
Dipartimento di Scienze Statistiche

Dottorato in Ricerca Operativa - XXVI Ciclo

Robust Path Planning: Models and
Algorithms

Author:

Marco Senatore

Supervisor:

Prof. Gianpaolo Oriolo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74322282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction 1

1 Related work 5

1.1 The Replacement Path Problem and the Most Vital Arc Problem . . 6

1.2 The Canadian Traveller Problem . 7

1.3 The Stochastic On-time Arrival Problem 10

2 The Online Replacement Path Problem 11

2.1 The On-line Replacement Path Problem 12

2.1.1 Notations, definitions and some properties 12

2.1.2 Feasible potential and optimality conditions 17

2.1.3 A label setting algorithm for ORP 22

2.1.4 The undirected case . 25

2.2 ORP with arbitrary costs . 27

2.2.1 ORP with arbitrary costs in absence of negative cycles 27

2.2.2 ORP with arbitrary costs in presence of negative cycles . . . 28

2.3 Bi-objective ORP . 32

2.4 k-ORP . 37

2.4.1 The Shortest Path Heuristics 39

3 ORP Generalizations 42

3.1 k-Hop ORP . 43

1

CONTENTS 2

3.1.1 Radius ORP . 50

3.2 Strong k-Hop ORP . 51

4 ORP Game 54

4.1 ORP Game in mixed strategy: Stochastic ORP 57

Conclusions and future work 62

Bibliography 66

Introduction

Modeling the effects of limited reliability of networks in modern routing schemes is

important in many applications. It is often unrealistic to assume that the nominal

network known at the stage of decision making will be available in its entirety at

the stage of solution implementation. Several research directions have emerged as

a result. The main paradigm in most works is to obtain a certain ‘fault-tolerant’

or ‘redundant’ solution, which takes into account a certain set of likely network

realizations at the implementation phase.

Shortest paths are often used in order to minimize routing time. In faulty net-

work, however, simply taking the shortest path might lead to very large delays due

to link failures. Two related problems that were extensively studied in the literature

are the Most Vital Arc problem (MVA) and the Replacement Path problem (RP).

MVA asks given a graph G = (V,E) and two nodes s, t ∈ V to find the edge e ∈ E

whose removal results in the maximal increase in the s-t distance in G. The input to

RP additionally includes a shortest path P , and the goal is to find for every e ∈ P

a shortest s-t path Pe avoiding e.

In the context of robust network design both MVA and RP should be interpreted

as problems in which the Routing Mechanism (RM) is informed about the failed

edge in advance, namely when standing at s. This assumption is unrealistic in many

situations, in which failures occur online, and in particular, after the routing has

started. Examples of such situations range from accidents and traffic jams in road

network to truly adversarial setups, in which the adversary is motivated to conceal

the failure for as long as possible.

1

Introduction 2

In this thesis, in order to propose a more realistic model, we assume that RM

discovers the identity of the failed edge, if any, while traversing the network. Depend-

ing on the way RM acquires knowledge about the network itself, we define different

problems.

In the Online Replacement Path problem (ORP) [2] we assume that the mate-

rialized scenario is revealed to the RM ’in the last minute’, namely only when the

package reaches one of the endpoints of the failed edge and attempts to cross it.

From this point on the package is routed through a detour, namely a path from the

current node to the destination that avoids the failed edge. The robust length of a

path is the maximum total travel time over all possible failure scenarios, and the

goal is to provide the RM with a path with minimum robust length.

ORP models online failure scenarios that occur in many situations, some of which

we described before. In other applications it is only necessary to route a certain

object within a certain time, called a deadline. As long as the object reaches its

destination before the deadline, no penalty is incurred. On the other hand, if the

deadline is not met, a large penalty is due. An example of such an application is

organ transportation for transplants (see e.g. Moreno, Valls and Ribes [18]), in which

it is critical to deliver a certain organ before the scheduled time for the surgery. In

this application it does not matter how early the organ arrives at the destination,

as long as it arrives in time. In such applications it is often too risky to take an

unreliable shortest path, which admits only long detours in some scenarios, whereas

a slightly longer path with reasonably short detours meets the deadline in every

scenario. Thus, this domain of applications can also benefit from ORP.

Our first result is a polynomial algorithm for ORP. Concretely, we show that

optimal robust u-t path can be found in time O(m + n log n) in undirected graphs

and O(nSP(n,m)) in directed graphs for all sources u ∈ V and a single destination

t, where SP(n,m) is the complexity of a single shortest path computation on a

graph with n nodes, m edges and nonnegative costs. We prove various properties

of ORP, in particular, we show the existence of a tree of optimal paths, and that

Introduction 3

the robust length is monotonic with respect to taking subpaths of optimal paths.

These properties lead to a natural label-setting algorithm. We also develop a poly-

time algorithm for the generalization of ORP when some fixed number of edges can

fail; even if more involved, the algorithm goes along the same lines of that for the

single-failure case. For the formal definition of ORP and a detailed description of

the related results we refer to Chapter 2.

In those applications in which failures are not extremely likely, the ORP solutions

might be too conservative. For this reason we study Bi-objective ORP, the optimiza-

tion problem of finding a shortest path in the graph with robust length at most a

given bound. In Chapter 2 we show that this problem admits an algorithm with

running time O(m+n log n) in undirected graphs (and O(mn+n2 log n) in directed

graphs). We also show that the Pareto front of the latter bi-objective problem has

linear size in the size of the graph for both directed and undirected graphs. This

could be useful in practical applications, as the decision maker can efficiently plot

the trade-off between the nominal and the robust length of Pareto-efficient solutions.

We study various extensions of ORP; in particular we introduce two models that

provide a middle ground between MVA and ORP.

In Chapter 3 we introduce the k-Hop ORP problem, in which the RM is informed

about the failed edge e as soon as it reaches a node that is k hops away from e on

the nominal path. While 0-Hop ORP is simply ORP, one easily sees that (n − 1)-

Hop ORP is equivalent to MVA. For k ∈ {1, · · · , n − 2} we obtain an interesting

continuum of problems between ORP and MVA. We show that some of the nice

properties that hold for ORP no longer hold for k-Hop ORP. In particular, while

a tree of optimal paths always exists, the robust length of a subpath in this tree

can be larger than the robust length of the original path. Nevertheless, we obtain a

label-setting algorithm for this problem, whose running time is polynomial for both

the directed and the undirected case and is independent from k. Let us observe that

our results regard only the case where k is bounded. We briefly describe also another

variant called Radius ORP, in which the RM is informed about the failed edge e as

Introduction 4

soon as it reaches a node that is at most at distance R from e on the nominal path,

where R is a given radius indicating how far the RM can see along the nominal path.

It turns out that Radius ORP can be solved like k-Hop ORP, since the key properties

of the latter problem still hold for the former one. Going back to the case in which

we measure the distance from the failed edge in terms of hops, we cannot find any

longer a poly time algorithm to solve the variant where the RM is informed about

the failed edge e as soon as it reaches a node that is k hops away from e in the graph,

and not just on the nominal path. While this variant is equivalent to ORP for k = 0,

we show that, already with k = 1, it is NP-hard to approximate within a factor of

3 − ε for undirected graphs (and provide a simple algorithm meeting this factor),

and it is strongly NP-hard to decide if there exists a nominal path with finite robust

length for directed graphs.

In Chapter 4 we study the ORP Game, a two players’ game related to MVA and

ORP. In this game a first player, the path builder, is interested in arriving from s

to t as quickly as possible. The second player, the interdictor, tries to make the

latter distance as long as possible by removing a single edge from the graph. The

strategies for the two players are the s-t paths, and the edges e ∈ E, respectively.

One can see ORP and MVA as variants of the ORP Game, in which strategies

are not communicated simultaneously. We show that the instances of the game

which admit a pure Nash Equilibrium (NE) are exactly those where the values of

the optimal solutions to ORP and MVA are equal, and build upon this fact to

give an O(m + n log n)-time algorithm that finds it in undirected graphs (and in

time O(nSP(n,m))-time in directed graphs), or reports that no pure NE exists.

Furthermore, we address the problem of finding a NE of the mixed strategy extension

of ORP Game.

Finally, we conclude this thesis summarizing some open points and addressing

some future research directions.

Chapter 1

Related work

In this chapter, we review a few problems that are related to ORP.

In the Introduction we already discussed the connection between ORP and the

Replacement Path problem (RP) and the Most Vital Arc problem (MVA), under-

lining how, in the context of robust network design, both MVA and RP should be

interpreted as problems in which the RM is informed about failures in the network

in advance. In Section 1.1 we give a detailed description of the state of the art of

these two well-known problems.

Another problem which bears resemblance to ORP is the Canadian Traveller

problem (CTP), whose properties and different variants are extensively described in

Section 1.2, while in Section 1.3 we present some stochastic models that can be seen

as the stochastic analogue of ORP.

We close this section with a quick review of some related work on robust counter-

parts of the shortest path problem. The shortest path problem with cost uncertainty

was studied by Yu and Yang [34], who consider several models for the scenario set.

These results were later extended by Aissi, Bazgan and Vanderpooten [3]. These

works also considered a two-stage min-max regret criterion. Dhamdhere, Goyal,

Ravi and Singh [10] developed the demand-robust model and gave an approximation

algorithm for the shortest path problem. A two-stage feasibility counterpart of the

shortest path problem was addressed by Adjiashvili and Zenklusen [1].

5

CHAPTER 1. RELATED WORK 6

1.1 The Replacement Path Problem and the Most Vital

Arc Problem

Let us start by formally define the Replacement Path problem and the Most Vital Arc

problem. In the former, we are given a graph (directed or undirected) G = (V,E),

two nodes s, t ∈ V and a shortest s-t path P and we are asked to find for every edge

e ∈ P a shortest s-t path Pe in G−e. In the latter, we are given a graph (directed or

undirected) G = (V,E), two nodes s, t ∈ V and we are asked to find the edge e ∈ E

whose removal results in the maximal increase in the s-t distance in G. It is clear,

then, that the two problems are very close to each other.

The Replacement Path problem was first introduced by Nisan and Ronen [25].

The motivation for their definition stemmed from the following question in auction

theory: what is the true price of a link in a network, when we try to connect two

distinct vertices s and t, and every edge is owned by a self-interested agent. A key

concept in in mechanism design is the Vickrey-Clarke-Groves pricing mechanism. In

a pricing mechanism, each agent declares his preference, and the system computes a

payment function for each agent. The importance of VCG stems from the fact that,

under this protocol, each agent optimizes his utility by disclosing his true preference.

Nisan and Ronen [25] show that if the payoff for each agent is given by formula (1.1),

then the pricing mechanism is indeed a Vickrey-Clarke-Groves pricing mechanism.

c(e) :=

d(s, t;G− e)− d(s, t;G|e=0), if e belongs to the s-t shortest path

0, otherwise
(1.1)

That is, if the edge e does not belong to the shortest s-t path in G, then its agent

receives zero payment. Otherwise, the payment to e is the difference between the cost

of the shortest s-t path not using e, and the cost of the shortest s-t path assuming

e free.

The complexity of the RP problem for undirected graphs is well understood.

The first paper to study this problem is due to Malik, Mittal and Gupta [17], who

give a simple O(m+ n log n) algorithm. A mistake in this paper was later corrected

CHAPTER 1. RELATED WORK 7

by Bar-Noy, Khuller and Schieber [4]. As a bi-product, the latter result implies

an O(m + n log n)-time algorithm for the Most Vital Arc (MVA) problem. This

running time is asymptotically the same as a single source shortest path computation.

Nardelli, Proietti and Widmayer [22] later extended the result to account for node

failures. In [19] the same authors gave an algorithm that finds a detour-critical edge

on a shortest path. The complexity for MVA was later improved by Nardelli, Proietti

and Widmayer [21] to O(mα(m,n)), where α(·, ·) is the Inverse Ackermann function.

In directed graphs the situation is significantly different. A trivial upper bound

for RP corresponds to O(n) single shortest path computations. This gives O(n(m+

n log n)) for general directed graphs with nonnegative weights. This was slightly

improved to O(mn + n2 log logn) by Gotthilf and Lewenstein [14]. The challenge

of improving the O(mn) bound for RP on directed graphs was mainly tackled by

restricting the class of graphs or by allowing approximate solutions. Along the lines

of the former approach, algorithms were developed for unweighted graphs (Roditty

and Zwick [28]) and planar graphs (Emek, Peleg and Roditty [11], Klein, Mozes, and

Weimann [16] and Wulff-Nilsen [32]). The latter approach was successfully applied to

obtain 3
2 -approximate solutions by Roditty [27] and (1+ ε)-approximate solutions by

Bernstein [6]. Weimann and Yuster [31] applied fast matrix multiplication techniques

to obtain a randomized algorithm with sub-cubic running time for certain ranges of

the edge weights.

1.2 The Canadian Traveller Problem

The Canadian Traveller Problem (CTP) was first introduced in 1991 by Papadim-

itriou and Yannakakis; in [26] they define several versions of the shortest path prob-

lem when the graph is not known in advance, but is revealed dynamically, while

it is being traversed. For a given instance, there are a number of possibilities, or

realizations, of how the hidden graph may look. Given an instance, a description of

how to follow the instance in the best way is called a routing policy or strategy. The

CTP task is to compute the expected cost of the optimal policies.

CHAPTER 1. RELATED WORK 8

The authors took inspiration from a situation commonly encountered by travellers

in Canada: once a driver reaches an intersection, he sees whether the incident roads

are snowed out or not and consequently decides which road to take.

Formally speaking, in the CTP we are given a directed graph G = (V,E), a

non-negative cost function on the edges, a start node s ∈ V , a target node t ∈ V and

a ratio r. Each edge (u, v) ∈ E can fail, but the searcher finds out whether the edge

can be traversed or not only when u is visited. In the original version of CTP, the

goal is to find a strategy for traversing the graph, starting from s, ending in t, such

that the total distance traversed is no more than r times the shortest path from s to

t in G in the realized scenario.

The CTP can be seen as the specification of a two-person game, between a searcher

and a malicious adversary , who sets the realizations of the edges so as to maximize

the ratio. This problem turns out to be PSPACE-complete [26].

In the same work, Papadimitriou and Yannakakis define also a couple of stochas-

tic variants of CTP in which the lengths of the edges are random variables ruled

by independent probability distributions and, again, when we arrive at a node we

discover the actual length of its incident edges. In this case the goal could be either

devising a strategy that minimizes the expected ratio to the optimal path, or devising

a strategy that minimizes the expected distance traversed from the start to the goal

node. These stochastic optimization problems are known to be #P-hard.

In [23] Nikolova and Karger focus on the stochastic CTP version in which the

goal is to find an optimal policy for reaching , from a source s a destination t

that minimizes the expected cost. The authors choose to seek out special cases for

which exact solutions exist and, using techniques from the theory of Markov Decision

Processes, they give an exact algorithm for graphs of parallel undirected paths with

random two-valued edge costs. They also offer a partial generalization to traversing

perfect binary trees.

