(

1−
(

1− 1
m

)m) m∑
j=1

yjEij (3.18)

≥
(

1− 1
e

) m∑
j=1

yjEij (3.19)

(3.9)=
(

1− 1
e

) ∑
t∈T :
i∈t

µtix
LP
t . (3.20)

Here, we used the arithmetic-geometric mean inequality for (3.18) and the
fact that (1 − 1

k )k ≤ 1
e for all k ≥ 1 for (3.19) (cf. Goemans and Williamson

(1994)).
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Hence, the expected total net profit of our solution x̄IP is

E
[
net-profit(x̄IP)

]
= E

[∑
t∈T

πtx̄
IP
t

]
(3.6)= E

[∑
t∈T

(∑
i∈t

µti

)
x̄IP
t

]

=
∑
i∈I

E

∑
t∈T :
i∈t

µtix̄
IP
t


(3.10)=

∑
i∈I

E
[
µi(x̄IP)

]
(3.20)
≥

∑
i∈I

(
1− 1

e

) ∑
t∈T :i∈t

µtix
LP
t

=
(

1− 1
e

) ∑
t∈T

∑
i∈t

µti︸ ︷︷ ︸
=πt

xLP
t

(3.5)
≥

(
1− 1

e

)
(1− ε) optLP

≥
(

1− 1
e
− ε
)

optLP. (3.21)

Obviously, it holds that optLP ≥ opt, and we obtain the following result:

Proposition 3.18. For every ε > 0, there exists a randomized
(
1− 1

e − ε
)
-

approximation algorithm for gap-cc whose running time is polynomial in the
encoding length of the problem and 1

ε .

In fact, one can even slightly improve upon the previous result. If we use
for (3.19) the sharper estimate

1−
(

1− 1
k

)k
≥ 1− 1

e
+ 1

32k2 for all k ≥ 1,

due to Nutov et al. (2006), we can bound the expected net profit from below
similar to (3.21) by (

1− 1
e

+ 1
32m2 − ε

)
· optLP.

If we then choose ε = 1
32m2 (which guarantees that 1

ε is polynomial in the
encoding length of the problem), we obtain the following result:

Theorem 3.19. There exists a randomized (1− 1
e )-approximation algorithm

for gap-cc.
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3.6 Conclusions
In this chapter we introduced and analyzed the problem gap-cc, which gen-
eralizes the classical gap. While we were able to solve certain special cases
in polynomial time, we showed that even restricted cases of gap-cc remain
strongly NP-hard. Finally, we presented a randomized approximation algo-
rithm for the general case.

The idea of this algorithm can also be applied if we have additional feasi-
bility constraints for the bins (Barman et al. (2012) consider, e.g., the single
bin version of gap-cc with additional matroid constraints). The existence of
a β-approximation for the single bin subproblem implies that there also exists
a β-approximation for the linear relaxation of the integer programming for-
mulation (3.4) (cf. Section 4.2.1). Our analysis then yields that there exists
a ((1− 1

e )β)-approximation for multiple bins.
For classical gap with fixed profits (pij = pi), the approximation algo-

rithm from Fleischer et al. (2011) can be derandomized (Nutov et al., 2006).
However, our setting is harder to analyze since the net profit obtained in a bin
cannot be separated into the items’ profits. It thus remains an open problem
whether such a derandomization can also be performed for (some cases of) our
problem, or whether there exist other deterministic approximation algorithms.
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4
The Separable Assignment Problem

with Multiple Copies of Items

In this chapter we consider the separable assignment problem (sap) where
we are given a set of bins B and a set of items I to pack into the bins.
For each item i ∈ I and bin j ∈ B, there is a profit pij that is obtained
when assigning item i to bin j. Moreover, for every bin j, there is a separate
packing constraint. This means that only certain subsets of the items fit into
bin j, but if a set S ⊆ I of items is a feasible packing for bin j, then every
subset S′ ⊆ S is also a feasible packing for bin j. The objective is to find an
assignment of a subset of the items to the bins such that a feasible packing is
obtained for each bin, no item is assigned to more than one bin, and the total
profit is maximized.

As an important special case, sap contains gap, in which the feasible
packings of bin j are all subsets of the items with total weight at most the
given capacity Bj .

In the following, we define the problem k-sap, in which each item can be
assigned at most k ≥ 1 times in total (but no item may be assigned more than
once to the same bin). This obviously generalizes sap. Moreover, we study
a generalization of k-sap in which we are given a different number ki ≥ 1 for
each item i (that specifies the maximum number of bins it may be assigned
to). As we will see below, k-sap is, for any fixed k ≥ 1, also a special case of
sap that, however, allows for better approximation results.

This version of sap can be motivated, e.g., from the assignment of adver-
tisements to magazines: A set of potential customers (items) want to place
their advertisements in up to k different magazines (bins), and customer i is
willing to pay pij if his ad is placed in magazine j. The media group that
publishes the magazines aims at maximizing their total profit for accepted
ads, while having to respect several constraints, e.g., only a limited number of
ads can be assigned to every magazine (due to space restrictions), or adver-
tisements of competitors should not be placed in the same magazine.1

1While the first constraint can also be modeled in gap, forbidding certain subsets of
items in such a general way is not possible in gap.
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4. The Separable Assignment Problem with Multiple Copies of Items

Previous Work

For the general case of sap, the best-known approximation result is the
((1 − 1

e )β)-approximation obtained by Fleischer et al. (2011) under the as-
sumption that the single bin subproblem admits a β-approximation algorithm.
If the single bin subproblem admits an FPTAS, their method yields a (1− 1

e )-
approximation for sap. Furthermore, they show that sap can, in general, not
be approximated in polynomial time with an approximation factor better than
(1− 1

e ), unless NP ⊆ DTIME(nO(log logn)).2

A ((1− 1
e )β)-approximation for sap can also be obtained from the results

of Calinescu et al. (2011), who gave a (1− 1
e )-approximation for a general class

of submodular maximization problems.

Chapter Outline

In this chapter we consider the problem k-sap, which is a generalization of
sap where items may be assigned to at most k ≥ 1 bins. A formal definition
of this problem and some preliminaries can be found in Section 4.1. In Sec-
tion 4.2 we show how to generalize the approach in (Fleischer et al., 2011) to
obtain an approximation algorithm for k-sap based on randomized rounding
of a configuration-based integer program. Even though, in general, finding an
optimal solution for an instance of k-sap is not easier than for sap, intuition
suggests that for larger k the different bins are less linked,3 which could fa-
cilitate finding a good approximate solution. We show that this intuition is
correct by proving an approximation factor of ((1− 1

ek
)β) for each k ≥ 1 under

the assumption that the single bin subproblem admits a β-approximation al-
gorithm. Whenever the single bin subproblem admits an FPTAS, our method
yields a (1− 1

ek
)-approximation for k-sap, which shows that k-sap admits for

k ≥ 2 approximation algorithms which beat the upper bound of (1− 1
e ) known

for sap.
In Section 4.3 we show that the randomized algorithm from Section 4.2

can be derandomized using the method of conditional expectations (cf. (Alon
and Spencer, 1992)) if we have for each item i and bin j that pij = pi, i.e.,
the profits are bin-independent. In Section 4.4 we study a generalization of
k-sap, where we allow that there is a different number ki ≥ 1 for each item i
that specifies the maximum number of bins item i may be assigned to. Given
a β-approximation for the single bin subproblem, we show that our method
yields a ((1− 1

ek
)β)-approximation for this case, where k := mini∈I ki.

2DTIME(f) denotes the class of problems for which there exists a deterministic algorithm
with running timeO(f) (cf. (Vazirani, 2001)). In particular, it holds: P = ∪k∈NDTIME(nk).

3For k = n, an optimal solution can be obtained by determining an optimal solution for
each bin separately.
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4.1. Problem Definition and Preliminaries

4.1 Problem Definition and Preliminaries

The separable assignment problem (sap) is formally defined as follows:

Definition 4.1 (Separable assignment problem (sap)).
An instance of sap is given by a set of items I and a set of bins B. Every
bin j ∈ B has a separate packing constraint which satisfies that if a subset
S ⊆ I of the items is a feasible packing for bin j, then every subset S′ ⊆ S is
also feasible for bin j. If item i ∈ I is assigned to bin j ∈ B, it yields a profit
of pij ∈ Z.

The task is to find a feasible assignment of a subset of the items to the
bins, i.e., every item is assigned at most once and the packing constraints of
all bins are satisfied, such that the total profit is maximized.

For sap the following “inapproximability result” is known:

Theorem 4.2 (Fleischer et al. (2011)). sap cannot be approximated in poly-
nomial time within an approximation factor better than (1− 1

e ), unless NP ⊆
DTIME(nO(log logn)).

For a fixed number k ∈ Z>0, that is not part of the input, we consider the
problem k-sap, which is given as follows:

Definition 4.3 (k-sap).
An instance of k-sap is given as in sap. The task is to find an assignment
of the items to the bins, such that every item is assigned at most k times in
total (but at most once to every bin), the packing constraints of all bins are
satisfied and the total profit is maximized.

Obviously, k-sap generalizes sap, and we have:

Proposition 4.4. For any fixed k ≥ 1, finding an optimal solution for k-sap
is not easier than finding an optimal solution for sap.

Proof. Given an instance of sap, we construct an instance of k-sap by adding
k − 1 additional bins for which all subsets of the items are feasible and in
which every item i yields profit one more than the maximum profit maxj∈B pij
obtainable from item i in the original bins B.

It is then immediate that an optimal solution for the instance of k-sap will
assign every item once to each of the additional bins, and finding an optimal
assignment for the remaining bin is equivalent to finding an optimal solution
to the given instance of sap.

Conversely, it also holds that:

Proposition 4.5. For any fixed k ≥ 1, k-sap is a special case of sap.
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4. The Separable Assignment Problem with Multiple Copies of Items

Proof. Given an instance of k-sap, we can construct an instance of sap by
replacing each of the original items by k identical copies and forbidding more
than one copy of an item to be packed into the same bin (by defining the
packing constraints in a suitable way). Then, finding an optimal solution
for the instance of k-sap is equivalent to finding an optimal solution for the
original instance of sap.

Note that, despite the previous results, the upper bound of (1− 1
e ) known

for the approximability of sap (Theorem 4.2) does not carry over to k-sap for
k ≥ 2. By the reduction used in the proof of Proposition 4.4, the existence
of an α-approximation for k-sap (with k ≥ 2) does not immediately imply
the existence of an α-approximation for sap. In particular, the existence of
an approximation algorithm for k-sap with approximation factor better than
(1− 1

e ) remains possible. In fact, we show in the remainder of this chapter that
an approximation factor of (1− 1

ek
) can be achieved for k-sap if the single bin

subproblem admits an FPTAS. This beats the upper bound known for sap
for k ≥ 2.

4.2 Approximation Algorithm
In this section we present an approximation algorithm for k-sap that resorts to
randomized rounding of a configuration integer programming formulation as
presented in Section 1.1.3. Our analysis generalizes the work of Fleischer et al.
(2011) for the case k = 1. When modifying the rounded solution to obtain a
feasible solution, the different problem setting requires a more evolved analysis
to bound the loss in profit.

4.2.1 Randomized Rounding Procedure

The problem k-sap can be modeled as a configuration integer program, where
the set T (j) of feasible configurations for bin j is already (explicitly) given
in the problem definition, and T :=

⋃̇
j∈BT (j) denotes the disjoint union of

all bins’ configurations. As for gap, the profit of a configuration t ∈ T (j) is
pt :=

∑
i∈t pij , and we have the following formulation:

(IP) max
∑
t∈T

ptxt (4.1a)

s.t.
∑
t∈T (j)

xt = 1 ∀ j ∈ B (4.1b)

∑
t∈T :i∈t

xt ≤ k ∀ i ∈ I (4.1c)

xt ∈ {0, 1} ∀ t ∈ T. (4.1d)

Note that this formulation is slightly different from previous configuration-
based formulations (cf. (1.5)) as constraints (4.1c) allow that every item i
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4.2. Approximation Algorithm

is contained in at most k different configurations. While an (approximate)
solution to the linear relaxation can obviously still be used for a randomized
rounding (since (4.1b) guarantees that we are given probability distributions
for the bins), another analysis in the procedure for obtaining a feasible solution
becomes necessary.

An Approximation for the Linear Relaxation

For the case k = 1, it is known that one can obtain a (β − δ)-approximation
algorithm for the linear relaxation of (IP) for every δ > 0 if a β-approximation
exists for the single bin subproblem. Moreover, the running time of the corre-
sponding algorithm depends polynomially on 1

δ . This result can be extended
to our setting, and it holds that:

Theorem 4.6. If there exists a β-approximation for the single bin subproblem,
then, for every δ > 0, there exists a (β − δ)-approximation for the linear pro-
gramming relaxation of (IP) whose running time is polynomial in the encoding
length of the given instance of k-sap and 1

δ .

We prove Theorem 4.6 following the sketch of the proof of Lemma 2.2 and
the subsequent paragraph in (Fleischer et al., 2011) for k = 1. As their proof
is very compact, we also elaborate on the details that were skipped in the
paper in order to show that the result can, in fact, be extended to our more
general setting.
The linear programming relaxation of (4.1) is given as

(LP) max
∑
t∈T

ptxt

s.t.
∑
t∈T (j)

xt = 1 ∀ j ∈ B

∑
t∈T :i∈t

xt ≤ k ∀ i ∈ I

xt ≥ 0 ∀ t ∈ T.

Recall that, as stated before, (4.1d) is relaxed to xt ≥ 0. The corresponding
dual linear program to (LP) is then

(DLP) min
∑
j∈B

qj +
∑
i∈I

k · λi

s.t. qj +
∑
i∈t

λi ≥ pt ∀ j ∈ B ∀ t ∈ T (j)

λi ≥ 0 ∀ i ∈ I.

If we define for j ∈ B the polyhedron

Pj :=
{

(qj , λ) : qj +
∑
i∈t

λi ≥ pt for all t ∈ T (j)
}
,
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(DLP) is equivalent to

min
∑
j∈B

qj +
∑
i∈I

k · λi

s.t. (qj , λ) ∈ Pj ∀ j ∈ B
λi ≥ 0 ∀ i ∈ I.

We define a β-approximate separation algorithm for Pj as follows: given
(qj , λ), the algorithm either returns a violated constraint or guarantees that
( qjβ , λ) is feasible for Pj . Using this definition, we can show the following
result:

Lemma 4.7. For any δ > 0, given a β-approximate separation algorithm
for Pj, there exists a (β − δ)-approximation algorithm to solve (LP) in time
polynomial in the encoding length of the given instance of k-sap and 1

δ .

Proof. We consider the following equivalent reformulation of (DLP):

min v (4.2a)
s.t.

∑
j∈B

qj +
∑
i∈I

k · λi ≤ v (4.2b)

(qj , λ) ∈ Pj ∀ j ∈ B (4.2c)
λi ≥ 0 ∀ i ∈ I. (4.2d)

For a given value of v, we can apply the ellipsoid method (using the β-
approximate separation algorithm) to determine whether this linear program
is feasible. A minimal v such that the ellipsoid method does not return a
violated constraint can then be determined using a binary search (for some
precision parameter δ′ > 0). We will focus on the number of iterations needed
in the binary search below.

If this procedure terminates with a solution (q∗, λ∗) with v∗ =
∑
j∈B q

∗
j +∑

i∈I k · λ∗i , we know that (4.2) is infeasible for any v ≤ v∗ − δ′, i.e.,

optDLP ≥ v∗ − δ′. (4.3)

We do not know if the solution (q∗, λ∗) we obtained is feasible for (DLP)
since we only used an approximate separation algorithm for Pj . But we know
that ( q

∗

β , λ
∗) is feasible for (DLP), which implies that

optDLP ≤
∑
j∈B

q∗j
β

+
∑
i∈I

k · λ∗i ≤
v∗

β
, (4.4)

since β ≤ 1.
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When the ellipsoid method is executed for v∗ − δ′, it terminates with a
violated constraint and only a polynomial number of constraints are checked
to show that (4.3) holds.

If we consider the linear program resulting from considering only these
constraints in (4.2), we obtain a relaxation of (DLP), which we denote by
(DLP′), and it holds that also (DLP′) is infeasible for v ≤ v∗ − δ′, i.e.,

optDLP′ ≥ v∗ − δ′. (4.5)

We denote the dual linear program to (DLP′) by (LP′), which is simply
(LP) restricted to the variables that correspond to the constraints checked by
the ellipsoid method.

Hence, this restricted version of (LP) has polynomial size and, since (4.5)
holds for its dual, linear programming duality shows that its optimum objec-
tive value is at least v∗ − δ′, i.e.,

optLP′ = optDLP′ ≥ v∗ − δ′. (4.6)

Thus, if we choose the precision δ′ of the binary search such that

δ′ = δ · optLP, (4.7)

solving the polynomially-sized restricted linear program (LP′) yields a solution
to (LP) with objective value

optLP′
(4.6)
≥ v∗ − δ′ (4.7)= v∗ − δ · optLP ≥ (β − δ) · optLP,

where the last inequality holds as optLP = optDLP ≤ v∗

β by (4.4).
Finally, we discuss why the number of iterations of the binary search is

polynomial in 1
δ (and, thus, the running time of the entire procedure is poly-

nomial in the encoding length of k-sap and 1
δ ).

Observe that by choosing q̄j := maxt∈T (j) pt for all j ∈ B, λ̄i := 0 for
all i ∈ I, and v̄ :=

∑
j∈B q̄j , we obtain a feasible solution for (DLP) with

objective value v̄, and we can apply the binary search with the initial interval
[0, v̄] in order to obtain the value v∗.

As stated above, the procedure is supposed to guarantee a precision of
δ′ = δ · optLP, i.e., it terminates as soon as the width of the current interval
in the binary search drops below δ′. Hence, the number of iterations needed
is the smallest integer i such that(1

2

)i
v̄ ≤ δ · optLP,

which is equivalent to

i ≥ log
(1
δ

)
+ log

(
v̄

optLP

)
.
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4. The Separable Assignment Problem with Multiple Copies of Items

Note that we can assume that optLP ≥ 1.4 Since (q̄, λ̄, v̄) is feasible for
(DLP), it holds that v̄ ≥ optLP, and we have

log
(

v̄

optLP

)
≤ log(v̄) = log

∑
j∈B

max
t∈T (j)

pt


≤ log(|B|) + log

(
max
i∈I,j∈B

pij

)
, (4.8)

which is bounded by a polynomial in the encoding length of the problem.
Since log

(
1
δ

)
∈ O

(
1
δ

)
for δ → 0, we thus have that the number of itera-

tions of the binary search is bounded by a polynomial in the encoding length
of the problem and 1

δ .

