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ABSTRACT. The change in meaning of data over time poses significant challenges for the use of 
that data. These challenges exist in the use of an individual data source and are further 
compounded with the integration of multiple sources. In this paper, we identify three types of 
temporal semantic heterogeneity. We propose a solution based on extensions to the Context 
Interchange framework, which has mechanisms for capturing semantics using ontology and 
temporal context. It also provides a mediation service that automatically reconciles semantic 
conflicts. We show the feasibility of this approach with a prototype that implements a subset 
of the proposed extensions. 
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1. Introduction 

Effective management of the temporal aspects of data has become increasingly 
important in application domains ranging from day-to-day record keeping to 
counterterrorism efforts. It is often even required by law for organizations to store 
historical data and make sure it is accurate and easy to retrieve1. While temporal 
databases can be used to manage the data, ensuring that the retrieved data is 
meaningful to the users is still an unsolved problem when data semantics changes 
over time. 

As an example, suppose an arbitrage analyst in New York needs to compare 
Daimler-Chrysler’s stock prices at New York and Frankfurt exchanges. He retrieved 
the data from Yahoo’s historical database, see Figure 1. Two anomalies caught his 
eyes at a quick glance at the data. First, prices at two exchanges differ substantially; 
and second, the price at Frankfurt stock exchange dropped by almost 50% at the turn 
from 1998 to 1999!  

 
 

 
 

Figure 1. Historical stock prices for Daimler-Chrysler. Top: New York Stock 
Exchange; Bottom: Frankfurt Stock Exchange 
 
 

These anomalies result from unresolved semantic conflicts between the data 
sources. In this case, not only are the currencies for the stock prices different at the 

                                                 
1 See Robert Sheier on “Regulated storage” in Computerworld, 37(46), November 17, 2003. Health 
Insurance Portability Act requires healthcare providers keep records till two years after death of patients; 
Sarbanes-Oxley Act requires auditing firms retain records of financial statements. 
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two exchanges, but the currency at Frankfurt also changed from German Marks to 
Euros at the beginning of 1999 – but that is not noted by the source. Once the data is 
normalized using this knowledge, it can be shown that there is neither significant 
arbitraging opportunity between the two exchanges nor an abrupt price plunge at 
Frankfurt for this stock. We call metadata knowledge such as the currency for price 
context knowledge, and the history of time-varying metadata temporal context. 

To allow data receivers like the analyst to effectively use data from time-varying 
heterogeneous sources, we need to represent temporal context knowledge and 
incorporate it into data integration and query answering systems. Temporal database 
research has primarily focused on the management of temporal data in a constant 
and homogeneous context environment. Semantic data integration techniques 
developed so far are based on snapshot data models that ignore the time dimension.  

The objective of this research is to fill this gap by developing techniques to 
effectively resolve temporal semantic conflicts between data sources and receivers. 
Specifically, we extend the Context Interchange (COIN) framework (Firat 2003, 
Goh et al. 1999)  with temporal contextual knowledge representation and reasoning 
capabilities.  

The rest of the paper is organized as follows. In section 2 we use examples to 
illustrate three types of temporal semantic heterogeneity. In Section 3 we give a 
brief review of related research. In section 4 we describe our solution approach. In 
section 5 we present some preliminary results. In the final section, we summarize 
and briefly discuss future research 

2. Challenges of temporal data integration 

2.1. A simple integration example 

A temporal database is one that supports some aspect of time, not counting user-
defined time such as birthday and hiring date (Jensen et al. 1998) . This rather 
informal definition is due to the fact that the temporal dimensions are often 
application specific, therefore it is either difficult or unnecessary to support all 
aspects of time. Nevertheless, most temporal data can be viewed as time-stamped 
propositions and represented as relational tuples with timestamps.  