In [5] the authors consider several variants of the CTP:

1. The Recoverable Canadian Traveller Problem

CHAPTER 1. RELATED WORK 9

In this variant each node x of the graph is associated with a non-negative real

time l(x, x) interpreted as the recovery time of edges adjacent to x. Whenever

the traveller, at a node x, finds a blocked edge e, he/she can either use another

edge or wait the related recovery time and then use the edge e. Note that the

number of edges that can fail is bounded by an integer k. The authors give

an O(k2m+ knlogn) algorithm for designing a travel strategy from all site to

a fixed destination that guarantees the shortest worst-case travel time, under

the assumption that l(x, x) ≤ l(e) (the travel time of e), for any e adjacent to

x.

2. The Stochastic Recoverable Canadian Traveller Problem

In this stochastic variant of the problem described above, each edge e is asso-

ciated with a probability p(e), being the probability for an edge to be failed.

There is no bound on the number of failures. The authors provide an O(mlogn)

algorithm for designing a travel strategy from all sites to a fixed destination

that guarantees the shortest expected travel time, under the assumption that

l(x, x) ≤ l(e) (the travel time of e), for any e adjacent to x.

3. The k-Canadian Traveller Problem

Let k be the bound on the number of blockages that may occur during a

traveller. The authors prove that for arbitrary k the problem of designing a

travel strategy that guarantees the shortest worst-case travel time is PSPACE-

complete. For k = 1, they give an O(m+ nlogn) time algorithm for designing

the strategy, claiming that it can be extended to give a polynomial-time travel

strategy for any constant k.

This last problem can be seen as a policy-based variant of the problem we study

in Chapter 2. The authors first claim, without proof, that the problem of finding

an optimal routing policy reduces to the problem of finding an optimal path. Then

they claim a result that is close to the one we present in Section 2.1. However, as

we discuss later, we believe that these results are not adequately supported in [5] by

CHAPTER 1. RELATED WORK 10

rigorous arguments.

1.3 The Stochastic On-time Arrival Problem

As we already mentioned in the Introduction, ORP models can have a strong impact

to those applications where it is only necessary to route a certain object within

a certain time, called deadline, dealing, at the same time, with the unreliability

of the network due to links failures. In other cases such unreliability can be due to

uncertainty about the links travel times, but still the goal is to meet a certain deadline

with high probability. These applications have been modeled with the Stochastic On-

Time Arrival problem (SOTA), that was first introduced in [33] by Fan et al.

In SOTA we are given a directed network G = (V,E), a destination d ∈ V , and

the weight of each edge (i, j) ∈ E is a random variable with probability density

function pij(t) representing the probability that the travel time of (i, j) is equal to

t. Such probability distribution functions are supposed to be independent. Given a

budget time T , an optimal routing strategy is defined to be a policy that maximizes

the probability of arriving, from any possible source s ∈ V , at the destination node

d within time T . The solution is provided as a set of adaptive decision rules encoded

in functions ui(t) that, for any node i ∈ V and time budget t, denote the probability

of reaching d from i in less than time t following the optimal policy.

In [33] Fan et al. formulate SOTA as a stochastic dynamic programming problem,

solved using a standard successive approximation algorithm that in acyclic network

converges in an unbounded number of steps. In [29], Samaranayake et al. show how

the SOTA problem can be solved exactly in a finite number of steps, even in cyclic

networks, thanks to a label setting algorithm based on the existence of a minimal

link travel-time on each link; the authors also provide several speedup techniques

and experimental results for the San Francisco road network.

In [24] Nikolova tackles the SOTA problem restricting the optimal policy to be

a simple path and gives an exact nΘ(logn) algorithm for the case of independent

normally distributed edge lengths, which is based on quasi-convex maximization.

Chapter 2

The Online Replacement Path

Problem

In the Introduction, we already gave an informal definition of the main topic of our

work, that is the Online Replacement Path problem (ORP). Let us briefly remind

it: we assume that a Routing Mechanism (RM) wants to route a package as fast

as possible between two nodes of a faulty network, meaning that one of its edges

can fail. Furthermore we assume that the materialized failure scenario is revealed

to the RM ’in the last minute’, namely only when the package reaches one of the

endpoints of the failed edge and attempts to cross it. From this point on the package

is routed through a detour, namely a path from the current node to the destination

that avoids the failed edge. The robust length of a path is the maximum total travel

time over all possible failure scenarios, and the goal is to provide the RM with a path

with minimum robust length. In this Chapter we formally define the ORP problem,

providing a polynomial algorithm to solve it.

First of all, let us observe that in [12], Xiao et al. define the Anti-Risk Path prob-

lem (ARP) that is actually equivalent to ORP: they solve ARP only for undirected

graphs developing an O(mn + n2logn) algorithm and, in the conclusions of their

work, they ask the question whether it is possible to find a more efficient approach

to solve the problem for undirected graphs; the result we state in subsection 2.1.4

11

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 12

positively answers to such question, providing an improvement factor of O(n). We

also stress that the authors raise and leave open further questions about the com-

plexity of the problem for directed graphs and for graphs with arbitrary costs: the

first problem is solved in subsection 2.1.3, while the second one is tackled in section

2.2.

We will show a solving approach that recalls in some aspects the techniques used

for the Shortest Path problem (for more details we refer the interested reader to [9]),

underlining, on the other hand, all the differences between the two problems.

In section 2.3 we discuss a problem linking ORP and the Shortest Path problem;

we conclude this Chapter by addressing in section 2.4 the case where a bounded

number of edges of the network can fail, showing that it is possible to easily adapt

the algorithm proposed for the single failure case.

2.1 The On-line Replacement Path Problem

2.1.1 Notations, definitions and some properties

Let us establish some notation first. We are given an edge-weighted directed graph

G = (V,E, `), where ` : E → R+ (we assume that the edge weights ` are nonnega-

tive), and a destination t ∈ V . Let n and m be the number of nodes and edges of the

input graph, respectively. A path P is a sequence v0, e1, v1, . . . , ek, vk, where vi ∈ V

for each i = 0, . . . , k and ei = (vi−1, vi) ∈ E for each i = 1, . . . , k. We indicate with

V (P) = {v0, . . . , vk} the set of nodes of P and with E(P) = {e1, . . . , ek} the set of

edges of P . We say that P is from v0 to vk, or that is a v0-vk path. It is closed

if v0 = vk; it is edge-simple if e1, . . . , ek are distinct; it is simple if v0, . . . , vk are

distinct; it is a cycle if it is closed, v0, . . . , vk−1 are distinct and k ≥ 1. Let N+(u)

be the set of outgoing neighbors and N−(u) the set of ingoing neighbors of u in G.

For a set of edges A ⊂ E let `(A) =
∑

e∈A `(e). For an edge e ∈ E and a set of edges

F ⊆ E, let G − e and G − F be the graph obtained by removing the edge e and

the edges in F , respectively. For two paths Q1, Q2 with the property that last node

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 13

of Q1 is the first node of Q2 we let Q1 ⊕ Q2 be their concatenation. Let us stress

that in this subsection and in the following ones we will talk about simple paths.

For two nodes u, v ∈ V let Pu,v be the set of simple u-v paths in G. For a simple

path P containing nodes u and v let P [u, v] be the subpath of P from u to v. For

an edge e ∈ E and u ∈ V let Q−eu be some fixed shortest u-t path in G − e and let

π−eu = `(Q−eu). We use the convention that Q−eu = ∅ and π−eu = ∞ if u and t are in

different connected components in G− e.

It is convenient to define the detour of a path:

Definition 2.1.1. The detour P−e of a (simple) path P ∈ Pv,t with respect to an

edge e = (u, u′) ∈ E is:

• the walk P [v, u] ⊕ Q−(u,u′)
u , if (u, u′) ∈ E(P) (where u is the node closer to v

on P);

• P , otherwise.

The length of a detour is given by:

• `(P−e) = `(P [v, u]) + π
−(u,u′)
u , if (u, u′) ∈ E(P);

• `(P−e) = `(P), otherwise.

In the ORP context, the cost of connecting a node v to the destination t via a

v-t path is defined as follows:

Definition 2.1.2. Given a node v ∈ V , the robust length of the (simple) v-t path P

is

Val(P) = max
e∈E

`(P−e).

The robust length of a v-t path P is simply the maximal possible cost incurred by

following P until a certain node, and then taking the best possible detour from that

node to t which avoids the next edge on the path. To avoid confusion, we stress that

in ORP we assume the existence of at most one failed edge in the graph. Consider

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 14

next a scenario in which an edge (u, u′) ∈ E(P) fails and let u ∈ V be the node which

is closer to v; clearly, the best detour is a shortest u-t path in the graph G− (u, u′).

We can now formally define ORP:

Definition 2.1.3 (The Online Replacement Path problem). Given: an edge-weighted

directed graph G = (V,E, `), where ` : E → R+ and a destination t ∈ V .

Find: for every v ∈ V an optimal v-t path, namely a path P minimizing Val(P)

over all paths P ∈ Pv,t.

Remark 2.1.4. We observe that in definition 2.1.3 we are claiming that in order to

find a v-t path with minimum robust length for each v ∈ V , we can restrict without

loss of generality our focus to simple v-t paths. It is easy to check that this is directly

implied by nonnegativity of `.

In the following, we are going to indicate with bottleneck(P) the edge which is

responsible for the worst case scenario for a given path P . We have bottleneck(P) = ∅

iff Val(P) = `(P), while bottleneck(P) = (u, u′) iff Val(P) = `(P [v, u]) + π
−(u,u′)
u .

Furthermore, we will often call nominal the path P and the value `(P) it is what we

call nominal length of P .

We now provide a simple graph-theoretical characterization of paths with finite

robust length. Let U2 ⊂ V be the set of nodes in G that are 2-edge connected to

t, i.e., all nodes u such that there are two edge-disjoint u-t paths in G. Note that,

following Theorem 2.1.5, if two nodes s and t are in different components of G[U2],

there will be no s-t path with finite robust length.

Theorem 2.1.5. A path P ∈ Ps,t has finite robust value if and only if V (P) ⊂ U2.

Proof. Assume first that V (P) 6⊂ U2. Let u ∈ V (P) such that there are no two

edge-disjoint u-t paths in G. In this case there exists an edge e such that G − e

contains no u-t paths. In fact e ∈ P and u is reachable on P in G − e, since P

contains a u-t path. It follows that Val(P) = `(P−e) = ∞, as u is reached in the

scenario that e fails.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 15

Assume next V (P) ⊂ U2. We evaluate `(P−e) for some failure scenario e ∈ P .

Let u ∈ V (P) be the node incident to P at which the failure is discovered. Since

u ∈ U2, there exists at least one u-t path Q in G − e. Thus, `(P−e) ≤ `(P [s, u]) +

`(Q) <∞. We conclude that Val(P) <∞.

In the rest of this subsection we are going to show some important properties of

the robust length. First of all, we can prove the following useful lemma:

Lemma 2.1.6. Let Pu ∈ Pu,t and let v ∈ N−(u) be a node, not incident to Pu.

Then Val((v, u)⊕ Pu) = max{`(v, u) + Val(Pu), π
−(v,u)
v }.

Proof. Let Pv = (v, u)⊕ Pu. Applying the definition we compute

`(v, u) + Val(Pu) = `(v, u) + max{`(Pu),max(z,w)∈E(Pu){`(Pu[u, z]) + π
−(z,w)
z }}

= max{`(v, u) + `(Pu),max(z,w)∈E(Pu){`(v, u) + `(Pu[u, z]) + π
−(z,w)
z }}

= max{`(Pv),max(z,w)∈E(Pv)\{(v,u)}{`(Pv[v, z]) + π
−(z,w)
z }}.

Substituting in the desired expression we obtain

max{`(v, u) + Val(Pu), π
−(v,u)
v } =

max{`(Pv),max(z,w)∈E(Pv)\{(v,u)}{`(Pv[u, z]) + π
−(z,w)
z }, π−(v,u)

v } = Val(Pv),

which proves the lemma.

Furthermore, nonnegativity of ` implies Val(P) ≥ Val(P [v, t]), whenever v ∈

V (P), meaning that the robust length of a path has a sort of monotonicity property

with respect to proper subpaths.

In order to introduce the next property, we observe that in ORP we do not have

a suboptimality principle as in the Shortest Path problem; indeed, given an optimal

v-t path P , it might be false that any subpath of P from a node u ∈ V (P) to t is

also optimal for u. In figure 2.1 we note, for example, that the path P = {v, u, t}

is optimal for v and it has robust length 1000, while the subpath P [u, t] (that, in

this case, is simply the edge (u, t)), whose robust length is 900, is not optimal for u.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 16

v u

x1

x2

x3

x4

t

1000

1 900

1 1

1 1

1 11

1

Figure 2.1: An example showing that subpaths of optimal path could be non-optimal.

Indeed, the optimal path for u is P ′ = {u, x2, t} with robust length 3.

On the other hand, also the path P [v, u] ⊕ P ′ is optimal for v, having robust

length 1000. This fact is well explained by the following lemma, which states a sort

of weak optimality principle for the ORP Problem.

Lemma 2.1.7 (Weak optimality principle). Let Pv ∈ Pv,t be an optimal path from v,

u ∈ V (Pv) and Pu ∈ Pu,t be an optimal path from u. Then the path P ′v = Pv[v, u]⊕Pu

satisfies Val(P ′v) = Val(Pv), namely it is also optimal from v.

Proof. Since Pv is optimal for v, it is sufficient to prove that

Val(P ′v) ≤ Val(Pv). (2.1)

We define P ′u = Pv[u, t]; since Pu is optimal for u, we have

Val(Pu) ≤ Val(P ′u). (2.2)

By definition of robust length and by recursively applying lemma 2.1.6, we have

Val(Pv) = max{A,α + Val(P ′u)} and Val(P ′v) = max{A,α + Val(Pu)}, where A =

max(z,w)∈E(Pv [v,u]){`(Pv[v, z]) + π
−(z,w)
z } and α = `(Pv[v, u]).

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 17

On the one hand, if Val(P ′v) = A, then 2.1 trivially holds. On the other hand, if

Val(P ′v) = α+ Val(Pu), because of 2.2 we have:

Val(P ′v) = α+ Val(Pu) ≤ α+ Val(P ′u) = Val(Pv),

and 2.1 holds.

The properties of the robust length listed so far give us an idea about the reason

why the solution to ORP can be provided as tree of optimal paths rooted in t.

2.1.2 Feasible potential and optimality conditions

As mentioned at the end of the previous subsection, a solution to the Online Re-

placement Path problem, defined in 2.1.3, is a tree of optimal paths rooted in t. In

particular, in this subsection we provide a necessary and sufficient condition that

such a tree has to satisfy in order to be optimal.

First of all, let us introduce the following definition:

Definition 2.1.8. We call potential a vector y :→ R|V | such that y(t) = 0. We call

a potential feasible if and only if ∀(u, v) ∈ E it holds:

y(u) ≤ max
{
`(u, v) + y(v), π−(u,v)

u)
}

(2.3)

The next lemma shows that a feasible potential is a vector such that, for any

v ∈ V , y(v) is a lower bound of the robust length of any simple v-t path.