Lemma 4.8. If there exists a β-approximation algorithm for the single bin
subproblem, then there exists a β-approximate separation algorithm for Pj.

Proof. Given a β-approximation algorithm for the single bin subproblem for
bin j, we construct an approximate separation algorithm for Pj as follows:

If qj < 0, the set t = ∅ yields a violated constraint. Otherwise, we define
profits p′ij := pij − λi and we use the β-approximation algorithm for solving
the single bin subproblem for bin j with profits p′. This yields a set t∗ ∈ T (j)
such that

q∗j :=
∑
i∈t∗

p′ij =
∑
i∈t∗

(pij − λi) ≥ β
∑
i∈t

(pij − λi) for all t ∈ T (j).

If q∗j > qj , the set t∗ yields a violated constraint since

qj < qj∗ =
∑
i∈t∗

(pij − λi) ⇐⇒ qj +
∑
i∈t∗

λi < pt∗ .

Otherwise, we know that ( qβ , λ) is feasible since

qj ≥ q∗j ≥ β
∑
i∈t

(pij − λi) for all t ∈ T (j).

By Lemma 4.7 and Lemma 4.8, Theorem 4.6 follows immediately.

4If an item i is accepted in a bin j where it yields a non-positive profit pij ≤ 0, we
can remove it from the bin and remain with a configuration which is, by assumption, still
feasible and yields at least the same profit. Thus, the only possibility for opt < 1 is that
pij = 0 for all i ∈ I, j ∈ B, which can easily be checked beforehand.
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The Randomized Rounding Step

In our randomized rounding procedure, we first use the given (β− δ)-approxi-
mation to obtain a fractional solution xLP ∈ [0, 1]|T |. We then proceed as de-
scribed in Section 1.1.3 and choose for each bin j a configuration independently
at random, where we choose configuration t ∈ T (j) with probability xLP

t . The
resulting vector xIP ∈ {0, 1}|T |, where xIP

t = 1 if and only if configuration t
was selected, then satisfies constraint (4.1b), and we have for the expected
profit of xIP that

E
[
profit(xIP)

]
= E

[∑
t∈T

ptx
IP
t

]
=
∑
t∈T

ptE
[
xIP
t

]
=
∑
t∈T

ptx
LP
t

≥ (β − δ) · optLP, (4.9)

where we denote by optLP the optimal solution of (LP), and write for short
profit(x) :=

∑
t∈T ptxt. We summarize this in the following:

Observation 4.9. The vector xIP ∈ {0, 1}|T | obtained from the randomized
rounding process satisfies (4.1b) and E[profit(xIP)] ≥ (β − δ) · optLP.

Recall that xIP is, in general, not a feasible solution to (IP) since it may
violate constraint (4.1c) (an item might be assigned to more than k bins).

4.2.2 Obtaining a Feasible Solution

In order to turn xIP into a feasible solution of (IP), we need to remove copies
of item i from the bins in case item i is assigned to more than k bins. Hence,
we simply remove each item i that is assigned to more than k bins from all
but the k bins with highest profit pij it is assigned to. Doing so for all items
yields a feasible solution x̄IP of (IP).

In the following, we let i ∈ I be an arbitrary but fixed item. We denote
by yj :=

∑
t∈T (j):i∈t x

LP
t the probability that item i is assigned to bin j, and

sort the bins in non-increasing order of pij , i.e., pi1 ≥ pi2 ≥ · · · ≥ pim. The
profit obtained from item i in the fractional solution xLP is then given as

m∑
j=1

yjpij . (4.10)

In order to compute the expected profit of the solution x̄IP obtained af-
ter removing excess copies of items from the bins, we let Pi(a, b) denote the
expected profit obtained from item i (in x̄IP) in the bins b, b + 1, . . . ,m con-
ditioned on item i being contained in k − a of the bins 1, . . . , b− 1, i.e.,

Pi(a, b) := E[Profit of item i in bins b, . . . ,m | item i is assigned to k − a
of the bins 1, . . . , b− 1].
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Note that, since a configuration for each bin is chosen independently of
the choices for all other bins, Pi(a, b) can also be interpreted as the expected
profit obtained from item i in the bins b, b + 1, . . . ,m given that item i may
be assigned to at most a of these bins. The total expected profit of x̄IP can
now be written as ∑

i∈I
Pi(k, 1). (4.11)

We now prove the main result for obtaining the approximation guarantee
of our algorithm:

Lemma 4.10. For each item i and all 1 ≤ a ≤ k, 1 ≤ b ≤ m, we have

Pi(a, b) ≥
(

1− 1
ea

+ 1
32m2ea−1

)
·
m∑
j=b

yjpij .

Proof. We fix an item i and prove the statement by induction on a.
For a = 1, the statement follows by arguments similar to the ones given in

(Fleischer et al., 2011):
With probability yb, the configuration assigned to bin b contains item i, so

the profit obtained from item i is pib. Recall that the bins’ configurations are
chosen independently. Thus, with probability (1 − yb)yb+1, the configuration
assigned to bin b does not contain item i but the configuration assigned to
bin b + 1 contains item i. So the profit obtained from item i is in this case
pi,b+1. Proceeding in this way, we obtain that

Pi(1, b) = ybpib + (1− yb)yb+1pi,b+1 + · · ·+

m−1∏
j=b

(1− yj)

 · ympim. (4.12)

The arithmetic-geometric mean inequality (cf. Goemans and Williamson
(1994)) and the fact that

1−
(

1− 1
t

)t
≥ 1− 1

e
+ 1

32t2 (4.13)

for all t ≥ 1 (cf. Nutov et al. (2006)) imply that (4.12) is at least(
1−

(
1− 1

m− b+ 1

)m−b+1
)
·

 m∑
j=b

yjpij


≥
(

1− 1
e

+ 1
32(m− b+ 1)2

)
·

 m∑
j=b

yjpij


≥
(

1− 1
e

+ 1
32m2

)
·

 m∑
j=b

yjpij

 ,
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j−1∏
j′=b

(1− yj′)

yb

1− yb

yb+1

1− yb+1

yb+2

1− yb+2

· · ·

yj−1

1− yj−1
j−1∑
j̄=b

(
j̄−1∏

j ′=b
(1− yj ′)

)
· y
j̄

Figure 4.1: Illustration of Equation (4.16) – the sum of all probabilities for
reaching the leaves of the binary tree equals 1.

which proves the statement for a = 1.
Now let a ≥ 2 and assume that the statement holds for a − 1. Then the

definition of Pi(a, b) implies that for each 1 ≤ b ≤ m:

Pi(a, b) =
m∑
j=b

 j−1∏
j′=b

(1− yj′)

 · yj · (pij + Pi(a− 1, j + 1)
)

≥
m∑
j=b

 j−1∏
j′=b

(1− yj′)

 ·yj ·
pij +

(
1− 1

ea−1

)
·

 m∑
t=j+1

ytpit

 .
(4.14)

Here, the term yjpij , for a fixed j, is summed up once with coefficient∏j−1
j′=b(1− yj′) and, for every j̄ ≤ j − 1, with coefficient

(∏j̄−1
j′=b(1− yj′)

)
· yj̄ ·(

1− 1
ea−1

)
. Hence, (4.14) can be rewritten as

m∑
j=b

 j−1∏
j′=b

(1− yj′) +
j−1∑
j̄=b

 j̄−1∏
j′=b

(1− yj′)

 · yj̄ · (1− 1
ea−1

) · yjpij
=

m∑
j=b

(1− 1
ea−1 + 1

ea−1

) j−1∏
j′=b

(1− yj′)

+
j−1∑
j̄=b

 j̄−1∏
j′=b

(1− yj′)

 · yj̄ · (1− 1
ea−1

) · yjpij . (4.15)

As illustrated in Figure 4.1, it holds that j−1∏
j′=b

(1− yj′)

+
j−1∑
j̄=b

 j̄−1∏
j′=b

(1− yj′)

 · yj̄
 = 1, (4.16)
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and, thus, expression (4.15) simplifies to

m∑
j=b

(1− 1
ea−1

)
+ 1
ea−1 ·

j−1∏
j′=b

(1− yj′)

 · yjpij
=
(

1− 1
ea−1

)
·

 m∑
j=b

yjpij

+ 1
ea−1 ·

m∑
j=b

j−1∏
j′=b

(1− yj′) · yjpij . (4.17)

By using the arithmetic/geometric mean inequality and estimate (4.13) as
before, expression (4.17) is at least

(
1− 1

ea−1

)
·

 m∑
j=b

yjpij

+ 1
ea−1 ·

(
1−
(

1− 1
m− b+ 1

)m−b+1
)
·

 m∑
j=b

yjpij


≥
(

1− 1
ea−1

)
·

 m∑
j=b

yjpij

+ 1
ea−1 ·

(
1− 1

e
+ 1

32m2

)
·

 m∑
j=b

yjpij


=
(

1− 1
ea

+ 1
32m2ea−1

)
·

 m∑
j=b

yjpij

 .
Using (4.10) for the profit obtained from item i in xLP and (4.11) for the

expected profit of x̄IP together with Lemma 4.10 with a := k and b := 1, we
obtain

E
[
profit(x̄IP)

]
=
∑
i∈I

Pi(k, 1)

≥
(

1− 1
ek

+ 1
32m2ek−1

)
·
∑
i∈I

m∑
j=1

yjpij︸ ︷︷ ︸
=E[profit(xIP)]

(4.9)
≥

(
1− 1

ek
+ 1

32m2ek−1

)
· (β − δ) · optLP.

≥
((

1− 1
ek

)
β +

(
β

32m2ek−1 − δ
))
· optLP. (4.18)

Since, by Theorem 4.6, the time needed to obtain a (β − δ)-approximate
solution to the linear programming relaxation is polynomial in 1

δ , we can
choose δ := β

32m2ek−1 and obtain the following result:

Theorem 4.11. There exists a ((1− 1
ek

)β)-approximation algorithm for k-sap
whenever there exists a β-approximation algorithm for the single bin subprob-
lem.

The result from Theorem 4.11 can be slightly improved in case that there
exists an FTPAS for the single bin subproblem. In this case, choosing β := 1−ε
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in (4.18) shows that there exists an algorithm with running time polynomial
in the encoding length of the given instance of k-sap and 1

ε that achieves (for
δ := 1−ε

64m2ek−1 ) an approximation guarantee of

(
1− 1

ek
+ 1

64m2ek−1

)
(1− ε) ≥ 1− 1

ek
+ 1

64m2ek−1 − ε.

Hence, if we choose ε := 1
64m2ek−1 , we obtain an approximation factor of

(1− 1
ek

). Since we have for this choice of ε that 1
ε is polynomial in the encoding

length of k-sap for any fixed k, we obtain the following result:

Corollary 4.12. There exists a (1 − 1
ek

)-approximation algorithm for k-sap
whenever there exists an FPTAS for the single bin subproblem.

4.3 Derandomization

Nutov et al. (2006) showed that it is possible to use derandomization to obtain
a deterministic approximation algorithm for classical gap under the assump-
tion that the profit of each item is independent of the bin it is assigned to.
However, since gap only allows that every item is assigned at most once, their
analysis does not carry over to k-sap.

Using the method of conditional expectations (cf. (Alon and Spencer,
1992)), we show how we can derandomize our approximation algorithm of the
previous section for k-sap if the profits are bin-independent, i.e., pij = pi for
all items i and bins j.

For each bin j, we denote by T+(j) := {t ∈ T (j) : xLP
t > 0} the con-

figurations of bin j that have a positive value in the (approximate) solution
xLP. Note that, since xLP was obtained (from an approximation algorithm)
in polynomial time, the size of T+(j) is also polynomially bounded.

In the following, we denote our randomized rounding algorithm from the
previous section by alg and write E

[
alg | t1, . . . , tl

]
for the expected total

profit obtained by alg given that configurations t1, . . . , tl are chosen for bins
1, . . . , l, respectively. We show that it is possible to choose tl+1 ∈ T+(l+ 1) in
polynomial time such that

E
[
alg | t1, . . . , tl+1

]
≥ E

[
alg | t1, . . . , tl

]
.

First, we consider the case l = 0. By definition of the conditional expec-
tation, we have

E [alg] =
∑

t1∈T+(1)
E
[
alg | t1

]
· xLP

t1 .

63



4. The Separable Assignment Problem with Multiple Copies of Items

The fact that
∑
t1∈T+(1) x

LP
t1

(4.1b)= 1 and xLP
t ≥ 0 for all t ∈ T then im-

plies that there exists some t1 ∈ T+(1) with E
[
alg | t1

]
≥ E [alg] . In the

following, we show how to determine t1 in polynomial time.
Since alg chooses the bins’ configurations independently at random, it

holds for each item i and for each q ∈ {0, . . . , k} that

Pr(item i is contained in exactly q of the bins 2, . . . ,m)

=
∑

B′⊆{2,...,m}:
|B′|=q

∏
j∈B′

yj
∏

j∈{2,...,m}\B′
(1− yj)

 , (4.19)

where we denote, as in Section 4.2.2, by yj =
∑
t∈T+(j):i∈t x

LP
t the probability

that item i is assigned to bin j in the randomized rounding procedure.
Note that the computation of each summand in (4.19) requires O(m) mul-

tiplications, and since there are
(m−1

q

)
∈ O(mq) summands in total, determin-

ing (4.19) takes in total O(mq+1). This implies for each item i that

Pr(item i is contained in ≤ k − 1 of the bins 2, . . . ,m)

=
k−1∑
q=0

Pr(item i is contained in exactly q of the bins 2, . . . ,m) (4.20)

and

Pr(item i is contained in ≥ k of the bins 2, . . . ,m)

= 1−
k−1∑
q=0

Pr(item i is contained in exactly q of the bins 2, . . . ,m) (4.21)

can be computed in
∑k−1
q=0 O(mq+1) ∈ O(mk).

In the following, let t1 ∈ T+(1) be an arbitrary but fixed configuration
chosen for bin 1, while the remaining configurations for bins 2, . . . ,m are
chosen randomly.

If an item i is then contained in q ≤ k bins, it remains assigned to these q
bins and contributes q · pi to the total profit. If it is assigned q > k times, it
is deleted from q − k bins and yields a profit of k · pi. Observe that this is a
crucial point in the analysis where we make use of our assumption pij = pi.
Altogether, we thus have:

E
[
alg | t1

]
=
∑
i∈I

m∑
q=0

Pr(i contained in exactly q of the bins 1, . . . ,m | t1) ·min{q, k} · pi
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=
∑
i∈t1

m−1∑
q=0

Pr(i contained in exactly q of the bins 2, . . . ,m) ·min{q + 1, k} · pi

+
∑
i∈I\t1

m∑
q=0

Pr(i contained in exactly q of the bins 2, . . . ,m) ·min{q, k} · pi

=
∑
i∈t1

pi ·
( k−1∑
q=0

[Pr(i contained in exactly q of the bins 2, . . . ,m) · (q + 1)]

+ Pr(i contained in ≥ k of the bins 2, . . . ,m) · k
)

+
∑
i∈I\t1

pi ·
( k−1∑
q=0

[Pr(i contained in exactly q of the bins 2, . . . ,m) · q]

+ Pr(i contained in ≥ k of the bins 2, . . . ,m) · k
)
.

We argued that (4.20) and (4.21) can be computed in O(mk) for every
item i, and, therefore, E

[
alg | t1

]
can be determined in O(nmk). Recall

that k is a fixed parameter that is not part of the input.
As we already stated before, each set T+(j) has polynomial size, and,

thus, we can determine t1 in polynomial time by comparing E
[
alg | t1

]
for

all t1 ∈ T+(1).

For l > 0, the argument follows exactly along the same lines. We have

E
[
alg | t1, . . . , tl

]
=

∑
tl+1∈T+(l+1)

E
[
alg | t1, . . . , tl+1

]
· xLP

tl+1 ,

and know that there exists tl+1 ∈ T+(l + 1) such that

E
[
alg | t1, . . . , tl, tl+1

]
≥ E

[
alg | t1, . . . , tl

]
,

which we can determine analogously to the case l = 0 in polynomial time.

By selecting a configuration for each bin 1, . . . ,m with this iterative pro-
cedure, we deterministically obtain a feasible integral solution with profit at
least E [alg]. By Theorem 4.11, we obtain the following result:

Theorem 4.13. If all items’ profits are independent of the bin they are as-
signed to (pij = pi), there exists a deterministic ((1 − 1

ek
)β)-approximation

algorithm for k-sap whenever there exists a deterministic β-approximation
algorithm for the single bin subproblem.
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4.4 Generalizations
A natural generalization of k-sap is that we are given a different number ki ≥ 1
for each item i ∈ I that specifies the maximum number of bins it may be
assigned to, as summarized in the following program:

max
∑
t∈T

ptxt (4.22a)

s.t.
∑
t∈T (j)

xt = 1 ∀ j ∈ B (4.22b)

∑
t∈T :i∈t

xt ≤ ki ∀ i ∈ I (4.22c)

xt ∈ {0, 1} ∀ t ∈ T. (4.22d)

Theorem 4.6 still applies to this more general program (4.22), i.e., we can
obtain a (β−δ)-approximation for the linear programming relaxation of (4.22)
if we are given a β-approximation for the single bin subproblem: in the proof
given in Section 4.2.1 we simply need to change the objective function of (DLP)
to
∑
j∈B qj +

∑
i∈I ki ·λi, which has no influence on the validity of Lemma 4.7

and Lemma 4.8. Thus, we can obtain a fractional solution and perform, as
before, the randomized rounding.

If we remove each item i that is now assigned to more than ki bins from
all but the ki bins with highest profit pij it is assigned to, we obtain a feasible
integral solution x̄IP. Moreover, the analysis from Section 4.2.2 immediately
implies that, in expectation, the profit obtained from each item i in x̄IP is
at least (1− 1

eki
) times the profit obtained from item i in the fractional solu-

tion xLP. Hence, given a β-approximation for the single bin subproblem, our
method yields a ((1− 1

ek
)β)-approximation for this case, where k := mini∈I ki.

4.5 Conclusions
In this chapter we analyzed the problem k-sap. We showed how the approxi-
mation algorithm by Fleischer et al. (2011) for k = 1 can be extended to this
more general setting where each item can be assigned to at most k different
bins yielding an approximation factor of ((1 − 1

ek
)β) whenever the single bin

subproblem admits a β-approximation. We furthermore identified a special
case where the approximation algorithm can even be derandomized.

Although solving k-sap is, in general, not easier than solving sap, we
can obtain a (1 − 1

ek
)-approximation if there exists an FPTAS for the single

bin subproblem. This shows that the inapproximability result known for sap
(Theorem 4.2) does not apply to k-sap with k ≥ 2.