Table 1 gives an example of some time series data for a company. Intuitively, the 
example describes how the values of several attributes change over time. Each tuple 
represents a fact that can be viewed as a predicate with a timestamp argument and 
other non-temporal arguments. However, there are other unspecified metadata 
attributes, such as currency type and scale factor, that critically determine the truth 
value of each predicate. We call the specification of metadata attributes context 
knowledge. For metadata attributes whose value changes over time, a specification 
of their history is termed temporal context.  
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Table 1. Company time series data 
 

Year Num_Employee Profit Tax 
…     
1999 5100 4.2 1.1 
2000 12000 13000 2500 
2001 25.3 20000 4800 
2002 30.6 35.3 7.97 
…    

 

Table 2 gives examples of the context knowledge in a simple information 
integration scenario involving the source in Table 1 and a receiver. The receiver 
context can be time-varying as well. Semantic conflicts arise because the source and 
the receiver have different contexts, which need to be reconciled for the receiver to 
meaningfully use the data. Imagine the complexity of scenarios that involve dozens 
of sources and receivers, each with time-varying heterogeneous contexts. We need 
effective technologies to manage this complexity. 

 

Table 2. Examples of temporal context  
 

 Source Receiver 
Currency Francs(FRF), year ≤ 2000  

Euros, year≥2001 
USD, always 

Scale factor for 
profit and tax 

1M , year =< 1999 
1K, 2000≤year≤2001 
1M, year≥2002 

1K, always 

Scale factor for 
Num_Employee 

1, year≤2001 
1K, year≥2002 

1K, always 

Profit Exclude tax, year≤2000 
Include tax, year≥2001 

Include tax, 
always 

2.2. Temporal semantic heterogeneities 

We see at least three categories of issues in the integration of temporal data.  

Representational heterogeneity – the same relational attribute may be 
represented differently in the time span of a data source. In addition to currency 
changes for monetary concepts like profit and tax, there are also scale factor 
changes, as described in Table 2. 

Ontological heterogeneity – the ontological concept represented by an attribute 
may change over time. In Table 2, profit on and before 2000 excludes taxes, 
afterwards it includes taxes. There are also cases where the entity referred to by an 
identifier changes over time. For example, stock symbol “C” on the New York 
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Stock Exchange (NYSE) used to refer to Chrysler but changed to refer to Citigroup 
on December 4, 1998 after Chrysler merged with Daimler-Benz. Similarly, 
country code “YUG” for Yugoslavia have different geographic boundaries at 
different times before, during, and after the recent Balkans war.  

The derivation method or composition of complex concepts often 
changes over time. Many government published time series data sets often 
come with a “Change of Definitions” that explains changes to terminologies. 
For example, the national unemployment data may include undocumented 
immigrants in the workforce at one time and exclude them at another.  

Heterogeneity in temporal entity – the abstraction and representation of time 
domain differs across systems and time. Although a temporal entity is just another 
data type, it has special properties and operations that warrant a category of its own. 
The example in Table 1 uses point representation for the timestamp attribute year. 
Another system may choose to use intervals, e.g., [1/1/1999, 12/31/1999] for the 
year 1999. Differences in calendar systems, time zones, and granularities present 
many challenges for integration of temporal data.  

The semantics of the association between propositions described by the non-
temporal attributes in a tuple and the temporal entity may differ across attributes. 
How the truth of a proposition over an interval is related to its truth over 
subintervals is described by the proposition’s heredity properties (Shoham 1987). 
Recognizing this property is useful for temporal query language design. For 
example, if in a bank account database the balance over an interval is known and the 
user queries the balance at a time within the interval, the query language should use 
the liquidity property of balance attribute to infer the result (Bettini et al. 2000). We 
observe that heredity is often attribute dependent and does not change over time or 
across data sources. Thus we need not consider heterogeneity of this property in the 
data integration setting.   

In an effective integration framework, data receivers should not be burdened by 
these types of context heterogeneity; rather, there should be a system service to 
record contexts and reconcile context differences before delivering data to the 
receiver. Our temporal extension to the original COIN framework provides such a 
solution. 

3. Review of Related Research 

Related research can be found in the areas of temporal database, temporal 
reasoning, and data integration. Although each provides useful concepts and 
techniques, none address all the temporal semantic heterogeneity problems 
identified in this paper. The following brief review is not intended to summarize or 
criticize the findings in each area; rather, it is to identify the most relevant results 
and show what is missing from a temporal semantic data integration point of view.  
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Temporal databases. The time domain is often represented as time points with 
certain granularities. An interval is a set of contiguous points and can be represented 
as a pair of begin and end points. A time point may have a duration and thus is not 
an instant in time ontology (Hobbs 2002).  