Lemma 2.1.9. Let y be a feasible potential and let P be a v-t path. Then y(v) ≤

Val(P).

Proof. Let P = {v ≡ v1, v2, . . . , vk ≡ t} be a v-t path. Since y is feasible, we have:

y(vi) ≤ max
{
`(vi, vi+1) + y(vi+1), π

−(vi,vi+1)
vi)

}
∀i = 1, . . . , k − 1 (2.4)

We delve into two cases.

First case: bottleneck(P) = ∅. In this case, the worst scenario for P is the

nominal one. Note that, in this case, the following holds:

`(P [vi, vk]) ≥ π
−(vi,vi+1)
vi ∀i = 1, . . . , k − 1 (2.5)

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 18

Claim 1. y(vi) ≤ `(P [vi, vk]), for each i = 1, . . . , k − 1.

Proof We go by induction on i. If i = k − 1, from (2.5) and (2.4), we have:

`(vk−1, vk) ≥ π
−(vk−1,vk)
vk−1

y(vk−1) ≤ max
{
`(vk−1, vk) + y(vk), π

−(vk−1,vk)
vk−1

}
As y(vk) = 0, we conclude that y(vk−1) ≤ `(vk−1, vk) = P [vk−1, vk].

By induction assume now that y(vj+1) ≤ `(P [vj+1, vk]), for some j between 1

and k − 2. The following holds:

y(vj) ≤ max
{
`(vj , vj+1) + y(vj+1), π

−(vj ,vj+1)
vj)

}
≤

≤ max
{
`(vj , vj+1) + `(P [vj+1, vk]), π

−(vj ,vj+1)
vj)

}
= `(P [vj , vk]),

where the first inequality holds for the feasibility of y, the second inequality holds

by induction, and the last follows from (2.5) with i = j. (End of the proof)

When i = 1, it follows from Claim 1 that y(v1) ≤ `(P [v1, vk]), i.e. y(v) ≤ Val(P).

Second case: bottleneck(P) = (vj , vj+1).

In this case, we assume that the worst scenario for P is when the edge (vj , vj+1)

fails, for some j between 1 and k − 1. We have:

Val(P) = `(P [v1, vj]) + π
−(vj ,vj+1)
vj ≥ `(P) (2.6)

`(P [vi, vj]) + π
−(vj ,vj+1)
vj ≥ π−(vi,vi+1)

vi ∀i = 1, . . . , j − 1 (2.7)

`(P [vj , vi]) + π
−(vi,vi+1)
vi ≤ π−(vj ,vj+1)

vj ∀i = j + 1, . . . k − 1 (2.8)

Claim 2. y(vj) ≤ π
−(vj ,vj+1)
vj .

Proof Suppose to the contrary that:

y(vj) > π
−(vj ,vj+1)
vj . (2.9)

First, observe that, in this case, since y is feasible, it follows that y(vj) ≤

`(vj , vj+1) + y(vj+1).

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 19

We now show by induction that the followings hold indeed for each i = j, . . . , k−1:

y(vi) > π
−(vi,vi+1)
vi (2.10)

y(vj) ≤ `(P [vj , vi+1]) + y(vi+1) (2.11)

We have already shown the base case i = j. By induction, assume now that

(2.10) and (2.11) hold for each i = j, j + 1, . . . , h, for some h between j and k − 2.

By (2.8), we obtain:

`(P [vj , vh+1]) + π
−(vh+1,vh+2)
vh+1 ≤ π−(vj ,vj+1)

vj < y(vj) ≤ `(P [vj , vh+1]) + y(vh+1),

and therefore y(vh+1) > π
−(vh+1,vh+2)
vh+1 (i.e., (2.10) holds w.r.t. h + 1). Since y is

feasible, it also follows that y(vh+1) ≤ `(vh+1, vh+2) + y(vh+2). Actually, it follows

from (2.10) that y(vi) ≤ `(vi, vi+1)+y(vi+1), for each i = j, j+1, . . . , h+1: summing

up these inequalities we have that y(vj) ≤ `(P [vj , vh+2]) + y(vh+2) (i.e., (2.11) holds

w.r.t. h+ 1).

So, in particular, we have that y(vj) ≤ `(P [vj , vk]) + y(vk) = `(P [vj , vk]), and

since y(vj) > π
−(vj ,vj+1)
vj , it follows that `(P [vj , vk]) > π

−(vjvj+1)
vj . But this is in

contradiction with (2.6). (End of the proof)

Claim 3. y(vi) ≤ `(P [vi, vj]) + π
−(vj ,vj+1)
vj , for each i = 1, . . . , j − 1.

Proof The proof is by induction. The base case i = j − 1 is given by what follows:

y(vj−1) ≤ max
{
`(vj−1, vj) + y(vj), π

−(vj−1,vj)
vj−1

}
≤ max

{
`(vj−1, vj) + π

−(vj ,vj+1)
vj , π

−(vj−1,vj)
vj−1

}
=

= `(vj−1, vj) +π
−(vj ,vj+1)
vj , where the first inequality holds by the feasibility of y, the

second follows from Claim 2 and the last from (2.7).

By induction, assume that (2.10) and (2.11) hold for each i = j − 1, j − 2, . . . , h,

for some h ≥ 2. Then: y(vh−1) ≤ max
{
`(vh−1, vh) + y(vh), π

−(vh−1,vh)
vh−1)

}
≤≤

max
{
`(vh−1, vh) + `(P [vh, vj]) + π

−(vj ,vj+1)
vj , π

−(vh−1,vh)
vh−1)

}
= = `(P [vh−1, vj])+π

−(vj ,vj+1)
vj ,

where the first inequality holds for the feasibility of y, the second is by induction

and the last equality follows from (2.7). (End of the proof)

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 20

Our statement follows then from Claim 3 with i = 1: y(v1) ≤ `(P [v1, vj]) +

π
−(vj ,vj+1)
vj = Val(P).

Lemma 2.1.9 is what we need in order to prove the desired optimality conditions

for ORP.

Lemma 2.1.10. Let T be a spanning tree of G rooted in t; for any v ∈ V \ {t}, let

y(v) be the robust length of the unique v-t path on T and put y(t) = 0. Then T is a

tree of optimal paths if and only if the so defined vector y is a feasible potential.

Proof. Sufficiency easily follows from Lemma 2.1.9. Namely we have a feasible po-

tential y and, for any v ∈ V \ {t}, we have a v-t path of robust length equal to y(v):

Lemma 2.1.9 guarantees that such paths are optimal.

For the necessity, let us assume by contradiction that y is not feasible. Then there

exists at least one edge (u, v) ∈ E such that y(u) > max
{
`(u, v) + y(v), π

−(u,v)
v)

}
.

Let Pu and Pv be the respectively u-t and v-t paths such that Val(Pu) = y(u)

and Val(Pv) = y(v). Be lemma 2.1.6 we have that max
{
`(u, v) + y(v), π

−(u,v)
v)

}
=

Val((u, v)⊕ Pv) The above inequality implies that Val(Pu) > Val((u, v)⊕ Pv) which

is a contradiction, being Pu an optimal u-t path.

We conclude this subsection observing another difference between ORP and the

Shortest Path problem.

For both problems we deal with the concept of feasible potential, and for both

problems, it is easily the case that a feasible potential is not bounded for some nodes.

However while for the Shortest Path problem the nodes for which the potential is

unbounded, are the ones not connected with the destination and that, consequently,

can be deleted from the graph, for ORP the nodes for which the potential is un-

bounded are those nodes that are not 2-connected with the destination, but they

cannot be canceled out since they might be used by detours. For example, look-

ing at figure 2.1.2 we note that the nodes x1, x3, x4 are not 2-connected with t but

they belong to the detours of the path P = {v, u, x2, t}. Indeed, they are spanned

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 21

v u

x1

x2

x3

x4

t

1000

1 900

1 1

1 1

1 11

1

Figure 2.2:

by the red tree made by optimal paths and implementing the feasible potential

y(x1) = y(x3) = y(x4) =∞, y(v) = 1000, y(u) = 3, y(x2) = 2.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 22

2.1.3 A label setting algorithm for ORP

What we show in this subsection is that one can compute in polynomial time a v− t

path with minimum robust length for each v ∈ V . Our algorithm for ORP uses the

property established by the following lemma.

Lemma 2.1.11. Let U ⊂ V , with t ∈ U , be the set of nodes x for which the optimal

path P ∗x is known, and let (v, u) ∈ E be an edge such that:

(v, u) ∈ arg min
(z,w)∈E:w∈U,z 6∈U

max{`(z, w) + Val(P ∗w), π−(z,w)
z }. (2.12)

Then P ∗v := (v, u)⊕ P ∗u is an optimal nominal v-t path.

Proof. Assume towards contradiction that there exists a path Pv ∈ Pv,t such that

Val(Pv) < Val(P ∗v). Let w ∈ U and z ∈ V \U be two nodes such that (z, w) ∈ E(Pv).

Consider the partition of Pv given by Pv = Pv[v, z] ⊕ (z, w) ⊕ Pv[w, t] (Note that if

w = t then Pv[w, t] = ∅ and if z = v then Pv[v, z] = ∅).

By the choice of (v, u) we have

max{`(v, u) + Val(P ∗u)), π−(v,u)
v } ≤ max{`(z, w) + Val(P ∗w), π−(z,w)

z },

which, by Val(Pv[w, t]) ≥ Val(P ∗w) implies

max{`(v, u) + Val(P ∗u), π−(v,u)
v } ≤ max{`(z, w) + Val(Pv[w, t]), π

−(z,w)
z }.

The latter inequality and Lemma 2.1.6 give Val(P ∗v) ≤ Val(Pv[z, t]). On the other

hand, from the properties of the Val function we have Val(Pv) ≥ Val(Pv[z, t]). We

conclude that Val(P ∗v) ≤ Val(Pv[z, t]) ≤ Val(Pv); a contradiction.

Our algorithm uses a label-setting approach, analogous to Dijkstra’s algorithm

for shortest paths. In other words, in every iteration the algorithm updates certain

temporary labels for the vertices of the graph (representing an upper bound of the

optimal solution), and fixes a permanent label to a single vertex v. This permanent

label represents the connection cost of v by an optimal path to t. The algorithm

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 23

iteratively builds up a set U , consisting of all vertices for which the optimal path was

already computed. Lemma 2.1.11 provides the required equation for our label-setting

algorithm, suggesting that in any iteration one should look at the edges in δ−(U), find

the edge (v, u) satisfying 2.12 and label v as permanent. As for Dijkstra’s algorithm,

using suitable data structure, it is possible to obtain a more efficient implementation,

whose statement is given as Algorithm 1.

Algorithm 1

1: Compute π−(u,v)
u for each (u, v) ∈ E.

2: U = ∅; W = V ; y′(t) = 0; y′(u) =∞ ∀u ∈ V − t.

3: successor(u) = NIL ∀u ∈ V .

4: while U 6= V do

5: Find u = arg minz∈W y′(z).

6: U = U + u; W = W − u; y(u) = y′(u).

7: for all (v, u) ∈ E with v ∈W do

8: if y′(v) > max{`(v, u) + y(u), π
−(v,u)
v } then

9: y′(v) = max{`(v, u) + y(u), π
−(v,u)
v }.

10: successor(v) = u.

11: end if

12: end for

13: end while

As explained above, the correctness of the algorithm is a direct consequence of

Lemma 2.1.11, but we prove it formally in the following lemma.

Lemma 2.1.12. Algorithm 1 provides an optimal solution to ORP

Proof. Let us specify that in this proof, given a node u ∈ V selected at the step 5

of the algorithm, we call scansion of u the set of operations from step 7 to step 12.

First of all, it is easy to check by induction on the size of the set U of scanned nodes,

that at any stage of the algorithm we have the following properties holding:

1. if y(v) 6=∞, then it is the robust length of simple v-t path;

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 24

2. if successor(v) 6= NIL, then successor defines a simple v-t path of robust

length at most y(v).

This implies that in order to conclude the proof, by lemma 2.1.10, we need to

show that the obtained vector y is a feasible potential when the algorithm terminates.

Claim 4. For each w ∈ V , let y′(w) be the value of y(w) when w is chosen to be

scanned. If u is scanned before v, then y′(u) ≤ y′(v).

Proof Suppose y′(v) < y′(u) and let v be the earliest node scanned for which this is

true. When u was chosen to be scanned, we had y′(u) = y(u) ≤ y(v), so y(v) was

lowered to a value y′(v) less than y′(u) after u was chosen to be scanned but before

v was chosen. So y(v) was lowered when some node w was scanned, and it was set

to y′(v) = max{`(v, w) + y′(w), π
−(v,w)
v }. By choice of v, we have y′(w) ≥ y′(u). We

now have two cases:

1. if `(v, w) + y′(w) ≥ π−(v,w)
v , then y′(v) = `(v, w) + y′(w), and since `(v, w) ≥ 0

we have y′(v) ≥ y′(w) ≥ y′(u), a contradiction.

2. if `(v, w) + y′(w) < π
−(v,w)
v , then y′(v) = π

−(v,w)
v > `(v, w) + y′(w), and since

`(v, w) ≥ 0 we have y′(v) ≥ y′(w) ≥ y′(u), a contradiction.(End of the proof)

We claim, now, that after all nodes are scanned, we have y(w) ≤ max{`(w, v) +

y(v), π
−(w,v)
w } for all (w, v) ∈ E. Suppose not. Since this was true when v was

scanned, it must be that y(v) was lowered after v, say while q was being scanned,

and was set to y(v) = max{`(v, q)+y′(q), π
−(v,q)
v }; furthermore, for Claim 4, we have

y′(v) ≤ y′(q). We now have two cases:

1. if `(v, q) + y′(q) ≥ π−(v,q)
v , then y(v) = `(v, q) + y′(q), and since `(v, q) ≥ 0 we

have y(v) ≥ y′(q) ≥ y′(v), a contradiction.

2. if `(v, q) + y′(q) < π
−(v,q)
v , then y(v) = π

−(v,q)
v > `(v, q) + y′(q), and since

`(v, q) ≥ 0 we have y(v) > y′(q) ≥ y′(v), a contradiction.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 25

Consider the running time of Algorithm 1. For steps 2-10 we use the implementa-

tion of Fredman and Tarjan [13] for priority queues (heaps) called Fibonacci Heaps.

We adopt here the same implementation that is used to obtain O(m+ n log n) run-

ning time for Dijkstra’s algorithm. We omit the details as they are identical to those

in [13].

Consider next the implementation of step 1, which amounts to computing the

values π−(u,v)
u for each (u, v) ∈ E. We start by computing the shortest path tree T in

O(m+ n log n) time from every node to t and this would trivially tells us the value

of π−(u,v)
u for each edge (u, v) of the graph not in T .

We can hence concentrate our efforts on computing π-values for edges in the tree.