It remains an open question whether a tight upper bound on the approx-
imability of k-sap can be proven or if there exist (deterministic) approximation
algorithms with better approximation factors.
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5
The Online Interval Scheduling Problem with

Bounded Number of Failures

Scheduling is concerned with the allocation of activities (jobs) to scarce re-
sources (machines). Besides the assignment decision, in most scheduling prob-
lems the scheduler also has to choose the start times of the jobs such that some
given objective function is optimized. In contrast to this, we consider an inter-
val scheduling problem (also known as fixed job scheduling problem or k-track
assignment problem) in which fixed start and end times for all jobs (or in-
tervals) are given. The task of the scheduler then consists of deciding which
subset of the intervals should be accepted and to which machines these inter-
vals should be assigned. The goal is to maximize the number of the accepted
intervals subject to the constraint that no two intervals assigned to the same
machine overlap.

Problems of this kind have many applications in fields where time-critical
tasks have to be managed, e.g., in steel production, crew planning, and band-
width allocation (cf. (Kolen et al., 2007; Kovalyov et al., 2007)).

Interval scheduling is a special case of the separable assignment problem
(sap) we studied in Chapter 4: Every interval (item) yields a profit of 1 if it
is assigned to a machine (bin). The set of feasible packings for a machine is
then given as all subsets of non-overlapping intervals.

We consider an online variant of interval scheduling in which an online
algorithm initially has knowledge about the characteristics of all intervals.
However, some of them might fail, i.e., they cannot be scheduled, and an on-
line algorithm learns about the failure of an interval not before its start time.
We show how to obtain competitive online algorithms and lower bounds on
the competitive ratio for the case that we are given an upper bound k on
the number of failing intervals. This online model is similar to a well-known
online version of the shortest path problem, known as the k-Canadian trav-
eller problem, where one is initially given a complete instance of the shortest
path problem and the information that up to k (initially unknown) edges
of the graph may be blocked. This problem will be studied in Chapter 6.
In contrast to most previous work on online interval scheduling, we do not
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need the possibility to abort accepted intervals in order to obtain a bounded
competitiveness. Thus, our setting allows to model many situations where
the acceptance of a job can be seen as a commitment of the scheduler to a
customer and aborting a job is infeasible.

Previous Work

Surveys of different variants of interval scheduling problems studied in litera-
ture can be found in (Kolen et al., 2007; Kovalyov et al., 2007).

The offline problem on a single machine can be modeled as a shortest
path problem or solved by the earliest finishing time rule in O(n logn) time
(cf. (Gupta et al., 1979)). The case of multiple identical machines can be solved
using a minimum-cost flow formulation (Arkin and Silverberg, 1987; Bouzina
and Emmons, 1996). If each interval may only be assigned to a given subset of
the machines or the machines have different speeds, the problem is known to be
NP-hard (Arkin and Silverberg, 1987; Krumke et al., 2011), but there exists a
(1− 1

e )-approximation algorithm even for unrelated machines (Fleischer et al.,
2011).

There is also a lot of research on online interval scheduling. In contrast
to our setting, most problems studied in previous work have in common that
intervals arrive online (i.e., an online algorithm does not know about the
existence of an interval before its start time) and it is allowed to abort an
accepted interval during its execution (in which case the aborted interval is
lost). If the goal is to maximize the number of accepted intervals, this problem
can be solved optimally on a single machine or multiple identical machines by
emulating the earliest finishing time rule (Carlisle and Lloyd, 1995; Faigle and
Nawjin, 1995).

For the weighted version of the problem, where each interval has a posi-
tive weight and the goal is to maximize the total weight of accepted intervals,
Woeginger (1994) showed that it is, in general, not possible to obtain deter-
ministic algorithms with a bounded competitiveness even for a single machine.
Later, Canetti and Irani (1998) showed that the same also holds for random-
ized algorithms. If a relation between the weights and lengths is imposed on
the intervals (which is given by some benevolent function), Woeginger (1994)
proposed a 4-competitive algorithm for the single machine problem and proved
a matching lower bound. While this settles the deterministic case, it was
shown that it is possible to improve upon this ratio using randomized algo-
rithms (Epstein and Levin, 2010; Fung et al., 2009; Miyazawa and Erlebach,
2004; Seiden, 1998).

Lipton and Tomkins (1994) consider the single-machine problem in the
case where aborting an accepted interval during its execution is not allowed.
If the weight of an interval equals its length and there is an upper bound ∆
on the ratio of the longest to the shortest interval, they provide a randomized
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O(log ∆1+ε)-competitive algorithm for every ε > 0 and prove a lower bound
of Ω(log ∆) on the competitive ratio of randomized algorithms.

There are only a few publications dealing with multiple machines. The
case of identical machines was studied in (Fung et al., 2008, 2012). Recently,
online algorithms and lower bounds for the case of related machines have been
proposed in (Epstein et al., 2013; Krumke et al., 2011).

Chapter Outline

In this chapter we study a novel online version of the interval scheduling
problem. In Section 5.1 we formally define the problem k-ois. In Sections 5.2
and 5.3 we provide several upper and lower bounds on the competitive ratio
achievable by deterministic and randomized online algorithms for this prob-
lem. We summarize these results in Table 5.1 (where, as in the rest of the
chapter, log(x) denotes the binary logarithm of x).

m = 1 m > 1

deterministic l.b. k (Proposition 5.3) Ω( m
√
k) (Theorem 5.12)

u.b. k + 1 (Theorem 5.7) 4 + (k−3)/m (Theorem 5.11)

randomized l.b. Ω(log k) (Theorem 5.13) Ω(log(k/m)) (Theorem 5.13)
u.b.? log(k + 2) (Theorem 5.15) log(k + 2) (Theorem 5.21)

Table 5.1: Summary of our upper bounds (u.b.) and lower bounds (l.b.) on
the competitive ratio for m machines (the results marked with a ? are for the
laminar case, see Definition 5.14).

Moreover, we remark in Section 5.4 that, for the weighted version of the
problem, no deterministic online algorithm can achieve a bounded competi-
tiveness even on a single machine. However, a competitive ratio of (k+1)·wmax

wmin

can be achieved on a single machine if the weights of all intervals are between
wmin and wmax. Finally, we show how to obtain an online algorithm for our
problem in the environment of related machines.

5.1 Problem Definition and Preliminaries

We consider the problem of scheduling intervals on m identical machines. An
interval i is given by a release date ri ≥ 0 and a processing requirement (or
length) pi > 0. If an interval i is accepted, it must be assigned to start
immediately at time ri on a machine that is currently not occupied and is
completed after pi time units, i.e., it finishes at time ri + pi. The goal is
to maximize the number of accepted intervals subject to the constraint that
no two intervals assigned to the same machine overlap. This means that the
open intervals (ri1 , ri1 + pi1) and (ri2 , ri2 + pi2) must not intersect whenever
two intervals i1 and i2 are assigned to the same machine j.
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In our online setting, we are initially given a set I = {1, . . . , n} of intervals
with release dates and processing requirements and the information that up
to k of these intervals might fail, i.e., they cannot be accepted. Hence, an
instance σ = (I, F ) of the problem is defined by the set I of intervals and a
subset F ⊆ I of failing intervals with |F | ≤ k. An online algorithm initially
knows the set I of intervals and the upper bound k on the number of failures,
but only learns that an interval i fails at the time ri when it is supposed to
be released. Once an interval is accepted on some machine, it may not be
aborted, preempted, or moved to another machine. We refer to this problem
as the online interval scheduling problem with at most k failures and write for
short k-ois. This is summarized in the following:

Definition 5.1 (k-ois).
An instance of k-ois is given by a set of intervals I = {1, . . . , n} with release
dates ri and processing requirements pi for i ∈ I, a subset F ⊆ I of failing
intervals with |F | ≤ k, and a number of identical machines m.

The task is to maximize the number of accepted intervals and to assign
them to one of m identical machines such that no two intervals assigned to
the same machine overlap. An online algorithm learns that an interval i ∈ I
fails at time ri when it is supposed to be released, and for every non-failing
interval the algorithm has to take an irrevocable decision whether to accept it
(and to which machine it should be assigned) or to reject it.

An offline algorithm knows the complete set F of failing intervals in ad-
vance and can compute an optimal solution for the remaining intervals in I\F .
As we already stated, the single machine case can be modeled as a shortest
path problem (see Figure 5.1 for an illustration). Since interval scheduling is
a special case of sap, this implies that one can obtain a (1− 1

e )-approximation
for multiple unrelated machines (see Section 4.2).

We measure the quality of online algorithms for k-ois by means of com-
petitive analysis (see Section 1.1.4). For an instance σ, the profit (number of
accepted intervals) obtained by an online algorithm alg is denoted by alg(σ),
and opt(σ) is the optimal profit achievable on this instance. A deterministic
online algorithm alg is c-competitive for k-ois if opt(σ) ≤ c · alg(σ) for
every instance σ. Analogously, if alg is a randomized online algorithm, it
is c-competitive against an oblivious adversary if opt(σ) ≤ c · E [alg(σ)] for
every instance σ.

In k-ois, we assume that an online algorithm must not abort intervals.
This assumption is reasonable since, otherwise, the online problem can be
solved optimally as follows: an interval is accepted whenever the machine is
idle, but it is dropped in favor of an overlapping interval that is released with
earlier finishing time (cf. (Carlisle and Lloyd, 1995; Faigle and Nawjin, 1995)).

Proposition 5.2. If abortion of intervals is allowed, k-ois can be solved op-
timally.
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Figure 5.1: The offline interval scheduling problem for a single machine can
be modeled as a shortest path problem. All arc costs are −1.

5.2 Deterministic Online Algorithms

5.2.1 A Single Machine

We start by providing a lower bound on the competitive ratio of deterministic
online algorithms for the case of a single machine.

Proposition 5.3. No deterministic online algorithm for k-ois on a single
machine (m = 1) can achieve a competitive ratio smaller than k.

Proof. We consider an instance consisting of k + 1 intervals, where the first
interval has release date r1 = 0 and length p1 = 1, and the remaining inter-
vals i ∈ {2, . . . , k + 1} have release date ri = i−1

k+1 and length pi = 1
k+1 . This

is illustrated in Figure 5.2.

1

2 3 4 . . . k k + 1

Figure 5.2: Illustration of the instance used in the proof of Proposition 5.3.

If the online algorithm alg does not accept the first interval, the remaining
k intervals fail and we have alg = 0, whereas opt would have accepted the
first interval, i.e., opt = 1.

Hence, in order to obtain a finite competitiveness, alg has to accept the
first interval. In this case, the remaining intervals do not fail. alg cannot
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accept any of these intervals since they overlap with the first one, so we have
alg = 1. An optimal offline algorithm, however, rejects the first interval and
accepts intervals 2, . . . , k + 1, which yields opt = k.

Remark 5.4. Note that, for a single machine, we can assume that ri1 6= ri2
for all non-failing intervals i1 and i2 with i1 6= i2. Otherwise, an online
algorithm could simply discard all intervals with the same release date except
for one with minimal length.

In the following, we consider the algorithm greedy1 (Algorithm 5.1) for a
single machine that accepts an interval i if and only if the machine is available
at time ri and, until the finishing time ri + pi of interval i, there are at most
k intervals that are contained in i. We make this notion more precise:

Definition 5.5. We say that an interval i′ is contained in interval i if ri ≤ ri′
and ri+pi ≥ ri′+pi′, i.e., if [ri′ , ri′+pi′ ] ⊆ [ri, ri+pi]. In this case, we also use
the notation i′ ⊆ i. Analogously, we write i′ ( i if [ri′ , ri′ + pi′ ] ( [ri, ri + pi].

Algorithm 5.1 greedy1 for a single machine
1: Sort the intervals in non-decreasing order of release dates (for identical

release dates in non-decreasing order of lengths).
2: for all intervals i = 1, . . . , n do
3: if interval i is non-failing, the machine is idle at the release date ri of i,

and i contains at most k intervals then
4: accept interval i
5: end if
6: end for

In the analysis below, we make use of the following argument: If an in-
terval i that is accepted by opt contains another non-failing interval i′ ( i,
then opt can simply accept interval i′ instead yielding the same number of
accepted intervals. This directly yields the following observation:

Observation 5.6. There always exists an optimal set O of non-failing inter-
vals such that, for each interval i ∈ O, all intervals that are contained in i
fail.

We now analyze the competitiveness of greedy1:

Theorem 5.7. Algorithm 5.1 is (k + 1)-competitive for k-ois on a single
machine (m = 1).

Proof. We consider an arbitrary instance of the problem and denote by G and
O the sets of accepted intervals of greedy1 and opt, respectively, where the
optimal set O is given as in Observation 5.6.
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O/G G

O O

G

O O O O

O/G

Figure 5.3: Illustration of the charging scheme used in the proof of Theo-
rem 5.7 for k = 3. The intervals with labels G and O are accepted by greedy1

and opt, respectively. Failing intervals are crossed out.

In the following, we construct a mapping φ : O → G such that each inter-
val i ∈ G has at most k + 1 preimages under φ.

For an interval i ∈ O accepted by opt, greedy1 can either accept or
reject i. For rejection, there are two possibilities: Either i is rejected because
greedy1 was already processing another interval at the release date ri, or
because of the condition that it contains more than k intervals. The latter
case, however, cannot occur: Since O is chosen as in Observation 5.6, every
interval in O contains only failing intervals. Thus, since at most k intervals
can fail in total, i can contain at most k intervals. Hence, if the machine is
available at time ri, greedy1 accepts i.
We can now define the mapping φ as follows:

(i) For an interval i ∈ O ∩ G, we set φ(i) := i.

(ii) For an interval i ∈ O \ G, we know that i was rejected by greedy1 be-
cause greedy1 was already processing some other interval i′ at time ri.
In this case, we set φ(i) := i′.

An illustration of the mapping φ is given in Figure 5.3.
If i ∈ O ∩ G, interval i has only itself as preimage under φ. In case that

i ∈ G \ O, it has at most k + 1 preimages under φ: Since i is accepted by
greedy1, it can contain at most k intervals that are accepted by opt and
mapped to i. Furthermore, there can be at most one additional interval i ∈ O
that is mapped to i and starts before ri + pi and finishes after ri + pi.

Thus, every interval i ∈ G has at most k + 1 preimages under φ and the
claim follows.

Proposition 5.8. The analysis in Theorem 5.7 is tight.

Proof. Consider an instance consisting of k + 2 non-failing intervals, where
the first interval has release date r1 = 0 and length p1 = 1. The intervals
i ∈ {2, . . . , k + 1} have release date ri = i−1

k+2 and length pi = 1
k+2 , and the

last interval has release date rk+2 = k+1
k+2 and length pk+2 = 2

k+2 . This is
illustrated in Figure 5.4.
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1

2 3 . . . k k + 1 k + 2

Figure 5.4: Illustration of the instance used in the proof of Proposition 5.8.

greedy1 accepts only the first interval, whereas opt accepts all other
intervals 2, . . . , k + 2, and we have opt = (k + 1) · greedy1.

Remark 5.9. If all intervals have the same length, the analysis in the proof of
Theorem 5.7 immediately implies that for every interval accepted by greedy1,
opt can also accept at most one interval, i.e., greedy1 is 1-competitive.

5.2.2 Multiple Machines

The idea of the single machine algorithm greedy1 can also be used to obtain
a competitive algorithm for multiple machines.

Our algorithm greedym runs m copies of (a slightly modified version of)
greedy1, one for each machine. If an interval i is released at time ri, it is
given to the first machine. If i is accepted and assigned to machine 1, the
processing of interval i is terminated. Otherwise, interval i is rejected on the
first machine and we pass it on to machine 2. The procedure is continued until
the interval is either accepted on some machine or rejected on all of them.

In contrast to the previous section, where greedy1 accepts an interval if
it contains at most k intervals, we now set the threshold to k + m − 1. The
intuition for a higher threshold is the following: The threshold of k in greedy1

was motivated by the fact that we can assume for m = 1 that opt accepts
only intervals that contain at most k intervals (see Observation 5.6 and the
proof of Theorem 5.7). However, this is no longer true for multiple machines
and there are instance where it makes sense for opt to accept intervals that
contain more than k intervals. Using a threshold of k for greedym would
then lead to a competitive ratio of Ω(m), which can be seen by considering
the instance of Figure 5.5, where greedym (with threshold k) would accept
only one interval, whereas opt = m.

In contrast to Remark 5.4, we cannot assume for m > 1 that an instance
does not contain identical intervals. If there are identical intervals, we need
to slightly modify the acceptance rule of greedym. Otherwise, the following
problem might occur: if there are more than k + m − 1 identical intervals,
our algorithm would reject all of them (as each one contains the other ones in
the sense of Definition 5.5). We therefore initially fix an ordering for identical
intervals and, when determining the number of contained intervals at some
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O...
O

O/G

. . .

m

k

Figure 5.5: The intervals with labels G and O are accepted by greedym (if
the acceptance threshold is set to k) and opt, respectively. Failing intervals
are crossed out.

point, we only consider the intervals that have not been processed so far. The
entire greedy procedure for m machines is summarized in Algorithm 5.2.

Algorithm 5.2 greedym for m machines
1: Sort the intervals lexicographically according to non-decreasing release

dates and lengths. For identical intervals, choose an arbitrary ordering.
2: for all intervals i = 1, . . . , n do
3: for all machines j = 1, . . . ,m do
4: if interval i is non-failing, machine j is idle at the release date ri of i,

and i contains at most k +m− 1 of the intervals i+ 1, . . . , n then
5: accept interval i on machine j
6: break
7: end if
8: end for
9: end for

Before we analyze greedym in detail, we prove the following result, which
turns out to be useful later on:

Lemma 5.10. If greedym rejects an interval i because i contains more
than k+m− 1 intervals, it accepts a set of intervals Ĩ with |Ĩ| ≥ m which all
overlap with i.

Proof. In the following, we denote the intervals contained in i by i1, . . . , ip,
where p > k + m − 1, and we assume that these intervals are sorted as in
Step 1 of greedym.

It thus holds that i1 contains at most p− 1 intervals, i2 contains at most
p − 2 intervals, and so on. Therefore, each of the intervals ip−(k+m−1), . . . , ip
contains at most k+m− 1 intervals. As no more than k of these m+ k many
intervals can fail in total, at least m intervals do not fail and can be accepted
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O O/G

G

G

O O O O

Figure 5.6: Illustration of the charging scheme used in the proof of Theo-
rem 5.11 for m = 2 and k = 3. The intervals with labels G and O are accepted
by greedym and opt, respectively. The crossed-out interval is declared fail-
ing. Solid, dashed, and dotted lines correspond to cases (i), (ii), and (iii),
respectively.

by greedym if the machine is not occupied at the release date. In particular,
greedym can accept in total at least m intervals that overlap with i.

