10,110 research outputs found

    Bipolarity in the querying of temporal databases

    Get PDF
    A database represents part of reality by containing data representing properties of real objects or concepts. To many real-world concepts or objects, time is an essential aspect and thus it should often be (implicitly) represented by databases, making these temporal databases. However, like other data, the time-related data in such databases may also contain imperfections such as uncertainties. One of the main purposes of a database is to allow the retrieval of information or knowledge deduced from its data, which is often done by querying the database. Because users may have both positive and negative preferences, they may want to query a database in a bipolar way. Moreover, their demands may have some temporal aspects. In this paper, a novel technique is presented, to query a valid-time relation containing uncertain valid-time data in a heterogeneously bipolar way, allowing every elementary query constraint a specific temporal constraint

    Toward a Unified Timestamp with explicit precision

    Get PDF
    Demographic and health surveillance (DS) systems monitor and document individual- and group-level processes in well-defined populations over long periods of time. The resulting data are complex and inherently temporal. Established methods of storing and manipulating temporal data are unable to adequately address the challenges posed by these data. Building on existing standards, a temporal framework and notation are presented that are able to faithfully record all of the time-related information (or partial lack thereof) produced by surveillance systems. The Unified Timestamp isolates all of the inherent complexity of temporal data into a single data type and provides the foundation on which a Unified Timestamp class can be built. The Unified Timestamp accommodates both point- and interval-based time measures with arbitrary precision, including temporal sets. Arbitrary granularities and calendars are supported, and the Unified Timestamp is hierarchically organized, allowing it to represent an unlimited array of temporal entities.demographic surveillance, standardization, temporal databases, temporal integrity, timestamp, valid time

    Bipolar querying of valid-time intervals subject to uncertainty

    Get PDF
    Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition

    Aspects of dealing with imperfect data in temporal databases

    Get PDF
    In reality, some objects or concepts have properties with a time-variant or time-related nature. Modelling these kinds of objects or concepts in a (relational) database schema is possible, but time-variant and time-related attributes have an impact on the consistency of the entire database. Therefore, temporal database models have been proposed to deal with this. Time itself can be at the source of imprecision, vagueness and uncertainty, since existing time measuring devices are inherently imperfect. Accordingly, human beings manage time using temporal indications and temporal notions, which may contain imprecision, vagueness and uncertainty. However, the imperfection in human-used temporal indications is supported by human interpretation, whereas information systems need extraordinary support for this. Several proposals for dealing with such imperfections when modelling temporal aspects exist. Some of these proposals consider the basis of the system to be the conversion of the specificity of temporal notions between used temporal expressions. Other proposals consider the temporal indications in the used temporal expressions to be the source of imperfection. In this chapter, an overview is given, concerning the basic concepts and issues related to the modelling of time as such or in (relational) database models and the imperfections that may arise during or as a result of this modelling. Next to this, a novel and currently researched technique for handling some of these imperfections is presented

    Combining uncertainty and vagueness in time intervals

    Get PDF
    Database systems contain data representing properties of real-life objects or concepts. Many of these data represent time indications and such time indications are often subject to imperfections. Although several existing proposals deal with the modeling of uncertainty or vagueness in time indications in database systems, only a few of them summarily examine the interpretation and semantics of such imperfections. The work presented in this paper starts at a more thorough examination of the semantics and modeling of uncertainty or vagueness in time intervals in database systems and presents methods to model combinations of uncertainty and vagueness in time intervals in database systems, based on examinations of their requisite interpretations

    Design-time Models for Resiliency

    Get PDF
    Resiliency in process-aware information systems is based on the availability of recovery flows and alternative data for coping with missing data. In this paper, we discuss an approach to process and information modeling to support the specification of recovery flows and alternative data. In particular, we focus on processes using sensor data from different sources. The proposed model can be adopted to specify resiliency levels of information systems, based on event-based and temporal constraints

    Marking time in sequence mining

    Get PDF
    Sequence mining is often conducted over static and temporal datasets as well as over collections of events (episodes). More recently, there has also been a focus on the mining of streaming data. However, while many sequences are associated with absolute time values, most sequence mining routines treat time in a relative sense, only returning patterns that can be described in terms of Allen-style relationships (or simpler). In this work we investigate the accommodation of timing marks within the sequence mining process. The paper discusses the opportunities presented and the problems that may be encountered and presents a novel algorithm, INTEMTM, that provides support for timing marks. This enables sequences to be examined not only in respect of the order and occurrence of tokens but also in terms of pace. Algorithmic considerations are discussed and an example provided for the case of polled sensor data.Sydney, NS

    Reconciliation of temporal semantic heterogeneity in evolving information systems

    Get PDF
    The change in meaning of data over time poses significant challenges for the use of that data. These challenges exist in the use of an individual data source and are further compounded with the integration of multiple sources. In this paper, we identify three types of temporal semantic heterogeneity. We propose a solution based on extensions to the Context Interchange framework, which has mechanisms for capturing semantics using ontology and temporal context. It also provides a mediation service that automatically reconciles semantic conflicts. We show the feasibility of this approach with a prototype that implements a subset of the proposed extensions

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web
    corecore