Unfortunately for directed graphs, the best we can do is to compute the values π−(u,v)
u

for (u, v) ∈ T by performing n − 1 independent shortest path computations. This

means that step 1 is the bottleneck of Algorithm 1 and that it can be trivially imple-

mented in time O(nSP(n,m)), where SP(n,m) is the complexity of a single shortest

path computation on a graph with n nodes, m edges and nonnegative weights.

We are ready to state one of the main results of this section.

Theorem 2.1.13. Given an instance of ORP the potential y and the corresponding

paths can be computed in time O(nSP(n,m)) in directed graphs.

2.1.4 The undirected case

In this subsection we discuss ORP when the input graph G = (V,E) is undirected.

We indicate with {u, v} ∈ E an undirected edge of G connecting two nodes u, v ∈ V .

The definitions introduced so far (detour, robust length, etc.) remain the same,

and, more important, the described properties still hold; for example, if the graph

in figure 2.1.1 was undirected the considerations made in subsection 2.1.1 in order

to explain the weak optimality principle for ORP would still be valid.

Therefore we claim that Algorithm 1 works also for undirected graphs. The idea

is, like it is usually done for the Shortest Path problem on undirected graph, to take

any undirected edge {u, v} ∈ E and split it into two directed edges (u, v) and (v, u)

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 26

with the same cost of the original edge and then run Algorithm 1 on this transformed

graph.

Then main difference between the directed and undirected case is that for the

second one we can provide an efficient implementation of step 1 of Algorithm 1 that

relies on an algorithm of Nardelli, Proietti and Widmayer [20] for computing swap

edges in graphs with respect to a shortest path tree.

In step 1 we need to compute, for any undirected edge {u, v} ∈ E, the values

π
−(u,v)
u and π−(v,u)

v representing the cost of the shortest path in G − {u, v} from u

to t and from v to t respectively (note, indeed, that the edge {u, v} can be crossed

both from u to v and from v to u).

We start by computing the undirected shortest path tree T in O(m + n log n)

time from every node to t and this would trivially tell us the values of π−(u,v)
u and

π
−(v,u)
v for each edge {u, v} of the graph not in T . It would also tell us the value

π
−(v,u)
v for each each edge {u, v} of the graph in T , being v the closest node to t on

the unique u-t path in T , so that we can concentrate our efforts on computing the

values π−(u,v)
u for each each edge {u, v} of the graph in T .

This problem is a well-known variant of best swap edge problem studied by

Nardelli, Proietti and Widmayer [20], called the {r, v}-Problem. The authors give an

algorithm for computing all such best swap edges with running time O(mα(m,n))

for undirected graphs, where α(·, ·) is the Inverse Ackermann function.

Therefore we obtain a procedure for step 1 with running time O(mα(n,m) +

n log n) = O(m+ n log n) [30]. Since for steps 2-10 we use the same implementation

mentioned in the previous subsection, we have that the running time of Algorithm 1

for undirected graphs is O(m+ n log n).

Theorem 2.1.14. Given an instance of ORP the potential y and the corresponding

paths can be computed in time O(m+ n log n) in undirected graphs.

We note that Bar-Noy and Schieber [5] sketch a similar algorithm with the same

time bound for a problem that can be seen as a policy-based variant of ORP (see

section 1.2). Their result is stated without proof, and we are not aware of a proof

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 27

that does not build on the result of Nardelli, Proietti and Widmayer [20], which

appeared afterwards.

2.2 ORP with arbitrary costs

In this subsection we tackle ORP problem when we allow the edge-weights to be

negative, that is we assume ` : E → R. We also assume to be given a directed

graph G = (V,E), since we have already seen in subsection 2.1.4 how to extend the

obtained results to undirected graphs. Recall that we fix a destination node t ∈ V

and we assume that at most one edge can fail.

We split this section in two cases: in a first moment we assume that there are

no cycles with negative length in G and we hint an algorithmic approach to solve

this case; in a second moment we make some considerations about the existence of

a solution in the case where we allow the presence of cycles with negative length.

2.2.1 ORP with arbitrary costs in absence of negative cycles

We assume that there can be edges with negative cost, but that there are no cycles

with negative length in G. First of all, we claim that also in this case we can assume

without loss of generality that an optimal solution, if any, is a simple path. Even

more, it is quite easy to see that almost everything we proved in section 2.1 still

holds; the only part that must be reconsidered is the algorithmic one, since in the

proof of the correctness of Algorithm 1 we use the nonnegativity of `.

On the other hand, as just said, we can still use the idea of feasible potential (see

definition 2.1.8) in order to obtain optimality conditions for our problem (see 2.1.10).

Then it is quite natural to raise the question whether it is possible to develop for

ORP with arbitrary costs, but no negative cycles, an algorithm like the Ford-Bellman

one for Shortest Path problem, that is an algorithm that, until a feasible potential is

not obtained, iteratively finds an edge not satisfying equation (2.3) and corrects it.

We conjecture that the following algorithm solves ORP problem under the as-

sumption that there are arbitrary costs on the edges, but there are no cycles with

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 28

negative length:

Algorithm 2
1: Initialize y; y(t) = 0; y(u) =∞ ∀u ∈ V − t.

2: Initialize successor; successor(u) = NIL ∀u ∈ V .

3: while y is not a feasible potential do

4: Find (v, u) ∈ E such that y(v) > max{`(v, u) + y(u), π
−(v,u)
v } .

5: Put y(v) = max{`(v, u) + y(u), π
−(v,u)
v } and successor(v) = u.

6: end while

We refer to future work for the proof of what follows: Algorithm 2 is correct

and that it terminates after a finite number of iterations; providing a bound to such

number is an interesting open question.

2.2.2 ORP with arbitrary costs in presence of negative cycles

We now turn our attention to the case where G can have negative cycles. It is well

known that, given an edge-weighted graph G, we can find a solution for the Shortest

Path problem (or certify that such solution does not exist) in polynomial time if and

only if G has no cycle with negative length. As it is shown in the figure 2.3 this is

not true any longer for ORP, since, even though there are two negative cycles, we

can see that in this example the red edges provide an optimal solution to ORP with

bounded robust values (in particular, we note that in this example the solution is

provided as a tree rooted in t as it happens for ORP with nonnegative costs, see

the end of subsection 2.1.2). The example of figure 2.3 shows also that it might be

possible to find a solution to ORP even though the graph is such that a negative

cycle exists in any possible failure scenario.

It would be useful to find a result as the one stated before for the Shortest Path

problem, that is a sufficient and necessary condition for the existence of a solution

to ORP in presence of arbitrary costs and cycles with negative length. Let us focus

on the example shown in figure 2.4; first of all we note that for the nodes a and

d there exists a solution with bounded robust value, that is the edges (a, t) and

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 29

a

b

c

d

e

f

t
2

−3

1

1

2

2

2

−3

1

1

2

2

Figure 2.3: A graph with negative cycles for which a solution to ORP exists (red edges).

Note that this graph is also such that in any failure scenario there exists a negative cycle.

(d, t) respectively. On the other hand, this is not true if we take as origin node b

or node c and the reason is the following: in both cases, we can reach the cycle

C = {(b, c), (c, b)} of length −2 both in the nominal scenario (no failures) and in

all those scenarios in which an edge not belonging to C fails; moreover C has the

property that if one of its edges fails, a cycle with negative length is still reachable in

the remaining graph: in particular, the cycle {(b, a), (a, c), (c, b)} with length −1 is

reachable if (b, c) fails and the cycle {(b, c), (c, d), (d, b)} with length −1 is reachable

if (c, b) fails.

This example hints that it is easy to proof what follows: if there exists a finite

solution to ORP then G has no cycle C with negative length and such that for each

(u, v) of C no cycle with negative length is reachable from u in G − (u, v) (in other

words π−(u,v)
u is not −∞).

We conjecture that the stated condition is also sufficient for the existence of a

finite solution to ORP. We leave the proof of this fact as an open point.

We conclude this section stressing that ORP with arbitrary costs and no restric-

tion about cycles with negative length presents an important difference with respect

both the Shortest Path problem and ORP with nonnegative costs. In this case, in-

deed, we cannot restrict without loss of generality the domain of optimal solutions

to simple paths, because the optimal solution for a given source node v ∈ V can

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 30

c

a d

t

b

1

1

1

1 1

1 −3

−3 1

Figure 2.4: A graph for which there is no a solution to ORP for each origin node.

have cycles, as it is shown in the example presented in figure 2.5. In this example,

indeed, it is easy to check that the simple v-t path with minimum robust length is

P1 = {v, a, b, d, t}, being Val(P1) = 5, while the path P2 = {v, a, b, c, a, b, d, t} has

Val(P2) = 4 and it is not simple.

Moreover figure 2.5 also hints that in ORP with arbitrary costs, in order to find a

solution with bounded robust value, we can restrict our focus on no-simple paths

that cycle a finte number of times without loss of generality. Consider the no-simple

path P2, for which Val(P2) = 4. It holds that bottleneck(P2) = ∅, but we note

that also the scenario in which the edge (v, a) fails has cost 4; this implies that the

robust length of P2 cannot be less than 4. We also note that if the nominal scenario

corresponded to the simple path P1 it would cost 5, but traversing once the cycle

{(a, b), (b, c), (c, a)} it goes down to 4. Cycling an infinite number of times, the nom-

inal cost would become arbitrary small, but it would be useless since, as we have

observed before, we would still have Val(P2) = 4.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 31

v a b d

e

c f

gh

t
1

4 100

0

1

0

0

1

3

1
−3

0

0.5

0.5

0.5

10

0.5

1

Figure 2.5: An example showing that, in presence of negative costs and negative cycles,

the solution can be a no-simple path.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 32

2.3 Bi-objective ORP

In this section we turn to a natural question linking ORP and the Shortest Path

problem. Consider an instance of s-t ORP for which the optimal nominal path is

not unique. While all optimal paths P have the same robust length, let us say B∗,

they might differ in terms of their nominal length `(P). In those application in

which failures are no that likely, we might thus be interested in obtaining a path

attaining the optimal robust length with minimum nominal length. In general, one

can consider the following bi-objective problem for any bound B ≥ B∗.

z(s,B) = min
P∈Ps,t, Val(P)≤B

`(P).

The latter problem asks to find a Pareto-optimal s-t path in G with objective

functions robust length and nominal length. We call this problem Bi-objective ORP.

Bi-objective ORP bears resemblance to the Bi-objective Shortest Path problem [15].

In the latter problem one seeks to obtain a Pareto-optimal s-t path in the graph with

objective functions corresponding to ordinary length with respect to two different

length functions. In this section we show that the two problems differ significantly

in terms of their complexity. Concretely, we will show that a solution to bi-objective

ORP and the entire Pareto front can be found in polynomial time. This contrasts to

the Bi-objective Shortest Path problem, which is NP-hard, and its Pareto front can

be of exponential size in the size of the graph. Our first result is:

Theorem 2.3.1. Bi-objective ORP can be solved in time O(m+n log n) in undirected

graphs and in time O(mn+ n2 log n) in directed graphs.

Proof. We prove that Algorithm 3 solves the problem in the stated time. We adopt

the implementation we used to obtain the same running time for Algorithm 1. The

details are identical, thus omitted. It remains to prove its correctness.

We define first a value function for partial paths. Concretely, for u ∈ V and s-u

path P define

L(P) = max{`(P),max
e∈P

`(P−e)}.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 33

Observe that L(P) = Val(P) holds for s-t paths.

We prove by induction on the cardinality of S that every node u ∈ S during the

execution of the algorithm satisfies d(u) = z(u), where

z(u) = min
P∈Ps,u : L(P)≤B

`(P).

This implies in particular that for u = t we obtain the desired result.

The claim is obviously true in the first iteration. Assume this to be true until

the k-th iteration. Consider the node u ∈ S̄ chosen in the k + 1-st iteration in the

algorithm. Assume towards contradiction that d(u) > z(u), and let P ∗ ∈ Ps,u be

a path attaining L(P ∗) = z(u). Consider the first edge (x, y) ∈ P ∗ in the traversal

from s to u with the property that x ∈ S and y ∈ S̄. Note that by the inductive

assumption we have d(y) ≤ z(x) + `(x, y). Indeed, since x ∈ S we know that in the

iteration that x was added to S one had d(x) = z(x). Furthermore, in step 9 of this

iteration, d(y) was updated using the edge (x, y).

It remains to note that d(y) ≤ L(P ∗) < d(u), since L(Q) ≥ L(Q[s, w]) holds

whenever Q ∈ Ps,u and w ∈ V (Q), while P ∗[x, t] can always be assumed to satisfy

L(P ∗[s, x]) = z(x). This contradicts the choice of u in step 4 of the algorithm.

Let us turn to the problem of computing the Pareto front. Recall that a Pareto

front F of a bi-objective optimization problem with objective functions f and g is a

set of Pareto-optimal solutions to the problem with the property that, for every other

solution X, there exists a solution Y ∈ F such that f(X) ≥ f(Y) and g(X) ≥ g(Y).

A Pareto front F for an instance of Bi-objective ORP is a set of paths, such that, for

every Pareto-optimal path P , there exists a path in F with not longer robust length

and not longer nominal length. In general, having an entire Pareto front at hand

is of course advantageous in practical applications, as it gives the decision maker a

complete list of efficient strategies (see the plot in figure 2.6).

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 34

Algorithm 3
1: S = ∅; S̄ = V

2: d(s) = 0; d(v) =∞ ∀v ∈ V − s

3: while t /∈ S do

4: Find u = arg minz∈S̄ d(z)

5: S = S + u

6: S̄ = S̄ − u

7: for v ∈ N(u) \ S do

8: if d(u) + `(u, v) ≤ d(v) and d(u) + π
−(u,v)
u ≤ B then

9: d(v) = d(u) + `(u, v)

10: end if

11: end for

12: end while

`(P ∗)

B

B∗ := minimum s-t robust length

π(s) := shortest s-t length

P ∗ := arg minP∈Ps,t: Val(P)≤B `(P).

B∗

π(s)

Figure 2.6: Pareto front of Bi-objective ORP.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 35

The following theorem asserts that every Bi-objective ORP instance has a Pareto

front with a linear number of paths. The front can be found in polynomial time using

Algorithm 4 (note that, for undirected graphs, the algorithm is slightly different).

Algorithm 4
1: H = G; F = ∅.

2: while s and t are connected in H do

3: Find a shortest s-t path P in H and add it to F.

4: Find a critical edge e ∈ E(H) (with Val(P) = `(P−e)) and remove it from H.

5: end while

6: Remove from F all dominated paths.

7: Return F.

Theorem 2.3.2. Every instance of Bi-objective ORP admits a Pareto front F with

at most 2m paths (m paths in directed graphs). The Pareto front can be found in

time O(m2 +mn log n).

Proof. We prove the theorem for directed graphs first, and then describe a simple

adaptation for undirected graphs. We claim that Algorithm 4 builds a Pareto front

for the given instance of Bi-objective ORP. This claim clearly implies both the bound

on |F| and the bound on the running time of the algorithm. We stress that in step 4

of the algorithm the robust value of the path is computed according to the original

graph G.