For the competitiveness of greedym, we then obtain the following:

Theorem 5.11. Algorithm 5.2 is (4 + k−3
m )-competitive for k-ois on m ≥ 2

machines.

Proof. We define a charging scheme that fractionally maps the set of inter-
vals O accepted by opt to the set of intervals G accepted by greedym. For-
mally, this is given by a mapping φ : O×G → [0, 1], where φ(i, j) can be seen
as the fraction of interval i ∈ O that an interval j ∈ G is charged with. The
mapping has to satisfy that

∑
j∈G φ(i, j) = 1 for all i ∈ O. In order to show

that greedym is c-competitive (for some c ≥ 1), we show that at most a value
of c is charged onto every interval accepted by greedym, i.e.,

∑
i∈O φ(i, j) ≤ c

for all j ∈ G. This implies that

|O| =
∑
i∈O

∑
j∈G

φ(i, j)

︸ ︷︷ ︸
=1

=
∑
j∈G

∑
i∈O

φ(i, j)︸ ︷︷ ︸
≤c

≤ c · |G|.

The mapping φ is illustrated in Figure 5.6 and formally defined as follows:

(i) For an interval i ∈ O ∩ G, we set φ(i, i) := 1.

(ii) For an interval i ∈ O \ G that was rejected by greedym because it
contained more than k + m − 1 intervals, greedym accepts a set of
intervals Ĩ with |Ĩ| ≥ m which all overlap with i (see Lemma 5.10). In
this case, we set φ(i, ĩ) := 1

|Ĩ| ≤
1
m for all ĩ ∈ Ĩ.

(iii) For an interval i ∈ O \ G that was rejected by greedym because all
its machines were occupied at the release date ri, there must be a set
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of m intervals I ′ that greedym processes at time ri. In this case, we
set φ(i, i′) := 1

|I′| = 1
m for all i′ ∈ I ′.

In the following, let i ∈ G be an arbitrary but fixed interval accepted by
greedym. Observe that i is charged with a positive value by some interval
i′ ∈ O (i.e., φ(i′, i) > 0) only if i and i′ are overlapping. We distinguish two
cases:

i 6∈ O: In this case, all intervals that charge onto i are given as in (ii) and (iii)
and each of them charges a value of at most 1

m onto i.
There can be at most m intervals that are released before ri and charge
onto i: recall that all intervals that charge onto i need to overlap with i,
and, thus, all intervals of this kind must pairwise overlap.
Since greedym accepts i, there are at most k+m−1 intervals contained
in i that charge onto i.
Finally, there can be at mostm intervals charging onto i that are released
before ri+pi and finish thereafter (by the same argument as before, they
must be pairwise overlapping).
Altogether, i is thus charged a value of at most

1
m
· (m+ (k +m− 1) +m) = 3 + k − 1

m
≤ 4 + k − 3

m
.

i ∈ O: If opt accepts i and assigns it to some machine, it cannot accept
another interval on the same machine that also charges onto i. In this
case, i charges a value of 1 onto itself (see (i)).
Thus, we can restrict ourselves in the remaining analysis to m − 1 ma-
chines, where all intervals that charge onto i are given as in (ii) and (iii).
Analogously to the previous case, there can be at most m− 1 intervals
that are released before ri, k+m− 1 intervals contained in i, and m− 1
intervals that are released before ri + pi and finish thereafter. Each of
these intervals charges a value of at most 1

m .
Therefore, i is charged overall a value of at most

1 + 1
m
· ((m− 1) + (k +m− 1) + (m− 1)) = 4 + k − 3

m
.

For multiple machines, we are able to establish the following lower bound
for deterministic algorithms:

Theorem 5.12. No deterministic online algorithm for k-ois on m machines
can be better than Ω( m

√
k)-competitive.
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A

A/O A/OO

A/O A/OO O O OA/O A/O
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Figure 5.7: Illustration of the behaviour of the adversary in the proof of
the lower bound in Theorem 5.12 for m = 3 and k ≥ 64. The labels A and
O correspond to the intervals accepted by alg and opt, respectively. Grey
intervals are declared failing.

Proof. Let m be fixed and assume in the following that k ≥ 2m.
Consider the following instance consisting of m + 1 layers of intervals (as

illustrated in Figure 5.7): Layer 1 consists of a single interval with release
date 0 and length 1. Layer 2 consists of bm

√
kc − 1 non-overlapping intervals

that are all contained in the interval of layer 1 and their release dates are
strictly larger than 0. For the remaining layers 3, . . . ,m+1, for every interval i
in layer l ∈ {2, . . . ,m}, there are bm

√
kc intervals in layer l + 1 that are non-

overlapping and contained in i with release date strictly larger than ri. Note
that the total number of intervals is

1 +
m−1∑
j=0

(
bm
√
kc − 1

) (
bm
√
kc
)j
≤ 1 +

m−1∑
j=0

(
m
√
k − 1

) (
m
√
k
)j

= 1 +
(
m
√
k − 1

)
· 1− (m

√
k)m

1−m
√
k

= k,

i.e., possibly all of them can fail.
Now let alg be an arbitrary deterministic online algorithm. Note that

alg has at the release date ri of interval i no information about the failure
status of all intervals that are contained in i.

The adversary uses the following strategy: If alg accepts some interval i,
all intervals in the next layer that are contained in i will be non-failing. If
alg decides to reject some interval i, all intervals contained in i (in all further
layers) will fail. This is also illustrated in Figure 5.7.

Observe that alg can never accept any interval i in the last layer m+ 1
since this interval fails if alg rejects at least one of the m intervals in lay-
ers 1, . . . ,m containing i. Hence, for every interval i that is accepted by alg,
opt can accept the bm

√
kc − 1 non-failing intervals in the next layer that are

contained in i, which shows that

opt
alg ≥ b

m
√
kc − 1 ∈ Ω

(
m
√
k
)
.
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layer 1

layer 2

layer 3

Figure 5.8: Illustration of the set of intervals used in the proof of Theo-
rem 5.13 for m = 2 machines and three layers.

5.3 Randomized Online Algorithms

We now turn to randomized algorithms and establish the following lower
bound:

Theorem 5.13. No randomized online algorithm for k-ois on m machines
can be better than Ω (log(k/m))-competitive.

Proof. We want to apply Yao’s Principle (Yao, 1977) and, therefore, define
a probability distribution over blog(k/m)c instances σ1, . . . , σblog(k/m)c specified
below. Throughout the proof, we assume that k ≥ 2m, which ensures that
blog(k/m)c ≥ 1.

The set I of intervals our instances consist of is partitioned into blog(k/m)c
layers defined inductively as follows: Layer 1 contains m intervals with release
date 0 and length 1. Inductively, for l ∈ {2, . . . , blog(k/m)c} and for every
interval i of layer l− 1, layer l contains two non-overlapping intervals that are
contained in i with release date strictly larger than ri. Thus, layer l consists
of m ·2l−1 intervals in total. This construction is illustrated for the case m = 2
and three layers in Figure 5.8.

Instance σl = (I, Fl) for l ∈ {1, . . . , blog(k/m)c} is now defined by choos-
ing the set Fl of failing intervals to consist of all the intervals in layers
l + 1, . . . , blog(k/m)c.

Note that this is feasible since all layers together contain

m

blog(k/m)c∑
l=1

2l−1 = m
1− 2blog(k/m)c

1− 2 = −m+m 2blog(k/m)c ≤ m 2log(k/m) = k

intervals, i.e., any subset of the intervals is allowed to fail.
In this setting, every deterministic online algorithm is characterized by

the number xjl of intervals it accepts in each layer l on each machine j.
For x = (x1, . . . , xm) with xj = (xj1, . . . , x

j
blog(k/m)c), we let algx denote

a deterministic online algorithm that accepts exactly xjl intervals in layer
l ∈ {1, . . . , blog(k/m)c} on machine j ∈ {1, . . . ,m}. Note that, in order for
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algx to be feasible, we must have

blog(k/m)c∑
l=1

1
2l−1 x

j
l ≤ 1 for all j ∈ {1, . . . ,m}, (5.1)

since accepted intervals must not overlap.

We now define a probability distribution π = (π1, . . . , πblog(k/m)c} over the
set of instances {σl} by setting πl := 2−l for l ∈ {1, . . . , blog(k/m)c − 1} and
πblog(k/m)c := 2

2blog(k/m)c . Note that this defines a probability distribution since

blog(k/m)c∑
l=1

πl =
blog(k/m)c−1∑

l=1
2−l + 2

2blog(k/m)c = 1.

In order to calculate the expected number of intervals accepted by algx
with respect to this probability distribution, observe that algx can accept
intervals in layer j on instance σl only if they do not fail, i.e., if j ≤ l. Hence,
we obtain

E [algx] =
m∑
j=1

blog(k/m)c∑
l=1

xjl

1−
l−1∑
p=1

πp


=

m∑
j=1

blog(k/m)c∑
l=1

xjl

1−
l−2∑
p=0

2−p−1


=

m∑
j=1

blog(k/m)c∑
l=1

1
2l−1 x

j
l ≤ m,

where the last inequality follows from the feasibility constraints (5.1).

An optimal offline algorithm accepts the m · 2l−1 intervals of layer l on
instance σl, so we have

E [opt] = m

blog(k/m)c∑
l=1

πl 2l−1 = m

 blog(k/m)c−1∑
l=1

2−l 2l−1 + 2
2blog(k/m)c 2blog(k/m)c−1


= m

blog(k/m)c+ 1
2 .

Hence, we have shown that every deterministic online algorithm algx satisfies

E [opt]
E [algx] ≥

blog(k/m)c+ 1
2 ∈ Ω (log (k/m)) ,

and the claim follows by Yao’s Principle.
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5.3.1 A Randomized Algorithm for Laminar Intervals on a
Single Machine

In the proof of Theorem 5.13, we used a special structure of the intervals:
The set of intervals we considered is laminar, i.e., for every pair of intervals,
it holds that the intervals are either disjoint or one of them is contained in
the other. Laminar set systems are a well-known concept in set theory. For
intervals as considered here, laminarity is formally defined as follows:

Definition 5.14. A set I of intervals is called laminar if it holds for all
i1, i2 ∈ I that i1 ⊆ i2, i2 ⊆ i1, or i1 ∩ i2 = ∅.

Next, we show how to construct a randomized (log(k + 2))-competitive
algorithm for k-ois on a single machine if the set of intervals is laminar.
This competitiveness improves significantly upon the results for deterministic
algorithms and almost matches the lower bound shown in Theorem 5.13 for
randomized algorithms.

Given a laminar set I of intervals, we define a directed graph called the
inclusion graph that has one node for every interval and an arc from node i
to j if and only if j ⊆ i and there is no other interval k such that j ⊆ k ⊆ i.
We can then shrink this graph as follows: if a node i has only one outgoing
arc (i, j), we merge nodes i and j. We call the graph we obtain after merging
nodes as long as possible the shrinked inclusion graph. Note that, since I is
laminar, the inclusion graph and the shrinked inclusion graph are collections
of rooted out-trees, i.e., directed trees in which each node is reachable by a
unique directed path from the root of the corresponding tree (the roots are the
nodes without incoming arcs, which correspond to intervals that are maximal
with respect to inclusion). An example of a laminar set of intervals and the
corresponding (shrinked) inclusion graph is given in Figures 5.9(a)-(c)

Our algorithm now works as follows: We first remove all intervals that
contain more than k intervals (recall that such an interval contains at least
one non-failing interval, and it never makes sense for a competitive online
algorithm to accept it on a single machine).

We then construct the shrinked inclusion graph for the remaining set of
intervals and add all leaf nodes in this graph to a class, which we denote
by C1. Then, all these leaf nodes and their incident edges are removed from
the graph, and we remain with an inclusion graph (which may contain nodes
with only one outgoing arc). In this graph, we then merge nodes that have
only one outgoing arc with their successors as described before, and add all
leaf nodes in the resulting shrinked graph to a new class C2. We continue
with this procedure until we obtain a partition of the nodes of the original
inclusion graph (and, thus, also of the original set of intervals) into lmax classes
C1, . . . , Clmax . An illustration of such a partitioning of intervals into classes is
given in Figure 5.9(d).
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(a) Illustration of a laminar set of intervals.

(b) The corresponding inclusion
graph ...

(c) ... and the shrinked inclusion
graph. All leaf nodes (black) are
assigned to the same class ...

(d) ... and then removed. In the remaining graph, we again
merge nodes and add the leaf nodes to the next class (grey).
Afterwards, the remaining graph only consists of a single node
(the root), which is added to the third class (white).

Figure 5.9: Illustration of the shrinked inclusion graph and the partitioning
of the intervals into classes.

The algorithm then chooses a number l ∈ {1, . . . , lmax} uniformly at ran-
dom and accepts intervals from class Cl greedily, i.e., a non-failing interval
from Cl is accepted whenever the machine is currently not occupied. More
precisely, this means that, for every set of intervals that belong to a merged
node in Cl, the first non-failing interval is accepted. This is summarized in
Algorithm 5.3.

Observe that, if we restrict ourselves to the subset of the intervals that
belong to a single class Cl, opt cannot accept more intervals than alg since
all intervals whose corresponding nodes were merged to a single node during
the construction of the partition overlap. Formally, this means that

alg(σl) = opt(σl), (5.2)
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Algorithm 5.3 Randomized algorithm for laminar instances
1: Remove all intervals that contain more than k intervals.
2: Construct a partition of the remaining intervals into classes C1, . . . , Clmax

as described.
3: Choose l ∈ {1, . . . , lmax} uniformly at random and accept the first non-

failing interval within each set of intervals that belong to a merged node
in Cl.

where σl denotes the subset of instance σ consisting only of the intervals of
class l. Using this notation, we also see that

opt(σ) ≤
lmax∑
l=1

opt(σl). (5.3)

Thus, we have

E [alg(σ)] =
lmax∑
l=1

1
lmax

· alg(σl)
(5.2)=

lmax∑
l=1

1
lmax

· opt(σl)

(5.3)
≥ 1

lmax
· opt(σ). (5.4)

In the following, we want to show that the number of different classes in
our algorithm is at most log(k + 2), i.e., lmax ≤ log(k + 2).

Every leaf node in the shrinked inclusion graph of iteration l + 1 corre-
sponds to a set of non-leaf nodes in the shrinked inclusion graph of iteration l.
Moreover, since we merge nodes whenever possible, we know that, among the
successors of this set of nodes in the shrinked inclusion graph of iteration l,
there are at least two leaf nodes of iteration l.

Hence, we obtain that, for every leaf node in the shrinked inclusion graph
of iteration l + 1 that is added to class Cl+1, there must be at least two leaf
nodes in the shrinked inclusion graph of iteration l that are added to class Cl.
Moreover, the definition of lmax implies that class Clmax contains at least one
node. Thus, we obtain that, for each l ∈ {1, . . . , lmax}, class Cl consists of at
least 2lmax−l (merged) nodes.

Since there are at most k+1 nodes in every subtree of the shrinked inclusion
graph (as we delete all intervals that contain more than k intervals at the
beginning), we have that

k + 1 ≥
lmax∑
l=1

2lmax−l =
lmax−1∑
l=0

2l = 1− 2lmax

1− 2 = 2lmax − 1,

which implies that

lmax ≤ log(k + 2). (5.5)
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Using this in (5.4) yields the following:

Theorem 5.15. Algorithm 5.3 is (log(k+2))-competitive for k-ois on a single
machine (m = 1) when the set of intervals is laminar.

Remark 5.16. Note that there are instances for which the analysis in Theo-
rem 5.15 is tight: For example, consider the instance illustrated in Figure 5.2
for k = 2, i.e., there are three intervals with release dates r1 = 0, r2 = 1

3 , r3 =
2
3 , and lengths p1 = 1, p2 = p3 = 1

3 . If intervals 2 and 3 fail, it holds that

E [alg] = 1
2 · 1 + 1

2 · 0 = 1
2 = 1

log(k + 2) · opt.

5.3.2 Extension of the Algorithm to Multiple Machines

In the following, we describe how to extend the idea of Algorithm 5.3 tom ≥ 2
machines.

Throughout this section we use the following notation: As defined in Sec-
tion 5.1, an instance σ = (I, F ) of k-ois is given by a set of intervals I
and a set F ⊆ I of failing intervals.1 When dealing with different instances,
we occasionally write I(σ) and F (σ) if it is necessary to make clear which
set of intervals we are concerned with. For a set X of intervals and an in-
stance σ = (I, F ), we define σ −X := (I \X,F \X).

While we can assume for m = 1 that all release dates are pairwise dif-
ferent (Remark 5.4), this is no longer valid for m ≥ 2. Hence, it is possible
that several intervals are identical, and there is no longer a unique ordering
with respect to inclusion (which is needed for the construction of the inclu-
sion graph). We circumvent this problem by fixing the ordering of identical
intervals arbitrarily in advance.

Description of the Algorithm

Our algorithm works as follows:
In the first iteration, we ignore all intervals that contain more than k

intervals and construct a partitioning of the intervals into classes C1, . . . , Clmax

as described in the previous section. Among these classes, we then choose a
class C1 uniformly at random for the first machine. We denote the set of
possible choices for the random variable C1 by Ξ1, i.e., Ξ1 = {C1, . . . , Clmax}.
Our algorithm will then later accept on machine 1 only intervals from this
class C1 in a greedy manner, i.e., for every set of intervals that belong to a
merged node in class C1, the first non-failing interval is accepted (where ties
are broken in favor of the interval that is maximal with respect to the inclusion
ordering).

1Formally, the number of machines m is also part of the instance. However, we will
sometimes slightly abuse notation and say that an instance σ is processed on m machines.
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(a) For the first machine, a class C1 (grey) of the interval partitioning is
chosen uniformly at random. The intervals in I1(C1) are highlighted with a
black frame.

(b) For the second machine, the intervals in I1(C1) are removed (dotted),
and a class C2 (grey) of the partitioning of I \ I1(C1) is chosen uniformly at
random. The intervals in I2(C2) are highlighted with a black frame.

Figure 5.10: Illustration of the randomized algorithm for multiple machines.

When determining a set of intervals for the second machine, we choose
only from a subset of the intervals: For each set of merged intervals in C1,
we remove the inclusion-wise maximal one from I. We denote the set of
removed intervals by I1 = I1(C1) (see Figure 5.10(a) for an illustration). The
motivation for this definition stems from the fact that our algorithm will be
defined in the following such that every non-failing interval from I1 will be
accepted on the first machine and cannot be accepted on any of the other
machines.