Over 40 temporal data models have been proposed (Özsoyoglu and Snodgrass 
1995). Many of the models let the system manage timestamps, which effectively 
hide the timestamp attribute from the user. This approach is inconsistent with the 
relational theory (Date et al., 2003). As commonly practiced, databases that store 
temporal data often have a schema with explicit timestamp attribute(s); standard 
SQL is used to retrieve data and temporal operations are selectively implemented in 
the application layer. Our framework targets the common situation where data 
sources have limited temporal support. 

As in the case of conventional databases, temporal databases also fail to facilitate 
context knowledge management. As a result, context is often hard-coded into data 
transformations in data warehouses. This ad-hoc approach lacks flexibility and 
scalability.  

Temporal reasoning. While a restricted set of temporal logics can be executed 
using logic programming, there seems to be a trend where temporal logics are 
transformed into temporal constraints to take advantage of the efficiency of 
constraint solvers. The framework provided in (Meiri 1996) combines qualitative 
and quantitative (metric) temporal relations over both time points and time intervals. 
These relationships can be considered as temporal constraints in constraint logic 
programming. Therefore, temporal reasoning can be treated as a constraint solving 
problem, to which a number of constraint solving techniques (Jaffar and Maher 
1996) can be applied. We use a solver implemented using constraint handling rules 
(CHR) (Frühwirth 1998) as demonstrated in (Frühwirth 1994). 

Temporal granularity research has developed logic- (Montanari 1996) and 
algebra-based (Bettini 2000) techniques for representing and reasoning about 
granularities and user-defined calendars. Conversions between granularities (Bettini 
et al. 2003) will be useful in dealing with heterogeneity in temporal entities. 

Data integration. Approaches to achieving data integration largely fall into 
tight-coupling and loose-coupling categories depending on whether a global schema 
is used (Firat 2003, Goh et al. 1999). In these approaches, intended data semantics in 
sources and receivers are explicitly incorporated in either the view definitions or the 
user queries. The computation complexity (Lenzerini 2002) in rewriting user queries 
for the former approach and the user’s burden of writing complex queries for the 
latter limit the flexibility and scalability of these approaches.  

COIN (Firat 2003, Goh et al. 1999) is a middle ground approach that avoids 
these shortcomings by encapsulating data semantics into a context theory and 
maintaining accessibility of source schema by users. In COIN, a user issues queries 
as if all sources are in the user’s context and a mediator is used to automatically 
rewrite the queries to resolve semantic differences.  
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Unfortunately, existing approaches, including COIN, use a static data model and 
ignore temporal context. Consequently, temporal concepts are missing in the 
ontologies used in these systems. In a seemingly relevant research of medical data 
integration (Nguyen et al. 1999, Shahar 1994), interpretation contexts are used to 
derive diagnostic conclusions from temporal data. For example, “having a fever” 
conclusion can be derived from a series of high temperatures in a regular 
interpretation context. But it cannot be derived in another interpretation context 
where doses of a certain drug indicate the use of a certain treatment protocol that has 
a side effect of causing high temperatures. Although interpretation contexts are 
constructed from temporal data, they do not vary over time once constructed. 

This research focuses on the representation and reasoning of temporal context. 
Our framework incorporates context into the query evaluation process to 
automatically detect and reconcile temporal semantic conflicts. By combining the 
concepts and techniques from the three relevant research areas, we develop a 
scalable solution to temporal heterogeneity problems.  

4. Temporal COIN approach  

Below we provide a brief description of the COIN framework, followed by the 
descriptions of the extensions of temporal representation and reasoning to enable 
COIN to handle temporal semantic heterogeneity. 

4.1. The COIN framework  

The COIN framework consists of a deductive object-oriented data model, based 
on F-logic (Kiffer et al. 1995), for context knowledge representation and a 
mediation service module that detects and resolves semantic conflicts in user queries 
at run-time (see Figure 2). 