Let k ≤ m denote the number of iterations performed by the algorithm. For i ≤ k

let Ei = {e1, · · · , ei} be a set of edges removed after i iterations of the algorithm

(with ei - the edge removed in the i-th iteration), and Pi be the path obtained in

the i-th iteration (such that ei ∈ Pi critical). Furthermore, we assume without loss

of generality that ei ∈ Pi. Indeed, since Pi is a shortest path in E \ Ei−1, if some

edge e 6∈ Pi is critical for Pi, then Val(Pi) = `(Pi) = `(Pi
−f) for every f ∈ E \Ei−1.

We claim that every s-t path P is dominated by some path Pi, with i ≤ k, namely

Val(Pi) ≤ Val(P) and `(Pi) ≤ `(P). Let P be an arbitrary s-t path. Note first that

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 36

since Ek is an s-t cut in G we have P ∩Ek 6= ∅. Define j = minr≤k{er ∈ P}. To this

end consider Pj , the path obtained by the algorithm in the j-th iteration. We know

that P ⊂ E \ {e1, · · · , ej−1}, thus by choice of Pj in the algorithm as the shortest

path in G − Ej−1 we have `(Pj) ≤ `(P). Let v be the endpoint of ej closer to s on

P and Pj (it is the same endpoint since G is directed). From the fact that Pj is a

shortest path we also know that `(Pj [s, v]) ≤ `(P [s, v]), thus from criticality of ej

for Pj we obtain

Val(P) ≥ `(P−ej) = `(P [s, v]) + π
−ej
v ≥ `(Pj [s, v]) + π

−ej
v = Val(Pj).

We conclude that P is dominated by Pj . This concludes the proof for directed graphs.

In undirected graphs is might hold that both P and Pj use the same edge, but in

opposite directions. To this end one can make a simple adaptation of the algorithm.

We replace every undirected edge with two directed edges in opposite directions, and

perform Algorithm 4 on this new graph. One can easily see that the result carries

through by using this graph. We stress however, that in step 4 of the algorithm we

still use the original (undirected) graph. The result now follows from the fact the

new graph has 2m edges.

Let us observe that the complexity bounds stated in Theorem 2.3.2 are due to a

pretty rough implementation of Algorithm 4; indeed, we basically run O(m) times

the same algorithm on slightly different networks, so we believe to be likely that a

smarter and more efficient implementation can be found. We leave this as an open

question.

Finally, observe that Algorithm 4 is also an algorithm for ORP, as for any Pareto

front F we have y(s) = minP∈F Val(P). This algorithm can be particularly inter-

esting for solving ORP in sparse directed graphs, where the size of the Pareto front

might compare favorably with the number of nodes in the graph.

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 37

2.4 k-ORP

Let us formally define k-ORP, the online replacement path problem with the as-

sumption that a bounded number k of edges can fail. We refer to the parameter k as

the failure parameter. In k-ORP a scenario corresponds to a removal of any k of the

edges in the graph. In this setup it is no longer convenient to describe the problem

in terms of paths and detours. Instead we introduce the notion of a routing strategy.

A routing strategy φ : 2E ×V → V is a function which, given a subset F ′ ⊂ E of

known failed links and a vertex v ∈ V , returns a vertex u ∈ V . We call E′ = E\F ′ the

set of active edges. We are assuming the existence of a certain governing mechanism,

which takes as input a routing strategy and executes it on a given instance. Provided

with a routing strategy φ, this mechanism iteratively moves from the current vertex

u to the vertex v = φ(F ′, u), where F ′ is the set of failed links probed so far. The

process starts at a given origin s with F ′ = ∅ and ends when t is reached.

Since φ is deterministic, this process defines a unique, possibly infinite, walk

θφ(u,E, F) in G for each origin u ∈ V and every scenario F ⊂ E with |F | ≤ k. We

remark that if G contains at least k+1 edge-disjoint s-t paths, there exists a routing

strategy, which does not cycle.

Definition 2.4.1. Given E′ ⊂ E, a vertex u ∈ V and a routing strategy φ, the

robust value of φ with respect to E′ and u is defined as

RVal(u,E′, φ) = max
F⊆E′,|F |≤k

`(θφ(u,E′, F)).

Furthermore, given a node u ∈ V , the failure parameter k and E′ ⊂ E, we define:

yk(u,E′) = min
φ

RVal(u,E′, φ).

Finally, k-ORP is to find an optimal routing strategy φ∗, which minimizes RVal(s, E, φ),

namely to solve

φ∗ = arg min
φ

RVal(s, E,R).

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 38

The following relation, which is a generalization of (2.12), gives rise to a simple

recursive algorithm for k-ORP. For each v ∈ V it holds:

yk(v,E) = min
v:(v,u)∈E

{max{`(v, u) + yk(u,E), yk−1(v,E \ (v, u))}}. (2.13)

The correctness of this relation can be proved by induction on k, using the arguments

in Section 2.1.

Algorithm 5 solves (2.13) for every v ∈ V − t and computes the corresponding

optimal routing strategy. Note that Algorithm 5 is identical to Algorithm 1 when

k = 1. To formally prove the correctness of Algorithm 5 one needs to state equivalent

monotonicity properties, as well as analogues of Lemma 2.1.6 and Lemma 2.1.11.

They are however omitted, as they are identical to those of Section 2.1.

Algorithm 5
1: Compute yk−1(u,E \ (u, v)) for each uv ∈ E.

2: U = ∅.

3: W = V .

4: yk(t, E) = 0.

5: yk(u,E) =∞ for each u ∈W .

6: while U 6= V do

7: Find u = arg minz∈W {yk(z, E)}.

8: U = U + u.

9: W = W − u.

10: for all (v, u) ∈ E such that v ∈W do

11: if yk(v,E) > max{`(u, v) + yk(u,E), yk−1(v,E \ {(v, u)})} then

12: yk(v,E) = max{`(u, v) + yk(u,E), yk−1(v,E \ {(v, u)})}.

13: end if

14: end for

15: end while

We conclude by bounding the complexity of a naive implementation of this

algorithm. Let T (m,n, k) denote the running time of the algorithm on a graph

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 39

(either directed or undirected) with n vertices and m edges and failure parame-

ter k. The results in Section 2.1 give T (n,m, 1) = O(m + n log n) for undirected

graph and T (n,m, 1) = O(nSP(n,m)) for directed graphs. For k > 1 we have

T (m,n, k) = O(m + n log n) + mT (m − 1, n, k − 1) = O(mk−1T (n,m, 1)). This

finally gives the following theorem.

Theorem 2.4.2. k-ORP can be solved on undirected graphs in time O(mk +

mk−1n log n) and on directed graphs in time O(mk−1nSP(n,m)).

2.4.1 The Shortest Path Heuristics

It is common to use heuristics which rely on shortest paths in routing algorithms. In

this section we show that a naive shortest path routing strategy performs very poorly

for k-ORP. In fact the approximation guarantee it provides grows exponentially with

the adversarial budget k. To this end we define more formally the shortest path

heuristics, which we denote by φSP . The routing strategy φSP works as follows.

At each vertex u ∈ V and given a set of known failed edges F ′, φSP tries to route

the package along a shortest path in the remaining graph G − F ′. In the following

lemma we show that φSP is a factor 2k+1− 1 approximation for the optimal routing

strategy, in the presence of at most k failed edges.

Lemma 2.4.3. Let I = (G, s, t) be an instance of k-ORP. Then

RVal(s, E, φSP) ≤ (2k+1 − 1)yk(s, E).

Proof. Let OPT = yk(s, E), φ∗ = arg minφ RVal(s, E, φ) and Q0 = θφ∗(s, E, ∅) be

the corresponding nominal path. Consider a set F of failed edges with |F | ≤ k. The

routing strategy φSP defines a certain walk ω = (s = u1, u2, · · · , um = t) in G− F .

We divide our analysis according to the number of failed edges encountered by φSP .

We prove by induction on i, that if the routing strategy encountered a total of i ≤ k

failed edges then

`(ω) ≤ (2i+1 − 1)OPT. (2.14)

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 40

The base case i = 0 corresponds to scenarios in which no failed edge is encountered

in the routing. In this case ω is simply a shortest s-t path in G, hence `(ω) ≤ OPT ,

as required. Assume next that (2.14) holds for every j < i and consider the case

that the routing encounters exactly i failed edges. We can assume without loss of

generality that all edges of F were probed and |F | = i.

Let r < m be such that ur is the vertex incident to the i’th failed edge in

the routing. In other words, before reaching ur, the routing probed exactly i − 1

failed edges. Let e = {ur, w} be the i’th failed edge probed by the routing strategy.

Consider an execution of the routing strategy on the same instance with the different

failure scenario F ′ = F − e. The resulting walk ω′ will have the first r vertices in

common with ω, namely the sub-walk σ = (s = u1, · · · , ur) will appear in both walks.

By the inductive hypothesis we have that `(σ) ≤ `(ω′) ≤ (2i − 1)OPT . It remains

to bound the length of the tail of ω from ur until um = t to complete the proof. To

this end recall that φSP routes the package along the shortest remaining path in the

graph. Since the last failure encountered by φSP is e, the remaining path is simply

the shortest ur-t path in G−F . To bound the length of this path we construct a ur-t

walk θ as follows. First θ traces the entire route taken by φSP back to s and then

uses the walk that φ∗ would use to reach t from s in the scenario F . Clearly we have

`(θ) ≤ (2i − 1)OPT + OPT . Furthermore, this walk is intact in G− F . This gives

the required bound `(ω) ≤ (2i − 1)OPT + (2i − 1)OPT + OPT = (2i+1 − 1)OPT

and finishes the proof.

The bound obtained in Lemma 2.4.3 seems crude at first glance. In particular,

in the inductive step we follow the entire walk performed so far backwards to reach

s and start over. In the following example we show that the bound of Lemma 2.4.3

is tight.

Esempio 2.4.4. Let M ∈ Z+ be a large integer. Consider the following instance

I = (G, s, t) of k-ORP. The graph contains k + 1 parallel edges connecting s and t

with length M + 1. In addition the graph contains a path (s, u1, · · · , uk) of length

k + 1. The edge su1 has length M and every edge uiui+1 has length 2iM . Finally,

CHAPTER 2. THE ONLINE REPLACEMENT PATH PROBLEM 41

the vertices u1, · · · , uk are connected to t with edges of length zero. The construction

is illustrated in Figure 2.7.

Consider the failure scenario, which fails all edges uit for i ∈ [k]. The routing

strategy φSP will follow the path (s, u1, · · · , uk), then follow it back to s and then

take one of the edges with length M + 1 to t. The total length of this walk is 2(M +

2M + · · ·+ 2kM) +M + 1 = (2k+1− 1)M + 1. At the same time the optimal routing

strategy routs the package along the edges with length M +1 with a worst-case cost of

M + 1. The ratio between the two numbers tends to 2k+1− 1 as M tends to infinity.

s t
u1

u2

u3

ui

ui+1

uk−1

uk

. . .

. .
.

M 0

2M

4M

0
0

2iM
0

0

2k−1M

00· · ·

M + 1

M + 1

Figure 2.7: A bad example for the shortest path heuristic. The dashed edges corre-

spond to the worst case scenario.

Chapter 3

ORP Generalizations

We have stressed several times so far that in ORP the Routing Mechanism discovers

the failure of an edge only when it tries to cross it, providing many examples of

applications where such model can be quite suitable. In this Chapter we aim at

providing some generalizations of ORP, potentially widening its applicability.

The following example gives an idea about the aspect just mentioned. Imagine

that a traveller using Public Transport makes a query to the system via a mobile

device in order to reach his/her destination; of course, he/she is provided with a

certain journey and starts to follow it. If something of unexpected happens affecting

such journey, it is reasonable to think that the system itself can react real-time and

send an alert to the traveller’s mobile device suggesting ’in advance’ a re-planned

journey.

Formally defining what we mean by ’in advance’, we end up with a list of possible

interesting problems that we present and investigate in this Chapter. In section 3.1

we discuss the k-Hop ORP problem and the Radius ORP problem, while in section

3.2 we tackle the Strong k-Hop ORP ; as just mentioned these problems differ in the

way the RM discovers the failed edge, if any.

42

CHAPTER 3. ORP GENERALIZATIONS 43

3.1 k-Hop ORP

In this section we study the k-Hop ORP problem. As in ORP, we assume that at

most one edge of the graph can fail. Furthermore, we assume that we are given

an integer k between 0 and n − 1 and that now the Routing Mechanism (RM) is

informed about the failure of edge e as soon as it reaches a node that is k (or fewer)

hops away from e on the nominal path P . In particular, if e /∈ P , the RM won’t

be aware of the failure of e. It is easy to see that 0-Hop ORP is simply ORP and

that (n − 1)-Hop ORP is equivalent to MVA. For k ∈ {1, · · · , n − 2} we obtain an

interesting continuum of problems between ORP and MVA.

Apparently this new setting changes dramatically the problem. In fact, consider

a (nominal) s-t path P and an edge e which belongs to P . Denote by v(P, e) the

first node of P that ’sees’ the failure of e (note that v(P, e) = s if e is at most k-hop

away from s on P). More formally:

Definition 3.1.1. Given a path P ∈ Ps,t, an edge e = (u, u′) ∈ E(P) and an integer

k ∈ {1, . . . , n− 1}, we define v(P, e) ∈ V (P) as the first node of P , starting from s,

such that |E(P [v(P, e), u])| ≤ k.

Being aware of the failure of e already at v(P, e) allows the RM to take a detour

before getting to e, as for ORP. This justifies the following redefinition of detours:

Definition 3.1.2. The detour P−e of a path P ∈ Ps,t associated with an edge e ∈ E

is:

• the walk P [s, v(P, e)]⊕Q−ev(P,e), if e ∈ E(P);

• P , otherwise.

The length of a detour is given by:

• `(P−e) = `(P [s, v(P, e)]) + π−ev(P,e), if e ∈ E(P);

• `(P−e) = `(P), otherwise.

CHAPTER 3. ORP GENERALIZATIONS 44

We accordingly define the k-Hop robust length:

Definition 3.1.3. Given a node s ∈ V , the k-Hop robust length of the s-t path P is

Valk(P) = max
e∈E

`(P−e).

Moreover, we introduce for every u ∈ V − t the following value:

πkrob(u) = min
P∈Pu,t

Valk(P),

We can now formally define k-Hop ORP:

Definition 3.1.4 (The k-Hop Online Replacement Path problem). Given: an edge-

weighted directed graph G = (V,E, `), where ` : E → R+ and a destination t ∈ V .

Find: for every v ∈ V an optimal v-t path, namely a path P minimizing Valk(P)

over all paths P ∈ Pv,t.

Our main result in this section is a label-setting algorithm for this problem.

Obtaining this algorithm is however a more challenging task than that of obtaining

such an algorithm for ORP. In particular, we will see that while there always exists a

tree of optimal nominal paths, the k-hop potential needs not be a monotonic function

along the paths of this tree. This property contrasts with the structure of optimal

solutions to ORP.