For the remaining set I \ I1 of intervals, we again ignore all intervals still
containing more than k intervals2, construct a partitioning into classes, and
choose among these a class C2 uniformly at random for the second machine, as
illustrated in Figure 5.10(b). As before, we let Ξ2 = Ξ2(C1) denote the set of
possible choices for the random variable C2, and I2 = I2(C2) denotes the set of
inclusion-wise maximal intervals in C2. We continue with this procedure until
we have obtained a set of intervals for every machine, i.e., in each iteration
l = 1, . . . ,m we construct a partitioning of the intervals I \∪l−1

i=1I
i and choose

a class Cl uniformly at random.

2Note that it can happen that some of the intervals we ignored in the first iteration are
not ignored anymore in the second iteration.
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5. Online Interval Scheduling with Bounded Number of Failures

Note that, in our randomized procedure, it can happen that an interval i
is contained in multiple classes chosen for the different machines. In this case,
the algorithm follows the rule that, when interval i is released and does not
fail, we assign it to the machine with minimum index (among the machines j
whose class Cj contains i) that is currently not occupied (if all such machines
are already occupied, the interval is rejected).

Observe that our random variables C1, . . . , Cm are not independent as we
have C1 ∈ Ξ1, C2 ∈ Ξ2(C1), . . . , Cm ∈ Ξm(C1, . . . , Cm−1). All these random
variables are realized, i.e., the classes for the machines are chosen, before any
interval is released. In particular, they do not depend on the set of failing
intervals F ⊆ I, which will be important in the analysis later on.

Analysis of the Algorithm

In the following, we analyze the competitiveness of our algorithm.
For m machines, we denote by algm the algorithm described above, and

write algm(σ) for the number of intervals accepted by algm on instance σ.
Furthermore, we use the notation algmS (σ) for the number of intervals that
algm assigns to a subset S ⊆ {1, . . . ,m} of the machines on instance σ.

As the number of accepted intervals on the first machine is independent
of C2, . . . , Cm, we have that

E [algm(σ)] = EC1

[
algm1 (σ) + EC2,...,Cm

[
algm2,...,m(σ)

]]
. (5.6)

In the remainder of this section we want to show that, for any fixed m,
E [algm(σ)] ≥ 1

log(k+2) · optm(σ) for all instances σ. Here, optm(σ) denotes
the maximum number of intervals that can be accepted on instance σ if m
machines are available. As for our algorithm, we use the notation optmS (σ) for
the number of intervals that a given optimal schedule for instance σ accepts
on a subset S ⊆ {1, . . . ,m} of the machines.

Next, we show some results that will turn out to be useful in the analysis
of our algorithm.

Lemma 5.17. For each instance σ and each subset M ⊆ I(σ) of pairwise
non-overlapping intervals, we can assume, without loss of generality, that

optm2,...,m(σ) ≤ optm−1(σ −M). (5.7)

Proof. We show that there always exists an optimal schedule for σ on m
machines in which all of the intervals in M are either assigned to the first
machine or rejected. This implies the claim.

So assume that we are given an optimal schedule Sopt on m machines in
which some interval i ∈M is assigned to a machine j ∈ {2, . . . ,m}.
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m1

mj

I ′

i

(a) First case.

m1

mj

Ĩ

i

i∗

(b) Second case.

Figure 5.11: Illustration of the two cases in Lemma 5.17.

We now consider the intervals accepted in Sopt on machine 1 that overlap
with i. As the set of intervals is laminar, all these intervals are either contained
in i or there exists an interval i∗ containing i (see Figure 5.11).

First, we consider the case that there exists a non-empty subset I ′ ⊆ I
of the intervals that are accepted in Sopt on machine 1 and contained in i as
illustrated in Figure 5.11(a). As the instance is laminar, moving i to machine 1,
and I ′ to machine j yields a feasible schedule containing the same number of
accepted intervals.

If i is contained in some interval i∗ that is assigned to machine 1 in Sopt,
this interval may also contain some set Ĩ of other intervals (assigned to ma-
chine j in Sopt) as illustrated in Figure 5.11(b). As before, it is possible
to change the assignment of the intervals to the machines by moving i∗ to
machine j and Ĩ ∪ {i} to machine 1.

After this step, interval i is no longer assigned to machine j. Note that
it is not possible that, after this exchange, another interval from M that was
previously assigned to machine 1 is now assigned to machine j (as intervals
from M do not overlap). Hence, performing the above procedure at most n
times yields an optimal schedule with the desired property.

Observe that, for each j ∈ {1, . . . ,m}, algorithm algm acts on the first j
machines in the same way as algj does: This follows by our construction
(algm chooses a class C1 for the first machine from the same set of classes of
the interval partitioning as algj does, and, thus, the same intervals I \ I1 are
considered when a class C2 for the second machine is chosen, and so on) and
the fact that a non-failing interval i is accepted on the machine with minimum
index (among those machines whose classes contain i). Thus, we obtain the
following result:

Observation 5.18. For all instances σ and j ∈ {1, . . . ,m}, it holds that

algm1,...,j(σ) = algj(σ).
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5. Online Interval Scheduling with Bounded Number of Failures

The most important result for proving the competitiveness of algm is the
following lemma. For an arbitrary instance σ, it bounds the expected number
of intervals accepted by algm on machines 2, . . . ,m from below by means of
optm−1 (on a sub-instance).

In the following, we denote by Am1 (σ, C1) the set of intervals accepted by
algm on the first machine for instance σ if C1 ∈ Ξ1 is chosen. If σ and C1 are
clear from the context, we write for short Am1 .

Lemma 5.19. For any instance σ, a fixed choice of a class C1 ∈ Ξ1 for the
first machine, and I1 = I1(C1), it holds that

EC2,...,Cm
[
algm2,...,m(σ)

]
≥ 1

log(k + 2) · optm−1
(
(σ − I1)−Am1

(
σ, C1

))
.

Proof. In the following, we denote by algm the algorithm that processes an
instance in the same way as algm, i.e., it constructs a partition of the intervals
and chooses a class uniformly at random, which is then processed greedily.
However, some of the intervals are not allowed to be accepted by algm and
have to be skipped in the acceptance procedure.

For an instance σ and a set U ⊆ I(σ) of intervals that have to be skipped,
we denote the number of accepted intervals by algm(σ |U). Using this nota-
tion, we claim that

EC2,...,Cm
[
algm2,...,m(σ)

]
= E

[
algm−1(σ − I1 | Am1 )

]
(5.8)

≥ 1
log(k + 2) · optm−1((σ − I1)−Am1 ). (5.9)

Here, equality (5.8) holds by the following argument:
By assumption, algm chooses (on instance σ) for machine 2 a class from

the partitioning of the intervals I \ I1 uniformly at random, and, in the fol-
lowing, accepts these intervals in a greedy manner except that intervals that
are accepted on machine 1 (i.e., the intervals Am1 ) have to be skipped.

algm−1 chooses (on instance σ − I1) for machine 1 a class from the same
partitioning of the intervals I \I1 and accepts from these intervals in a greedy
manner while having to skip intervals in Am1 .

By the same reasoning, the behavior of algm on machine j and algm−1

on machine j − 1 coincide for each j ∈ {2, . . . ,m}.
In order to prove inequality (5.9), we show the following:

Claim 5.20. For all sets of intervals U ⊆ I(σ) and instances σ̂ ⊆ σ,3 it holds
that

E
[
algm−1(σ̂ | U)

]
≥ 1

log(k + 2) · optm−1(σ̂ − U).

3Here, σ̂ ⊆ σ means that I(σ̂) ⊆ I(σ) and F (σ̂) ⊆ F (σ) ∩ I(σ̂).
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(Note that choosing σ̂ := σ − I1 and U := Am1 in the claim yields (5.9).
Hence, proving the claim suffices to establish Lemma 5.19.)

Proof. We prove the claim by induction on m.
First, we consider the induction basis m = 2, where we can use similar

arguments as in the analysis of Algorithm 5.3.
We denote by σ̂l the subset of instance σ̂ consisting only of the intervals

belonging to class Cl in the partitioning of the set I(σ̂) (where we ignore, by
definition of the algorithm, all intervals that contain more than k intervals).
Furthermore, we let l̂max denote the total number of classes for instance σ̂.
Thus, analogously to (5.2), (5.3), and (5.5), it holds for all l ∈ {1, . . . , l̂max}
that

alg1(σ̂l | U) = opt1(σ̂l − U), (5.10)

opt1(σ̂ − U) ≤
l̂max∑
l=1

opt1(σ̂l − U), (5.11)

l̂max ≤ log(k + 2). (5.12)

Altogether, we obtain

E
[
alg1(σ̂ | U)

]
=

l̂max∑
l=1

1
l̂max

· alg1(σ̂l | U)

(5.10)=
l̂max∑
l=1

1
l̂max

· opt1(σ̂l − U)

(5.11)
≥ 1

l̂max
· opt1(σ̂ − U)

(5.12)
≥ 1

log(k + 2) · opt1(σ̂ − U).

For the inductive step, assume that the statement holds for m − 1. We
use the notation Am−1

1 = Am−1
1 (σ̂, C1|U) for the set of intervals accepted by

algm−1 on the first machine for instance σ̂ and class C1 ∈ Ξ1 when the set U
of intervals has to be skipped. It holds that (see below for an explanation of
the single steps):

E
[
algm−1(σ̂ | U)

]
= EC1

[
algm−1

1 (σ̂ | U) + EC2,...,Cm−1

[
algm−1

2,...,m−1 (σ̂ | U)
] ]

(5.13)

= EC1

[
algm−1

1 (σ̂ | U) + E
[
algm−2

(
σ̂ − I1(C1)

∣∣∣∣ U ∪ Am−1
1 (σ̂, C1|U)

)]]
(5.14)
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≥ EC1

[
algm−1

1 (σ̂ | U)

+ 1
log(k + 2) · optm−2

(
(σ̂ − I1(C1))−

(
U ∪ Am−1

1 (σ̂, C1|U)
)) ]

(5.15)

≥ EC1

[
algm−1

1 (σ̂ | U)
]

+ 1
log(k + 2) · min

C̃1∈Ξ1
optm−2

(
(σ̂ − I1(C̃1))−

(
U ∪ Am−1

1 (σ̂, C̃1|U)
))

(5.16)

≥ EC1

[
algm−1

1 (σ̂ | U)
]

+ 1
log(k + 2) · min

C̃1∈Ξ1
optm−2

(
σ̂ −

(
U ∪ Am−1

1 (σ̂, C̃1|U)
))

(5.17)

= E
[
alg1 (σ̂ | U)

]
+ 1

log(k + 2) · min
C̃1∈Ξ1

optm−2
(
(σ̂ − U)−Am−1

1 (σ̂, C̃1|U)
)

(5.18)

≥ 1
log(k + 2) ·

(
opt1(σ̂ − U)

+ min
C̃1∈Ξ1

optm−2
(
(σ̂ − U)−Am−1

1 (σ̂, C̃1|U)
))

(5.19)

≥ 1
log(k + 2) ·

(
optm−1

1 (σ̂ − U) + optm−1
2,...,m−1 (σ̂ − U)

)
(5.20)

≥ 1
log(k + 2) · optm−1(σ̂ − U).

Here, equality (5.13) follows analogously to (5.6). The second equal-
ity (5.14) holds by the argumentation presented for (5.8).4 For (5.15), we use
the induction hypothesis, while (5.16) holds since the minimum is no larger
than the expected value.

Inequality (5.17) holds by the following argument: If we have I1(C̃1) ⊆
U ∪ Am−1

1 (σ̂, C̃1|U), the inequality obviously holds. So assume there exists
an interval i ∈ I1(C̃1) \ (U ∪ Am−1

1 (σ̂, C̃1|U)). By definition of our algorithm,
this interval i is then not accepted by algm−1 on the first machine because
it fails, i.e., i ∈ F (σ̂). In this case, it can neither be accepted by optm−2 on
any sub-instance of σ̂.

Equality (5.18) follows by choosing j = 1 in Observation 5.18.5 Finally, for
inequality (5.19), we use the induction basism = 2, and (5.20) is a consequence

4Forbidding an algorithm to accept some intervals does not change the argumentation
presented in the paragraph subsequent to (5.9).

5The argumentation for Observation 5.18 carries over to algm.
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of Lemma 5.17 applied to σ = σ̂ − U and M = Am−1
1 (σ̂, C1

min|U), where
C1

min = argmin
C1∈Ξ1

optm−2
(
(σ̂ − U)−Am−1

1 (σ̂, C̃1|U)
)
.

We now complete the proof of the competitiveness of our algorithm by
bounding the expected number of accepted intervals as follows:

E [algm(σ)]

= EC1

[
algm1 (σ) + EC2,...,Cm

[
algm2,...,m(σ)

]]
(5.21)

≥ EC1

[
algm1 (σ) + 1

log(k + 2) · optm−1
(
(σ − I1(C1))−Am1 (σ, C1)

)]
(5.22)

≥ EC1 [algm1 (σ)]

+ 1
log(k + 2) · min

C̃1∈Ξ1
optm−1

(
(σ − I1(C̃1))−Am1 (σ, C̃1)

)
(5.23)

≥ EC1 [algm1 (σ)] + 1
log(k + 2) · min

C̃1∈Ξ1
optm−1

(
σ −Am1 (σ, C̃1)

)
(5.24)

= EC1

[
alg1(σ)

]
+ 1

log(k + 2) · min
C̃1∈Ξ1

optm−1
(
σ −Am1 (σ, C̃1)

)
(5.25)

≥ 1
log(k + 2) · opt1(σ) + 1

log(k + 2) · optm2,...,m(σ) (5.26)

≥ 1
log(k + 2) · optm1 (σ) + 1

log(k + 2) · optm2,...,m(σ)

= 1
log(k + 2) · optm(σ).

Here, equality (5.21) holds by (5.6), and (5.22) is due to Lemma 5.19.
Inequality (5.23) obviously holds since the minimum is no larger than the
expected value, and (5.24) follows analogously to the argumentation pre-
sented for (5.17) in the proof of Lemma 5.19. Choosing j = 1 in Obser-
vation 5.18 yields (5.25). Finally, (5.26) holds by our result for the single
machine algorithm (Theorem 5.15) and Lemma 5.17 with M = Am1 (σ, C1

min)
and C1

min = argmin
C1∈Ξ1

optm−1
(
σ −Am1 (σ, C̃1)

)
. Hence, we have shown:

Theorem 5.21. There exists a randomized (log(k+2))-competitive algorithm
for k-ois when the set of intervals is laminar.

5.4 Weighted Interval Scheduling
A generalization of our problem k-ois is given by introducing a weight wi > 0
for each interval i and maximizing the total weight of accepted intervals. How-
ever, this setting does, in general, not allow for deterministic online algorithms
with bounded competitiveness, as the following result shows:
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Proposition 5.22. For the weighted version of k-ois, no deterministic online
algorithm can achieve a bounded competitiveness, even if m = 1, k = 1, and

(i) all intervals have the same length, or

(ii) the length of each interval equals its weight.

Proof. Consider the following instance consisting of two intervals with release
dates r1 = 0, r2 = 1

2 and weights w1 = 1, w2 = M for some large value M . In
the first case, both intervals have length p1 = p2 = 1, whereas we have in the
second case p1 = 1 and p2 = M . In both cases the intervals are overlapping.

alg has to accept the first interval in order to obtain a finite competitive-
ness. Then, it cannot accept the second interval, and for M → ∞, we have
opt→∞, whereas alg = 1.

However, if there exist wmin and wmax such that wmin ≤ wi ≤ wmax for all
intervals i, ignoring the weights and applying greedy1 (Algorithm 5.1) yields
a competitive ratio of (k + 1) · wmax

wmin by Theorem 5.7. Similarly, we can see
that no deterministic online algorithm can achieve a competitive ratio better
than k · wmax

wmin by considering the instance from the proof of Proposition 5.3
with weights w1 := wmin, w2 := . . . := wk+1 := wmax.

5.5 Conclusions
In this chapter we analyzed a novel online version of the interval scheduling
problem where we are given a set of potential intervals and an upper bound k
on the number of failing intervals.

While we obtained (almost) tight bounds on the competitive ratio for the
case m = 1, the gaps between our upper and lower bounds increase for m > 1.
Hence, a natural question is how to close these gaps.

The randomized algorithm we presented and the proof of its performance
guarantee highly rely on the assumption that we consider laminar sets of
intervals. It remains an open problem how to design randomized algorithms
for arbitrary instances.
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6
The Canadian Traveller Problem

In this chapter we consider the Canadian traveller problem (ctp), which is a
variant of the shortest path problem without complete knowledge of the graph.
We are given an undirected graph G = (V,E) with non-negative edge costs
(or lengths) c : E → R≥0 and two designated vertices s, t ∈ V . The task is to
find a path from s to t at minimum total costs. However, some of the edges
may be blocked, and in an online setting we do not know whether an edge is
blocked before reaching one of its endpoints.

In the k-Canadian traveller problem (k-ctp) we are additionally given an
upper bound k on the number of blockages. Note that this online setting is
similar to the online interval scheduling problem k-ois considered in Chapter 5,
where initially a set of potential intervals is given, but up to k of them can
fail and an online algorithm learns that an interval fails not before the time it
is supposed to be released.

Previous Work

The ctp has been introduced by Papadimitriou and Yannakakis (1991). They
devise optimal online algorithms for special cases and show that the gen-
eral problem of finding an online algorithm with bounded competitiveness
is PSPACE-complete. Bar-Noy and Schieber (1991) consider the recoverable
ctp where blocked edges may be reopened after some time. If a blocked edge
is reached, an online algorithm is given the information when this edge will
become traversable again. Furthermore, they present a strategy for the k-ctp
that yields a solution with minimal worst-case length. Details to this worst-
case analysis can be found in the work of Ben-David and Borodin (1994).

The k-ctp has been analyzed for the first time by means of competitive
analysis by Westphal (2008). He shows that no deterministic online algorithm
can be better than (2k+ 1)-competitive, and the algorithm backtrack that
returns to s and recomputes a shortest path after a blockage is reached achieves
this ratio. Furthermore, he shows that no randomized algorithm can achieve a
competitive ratio better than k+ 1. Recently, Demaine et al. (2014) designed
a randomized algorithm that achieves a competitive ratio of (1 + 1√

2)k + 1
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against an oblivious adversary, where 1 + 1√
2 ≈ 1.71.

Other aspects of the k-ctp have also been studied from a competitive
analysis point of view. Xu et al. (2009) propose a (2k+1 − 1)-competitive
greedy strategy. Although the competitiveness is significantly worse than the
optimal ratio of 2k + 1, they argue why this heuristic might be reasonable
for navigating in certain urban traffic environments. Zhang and Xu (2011)
analyze the k-ctp with multiple travelers that may use communication in
order to find a shortest path. They show that a second traveler improves the
competitive ratio to k + 1 and prove a lower bound of 2bk/Lc + 1, where L
denotes the number of travelers. Su and Xu (2004) were the first ones to
analyze simple strategies for the recoverable ctp. An optimal competitive
online algorithm for this problem is given by Huang and LiaoShou (2012).
Moreover, Su et al. (2008) analyze it from a risk-reward perspective, which
goes back to Al-Binali (1999).