Indeed, in the example in figure 3.1 we can see that Valk has not to be monotonic

with respect to proper subpaths. Consider the path P̃ = {s, b, c, t} and its sub-

path P = {b, c, t} and evaluate their 1-Hop robust length (that is we assume k=1).

It is easy to check that the edge (b, c) is the critical one for P and consequently

Val1(P) = 24, while edge (c, t) is critical for P̃ and consequently Val1(P̃) = 23, so

that Val1(P̃) < Val1(P) even though P is a proper subpath of P̃ . Basically, this

happens because the scenario in which (b, c) fails has cost 5 in the computation of

Val1(P̃), while it has cost 24 in the computation of Val1(P); in the first case, indeed,

such edge can be already seen from s giving us the possibility to take a better detour

with respect the second case, where we realize its failure only when we stand at node

b.

CHAPTER 3. ORP GENERALIZATIONS 45

s

a

d

tb c

e

2

1

12

1

1

1

12

20

3

Figure 3.1: An example showing that Valk is not monotonic with respect to proper sub-

paths. Assume k = 1.

The key property of k-Hop ORP is stated in the following lemma, in which we

show that the weak optimality principle proven for ORP (see lemma 2.1.7) can be

generalized for k-Hop ORP.

Lemma 3.1.5 (Generalized weak optimality principle). Let Pu ∈ Pu,t be an optimal

path from u, let v ∈ V (Pu) and let Pv ∈ Pv,t be an optimal path from v. Then the

path P ′u = Pu[u, v]⊕Pv satisfies Valk(P ′u) = Valk(Pu), namely it is also optimal from

u.

Proof. Consider a partition E = X ∪ Y ∪ Z defined for Pv as follows. We set

X = E \ Pv, Y = {e ∈ Pv : v = v(Pv, e)} and Z = {e ∈ Pv : v 6= v(Pv, e)}. For

T ∈ {X,Y, Z} define T̄ = maxe∈T `(Pv
−e).

Let P ′v = Pu[v, t] and note that P ′v ∈ Pv,t. We obtain a similar partition E =

X ′∪Y ′∪Z ′, as well as values X̄ ′, Ȳ ′, Z̄ ′, corresponding to P ′, where every set is defined

as above, but with Pv replaced by P ′v. Observe that Valk(Pv) = max{X̄, Ȳ , Z̄} and

Valk(P ′v) = max{X̄ ′, Ȳ ′, Z̄ ′}. Furthermore, note that X̄ = `(Pv) and X̄ ′ = `(P ′v).

Claim 1. max{X̄ ′, Z̄ ′} ≥ max{X̄, Ȳ , Z̄}.

Proof of Claim 1. Since Pv is optimal from v we have Valk(Pv) ≤ Valk(P ′v),

thus max{X̄ ′, Ȳ ′, Z̄ ′} ≥ max{X̄, Ȳ , Z̄}. To prove the claim it suffices to show

CHAPTER 3. ORP GENERALIZATIONS 46

Ȳ ′ ≤ max{X̄, Ȳ , Z̄}. By definition of Ȳ ′, this amounts to showing that π−ev ≤

max{X̄, Ȳ , Z̄} for every e ∈ Y = {e ∈ P ′v : v = v(P ′v, e)}. Consider any such e ∈ Y .

Assume first e 6∈ Pv. In this case we have π−ev ≤ X̄ = `(Pv), since Pv is a path

in G − e. In the remaining case e ∈ Pv we have max{Ȳ , Z̄} ≥ `(Pv
−e) ≥ π−ev , as

required.

Consider next a partition E = A∪B∪C∪D∪E defined for Pu as follows. We set

A = E \ Pu, B = {e ∈ Pu : u = v(Pu, e)}, C = {e ∈ Pu[u, v] : u 6= v(Pu, e)}, D =

{e ∈ Pu[v, t] : v(Pu, e) 6∈ V (P [v, t])} and E = {e ∈ Pu[v, t] : v(Pu, e) ∈ V (P [v, t])}.

For T ∈ {A,B,C,D,E} define T̄ = maxe∈T `(Pu
−e).

We obtain a similar partition E = A′ ∪ B′ ∪ C ′ ∪ D′ ∪ E′, as well as values

Ā′, B̄′, C̄ ′, D̄′, Ē′, corresponding to P ′u, where every set is defined as above, but with

Pu replaced by P ′u. Observe that our goal becomes proving

Valk(Pu) = max{Ā, B̄, C̄, D̄, Ē} ≥ max{Ā′, B̄′, C̄ ′, D̄′, Ē′} = Valk(P ′u).

Observe first that B̄ = B̄′ and C̄ = C̄ ′, thus the statement is trivial in the case

Vark(P ′u) = max{B̄′, C̄ ′}. It remains to show that

max{Ā′, D̄′, Ē′} ≤ max{Ā, B̄, C̄, D̄, Ē}.

Set α = `(Pu[u, v]) and note that D̄′ ≤ α + Ȳ . Indeed, every edge e ∈ D′ is

seen by a node w ∈ V (P ′u) that appears before v on P ′u, while Ȳ ≥ π−ev , implying

`(P ′u
−e) ≤ α+ π−ev ≤ α+ Ȳ .

Since Pv is a subpath of P ′u and P ′v is a subpath of Pu we have Ā = α+ X̄ ′ and

Ā′ = α+ X̄. For the same reason we obtain Ē = α+ Z̄ ′ and Ē′ = α+ Z̄.

Putting things together we are left with proving the inequality

max{α+ X̄, α+ Ȳ , α+ Z̄} ≤ max{α+ X̄ ′, B̄, C̄, D̄, α+ Z̄ ′},

but this now trivially follows from Claim 1.

Lemma 3.1.5 and the property that we state hereafter allow us to prove the

correctness of a label-setting algorithm. The property follows from the fact that for

any u ∈ V and e ∈ E one has πkrob(u) ≥ π−eu .

CHAPTER 3. ORP GENERALIZATIONS 47

Property 3.1.6. Let u ∈ V and P ∈ Pu,t be such that Valk(P) = π−eu for some edge

e seen on P by u. Then P is an optimal path from u.

Analogously to our algorithm for ORP, we proceed by incrementally computing

the optimal path for every node in the graph starting from t. We maintain a set

U of nodes for which a robust path was already computed. For u ∈ U we denote

this path by P ∗u . The update rule for U works as follows. First, we check if for

some edge (v, u) ∈ E such that v ∈ V \ U and u ∈ U it holds that the path

Q = (v, u)⊕P ∗u satisfies the condition in Property 3.1.6. In other words, we check if

Valk(Q) = π−ev for some edge e ∈ Q seen by v. If such an edge exists we set P ∗v := Q

and U := U ∪ {v}, an update that is valid due to Property 3.1.6. Assume next that

no such edge exists. We call the set U in this situation clean. The following lemma

states an update rule for clean sets U .

Lemma 3.1.7. Let U be clean and let (v, u) ∈ arg min(q,r)∈E : r∈U,q 6∈U Valk((q, r) ⊕

P ∗r). Then πkrob(v) = Valk((v, u)⊕ P ∗u).

Proof. Assume towards contradiction that Q = (v, u)⊕ P ∗u is not optimal for v. Let

P ∈ Pv,t be an optimal path from v, namely πkrob(v) = Valk(P). Let (x, y) ∈ P be the

last edge on P , when P is traversed from v to t with the property that x ∈ V \U and

y ∈ U . Lemma 3.1.5 allows us to assume that P [y, t] = P ∗y , thus P [x, t] = (x, y)⊕P ∗y .

By choice of (v, u) and by the assumption that Q is not optimal we have

Valk(P [x, t]) ≥ Valk(Q) > Valk(P).

Consider the edge f ∈ P [x, t] with the property that

Valk(P [x, t]) = `(P [x, z]) + π−fz ,

where z = v(P [x, t], f) is the first node on P [x, t] that sees f . Clearly, if z 6= x we

have

Valk(P) ≥ `(P [v, z]) + π−fz ≥ `(P [x, z]) + π−fz = Valk(P [x, t]),

contradicting Valk(P) < Valk(P [x, t]). It follows that z = x and Valk(P [x, t]) = π−fx ,

implying that U is not a clean set; a contradiction.

CHAPTER 3. ORP GENERALIZATIONS 48

Lemmas 3.1.5 and 3.1.7 immediately imply a polynomial algorithm for k-Hop

ORP, whose statement is given as Algorithm 6.

Algorithm 6
1: Compute π−eu for each e ∈ E and u ∈ V .

2: Let U be a set of nodes u for which πkrob(u) and the corresponding optimal path

P ∗u are known.

3: U = {t}; πkrob(t) = 0.

4: while U 6= V do

5: if ∃(v, u) ∈ E with v ∈ V \U and u ∈ U , such that the path Q = (v, u)⊕P ∗u
satisfies Property 3.1.6 then

6: U = U + v; P ∗v := Q; Valk(P ∗v) = πkrob(v).

7: else

8: Find (v, u) ∈ arg min(q,r)∈E : r∈U,q 6∈U Valk((q, r)⊕ P ∗r).

9: U = U + v; P ∗v := (v, u)⊕ P ∗u ; Valk(P ∗v) = πkrob(v).

10: end if

11: end while

Observe that, as we have underlined for ORP, everything presented and proved

in this section is valid also if we are given an undirected graph, therefore Algorithm

6 solves also instances with an undirected edge-weighted graph as input.

Consider now the running time of Algorithm 6. First of all we note that steps 4-11

can be roughly implemented in time O(mn) both for directed and undirected graph;

we basically run the while cycle n times and during each iteration we execute O(1)

operations for the edges in the cut induced by U , that gives a complexity of O(m) for

a single iteration. It would be interesting to investigate whether the implementation

used for steps 2-10 of Algorithm 1 (see subsection 2.1.3) can be used also in this case,

in order to obtain an O(m+n log n) running time also for steps 4-11 of Algorithm 6.

On the other hand, even if it turn out to be possible, it is not sure that this would

give an effective improvement on the overall complexity bound; the last statement is

based on the consideration we are going to make in the rest of the analysis.

CHAPTER 3. ORP GENERALIZATIONS 49

As for Algorithm 1, step 1 is the bottleneck of Algorithm 6: it is actually more

challenging in the latter case. For ORP, indeed, we need to compute less π values;

more precisely we computem of them, since we need to know π
−(u,v)
u for each (u, v) ∈

E. On the other hand, for k-Hop ORP we need to compute for each u ∈ V \ t:

π−(v,z)
u ∀(v, z) ∈ E : v ∈ N i(u), z ∈ N i+1(u) i = 0, 1, . . . , k

where N i(u) is the i − th neighborhood of u, and in particular N0(u) ≡ u. Even

worst, since k can go up to n − 1, we could actually need to compute π−eu for each

e ∈ E and u ∈ V , that is what we have in step 1 of Algorithm 6. As we discuss in

subsection 2.1.3 computing the shortest path tree T in O(m+n log n) time from every

node to t would trivially tells us the value of π−eu for each edge e of the graph not

in T (and for any u ∈ V); we note that this is true both for directed and undirected

graphs.

We can hence concentrate our efforts on computing π-values for edges in the tree,

more precisely π−eu for each u ∈ V and e ∈ E(T). For directed graphs we can solve

O(n2) instances of a shortest path problem, for a running time of O(n2SP(n,m)),

where SP(n,m) is the complexity of a single shortest path computation on a graph

with n nodes, m edges and nonnegative weights.

For undirected graphs, instead, we can do what follows: for any u ∈ V , let Pu be the

unique u-t shortest path on T ; we need to solve a Replacement Path problem given u,

t and Pu as input. From section 1.1 we know that this can be done in O(mα(m,n))

thanks to the algorithm provided by Nardelli, Proietti and Widmayer [21]. Since we

have to do it for any node u ∈ V we obtain a running time of O(nmα(m,n)).

Summarizing we can execute step 1 of Algorithm 6 in O(n2SP(n,m)) + O(m +

n log n) = O(n2SP(n,m)) for directed graphs and in O(nmα(m,n)) + O(m +

n log n) = O(nmα(m,n)) for undirected graphs.

Finally, we can state the following:

Theorem 3.1.8. Given an instance of k-Hop ORP the values πkrob and the corre-

sponding paths can be computed in time O(nmα(m,n)) in undirected graphs, and

O(n2SP(n,m)) in directed graphs.

CHAPTER 3. ORP GENERALIZATIONS 50

We leave as an interesting open question whether the bounds provided in Theorem

3.1.8 can be improved.

3.1.1 Radius ORP

In this subsection we briefly introduce an extension of ORP similar to k-Hop ORP.

In k-Hop ORP we assume that the RM is informed about the failed edge when it

is k hops away on the nominal path. An alternative definition takes the lengths of

edges on this path into account. In this problem, which we call Radius ORP, the

integer k ≤ n− 1 is replaced by a value R ≤ `(E) called the radius. In this problem

the RM is informed about the failed edge e on the nominal path P at the first node

that is at distance at most R from its closer endpoint, formally:

Definition 3.1.9. Given a path P ∈ Ps,t, an edge e = (u, u′) ∈ E(P) and a radius

R, we define v(P, e) ∈ V (P) as the first node of P , starting from s, such that

|E(P [v(P, e), u])| ≤ R.

The definitions 3.1.2, 3.1.3 and 3.1.4 are adapted accordingly. We claim without

proof that our algorithm 6 for k-Hop ORP solves Radius ORP as well. Basically,

this follows from fact that Property 3.1.6 and Lemma 3.1.5 remain correct. The

latter, indeed, only relies on the following property: the set of edges on P that a

node sees is an interval on this path, and furthermore, for every two consecutive

nodes u1, u2 ∈ V (P), with u2 being the closer one to t, the set of edges seen by u1

in P [u2, t] is a subset of the set of edges seen by u2.

Therefore we can state the following result:

Theorem 3.1.10. Given an instance of Radius ORP the corresponding optimal paths

can be computed in time O(nmα(m,n)) in undirected graphs, and O(n2SP(n,m)) in

directed graphs.

CHAPTER 3. ORP GENERALIZATIONS 51

3.2 Strong k-Hop ORP

We end this chapter with another variant of k-Hop ORP. In this variant, whose

input is identical to that of k-Hop ORP, the information about the failed edge travels

through the edges of the entire graph, as opposed to only the edges of the nominal

path. Formally, the first node along the chosen nominal path that is informed about

the failure of some edge e ∈ E is the one closest to s that is at most k hops away

from e in G. This problem, which we denote by Strong k-Hop ORP turns out to be

NP-hard to approximate even when k = 1. Note that, for k = 0, Strong k-Hop ORP

reduces to ORP, as for every path the robust value is the same in the two different

problems.

Theorem 3.2.1. for any ε > 0 it is NP-hard to approximate Strong 1-Hop ORP

within a factor of 3 − ε in undirected graphs. In directed graphs it is strongly NP-

hard to decide if there exists a nominal path with finite robust length.

Proof. We describe the proof for undirected graphs first. We show a reduction from

a variant of the Hamiltonian Path problem, in which the input additionally specifies

a two nodes u, v ∈ V , and the goal is to decide if there exists a Hamiltonian path

with endpoints u, v.

Let G(V,E), u, v be an instance of this problem and let n = |V |. We construct

a graph H = (V ′, E′) comprising an instance to Strong 1-Hop ORP. The graph H

is composed of a copy of G alongside two long paths P1, P2 and an additional node

s. The edges in the copy of G have length zero. The Paths P1, P2 have common

endpoints s′, t (P1 ∪ P2 is a simple cycle). Both P1 and P2 have 2n + 2 nodes

including s′ and t, and 2n + 1 edges. Let P1 and P2 be the paths passing through

the nodes s′, u1, x1, u2, x2, · · · , un, xn, t and s′, v1, y1, v2, y2, · · · , vn, yn, t, respectively.

We double the edges xiui+1 and yivi+1 for every i = 1, · · · , n− 1, effectively making

them failure-safe. The lengths of edges on these paths are all set to zero, except for

the edges s′u1 and s′v1, whose length is set to one. We also double all edges in the

copy of G, as well as the edges su and vs′. Thus, we can assume without loss of

CHAPTER 3. ORP GENERALIZATIONS 52

generality that the only faulty edges are uixi and viyi for every i = 1, · · · , n.

Additionally, the nodes s and s′ are connected with zero-length edges to u and v,

respectively. Let w1, · · · , wn denote the nodes of the copy of G in H. We additionally

connect each node wi to both ui and vi with edges of length∞ for every i = 1, · · · , n.

This concludes the construction of the graph H. See Figure 3.2 for an illustration.

The critical observation we use is that the only node in the copy of G that sees the

edges uixi and viyi is the node wi.

We claim that deciding whether there exists a solution for the Strong 1-Hop ORP

instance with value θ < 3 is equivalent to deciding the existence a Hamiltonian Path

in G with end-nodes u and v. Observe that for the obtained Strong 1-Hop ORP

instance, if any s-t walk has length smaller than 3, then it has length of exactly 1.

Consider first the case that the required Hamiltonian Path P exists. Set the

nominal path in the solution to the Strong 1-Hop ORP instance to

su⊕ P ⊕ vs′ ⊕ P1.

We claim that this solution to the Strong 1-Hop ORP instance has value 1. Indeed,

the length of the path itself is 1. Consider next any failed edge e on this path. If

this edge does not lie on the path P1, the incurred total length will be at most 1. If,

on the other hand, e = uixi is an edge on P1, this failure will be discovered at the

node wi, thus the optimal detour will follow the rest of the Hamiltonian path to v,

then jump to s′ and then follow P2 until t, attaining the length 1. This concludes

the first direction of the proof.

Consider next the case that a desired Hamiltonian path does not exist. Consider

any nominal path Q for the Strong 1-Hop ORP instance. Let i ∈ [n] be such that wi

is not on the path Q. Such a node exists due to the assumption that the Hamiltonian

path does not exist. We consider two failure scenarios, namely the ones corresponding

to the failure uixi and viyi. Observe that since wi is not contained in Q, the RM will

follow Q until an intermediate node x of either P1 or P2 in both scenarios. Assume

without loss of generality that x is contained in P1. It follows that if uixi fails the

walk performed by the RM will have to backtrack the edge s′u1 and take the path P2

CHAPTER 3. ORP GENERALIZATIONS 53

instead. The resulting walk has length of at least 3. This proves the second direction

of the proof.

We proved that for a given instance of Strong 1-Hop ORP, it is NP-hard to

distinguish if the optimal solution to the instance has value of at most 1, or it has

value of at least 3 − ε. We conclude that approximating Strong 1-Hop ORP within

any factor better than 3 is NP-hard.

The required adaptation for obtaining the result for directed graphs is replac-

ing every undirected edge xy in the reduction above with an edge directed from

x to y. In the new graph the only ui-t and vi-t paths are the ones through the

nodes ui+1, · · · , un and vi+1, · · · , vn, respectively. The remainder of the proof is a

straightforward adaptation of the arguments above.

s

s′ t

u1 x1 · · · ui · · · xn

v1 y1 · · · vi · · · yn

1
?

1
?

G

u

v wi

Figure 3.2: The Strong 1-Hop ORP instance in Theorem 3.2.1

We note that in 2 s-t connected undirected graphs, every shortest path is a

3-approximation of the optimal solution to Strong 1-Hop ORP, thus the approxima-

bility of this problem is settled. The proof of this simple fact is similar to the proof

of Lemma 4.0.4, and thus omitted.

Chapter 4

ORP Game

In this Chapter we study ORP problem from a game theoretic perspective. That

is based on the randomized network interdiction problem that has been recently

introduced by Bertsimas, Orlin and Nasrabadi [7]. Network Interdiction (NI) prob-

lems involve two opposing forces, a player and an interdictor, who are engaged in a

warlike conflict. The player operates a network in order to optimize some objective

function such as moving a supply convoy through the network as quickly as possi-

ble or maximizing the amount of materiel transported through the network. The

interdictor attempts to limit the player’s achievable objective value by interdicting

arcs, for example, by attacking arcs to destroy them, to slow travel over them, or

to reduce their capacity. NI problems have been intensively studied and applied in

many applications area such as military planning, controlling infections in a hospital,

controlling floods and drug interdiction. An interesting aspect of these problems is

that they can be viewed as a game between the two opponents, the player and the

interdictor. In [7] the authors propose a generalization of NI in which both opponents

move simultaneously and may use randomized strategy.

We are going to investigate the ORP problem in a similar perspective, exploring a

two players’ game that is the natural middle ground between the problems MVA and

ORP. A first player, the path builder, is interested in arriving from s to t as quickly

as possible. The second player, the interdictor, tries to make the latter distance as

54

CHAPTER 4. ORP GAME 55

long as possible by removing a single edge from the graph. The strategies for the two

players are the s-t paths, and the edges e ∈ E, respectively.

In one setup, the interdictor communicates her strategy first, i.e. which edge is

removed from G. The path builder chooses his strategy after: clearly he chooses a

shortest path s-t in the graph G − e. Therefore, the problem that the interdictor

faces in this setting is clearly the MVA problem, as she will remove the edge e ∈ E

maximizing π−es , the length of the shortest s-t path in the graph G − e. In the

following, we let z∗(MVA) be the value of an optimal solution to MVA.

In the other extreme, the path builder communicates his strategy first, i.e. an

s-t path P . Then the interdictor moves, and clearly removes the edge e maximizing

`(P−e). Note that we assume that, if e ∈ P , the interdictor will delay the failure

of the edge to the point at which the path builder attempts to cross it. Hence, the

problem that the path builder faces is exactly ORP, i.e. that of choosing an s-t path

with the least robust value. In the following, we let z∗(ORP) be the value of an

optimal solution to ORP .

The next lemma, whose simple proof we skip, shows that z∗(ORP) ≥ z∗(MVA).

Lemma 4.0.2. Let P and e be an s-t path and an edge of E, respectively. Then

Val(P) ≥ z∗(ORP) ≥ z∗(MVA) ≥ π−es .

In our two players’ game, that we call the ORP Game, both players communicate

their strategies at the same time. In particular, for a given s-t path P and edge

e ∈ E, the payoff for the interdictor is `(P−e). Lemma 4.0.2 shows that in general

z∗(ORP) ≥ z∗(MVA). The next theorem characterizes the instances of the ORP

Game admitting a pure NE as those for which z∗(ORP) = z∗(MVA).

Theorem 4.0.3. Let P and e be optimal solutions to the ORP and MVA instances on

G = (V,E). Then (P, e) is a pure NE of the ORP Game if and only if Val(P) = π−es .

Moreover, in this case, Val(P) = z∗(ORP) = z∗(MVA) = π−es .

Proof. Assume first that (P, e) is a pure NE. Since (P, e) is a pure NE, it follows the

path builder does not benefit from changing to any other path in G − e, while the

CHAPTER 4. ORP GAME 56

interdictor keeps e fixed. In particular, let P ′ be a shortest s-t path in G − e, and

note that `(P ′) = π−es . It follows that `(P−e) ≤ π−es , i.e. also P−e is a shortest path

in G− e, and `(P−e) = π−es . At the same time, the interdictor does not benefit from

removing an edge different from e, while the path builder keeps P fixed. Thus, it

follows that e is a critical edge for P , namely `(P−e) = Val(P). Therefore we have

that Val(P) = `(P−e) = π−es .

Suppose now that P is an s-t path and e an edge of e such that Val(P) = π−es . We

know from Lemma 4.0.2 that Val(P) ≥ `(P−e) ≥ π−es , therefore Val(P) = `(P−e) =

π−es . It follows that e is a critical edge of P , and the interdictor does not benefit from

removing an edge different from e. Analogously, the path builder does not benefit

from choosing another path, as P−e is a shorter path of G− e.

Finally, observe that, whenever Val(P) = π−es holds for some s-t path P and edge

e of E, then Val(P) = z∗(ORP) = z∗(MVA) = π−es , from Lemma 4.0.2.

Theorem 4.0.3 has also the following algorithmic implication. Recall that we can

compute z∗(MVA) in timeO(m+n log n) [17], the same running time we obtained for

undirected ORP (Theorem 2.1.14). This clearly implies that in time O(m+ n log n)

we can compute a pure NE of the ORP Game in undirected graphs, if one exists,

or certify that no pure NE exists. Indeed the aforementioned algorithms allow us

to check the condition z∗(ORP) = z∗(MVA) and compute corresponding optimal

solutions, P ∗ and e∗, with the latter time complexity. Theorem 4.0.3 asserts that if

the latter condition is satisfied, then (P ∗, e∗) is a pure NE, otherwise no pure NE

exists.

Theorems 2.1.13 and 4.0.3 also imply aO(nSP(n,m)) algorithm for the same problem

in directed graphs, since we know that this is the running time of the algorithms used

to find z∗(ORP) and z∗(MVA) for directed graphs.

We conclude by analyzing the ratio z∗(ORP)
z∗(MVA) . The next lemma shows that, for

undirected graphs, it is at most 3.

Lemma 4.0.4. Let G be undirected with s-t edge-connectivity of at least two. Then

z∗(ORP) ≤ 3z∗(MVA).

CHAPTER 4. ORP GAME 57

M

s

b

a

dd

c

t s

a

b

t

M

M

Figure 4.1: On the ratio z∗(ORP)
z∗(MVA) . When G is directed, it is unbounded: z∗(ORP) = M+3

(attained by the path s, b, c, t) and z∗(MVA) = 3 (attained by the edge (s, a)). When G

is undirected, it is at most 3 and the bound is tight: z∗(ORP) = 3M + 1 (attained by the

path s, a, t) and z∗(MVA) = M + 1 (attained by the edge sa). Unless otherwise specified,

we assume that the length of an edge is 1.

Proof. Let f be a most vital edge for G, and let P be a shortest s-t path of G − f

(the existence of P is granted by the hypothesis that G is two s-t edge-connected).

By definition, z∗(MVA) = `(P). We now show that the robust value of P is at most

3`(P), which is of course sufficient for our purposes.

Recall that Val(P) = maxe∈E `(P
−e). Trivially, for each edge e /∈ P , `(P−e) =

`(P). Consider now an edge e ∈ P : we claim that `(P−e) ≤ 3`(P). This is because

`(P−e) is upper bounded by the length of the following walk Q in G − e: take the

subpath of P from s until the first node of e back and forth, then (when back at s)

take a shortest path to t in G− e. Trivially, `(Q) ≤ 2`(P) + `(P), where we use the

fact that `(P) = z∗(MVA) ≥ π−es .

We give in Figure 4.1 (right) an example showing that the bound of Lemma 4.0.4

is tight. In the same figure we show that, to the contrary, for directed graphs, the

ratio z∗(ORP)
z∗(MVA) is unbounded, even when there are paths with finite robust value (see

Theorem 2.1.5).

4.1 ORP Game in mixed strategy: Stochastic ORP

Theorem 4.0.3 shows that there are no pure NE when z∗(ORP) 6= z∗(MVA). How-

ever, from a classical result in Game Theory (see e.g. Chapter 15 in [8]), there will

NE when the game is played in mixed strategies, as for both players the sets of pure

CHAPTER 4. ORP GAME 58

strategies is finite (simple s-t paths and edges). Whether it is possible to find this

mixed NE in polynomial time is an interesting question.

It is well known that, in order to find these equilibria, it is sufficient to deter-

mine for each player his/her conservative strategy, and this can be done via linear

programming. However, there is a catch: the linear program (the straightforward

details can be found in [8]) that the interdictor needs to solve is not polynomially

bounded in the size of the graph, since the number of simple s − t paths is not.

Interestingly, the related separation problem, turns out to be a stochastic version of

ORP, that we call Stochastic ORP. Unfortunately, as we show in the following, this

separation problem is hard.

First let us define the problem. Recall that in the (deterministic) ORP (see

Section 2.1), we implicitly assume that at most one edge fails, and we look for paths

with minimum robust length, where the robust length of a path is taken in the worst

scenario.

In the Stochastic ORP, we again assume that at most one edge fails, but we are

given probabilities. Namely, for each e ∈ E, we are given the probability p(e) ∈ [0, 1]

that e will be the unique edge to fail, and we are also given the probability p(∅) ∈ [0, 1]

that no edge fails. The following must hold:

p(∅) +
∑
e∈E

p(e) = 1.

In the stochastic ORP, we again look for a path with minimum robust length,

but this is now taken in expectation.

Definition 4.1.1. Given a node v ∈ V , the expected robust length of the v-t path P

is

EVal(P) = (p(∅) +
∑

e/∈E(P)

p(e))`(P) +
∑

e∈E(P)

[
p(e)`(P−e)

]
.

Our goal is to find, for some v ∈ V , a path P minimizing EVal(P) over all paths

P ∈ Pv,t. We can now formally define Stochastic ORP:

CHAPTER 4. ORP GAME 59

Definition 4.1.2 (The Stochastic Online Replacement Path problem). Given: an

edge-weighted undirected (directed) graph G = (V,E, `), where ` : E → R+, a source

s ∈ V and a destination t ∈ V . We are also given a value p(∅) ∈ [0, 1] and, for each

e ∈ E, a value p(e) ∈ [0, 1], such that p(∅) +
∑

e∈E p(e) = 1.

Find: an optimal s-t path, namely a path P minimizing EVal(P) over all paths

P ∈ Ps,t.

Remember that solving the above problem in polynomial time would imply that

we can find in polynomial time the Nash equilibria for the ORP game in mixed

strategy, but we can prove what follows:

Theorem 4.1.3. Stochastic ORP in directed graphs admits no approximation algo-

rithms with sub-exponential approximation guarantee, unless P = NP .

Proof. We prove that Stochastic ORP is NP hard by a reduction from the Hamilto-

nian Path problem. Recall that the Hamiltonian Path problem is defined as follows.