Büttner (2013) introduces several Canadian type problems that are clas-
sical routing problems with the additional online feature that up to k edges
might be blocked as in our setting: In the Canadian travelling salesman prob-
lem (ctsp) one has to find a closed tour visiting every vertex at least once
minimizing the total travel costs (this problem has also been studied by Liao
and Huang (2014), who present an O(

√
k)-competitive algorithm for edge

costs satisfying the triangle inequality). In the Canadian latency travelling
salesman problem, every vertex has a due date, and the task is to find a closed
tour minimizing the total (or maximal) latency. The Canadian tour operator
problem allows to skip some vertices, and the task is to find a tour visiting
the remaining vertices such that the sum of travel costs and penalty costs (for
vertices that are not visited) is minimized.

Chapter Outline

In Section 6.1 definitions and previous results on the k-ctp are summarized.
In particular, Theorem 6.3 states that no randomized online algorithm for
the k-ctp can be better than (k + 1)-competitive (Westphal, 2008). In the
proof an instance is used where all s-t-paths are node-disjoint. This is the
motivation for Section 6.2, where we construct a randomized online algorithm
for node-disjoint paths. Our algorithm achieves a competitive ratio of k + 1
and is therefore best possible. To the best of our knowledge, this is the first
result on randomized algorithms for the k-ctp. We demonstrate possible
extensions of our algorithm to other graph classes and limitations where this
is not possible.

Finally, we consider in Section 6.3 the k-ctp with uncertain recovery times.
In this setting, an online algorithm is given the information that an edge is
currently blocked when reaching one of its endpoints. A blocked edge might,
however, be reopened at some point in time which is not known to the online
algorithm in advance. This generalizes the recoverable ctp where recovery
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times are revealed as soon as a blockage is reached (cf. (Bar-Noy and Schieber,
1991)). We present a (2k + 3)-competitive algorithm for this problem and
discuss possible extensions.

6.1 Problem Definition and Preliminaries
The k-Canadian traveller problem (k-ctp) we consider in this chapter is for-
mally defined as follows:

Definition 6.1 (k-ctp).
An instance of k-ctp is given by an undirected graph G = (V,E) with non-
negative edge costs c : E → R≥0, designated vertices s, t ∈ V , and a set B ⊆ E
(with |B| ≤ k) of blocked edges.

The task is to find a shortest path from s to t in G − B, where an online
algorithm learns that an edge e is blocked, i.e., e ∈ B, only when reaching one
of the endpoints of e.

We measure the quality of online algorithms for k-ctp by means of com-
petitive analysis (see Section 1.1.4). For an instance σ, alg(σ) denotes the
total distance traveled by an online algorithm alg on instance σ, and opt(σ)
denotes the length of the shortest s-t-path in this instance. A deterministic
online algorithm alg is c-competitive for k-ctp if alg(σ) ≤ c · opt(σ) for
every instance σ. Analogously, if alg is a randomized online algorithm, it
is c-competitive against an oblivious adversary if E [alg(σ)] ≤ c · opt(σ) for
every instance σ.

For the basic setting of k-ctp, the notion that an edge is blocked means
that it cannot be traversed at any point in time. In the following, we use the
notation c(P ) :=

∑
e∈P c(e) for the costs of an s-t-path P in G, and write P

for the set of all (simple) s-t-paths.

Algorithm 6.1 backtrack for k-ctp
1: while t is not reached do
2: determine a shortest path P in G
3: if a blocked edge e ∈ P is found then
4: G := G− e, return to s
5: end if
6: end while

Westphal (2008) proposed the backtrack strategy, which is summarized
in Algorithm 6.1 and based on the following idea: First, a shortest s-t-path P
in the currently known graph G is computed. If a blocked edge e ∈ P on this
path is encountered, the algorithm returns to s, computes a new shortest path
in G− e, and continues with this procedure until t is reached. Since at most k
edges can fail, the following result holds:
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Figure 6.1: Illustration of the graph used in the proof of Theorem 6.3.

Theorem 6.2 (Westphal (2008)). Algorithm 6.1 is (2k + 1)-competitive for
k-ctp.

The next result shows that Algorithm 6.1 is best possible. Furthermore,
it shows that even randomization does not help to obtain a competitive ratio
better than Ω(k). We give a sketch of the proof as the considered instance
will be important in the following.

Theorem 6.3 (Westphal (2008)). For k-ctp,...

(i) ... no deterministic online algorithm can achieve a competitive ratio
better than 2k + 1.

(ii) ... no randomized online algorithm can achieve a competitive ratio better
than k + 1.

Proof. Consider the graph illustrated in Figure 6.1 consisting of k + 1 node-
disjoint s-t-paths Pi = (s, vi, t). Every deterministic online algorithm alg is
characterized by a permutation α of {1, . . . , k + 1}, specifying the order in
which the paths are chosen in order to find a path to t.

For the first part, assume that edges (vα(1), t), . . . , (vα(k), t) are blocked.
Then, alg has to return to s in total k times before it reaches t in the last
attempt via Pσ(k+1), incurring total costs of 2k + 1. opt chooses the non-
blocked path Pσ(k+1) at cost 1, yielding alg = (2k + 1) · opt.

For the second part, we apply Yao’s Principle (Yao, 1977). We therefore
define k + 1 instances such that in instance i all edges (vj , t) with j 6= i are
blocked. A probability distribution over these instances is given by choos-
ing i ∈ {1, . . . , k + 1} uniformly at random.

The probability that a deterministic online algorithm alg finds the un-
blocked path in the l-th attempt is 1

k+1 . In this case, its costs are 2l−1, and the
expected costs of the algorithm are therefore E [alg] = 1

k+1
∑k+1
l=1 2l−1 = k+1.

Since E [opt] = 1, the claim follows.
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6.2 An Optimal Randomized Algorithm for
Node-Disjoint Paths

In this section we consider graphs where all s-t-paths are node-disjoint (an
example for such a graph was already given in the proof of Theorem 6.3). We
assume that there are n such node-disjoint s-t-paths, i.e., P := {P1, . . . , Pn},
and we denote the costs of path Pi by ci := c(Pi). Furthermore, we assume
that the paths are sorted in non-decreasing order of costs, i.e., c1 ≤ . . . ≤ cn.

One of the advantages of considering node-disjoint paths is the fact that
the failure of one edge implies the blockage of one s-t-path (while for arbitrary
graphs several paths might be blocked). The following result shows that we
can restrict ourselves in the analysis to the case of k + 1 different paths:

Lemma 6.4. In the analysis of the k-ctp we can assume that there are in
total n = k + 1 s-t-paths, i.e., P = {P1, . . . , Pk+1}.

Proof. If n < k+1, we can simply add sufficiently many “dummy” paths with
costs ∞.

If n > k + 1, it suffices to consider the k + 1 cheapest paths P1, . . . , Pk+1:
Since at most k edges can fail and all s-t-paths are node-disjoint, at most k
paths can be blocked. Thus, any competitive online algorithm would assign a
positive probability only to these paths.

The algorithm we present can be seen as a randomized version of back-
track (Algorithm 6.1) and is based on the following idea: Initially, we con-
sider the k + 1 shortest s-t-paths in the graph. Although we do not know at
this point which paths are blocked, we can be sure that at least one of these
paths will be the actual shortest path since at most k of them can contain
a blocked edge. We then define an appropriate probability distribution, and
choose a path according to this distribution. If the chosen path is traversable,
we reach t. If it is blocked, we return to s and repeat the procedure for the k
shortest remaining paths.
First, we consider the case that only one edge can be blocked, i.e., k = 1:

Lemma 6.5. Let P1 and P2 be the two cheapest s-t-paths with costs c1 and
c2, respectively. The algorithm that chooses at the beginning path P1 with
probability π1 = c2

2
c2

1+c2
2
and path P2 with probability π2 = c2

1
c2

1+c2
2
achieves a

competitive ratio of 2.

Proof. If P1 is blocked, alg has expected costs of at most π1(2c1 + c2) +π2c2.
opt chooses in this case P2 and we have a ratio of

E [alg]
opt ≤ π1(2c1 + c2) + π2c2

c2
. (6.1)
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If P2 is blocked, the ratio is analogously given by

E [alg]
opt ≤ π1c1 + π2(2c2 + c1)

c1
. (6.2)

If neither P1 nor P2 is blocked, we have

E [alg]
opt = π1c1 + π2c2

c1
. (6.3)

Using the definitions of π1 and π2 for the expressions on the right-hand
sides of (6.1), (6.2), and (6.3), we obtain that in all cases

E [alg]
opt ≤ (c1 + c2)2

c2
1 + c2

2
,

which is bounded from above by 2.

In the following, we consider an arbitrary k ≥ 1 and first restrict ourselves
to a special class of paths that have the similar costs property (see Defini-
tion 6.6). For these paths it is possible to derive a useful result which gives
us access to a set of probability distributions that we can use for the ran-
domized choice of a path (see Lemma 6.7). Afterwards, we show how it is
possible to create for arbitrary graphs a suitable partitioning of the paths (see
Definition 6.11) such that the paths within each class have the similar costs
property, and we can make use of the probability distributions we derived
before.

6.2.1 The Similar Costs Property

In Lemma 6.5 we have seen how to choose a suitable probability distribution
for k = 1. Next, we show how this can be done for k > 1 if the costs of the
paths do not differ “too much”. We make this notion more precise by defining
the similar costs property, which states that the costs of no path may exceed
twice the average costs of all paths.

Definition 6.6. Paths P ⊆ {P1, . . . , Pk+1} have the similar costs property if
for all P ∈ P it holds that

c(P ) ≤ 2
|P|

∑
P ′∈P

c(P ′). (6.4)

For paths that fulfill the similar costs property, we are able to show the
following result, which will be crucial in the analysis later on:

Lemma 6.7. If paths P ⊆ {P1, . . . , Pk+1} have the similar costs property, the
polyhedron Q(P) is not empty, where
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Q(P) :=
{
π ∈ R|P|≥0 : (2− |P|)πP + 2

c(P )
∑
P ′∈P:
P ′ 6=P

c(P ′)πP ′ ≤ 1 ∀ P ∈ P,

∑
P∈P

πP = 1
}
.

Proof. In the proof we make use of the following description of the polyhe-
dron Q(P). For

A(P) :=

π ∈ R|P|≥0 : (2− |P|)πP + 2
c(P )

∑
P ′∈P:
P ′ 6=P

c(P ′)πP ′ ≤ 1 ∀ P ∈ P


B(P) :=

{
π ∈ R|P|≥0 :

∑
P∈P

πP = 1
}
,

it holds that Q(P) = A(P) ∩B(P).
Consider π̄ with

π̄P :=

(2− |P|) · c(P ) + 2
∑

P ′∈P:
P ′ 6=P

c(P ′)

c(P ) · |P|2
.

By the similar costs property we have 2c(P ) ≥ |P| · c(P ), i.e., π̄P is non-
negative for all P ∈ P. Note that this is the only point in the proof where
this assumption is used.
Furthermore, π̄ ∈ A(P) since we have for all P ∈ P

(2− |P|) π̄P + 2
c(P )

∑
P ′∈P:
P ′ 6=P

c(P ′) · π̄P ′

= (2− |P|)

(2− |P|) · c(P ) + 2
∑

P ′∈P:
P ′ 6=P

c(P ′)

c(P ) · |P|2︸ ︷︷ ︸
=π̄P

+ 2
c(P )

∑
P ′∈P:
P ′ 6=P

c(P ′)

(2− |P|) · c(P ′) + 2
∑

P ′′∈P:
P ′′ 6=P ′

c(P ′′)

c(P ′) · |P|2︸ ︷︷ ︸
=π̄P ′

(6.5)
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= (2− |P|)2

|P|2
+ 2 (2− |P|)
c(P ) · |P|2

∑
P ′∈P:
P ′ 6=P

c(P ′)

+ 2 (2− |P|)
c(P ) · |P|2

∑
P ′∈P:
P ′ 6=P

c(P ′) + 4
c(P ) · |P|2

∑
P ′∈P:
P ′ 6=P

∑
P ′′∈P:
P ′′ 6=P ′

c(P ′′)

︸ ︷︷ ︸
=(|P|−1)·c(P )+(|P|−2)·

∑
P ′∈P:
P ′ 6=P

c(P ′)

= (2− |P|)2

|P|2
+ 4(|P| − 1)

|P|2︸ ︷︷ ︸
=1

+
(

2 (2− |P|)
c(P ) · |P|2

+ 2 (2− |P|)
c(P ) · |P|2

+ 4 (|P| − 2)
c(P ) · |P|2

)
︸ ︷︷ ︸

=0

·
∑
P ′∈P:
P ′ 6=P

c(P ′)

= 1. (6.6)

Next, observe that

∑
P∈P

π̄P =
∑
P∈P

(2− |P|) · c(P ) + 2
∑

P ′∈P:
P ′ 6=P

c(P ′)

c(P ) · |P|2

= 2− |P|
|P|

+

2
∑
P∈P

 ∑
P ′∈P:
P ′ 6=P

c(P ′) ·
∏

P ′′∈P:
P ′′ 6=P

c(P ′′)


∏
P∈P

c(P ) · |P|2

= 2− |P|
|P|

+

2
∑

P,P ′∈P:
P 6=P ′

c(P ′)2 ·
∏

P ′′∈P:
P 6=P ′′ 6=P ′

c(P ′′)


∏
P∈P

c(P ) · |P|2

= 2− |P|
|P|

+

∑
P,P ′∈P:
P 6=P ′


≥2c(P )c(P ′)︷ ︸︸ ︷(

c(P )2 + c(P ′)2
)
·
∏

P ′′∈P:
P 6=P ′′ 6=P ′

c(P ′′)


∏
P∈P

c(P ) · |P|2

≥ 2− |P|
|P|

+
2 · (|P| − 1) · |P| ·

∏
P∈P

c(P )∏
P∈P

c(P ) · |P|2

= 1. (6.7)
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By definition of A(P) it holds that 0 ∈ A(P), and (6.6) shows that
π̄ ∈ A(P). Thus, it follows by the convexity of A(P) that λπ̄ ∈ A(P) for
all λ ∈ [0, 1]. Observe that by (6.7), we have λ∗ := 1/(

∑
P∈P π̄P ) ∈ [0, 1], and,

therefore, it holds that π∗ := λ∗π̄ ∈ A(P). Furthermore, π∗ is defined such
that

∑
P∈P π

∗
P = 1, i.e., π∗ ∈ B(P). This implies π∗ ∈ A(P) ∩B(P) = Q(P),

and the claim follows.

Note that the proof of Lemma 6.7 is constructive in the sense that we ac-
tually specify an element π∗ ∈ Q(P). We will use this probability distribution
(or possibly any other element in Q(P)) as our “suitable” distribution over
the set of s-t-paths in the algorithm.

6.2.2 An Algorithm for Strong Similar Costs

First, we present an algorithm for the case that every subset of the paths has
the similar costs property. We define this formally as follows:

Definition 6.8. Paths P ⊆ {P1, . . . , Pk+1} have the strong similar costs prop-
erty if P ′ has the similar costs property for all P ′ ⊆ P.

Note that this is a stronger assumption than the (weak) similar costs prop-
erty (Definition 6.6):

Remark 6.9. Obviously, every set of paths that has the strong similar costs
property also fulfills the (weak) similar costs property. However, the converse
does, in general, not hold true as the following example shows:

Consider paths P = {P1, P2, P3, P4} with costs c1 = c2 = 1, c3 = c4 = x
for some x ≥ 1. For every choice of x, P fulfills the similar costs property,
since 2

|P|
∑
P∈P c(P ) = 1 + x ≥ x.

But if we consider P ′ = {P1, P2, P3} ( P, it holds that 2
|P ′|

∑
P∈P ′ c(P ) =

4+2x
3 , which is strictly smaller than c3 = x for x > 4.

Our algorithm for strong similar costs then works as follows: We choose
a path at random according to a probability distribution π ∈ Q(P) over the
set of all paths P that are not yet known to be blocked. If we reach t via the
chosen path, we are done. Otherwise, we remove this path from our set, and
repeat the procedure. Observe that since we assume the strong similar costs
property, it always holds that the remaining set of paths fulfills the similar
costs property, and by Lemma 6.7 we can be sure that there exists a suitable
probability distribution. Formally, this is summarized in Algorithm 6.2.

Theorem 6.10. If the strong similar costs property holds, Algorithm 6.2 is
(k + 1)-competitive against an oblivious adversary.
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Algorithm 6.2 rand-backtrack for strong similar costs
Input: Set of paths P satisfying the strong similar costs property.
1: while t is not reached do
2: determine a probability distribution π ∈ Q(P) over the set of paths P

(Lemma 6.7), and choose a path P ∈ P according to this distribution
3: if a blocked edge e ∈ P is found then
4: set P := P \ {P}, and return to s
5: end if
6: end while

Proof. We prove the result by induction over k.
The basis for k = 1 follows from Lemma 6.5 since the specified probability

distribution satisfies π ∈ Q(P).
For the inductive step, assume that the statement has been shown for k−1.

We show that the result then also holds for k, i.e., the competitive ratio of
Algorithm 6.2 (alg) can be bounded by k + 1 if up to k blockages occur.

Every instance of the k-ctp is specified by a set of blocked paths B (with
|B| ≤ k) and traversable paths T := P \ B. Then,

opt = min
P∈T

c(P ) =: c(P ∗).

The competitive ratio is therefore given by

E [alg]
opt ≤

∑
P∈T

πP c(P ) +
∑
P∈B

πP
(
2c(P ) + V −PP ∗

)
c(P ∗) . (6.8)

Here, the first sum in the enumerator corresponds to the case that alg
chooses a traversable path P ∈ T . Then, t is reached at cost c(P ).

The second sum is for the case that a blocked path P ∈ B is chosen.
Then, alg has costs of at most 2c(P ) for trying to traverse P and returning
to s. After this unsuccessful attempt, at most k− 1 additional edges can fail.
We denote the expected remaining costs of alg until reaching t by V −PP ∗ (the
subscript refers to P ∗ being the optimal path, and the superscript indicates
that alg already learned that P is blocked).