Given a directed graph G = (V,E) a source s ∈ V and a target t ∈ V , find a simple

s-t path in G visiting all vertices.

It will convenient to assume that the vertices can also fail. In directed graphs

this can be modeled with the following easy transformation. Every vertex v with

incoming edges e1, . . . , ek and outgoing edges f1, . . . , fr is replaced with two vertices

v and v+ connected by an edge (v, v+). The edges e1, . . . , ek are connected to v and

the outgoing edges f1, . . . , fr are connected to v+. The failure of the edge (v, v+)

now naturally models the failure of the vertex v. The Hamiltonian path problem

now translates into finding a path traversing all of edges of the form (v, v+). We

abuse notation and assume this variant of the problem, and also call the new graph

G = (V,E). Let n = |V |. We call the edges that correspond to vertices critical.

We transform the instance of Hamiltonian Path to an instance of Stochastic ORP

as follows. The graph contains a copy of G with zero-length edges. Every critical

edge e = (u, v) is subdivided into a path of length two with edges (u,w(e)) and

(w(e), v). Every vertex of the form w(e) for e ∈ E is connected with a directed path

CHAPTER 4. ORP GAME 60

of length two to t. The second edge on this path has a positive (and very small)

failure probability ε, making any feasible path avoid these extra edges (since should

this edge fail, the detour cost from the middle vertex of these paths is ∞). These

paths have cost zero, thus allowing a zero-cost detour from any vertex of the form

w(e).

For a critical edge e = (u, v), the failure probability of every edge of the form

(w(e), v) is set to 1−εn
n , while the failure probabilities of all other edges (except the

ones with failure probability ε) is set to zero. All edges mentioned so far have length

zero.

Finally, we add two more vertices s′, t′ to be the source and the target of the

Stochastic ORP instance. s′ is connected to s with a zero-cost edge with failure

probability zero, while t is connected with a unit-cost edge to t′. This edge also has

failure probability zero. We call the obtained graph H = (W,F).

We make the following observations. First, with probability 1nε one of the edges

(w(e), v) fails. Assume first that a Hamiltonian s-t path P exists in G. In this case

one can take Q = (s′, s)⊕P ⊕ (t, t′) as a nominal path. Clearly, the value of Q is εn,

as any failure of an edge of the form (w(e), v) will be spotted while in the copy of

G, thus the cheap detour from the corresponding critical edge will be taken to reach

t′ at zero cost. Only with probability εn the failure does not occur in the copy of G,

but rather in one of the detours from some critical edge to t′. In this case a cost of

one is incurred.

Similarly, if a Hamiltonian path does not exist, the value of any nominal path is

at least εn+ 1−εn
n , as at least one critical edge cannot be seen on the tour. Observe

that the ratio between εn + 1−εn
n and εn can be made arbitrarily large by driving ε

to zero. This ends the proof.

We make a couple of remarks. First, note that a similar result does not hold for

undirected graphs. It is easy to see that taking as nominal path any shortest s-t

path provides, as for ORP, a 3-approximation. However, It is still possible to prove

NP-hardness of this variant (we omit the details). Then, we observe that Theorem

CHAPTER 4. ORP GAME 61

4.1.3 does not imply that it is not possible to find a Nash equilibria for the ORP game

in mixed strategy in polynomial time. Though the separation problems is hard, it

might still be possible that finding the NE in mixed strategy is not PPAD-complete.

We leave this as an open question.

Conclusions and future work

It is well known that there are two main approaches for optimization problems af-

fected by data uncertainty: stochastic optimization and robust optimization. In the

former the data is given as a probability distribution over some set of inputs and

the optimization problem is to find a solution that minimizes the expected cost of

the solution. In the latter one tries to find a solution that minimizes the cost of the

worst case realization of the input data.

In this thesis we have proposed some robust optimization models for the design of

a Routing Mechanism (RM) capable of dealing with faulty networks. More precisely

our goal has been to develop routing schemes able to react to edge failures that occur

online and, in particular, after the routing has started.

We have studied the following problem: given a directed (or undirected) graph

G = (V,E) with nonnegative costs on the edges, an origin s ∈ V and a destination t ∈

V , find an s-t path P minimizing the worst-case arrival time, under the assumption

that at most one edge e of the network can fail and that RM wants to route package

as soon as possible but without knowing the identity of the failed edge, if any. Indeed,

RM can discover which edge is failed only while it is traversing the path.

Depending on the way RM discovers the failed edge e, we can define different

problems: the Online Replacement Path problem (ORP) is the one where RM realizes

that e is failed only when it tries to cross it (let us note that for ORP we show how

the presented results can be generalized to more than one failure); if the discovery

of e happens when RM reaches a node that is at most k hops away from e on P or a

node that is at distance at most R from the closer endpoint of e again on P we have

62

CHAPTER 4. ORP GAME 63

the k-Hop ORP problem and the Radius ORP problem respectively. Finally, if RM

discovers the failed edge when it reaches a node of P that is at most k hops away

from e on G, we have Strong k-Hop ORP. For the first three problems we provide

polynomial time algorithms, while we state an hardness result for the last one.

Ultimately, we can say that our results show that ORP-models comprise a highly

flexible and tractable framework for dealing with robustness issues in the design of

RM-s.

Moreover, in this thesis, we have raised some questions that are left open. First

of all, we ask whether it is possible to improve the running time bounds provided

for the algorithms solving k-Hop ORP and Radius ORP in order to obtain the same

complexity bounds we have for ORP. We are also interested in understanding if

we can find more efficiently a Pareto front for Bi-objective ORP, that is a problem

linking ORP to Shortest Path problem, whose solutions help to quantify the trade-off

between the robust length and the nominal length of a path.

In Chapter 4 we have studied ORP from a game theory perspective, defining

a Network Interdiction game, called ORP Game, for which we have been able to

characterize and efficiently find those instances presenting a Nash Equilibrium (NE).

We have also addressed the problem of finding a NE of the mixed strategy extension

of ORP Game, but it is still no clear if such problem is polynomially solvable or is

PPAD-complete.

Finally, recall that we also briefly addressed the ORP problem with arbitrary

costs; in the case where we can have edges with negative length but no negative

cycles, the properties described for ORP are still valid, but a different algorithm is

needed: we conjecture that a Ford-Bellman like algorithm can solve the problem. On

the other hand, for the case where negative cycles are allowed, we simply conjecture a

condition for the existence of a finite solution to the problem. Proving the mentioned

conjectures is an interesting open point, as well as finding algorithmic techniques for

the second described case.

In this thesis we have observed several times that the presented models might

CHAPTER 4. ORP GAME 64

be quite suitable for transportation problems. Indeed, a future research direction we

are interested in, consists in applying ORP-like techniques to Public Transport (PT)

Systems that can be very unreliable in some cities. Despite the source of uncertainty

affecting PT networks is more often due to the unreliability and to the random nature

of the timetable rather than to failures problems, we aim at devising an ORP-like

framework for PT. From real-case experiences, we would say that the main source

of delays of PT users, consists in the fact that travellers using PT very often miss

the planned connections. Our idea is to model the PT network in such a way that

some faulty edges represent connections and to test, at this point, our algorithms

on the PT System of Rome; in particular we want to compare the quality, in terms

of robustness, of our solutions with other commercial solutions commonly used (e.g.

Google Transit).

We conclude by suggesting the investigation of a problem, that we call Flow-ORP

which generalizes the ORP setting to (single commodity) flows. The general idea is

pretty simple: we are given a flow, together with its path decomposition, and at some

point an edge e fails: in the same spirit of ORP we discover the failure of e when we

test it: at that point we need to on-line reroute those paths that were using e.

However, our rerouting must be such that the flow on unaffected paths (i.e. paths

not containing e), as well as the flow from s to e, for paths containing e, cannot be

rerouted: this models situation of continuous flow of physical objects or material. A

more formal definition follows.

Let G = (V,E) be a either directed or undirected graph, c : E 7→ Z+ a capacity

vector on the set of edges and let s, t ∈ V . Let d ∈ Z+ be some amount of flow we

want to send from s to t, i.e. d is the demand. For a s-t path P and an edge e ∈ P

let s(P, e) ∈ V denote the endpoint of e closer to s on P , and t(P, e) ∈ V denote the

endpoint of e closer to t on P . The simple subpath of P from e to t (excluding e) is

denoted by rest(P, e).

Flow-ORP asks to find what we call an s− t on-line reroutable flow f : E → R

and a path decomposition P1, · · · , Pk with corresponding flow values d1, · · · , dk (with

CHAPTER 4. ORP GAME 65

d =
∑

i∈[k] di) satisfying the replacement property. For an edge e ∈ E let Ie ⊂ [k]

denote the indices of the paths Pi with e ∈ Pi.

Consider an edge e = uv. For x = u, v, let dx =
∑

i∈Ie:x=s(Pi,e)
di. du and dv

are the residual demands that need to be rerouted respectively from u and v in case

e fails. Define the residual capacity vector c′ corresponding to failure e by setting

c′e = 0 and for a ∈ E − e

c′a = ca − fa +
∑

i∈Ie : a∈rest(Pi,e)

di.

The residual flow problem corresponding to failure e ∈ E is the (multi source, single

sink) flow problem on G with capacity c′ and demands du from u to t and dv from

u to t.

Finally, the replacement property is satisfied if the residual flow problem corre-

sponding to e is feasible for every e ∈ E.

A bunch of natural and very interesting questions arise from this general frame-

work, such as: find the maximum value of an s − t on-line reroutable flow of maxi-

mum value, no matter which edge fails; given some demand d, find an s− t on-line

reroutable flow of value d with minimum cost, no matter which edge fails etc. These

questions are left open.

Bibliography

[1] D. Adjiashvili and R. Zenklusen. An s - t connection problem with adaptability.

Discrete Applied Mathematics, 159(8):695 – 705, 2011.

[2] David Adjiashvili, Gianpaolo Oriolo, and Marco Senatore. The online replace-

ment path problem. In ESA, pages 1–12, 2013.

[3] H. Aissi and D. Bazgan, C. Vanderpooten. Approximation complexity of min-

max (regret) versions of shortest path, spanning tree, and knapsack. In ESA

’05, pages 862–873, 2005.

[4] A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital

arcs and nodes. Technical report, Univ. of Maryland Institute for Advanced

Computer Studies Report No. UMIACS-TR-95-96, College Park, MD, USA,

1995.

[5] Amotz Bar-Noy and Baruch Schieber. The canadian traveller problem. In

SODA, pages 261–270, 1991.

[6] A. Bernstein. A nearly optimal algorithm for approximating replacement paths

and k shortest simple paths in general graphs. SODA ’10, pages 742–755,

Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathemat-

ics.

[7] Dimitris Bertsimas, Ebrahim Nasrabadi, and James B. Orlin. On the power of

randomization in network interdiction. CoRR, abs/1312.3478, 2013.

66

BIBLIOGRAPHY 67

[8] V. Chvatal. Linear Programming. Series of books in the mathematical sciences.

W. H. Freeman, 1983.

[9] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexan-

der Schrijver. Combinatorial Optimization. John Wiley & Sons, Inc., New York,

NY, USA, 1998.

[10] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh. How to pay, come what may:

Approximation algorithms for demand-robust covering problems. In FOCS ’05,

pages 367–378, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Y. Emek, D. Peleg, and L. Roditty. A near-linear-time algorithm for computing

replacement paths in planar directed graphs. ACM Trans. Algorithms, 6:64:1–

64:13, September 2010.

[12] Y.Y. Fan, R.E. Kalaba, and J. E. Moore. Arriving on time. Journal of Opti-

mization Theory and Applications, 127(3):497, 2005.

[13] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. J. ACM, 34:596–615, July 1987.

[14] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest

paths and the replacement paths problems. Inf. Process. Lett., 109:352–355,

March 2009.

[15] R. Hassin. Approximation schemes for the restricted shortest path problem.

Mathematics of Operations Research, 17(1):36–42, 1992.

[16] P. N. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar

graphs with negative lengths: A linear-space o(n log2 n)-time algorithm. ACM

Trans. Algorithms, 6:30:1–30:18, April 2010.

[17] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest

path problem. Operations Research Letters, 8(4):223–227, 1989.

BIBLIOGRAPHY 68

[18] A. Moreno, A. Valls, and A. Ribes. Finding efficient organ transport routes

using multi-agent systems. In In: Proceedings of the IEEE 3rd International

Workshop on Enterprise Networking and Computing in Health Care Industry

(Healthcom), pages 233–258, 2001.

[19] E. Nardelli, G. Proietti, and P. Widmayer. Finding the detour-critical edge of a

shortest path between two nodes. Information Processing Letters, 67(1):51–54,

1998.

[20] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a single

source shortest paths tree is good and fast. Algorithmica, 35:2003, 1999.

[21] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most

vital edge of a shortest path. Information Processing Letters, 79(2):81–85, 2001.

[22] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of

a shortest path. In Jie Wang, editor, Computing and Combinatorics, volume

2108 of Lecture Notes in Computer Science, pages 278–287. Springer Berlin /

Heidelberg, 2001.

[23] Evdokia Nikolova and David R. Karger. Route planning under uncertainty: The

canadian traveller problem. In AAAI, pages 969–974, 2008.

[24] Evdokia Nikolova, Jonathan A. Kelner, Matthew Brand, and Michael Mitzen-

macher. Stochastic shortest paths via quasi-convex maximization. In ESA,

pages 552–563, 2006.

[25] N. Nisan and A. Ronen. Algorithmic mechanism design (extended abstract).

STOC ’99, pages 129–140, New York, NY, USA, 1999. ACM.

[26] Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a

map. Theor. Comput. Sci., 84(1):127–150, July 1991.

BIBLIOGRAPHY 69

[27] L. Roditty. On the k-simple shortest paths problem in weighted directed graphs.

SODA ’07, pages 920–928, Philadelphia, PA, USA, 2007. Society for Industrial

and Applied Mathematics.

[28] L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in

unweighted directed graphs. ICALP’05, pages 249–260. Springer-Verlag, 2005.

[29] Samitha Samaranayake, Sebastien Blandin, and Alexandre M. Bayen. Speedup

techniques for the stochastic on-time arrival problem. In ATMOS, pages 83–96,

2012.

[30] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,

22(2):215–225, 1975.

[31] O. Weimann and R. Yuster. Replacement paths via fast matrix multiplica-

tion. Foundations of Computer Science, Annual IEEE Symposium on, 0:655–

662, 2010.

[32] C. Wulff-Nilsen. Solving the replacement paths problem for planar directed

graphs in o(n log n) time. SODA ’10, pages 756–765, Philadelphia, PA, USA,

2010. Society for Industrial and Applied Mathematics.

[33] Peng Xiao, Yinfeng Xu, and Bing Su. Finding an anti-risk path between two

nodes in undirected graphs. J. Comb. Optim., 17(3):235–246, 2009.

[34] G. Yu and J. Yang. On the robust shortest path problem. Computers & Oper-

ations Research, 25(6):457 – 468, 1998.