By the strong similar costs assumption, the set P \ {P} has the similar
costs property. Thus, we can apply alg to these paths, and we know that
at most k − 1 of them can possibly fail. By induction hypothesis alg is
k-competitive for this remaining problem, which yields that V −PP ∗ ≤ k · c(P ∗).
Hence, the right-hand side of (6.8) can be bounded from above by∑

P∈T
πP

c(P )
c(P ∗) +

∑
P∈B

πP

(2c(P )
c(P ∗) + k

)
≤ πP ∗ +

∑
P∈P:
P 6=P ∗

πP

(2c(P )
c(P ∗) + k

)
.

(6.9)
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We need to show that the right hand side of (6.9) is bounded from above
by k + 1 for all instances of the problem. Using that |P| = k + 1 this is
equivalent to showing that for all P ∗ ∈ {P1, . . . , Pk+1}:

πP ∗ + 2
c(P ∗)

∑
P∈P:
P 6=P ∗

πP + (|P| − 1)
∑
P∈P:
P 6=P ∗

πP ≤ |P| ·
∑
P∈P

πP︸ ︷︷ ︸
=1

⇐⇒ (2− |P|)πP ∗ + 2
c(P ∗)

∑
P∈P:
P 6=P ∗

c(P )πP ≤ 1. (6.10)

Algorithm 6.2 chooses π ∈ Q(P) according to Lemma 6.7 exactly such that
it is a probability distribution and constraints (6.10) are fulfilled. Hence, the
claim follows.

6.2.3 An Algorithm for Arbitrary Costs

In Algorithm 6.2 it was necessary to assume that paths P have the strong
similar costs property, i.e., any subset of P has the similar costs property. For
arbitrary costs, we must not apply Algorithm 6.2 since we cannot ensure that
there always exists a suitable probability distribution (see the inductive step
in the proof of Theorem 6.10).

Hence, we use the following idea for arbitrary costs: We first partition
the set of paths into suitable classes. We then want to process each of these
classes in non-decreasing order of costs. The classes are defined to be maxi-
mal with respect to the (weak) similar costs property, i.e., the paths in each
class fulfill the similar costs property, and a class cannot be extended without
violating this property. Therefore, we can perform at least the first iteration
of Algorithm 6.2 for each class (since by Lemma 6.7 a suitable probability
distribution exists).

If we reach a blocked edge and remove a path, it can happen that the
corresponding class does not have the similar costs property anymore (see
Remark 6.9 for an example). In this case, we cannot apply Algorithm 6.2
to the remaining paths. We therefore perform another partitioning of these
paths and obtain classes that have again the similar costs property.

Before we present and analyze the algorithm for the case of arbitrary costs
in more detail, we first define formally our concept of a similar costs partition:

Definition 6.11. We call K = {K1, . . . ,Kl} a similar costs partition of the
paths P ⊆ {P1, . . . , Pk+1} if

(i) Ki ⊆ P for all i ∈ {1, . . . , l} and ∪̇li=1Ki = P,
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(ii) it is possible to assign to each path P ∈ P a class KP ∈ K and a position
nP ∈ {1, . . . , |KP |} in this class1 such that we have a lexicographical
ordering with respect to the costs, i.e.,

c(K1, 1) ≤ c(K1, 2) ≤ . . . ≤ c(K1, |K1|)
≤ c(K2, 1) ≤ c(K2, 2) ≤ . . . ≤ c(K2, |K2|)
≤ . . .

≤ c(Kl, 1) ≤ c(Kl, 2) ≤ . . . ≤ c(Kl, |Kl|),

(iii) and it holds that

c(Ki, n) ≤ 2
n

n∑
j=1

c(Ki, j) for all Ki ∈ K and n ∈ {1, . . . , |Ki|},

(6.11)

c(Ki+1, 1) > 2
|Ki|+ 1

|Ki|∑
j=1

c(Ki, j) + c(Ki+1, 1)


for all i ∈ {1, . . . , l − 1}. (6.12)

Observe that for n = |Ki|, (6.11) states that the paths in class Ki have
the similar costs property and (6.12) ensures that the classes are as large as
possible.

Remark 6.12. A similar costs partition can easily be constructed by going
through the set of paths in non-decreasing order of costs. Paths are added to
the current class as long as possible such that the similar costs property holds.
If adding an additional path violates the property, a new class is opened.

Example 6.13. For a set of paths with costs as given below we have the
following similar costs partitioning:

[c(P1), . . . , c(P11)] = [1, 2, 3, 5︸ ︷︷ ︸
K1

, 8, 9, 11, 12, 14︸ ︷︷ ︸
K2

, 28, 35︸ ︷︷ ︸
K3

].

Formally, our algorithm is summarized in Algorithm 6.3. Initially, the
algorithm is executed as rand-backtrack(P) with the complete set of all
s-t-paths P = {P1, . . . , Pk+1}. Observe that if after the first partitioning step
every class already has the strong similar costs property, this algorithm breaks
down to applying Algorithm 6.2 to each class.

1Formally, this is given by a bijective mapping φ : P → K × ∪̇li=1{1, . . . , |Ki|} with
φ(P ) := (KP , nP ). The costs of a path P ∈ P are therefore c(P ) = c(φ−1(KP , nP )). In
order to simplify notation, we write for short c(KP , nP ).
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Algorithm 6.3 rand-backtrack for general costs
Input: Set of paths P with arbitrary costs.
1: while t is not reached do
2: if P has the similar costs property then
3: determine a probability distribution π ∈ Q(P) over the set of paths P

(Lemma 6.7), and choose a path P ∗ ∈ P according to this distribution
4: if a blocked edge e ∈ P ∗ is found then
5: return to s
6: rand-backtrack(P \ {P ∗})
7: end if
8: else
9: determine a similar costs partition K = (K1, . . . ,K|K|) of P
10: for K ∈ K do
11: return to s
12: rand-backtrack(K)
13: end for
14: end if
15: end while

Theorem 6.14. Algorithm 6.3 is (k + 1)-competitive against an oblivious
adversary.

Proof. We prove the result again by induction over k. As before, the basis for
k = 1 follows by Lemma 6.5 since π ∈ Q(P).

For the inductive step, assume that the statement has already been shown
for k−1. In order to show that the result then also holds for k, we distinguish
two cases.

First, we consider the case that P = {P1, . . . , Pk+1} has the similar costs
property. Then, we know by Lemma 6.7 that there exists a probability dis-
tribution π ∈ Q(P), which is used in the first iteration of the algorithm for
choosing a path P ∈ P at random.

If the chosen path P is not blocked, we reach t at costs c(P ). If a blocked
edge e ∈ P ∩B is encountered, the algorithm returns to s and incurs costs of at
most 2c(P ). As before, we denote the expected costs of alg in the remaining
network by V −PP ∗ , and the path chosen by opt by P ∗. Hence, the competitive
ratio is given as in (6.8) by

E [alg]
opt ≤

∑
P∈T

πP c(P ) +
∑
P∈B

πP
(
2c(P ) + V −PP ∗

)
c(P ∗) . (6.13)

The set P \ {P} contains at most k − 1 failing paths, and, thus, we know
by induction hypothesis that the algorithm can be applied to this remaining
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problem2, and the expected costs for reaching t are at most k · c(P ∗). Anal-
ogously to the proof of Theorem 6.10 it follows that (6.13) is at most k + 1
(cf. (6.9) and the remainder of the proof).

Next, we consider the case that P does not have the similar costs property.
In this case, alg constructs first a partitioning K = {K1, . . . ,Kl}.

Let the path chosen by opt be contained in classKo for some o ∈ {1, . . . , l}.
Hence, we know that all paths in classes K1, . . . ,Ko−1 are blocked (since they
have by construction smaller costs).

alg tries to traverse all of these paths first before choosing any path in
class Ko, and costs of 2

∑
P∈Ki:i<o c(P ) are incurred for these unsuccessful

attempts. When processing class Ko, we know by construction that it has
the similar costs property and contains at most |Ko| < k paths that can
fail.3 Thus, it follows by induction hypothesis that the expected costs for
processing Ko until t is reached are at most |Ko| · opt. Altogether, we have

E [alg] ≤ 2
o−1∑
i=1

∑
P∈Ki

c(P ) + |Ko| · opt

(6.12)
≤

o−1∑
i=1

(|Ki| − 1) · c(Ki+1, 1)︸ ︷︷ ︸
≤opt

+ |Ko| · opt

≤

−l + 1︸ ︷︷ ︸
≤0

+
o∑
i=1
|Ki|︸ ︷︷ ︸

≤k+1

 · opt

≤ (k + 1) · opt.

Here, the second inequality follows since (6.12) holds (i.e., the classes are
maximal with respect to the similar costs property). The last inequality holds
since there are k + 1 paths in total (see Lemma 6.4).

6.2.4 Extensions and Limitations

Serial Compositions

Our result about the existence of a (k + 1)-competitive randomized online
algorithm generalizes straightforward to graphs that are serial compositions
of graphs with node-disjoint paths.

2Note that, in order to apply the induction hypothesis, we do not need to require that
P \ {P} has the similar costs property.

3Note that there are at least two classes and every class contains at least two elements.
By Lemma 6.4 there are at most k + 1 paths in total, and, thus, it holds that |Ko| < k.

106



6.2. An Optimal Randomized Algorithm for Node-Disjoint Paths

s1 t1 s2 t2

s1 t2

Figure 6.2: Illustration of a serial composition of two graphs consisting of
node-disjoint paths.

A serial composition of two graphs G1 and G2 (with origin-destination
pairs (s1, t1) and (s2, t2), respectively) is the graph that emerges from identi-
fying t1 with s2. The new origin-destination pair is (s1, t2), as illustrated in
Figure 6.2.

We can apply Algorithm 6.3 to all graphs G that are serial compositions
of a number of graphs G1, . . . , Gp that consist of node-disjoint paths4: We
use our algorithm to find a path from si to ti for every component Gi. By
Theorem 6.14 we then have that E [alg(Gi)] ≤ (k + 1) · opt(Gi), and the
structure of G implies

∑p
i=1 opt(Gi) = opt(G). Thus, it holds that

E [alg] =
p∑
i=1

E [alg(Gi)] ≤ (k + 1) ·
p∑
i=1

opt(Gi) = (k + 1) · opt.

Series-Parallel Compositions

We have seen that our algorithm can be applied sequentially to serial compo-
sitions of graphs whose paths are node-disjoint. Thus, it is natural to study
the more general concept of series-parallel compositions.

A parallel composition of two graphs G1 and G2 (with origin-destination
pairs (s1, t1) and (s2, t2), respectively) is the graph that emerges from identi-
fying s1 with s2 and t1 with t2.

Unfortunately, our result does not carry over to graphs that are con-
structed by a sequence of serial and parallel compositions of node-disjoint
paths, since we cannot simply choose a (parallel) component randomly and
apply our algorithm to all paths in this component:

4The serial composition is defined iteratively as follows: Assume we have constructed
the serial composition G̊l of G1, . . . , Gl for some l. The serial composition of G1, . . . , Gl+1
is then defined as the serial composition of G̊l and Gl+1.
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s t

v1

v2

v3

v4

v5

v6

0

0

1
M

1
M

0

0
0

0

Figure 6.3: A straightforward application of the randomized algorithm to
series-parallel compositions does not yield a bounded competitiveness.

Consider the graph shown in Figure 6.3 consisting of two parallel com-
ponents. By the symmetry of the instance the best we can do (by means
of minimizing the competitive ratio) is to choose to go to v1 and v2 with
probability 1

2 each in the first step.
Assume we choose to go to v1 first and the edge (v2, t) is blocked. If we

stay in this component and explore the other path v1-v3-t, we incur a total
cost of at least M , i.e., E [alg] → ∞ for M → ∞. If, however, the path
s-v4-v5-t is open, we have opt = 1.

Considering the k + 1 Cheapest Paths

In Algorithm 6.3 we could restrict ourselves to the k + 1 cheapest paths.
This will not help in order to obtain a competitive ratio better than the
deterministic ratio of 2k + 1 on general graphs:

Consider the graph shown in Figure 6.4 with three possible s-t-paths and
k = 1. Assume we choose a probability distribution over the cheapest k+1 = 2
paths, which are in this case the two (s, v1, t)-paths, i.e., we go to v1 in the
first step with probability 1. If (v1, t) is blocked, we have to return to s, and
this yields a ratio of

E [alg]
opt = 3 + ε

1 + ε
,

which tends to 3 = 2k + 1 as ε→ 0.

Considering k + 1 Node-Disjoint Paths

It is neither possible to improve the competitive ratio for arbitrary graphs
when choosing a set of k + 1 node-disjoint paths. Therefore, consider the
graph shown in Figure 6.5 where up to k = 1 edge may fail.

The graph consists of three s-t-paths: P1 = (s, v1, v3, t), P2 = (s, v2, v3, t),
and P3 = (s, t). Paths P1 and P2 are not node-disjoint. A probability distribu-
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Figure 6.4: Defining a probability distribution over the k+ 1 cheapest paths
does not improve the competitive ratio.
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Figure 6.5: Defining a probability distribution over k+1 node-disjoint paths
does not improve the competitive ratio.

tion over the set of node-disjoint paths is therefore specified by probabilities π1
for path P1, and π3 for P3 (assigning a positive probability to P2 instead of P1
does not improve the competitive ratio). If only the edge (v1, v3) is blocked,
we have

E [alg]
opt ≥ π1(3 + ε) + π3(3 + ε)

1 + ε
.

Since π1 + π3 = 1, this ratio goes to 3 = 2k + 1 for ε→ 0 and is therefore not
better than the deterministic ratio.

6.3 Uncertain Recovery Times

In this section we consider the k-ctp with uncertain recovery times, which we
denote by k-ctp-urt. As in the classical k-ctp, up to k edges are initially
blocked, but now each of these edges can be reopened after some time, which
we call the recovery time. An online algorithm moves through the network
and learns about the current blockage state of a particular edge e when it is
located at one of the endpoints of e. If an edge is known to be traversable,
it will always be open from this point in time on (a justification for this
assumption is given in Proposition 6.17).

Due to the recovery possibility of an edge, it could make sense for an algo-
rithm to wait at some of the vertices. These idle times should also be included
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6. The Canadian Traveller Problem

in the objective function, and we minimize the total travel time needed by an
algorithm, which is given as the sum of all edge travel times on the final path
from s to t and all idle times.

Note that, in order to have a consistent notion, we refer in this section to
travel times for the edges rather than edge costs as we did before.
Formally, the problem k-ctp-urt is defined as follows:

Definition 6.15 (k-ctp-urt).
An instance of k-ctp-urt is given by an undirected graph G = (V,E) with
non-negative travel times c : E → R≥0 for the edges, designated vertices s, t ∈
V , a set B ⊆ E (with |B| ≤ k) of (initially) blocked edges, and recovery times
b : B → R≥0 for the blocked edges (from which point in time on the edges are
traversable).

An online algorithm learns that e ∈ B only when reaching one of the end-
points of e. The recovery time of e remains unknown until the edge is reached
at some point in time later than b(e). The task is to find a path from s to t
in G that minimizes the total travel time, where an edge e ∈ B must not be
used before time b(e).

An optimal offline algorithm opt knows all blocked edges and their recov-
ery times in advance. Since open edges will never become blocked again, we
can assume that opt does not wait at any node other than s.

Note that our setting is different from the recoverable ctp, which was
analyzed by means of competitive analysis, e.g., in (Su and Xu, 2004; Huang
and LiaoShou, 2012): in their setting, an online algorithm already obtains the
recovery time for a blocked edge as soon as an endpoint of this edge is reached
for the first time.

If we consider the instance used in the proof of Theorem 6.3 and set the
recovery times to infinity, we immediately obtain the following lower bound:

Corollary 6.16. No deterministic online algorithm for the k-ctp-urt can be
better than (2k + 1)-competitive.

In our setting, we do not allow that edges can arbitrarily change their
blockage state. This is motivated by the following result:

Proposition 6.17. If edges that are traversable may become blocked again at
some later point in time, no randomized online algorithm can achieve a finite
competitiveness.

Proof. Consider the graph illustrated in Figure 6.6. We want to apply Yao’s
Principle (Yao, 1977) and therefore consider the following two instances:

In instance σ1, the edge (v1, t) is blocked and never reopened, whereas
(v2, t) is initially traversable but blocked from time 1 + ε on, for some small
ε > 0. Instance σ2 has a similar blockage scenario: (v2, t) is blocked forever,
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Figure 6.6: Graph used in the proof of Proposition 6.17.

whereas (v1, t) is only traversable until time 1 + ε. We define a probability
distribution by choosing each instance with probability 1

2 .
Let a deterministic algorithm alg choose, without loss of generality, path

s-v1-t first. Then, its total travel time is ∞ on instance σ1 (since t cannot be
reached), and 1 on σ2, i.e., E [alg] = 1

2 · ∞ + 1
2 · 1 = ∞. For σ1 and σ2, opt

chooses s-v2-t and s-v1-t, respectively, and we have E [opt] = 1. It follows by
Yao’s Principle that no randomized online algorithm can be competitive.

6.3.1 A Competitive Algorithm

Next, we present a deterministic online algorithm for k-ctp-urt which works
on general graphs and is based on the following idea:

Similar to the backtrack strategy, the algorithm chooses in each iteration
an s-t-path and tries to traverse it. If an edge on this path is reached in a
blocked state, the algorithm returns to s (without waiting) and chooses again
another path until t is reached. Obviously, the algorithm should initially prefer
“short” paths. However, in contrast to Algorithm 6.1, it can now make sense
to attempt paths several times in order to hedge against the adversary.

We keep for each path P ∈ P a value π(P ) that is a lower bound on the
total travel time needed for reaching t via this path. We then choose in each
iteration a path with minimal π-value and try to traverse it. If we reach t, we
are done. Otherwise, we encounter a blocked edge e on our chosen path, and
we check for all paths P ∈ P with e ∈ P if we can update π(P ) to the current
time (if this improves the lower bound). We then return to s (without waiting)
and repeat this procedure. Since we know that at the time of our arrival at
the blocked edge it was still blocked, π(P ) remains a lower bound on the total
travel time needed for reaching t via this path P .5 This is summarized in
Algorithm 6.4.

In order to simplify notation, we denote by currentTime the total time
traveled by alg until the current point in time.

5Note that, although it is possible to improve the lower bound by adding the travel time
for the remaining part of the path (from the endpoint of e to t), this does not help in the
analysis.
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6. The Canadian Traveller Problem

Algorithm 6.4 backtrack for k-ctp-urt
1: for P ∈ P do
2: π(P ) := c(P ) // initialize lower bounds
3: end for
4: while t is not reached do
5: choose a path P ∗ ∈ P with π(P ∗) = min

P∈P
π(P )

6: if a blocked edge e ∈ P ∗ is reached then
7: for P ∈ P with e ∈ P do
8: if π(P ) < currentTime then
9: π(P ) := currentTime // update lower bounds

10: end if
11: end for
12: return to s
13: end if
14: end while

Remark 6.18. Note that the minimum in Step 5 of Algorithm 6.4 is, in gen-
eral, not unique. The algorithm can therefore choose any path with currently
minimal lower bound.

s t
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Figure 6.7: Illustration for Example 6.19: blocked edges are crossed out,
and the recovery times are b(v1, t) = 10, b(v4, t) =∞.

In order to get a better understanding of Algorithm 6.4, we give an example
(we remark that this is no worst-case instance):

Example 6.19. Consider the graph illustrated in Figure 6.7 consisting of
four s-t-paths P1 = (s, v1, v3, t), P2 = (s, v1, v2, v3, t), P3 = (s, v4, t), and
P4 = (s, v5, t).

The edge (v1, t) is initially blocked and recovered after b(v1, t) = 10 time
units, whereas the edge (v4, t) is blocked and never recovered, i.e., b(v4, t) =∞.
The behavior of Algorithm 6.4 on this instance is shown in Table 6.1.
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6.3. Uncertain Recovery Times

currentTime position event π(P1) π(P2) π(P3) π(P4)
0 s choose P1 3 3 5 14
3 v3 (v3, t) blocked, return to s 3 3 5 14
6 s choose P2 3 3 5 14
9 v3 (v3, t) blocked, update π(P1) 9 9 5 14

and π(P2), return to s
12 s choose P3 9 9 4 5
16 v4 (v4, t) blocked, update π(P3), 9 9 16 14

return to s
20 s choose P1 9 9 16 14
23 t t reached 9 9 16 14

Table 6.1: The behavior of Algorithm 6.4 in Example 6.19.

In our algorithm, we initially set π(P ) := c(P ), and we update it only
when we reach a blockage at time currentTime > π(P ). Thus, we have:

Observation 6.20. Throughout Algorithm 6.4 it holds for all P ∈ P:

(i) c(P ) ≤ π(P ),

(ii) π(P ) is a lower bound on the time needed by opt for reaching t via
path P .

Theorem 6.21. Algorithm 6.4 is (2k + 3)-competitive for k-ctp-urt.

Proof. Let opt choose some path P ∗ ∈ P that possibly contains (temporarily)
blocked edges. We can assume that all blocked edges that are not on P ∗ have
recovery time set to infinity. This does not change opt and only increases the
total travel time of alg.

Throughout the algorithm, the lower bound π(P ) of a path P is possibly
updated several times, and we define πmax(P ) to be the largest value that is
set by alg for this path. By Observation 6.20, it thus holds

opt ≥ πmax(P ∗).

As long as t is not reached, alg chooses an s-t-path in the graph and
travels along this path until a blocked edge is reached and then returns to s.
In order to analyze the algorithm, we divide the complete path traveled by alg
(that possibly traverses some edges several times) into the following phases:

Phase 1
contains the subpath of alg until the last update of π(P ∗) and the
subsequent return to s.

Phase 2
contains the subpath that consists of all subsequent unsuccessful at-
tempts to traverse blocked paths and the last return to s.
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6. The Canadian Traveller Problem

Phase 3
contains the final subpath from s to t where no blockage is encountered.

We distinguish two cases depending on whether Phase 1 is empty or not.

Case 1: Phase 1 is not empty.
First, we consider the case that Phase 1 is not empty. The last point
in time when alg encounters an edge on path P ∗ in a blocked state is
therefore πmax(P ∗) > c(P ∗).
We denote this edge by e′ ∈ P ∗, and let P ′ be the chosen path for
which alg encounters this blockage e′ ∈ P ∗ ∩ P ′ at time πmax(P ∗). By
Observation 6.20 and since P ′ is chosen as path with minimal π-value
in this iteration, we have c(P ′) ≤ π(P ′) ≤ πmax(P ∗) and, therefore,
returning from e′ to s takes at most c(P ′) ≤ πmax(P ∗) time units. Thus,
Phase 1 ends after at most 2πmax(P ∗) ≤ 2 · opt time units.
Let P ′′ be a path chosen in Phase 2 that encounters some blocked edge
e′′ ∈ P ′′. Therefore, we have π(P ′′) ≤ πmax(P ∗),6 and the time needed
to go from s to e′′ and back to s takes at most 2c(P ′′) ≤ 2π(P ′′) ≤
2πmax(P ∗). When the blocked edge e′′ is reached, alg updates the
lower bounds such that after the update it holds π(P ) > πmax(P ∗) for
all paths P ∈ P with e′′ ∈ P .7

Since there are in total not more than k − 1 blocked edges different
from e′, we know that k−1 attempts (on blocked paths) in Phase 2 suffice
to ensure that the lower bounds for all paths that contain a blocked edge
are raised to some value larger than πmax(P ∗). Therefore, Phase 2 takes
at most 2(k − 1)πmax(P ∗) ≤ 2(k − 1) · opt time units.
In Phase 3, alg then reaches t via a path P ′′′ with minimal π-value, i.e.,
Phase 3 takes c(P ′′′) ≤ π(P ′′′) ≤ πmax(P ∗) ≤ opt time units.
Altogether, alg needs in Case 1 at most (2k + 1) · opt time units.

Case 2: Phase 1 is empty.
Next, we consider the case that Phase 1 is empty, i.e., we never encounter
a blockage on P ∗ later than c(P ∗), and it holds throughout the algorithm
that πmax(P ∗) = c(P ∗), i.e., opt ≥ c(P ∗). Recall that alg thus chooses
some path P only if the π-value satisfies π(P ) ≤ c(P ∗).
For the analysis of Phase 2, we consider the point in time T ∗ which
has the following property: alg is positioned in s, and all subsequent
unsuccessful attempts of alg on paths P (that contain a blocked edge)

6If this was not true, alg would choose P ∗ before P ′′. By definition, we know that
we do not encounter a blockage on P ∗ after πmax(P ∗), and we would thus reach t before
using P ′′. This contradicts the assumption that P ′′ is chosen in Phase 2.

7Note that we have at the end of Phase 1 currentTime > πmax(P ∗).
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lead to an update of the corresponding lower bound such that we have
afterwards π(P ) > c(P ∗).
We show that T ∗ ≤ 2 · opt: Let P ′ be the last path that is chosen by
alg before returning to s at time T ∗. Thus, at time T ∗, it has to hold
that π(P ′) ≤ c(P ∗) (as, by definition of T ∗, only the iterations after T ∗
raise the lower bounds of the blocked paths to a value larger than c(P ∗)).
Hence, a blockage on P ′ was reached after at most π(P ′) ≤ c(P ∗) ≤ opt
time units, and returning from this blockage to s takes again at most
c(P ′) ≤ c(P ∗) ≤ opt, i.e., T ∗ ≤ 2 · opt.
If a path P ′′ that contains a blocked edge e′′ ∈ P ′′ is chosen by alg
after T ∗, the time to go from s to e′′ and back to s is at most 2c(P ′′) ≤
2π(P ′′) ≤ 2c(P ∗) ≤ 2 · opt (note that, as alg chooses P ′′, it holds at
the beginning of this iteration that π(P ′′) ≤ c(P ∗)).
By definition, we have after the update that π(P ) > c(P ∗) for all paths
P ∈ P with e′′ ∈ P . By the same reasoning as presented in Case 1, the
total time until the π-values of all paths that contain a blocked edge are
raised to a value larger than πmax(P ∗), is at most 2k · opt, and, thus,
Phase 2 takes in total at most (2k + 2) · opt time units.
In Phase 3, alg chooses a path P ′′′ with minimal π-value which is not
blocked. As in the first case, it thus holds that π(P ′′′) ≤ πmax(P ∗) ≤
c(P ∗), i.e., Phase 3 takes at most c(P ′′′) ≤ opt time units.
Altogether, alg needs at most (2k + 3) · opt time units in Case 2.

Proposition 6.22. The analysis of Algorithm 6.4 is tight.

Proof. Consider for the case k = 2 a graph with three node-disjoint paths
P1 = (s, v1, t), P2 = (s, v2, t), and P3 = (s, v3, t), as shown in Figure 6.8, and
assume that edges (v1, t) and (v2, t) are blocked and never reopened.

alg attempts to traverse P1, P2, and again P1. Finally, it reaches t using
path P3 after 7 + ε time units, whereas opt only needs 1 + ε, and we have

alg
opt = 7 + ε

1 + ε
,

which goes to 7 = 2k + 3 for ε→ 0.

Remark 6.23. The competitive ratio of Algorithm 6.4 almost matches the
lower bound of 2k + 1. However, it remains an open problem whether there
exist better algorithms.

One of the “problems” of Algorithm 6.4 becomes apparent in Proposi-
tion 6.22: After choosing paths P1 and P2, it would be better to choose imme-
diately P3 (instead of attempting again P1). Our algorithm does not make use
of the information that P3 cannot be blocked.
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Figure 6.8: The analysis of Algorithm 6.4 is tight.

The algorithm could also be “improved” by implementing a waiting policy.
For k = 1, a competitive ratio of 2k+ 1 = 3 is guaranteed as follows: Assume
we choose initially a path P1 with c(P1) = minP∈P c(P ). If we reach a blocked
edge e ∈ P1, we wait up to w := c(P2) − c(P1) time units. Here, P2 denotes
the shortest path in G− e, i.e., c(P2) = minP∈P:e 6∈P c(P ). If the blocked edge
is recovered within this waiting time, we reach t after alg ≤ c(P1) +w = opt
time units. Otherwise, we return to s, use P2 (which cannot be blocked), and
reach t after alg ≤ c(P1) + w + c(P1) + c(P2) = 2 · c(P2) + c(P1) ≤ 3 · opt.

However, it is not clear how to generalize these ideas to arbitrary graphs
and k > 1. We believe that it is necessary to resort to a more evolved analysis
different from ours.

6.3.2 Extensions to the Canadian TSP

Another problem which is related to the ctp is the Canadian travelling sales-
man problem (ctsp) (cf. (Büttner, 2013)): An online algorithm has to find a
minimum-cost tour visiting every vertex of an undirected graph at least once
starting and ending in a designated vertex s under the same online setting as
in the k-ctp (cf. Definition 6.1). As in the previous section, we consider a
generalization of the problem with uncertain recovery times.

This problem, the k-Canadian travelling salesman problem with uncertain
recovery times (k-ctsp-urt), is defined as follows:

Definition 6.24 (k-ctsp-urt).
An instance of k-ctsp-urt is given by an undirected graph G = (V,E) with
non-negative travel times c : E → R≥0 for the edges, a designated vertex
s ∈ V , a set B ⊆ E (with |B| ≤ k) of (initially) blocked edges, and recovery
times b : B → R≥0 for the blocked edges (from which point in time on the edges
are traversable).

An online algorithm learns that e ∈ B only when reaching one of the end-
points of e. The recovery time of e remains unknown until the edge is reached
at some point in time later than b(e). The task is to find a closed tour starting
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and ending in s visiting every vertex in G that minimizes the total travel time
where an edge e ∈ B must not be used before time b(e).

Büttner (2013) showed that a straightforward backtrack strategy (where
a shortest tour in the currently known network is chosen and traverse in an
arbitrary direction) is (2k + 1)-competitive for the k-ctsp.

Our extension of the backtrack strategy for the k-ctp (Algorithm 6.2)
can also be applied to k-ctsp-urt: We define for each tour T a value π(T )
that is a lower bound on the total travel time for using this tour. As long as we
have not visited every vertex once, we choose a tour T ∗ with minimal π-value
and traverse it in an arbitrary direction. If we reach a blocked edge e∗ ∈ T ∗,
we update π(T ) for all paths T with e∗ ∈ T and return to s.

One can prove the competitiveness of this strategy completely analogously
to Theorem 6.21, and we obtain the following:

Corollary 6.25. There exists a (2k + 3)-competitive online algorithm for
k-ctsp-urt.

The best-known lower bound for the competitive ratio of ctsp due to
Büttner (2013) is

√
3
2 ≈ 1.224. This bound also holds for k-ctsp-urt (by

setting the recovery time in her setting to infinity). We are able to improve
upon this result:

Theorem 6.26. No deterministic online algorithm for k-ctsp-urt can obtain
a competitive ratio better than 1 + 1√

3 ≈ 1.577, even on cycle graphs and for
k = 1.

Proof. Consider for n ≥ 6 a graph G = (V,E) with nodes V = {v1, . . . , vn},
edges E = {(vi−1, vi) : i = 2, . . . , n} ∪ {(v1, vn)}, and travel times c(e) = 1 for
all e ∈ E as illustrated in Figure 6.9(a).

We assume, without loss of generality, that a deterministic online algorithm
alg starting in s = v1 initially chooses the tour v1, v2, v3, . . . , vn, v1.

Now, let the p-th edge (vp, vp+1) on this path be blocked, where p ∈ Z≥0

is defined by
⌊

n
2
√

3

⌋
≤ p ≤

⌈
n

2
√

3

⌉
. Every deterministic online algorithm alg

is characterized by the time wmax ∈ R≥0 it is willing to wait at vp, before
returning in the direction of s. We distinguish two cases:

Case 1: wmax ≤ 2(n−1)√
3 .

In this case, the recovery time of the p-th edge (vp, vp+1) is set to
b(vp, vp+1) := p − 1 + wmax + ε for some small ε > 0. Hence, after
waiting wmax time units, alg traverses the cycle in opposite direction,
and the previously blocked edge will be recovered right after alg left vp.
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s = v1 v2 vp vp+1 vn−1 vn

(a) Graph used in the proof of Theorem 6.26.

s = v1 v2 vp vp+1 vn−1 vn

�

(b) In case 1, alg waits at the blockage vp and then traverses the graph
in opposite direction,...

s = v1 v2 vp vp+1 vn−1 vn

�

(c) ... whereas opt traverses the graph in opposite direction and (maybe)
waits at vp+1 until (vp, vp+1) is recovered.

s = v1 v2 vp vp+1 vn−1 vn

�

(d) In case 2, (vp, vp+1) is blocked forever. alg and opt follow the same
path, but alg waits wmax time units at vp.

Figure 6.9: Illustration of the proof of Theorem 6.26.

The final tour of alg is illustrated in Figure 6.9(b), and we have

alg = (p− 1)︸ ︷︷ ︸
from v1 to vp

+ wmax︸ ︷︷ ︸
waiting at vp

+ (p− 1) + n︸ ︷︷ ︸
returning to v1 and

visiting remaining nodes

≥ n+ 2
(⌊

n

2
√

3

⌋
− 1

)
+ wmax.

opt can traverse the cycle in opposite direction, i.e., visiting nodes in the
order v1, vn, vn−1, . . . , and reach the other endpoint vp+1 of the blocked
edge at time n− p. After waiting max{b(vp, vp+1)− (n− p), 0}, the edge
becomes traversable and opt can go along the remainder of the cycle,
which takes p time units (see Figure 6.9(c)). Thus, we have

opt ≤ (n− p)︸ ︷︷ ︸
from v1 to vp+1

+ max{b(vp, vp+1)− (n− p), 0}︸ ︷︷ ︸
waiting at vp+1

+ p︸︷︷︸
from vp+1 to v1

= n+ max{2p− 1 + wmax + ε− n, 0}. (6.14)
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We distinguish two further cases depending on which value attains the
maximum in (6.14):

a) If 2p−1+wmax +ε−n ≤ 0, (6.14) yields the upper bound opt ≤ n,
and we have

alg
opt ≥

n+ 2
(⌊

n
2
√

3

⌋
− 1

)
+

≥0︷ ︸︸ ︷
wmax

n
≥
n+ 2

(
n

2
√

3 − 2
)

n
,

which goes to 1 + 1√
3 for n→∞.

b) If 2p−1+wmax + ε−n > 0, (6.14) implies opt ≤ 2p−1+wmax + ε,
which yields

alg
opt ≥

n+ 2
(⌊

n
2
√

3

⌋
− 1

)
+ wmax

2
⌈

n
2
√

3

⌉
− 1 + wmax + ε

≥
n+ 2

(
n

2
√

3 − 2
)

+ wmax

2
(

n
2
√

3 + 1
)
− 1 + wmax + ε

(6.15)

≥
n+ 2

(
n

2
√

3 − 2
)

+ 2(n−1)√
3

2
(

n
2
√

3 + 1
)
− 1 + 2(n−1)√

3 + ε

≥

(
1 +
√

3
)
n−

(
4 + 2√

3

)
√

3n+ 1− 2√
3 + ε

,

which goes to 1 + 1√
3 for n→∞.

Here, the second-to-last inequality holds by the following argument:
If we define α(n) := n + 2

(
n

2
√

3 − 2
)
and β(n) := 2

(
n

2
√

3 + 1
)
−

1 + ε, it holds for n ≥ 6 that α(n), β(n) ≥ 0 and α(n) ≥ β(n).
Therefore, (6.15) = α(n)+wmax

β(n)+wmax is, for fixed n ≥ 6, a decreasing
function in wmax on the interval [0, 2(n−1)√

3 ] and attains its minimum
for wmax = 2(n−1)√

3 .

Case 2: wmax > 2(n−1)√
3

In this case, the blocked edge (vp, vp+1) will never be reopened, i.e.,
b(vp, vp+1) := ∞. Thus, alg has to traverse all edges except (vp, vp+1)
twice, and we have

alg ≥ 2(n− 1) + wmax > 2(n− 1) + 2(n− 1)√
3

,

119



6. The Canadian Traveller Problem

whereas opt does not wait at all, i.e.,

opt = 2(n− 1).

This is illustrated in Figure 6.9(d), and, altogether, we have in this case

alg
opt ≥

2(n− 1) + 2(n−1)√
3

2(n− 1) = 1 + 1√
3
.

6.4 Conclusions
In the first part of this chapter we analyzed the problem k-ctp. We presented
the first randomized online algorithm for this problem. Our algorithm ap-
plies to graphs where all s-t-paths are node-disjoint and its competitive ratio
matches the lower bound of k+1 that was presented in (Westphal, 2008), i.e.,
our algorithm is best possible from a competitive analysis point of view. We
discussed possible extensions to more general graph classes and limitations
where this is not possible.

Recently, Demaine et al. (2014) presented the first randomized online al-
gorithm that beats the deterministic ratio for general graphs and achieves a
competitive ratio of (1 + 1√

2)k + 1 < 2k + 1. It remains an open problem
whether there exist better randomized algorithms for general graphs.

In the second part of this chapter we analyzed the problem k-ctp-urt,
which is a generalization of k-ctp, where blocked edges can become traversable
at some later point in time that is initially not known. We presented a de-
terministic (2k + 3)-competitive online algorithm and showed how this idea
can be carried over to the problem k-ctsp-urt. A natural direction of fu-
ture research would be to study other routing problems under this new online
setting.
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