 

COIN 
Mediator

Executioner

Optimizer

Receivers/
User Apps

Conversion
Libraries

Mediated query/
explication 

User query

Data in user context

Data sources

Knowledge Representation  - F-Logic based data model

Ontology – define types and relationships
Context theories – define source and receiver contexts by 

specifying  modifier historic values
Mappings – assigning correspondence between data elements 

and the types in ontology

Mediation service

Graphic/Web-based 
modeling tool

 
Figure 2. Architecture of COIN system 
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Knowledge representation in COIN consists of three components:  

Ontology – to define a common semantic domain that consists of semantic data 
types and their relationships. A type corresponds to a concept in the problem domain 
and can be related to another in three ways: (1) as a subtype or super-type (e.g., 
profit is a subtype of monetary value; (2) as a named attribute (e.g., temporal entity 
such as year is a temporal attribute of  monetary value), whose values are usually in 
the data sources; and (3) as a modifier, also known as a contextual attribute (Sciore 
et al., 1994), whose value is specified in context axioms and can functionally 
determine the interpretation of instances of the type that has this modifier (e.g., 
monetary value type has a scale factor modifier). There is a distinguished type basic 
in the ontology that serves as the super type of all the other types and represents all 
primitive data types. Objects are instances of the semantic types;  

Context theories – to specify the values of modifiers for each source or receiver 
and the conversions for transforming an attribute value in one context to another. 
The context of each source or receiver is uniquely identified with a context label. 
The value specification for modifiers can be a simple value assignment or a set of 
rules that specify how to obtain the value. Conceptually a context can be thought to 
be a set of <modifier, object> pairs, where object (i.e., the value of the modifier) is a 
singleton in most non-temporal cases; and 

Semantic mappings – to establish correspondences between data elements in 
sources and the types in the ontology, e.g., profit attribute in the example of Table 1 
corresponds to profit type, which is in turn of monetary value type by inheritance. 
The semantic mappings are also called elevation rules, or elevations for short. 

The core component in the mediation service module is the COIN mediator 
implemented in abductive constraint logic programming (ACLP) (Kakas et al. 
2000). It takes a user query and produces a set of mediated queries (MQs) that 
resolve semantic differences. This happens by first translating the user query into a 
Datalog query and using the encoded knowledge to derive the MQs that incorporate 
necessary conversions from source contexts to receiver context. The query optimizer 
and processor optimize the MQs using a simple cost model and the information on 
source capabilities, obtain the data, perform the conversions, and return final 
datasets to the user. 

In addition to providing a rigorous theoretical foundation to our solution, ACLP 
has two other advantages: (1) abductive reasoning can produce explanations, which 
we use to generate MQs as the intensional answers to the original user query; and 
(2) the availability of efficient concurrent constraint solvers allows for good 
performance of the mediator.   

The original COIN used a snapshot data model that did not allow temporal 
context representation; the mediator also lacked temporal reasoning capability. 
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4.2. Temporal extensions to representation  

The extended framework admits temporal data sources, which are assumed to be 
relational with an explicit timestamp attribute in their schema. They accept SQL 
queries with usual comparison operators (=, >, <, etc.) on timestamp domain.  

The ontology is augmented with temporal concepts as defined in the time 
ontology (Hobbs 2002). The most general one is Temporal Entity, which can be 
further specialized as Instant or Interval. Each element in the source schema is 
mapped to a corresponding semantic data type in the ontology by an elevation 
axiom. A timestamp can be elevated to Temporal Entity or a subtype. For types 
whose values are time dependent, we relate them to a temporal entity type via 
temporal attribute.  

Definition  The temporal context of a data source or a receiver is a specification 
of the history of all modifiers in the ontology. Conceptually, it can be considered to 
be a set of <modifier, history> pairs, where history is a set of <object, 
valid_interval> pairs.  

Recall that in existing COIN, a context is simply a set of <modifier,object> pairs. 
The temporal extension allows us to represent the entire history of each modifier. If 
the value does not change over time, the history set is simply a singleton with the 
valid_interval covering entire time span of interest. We achieve backward 
compatibility by treating <modifier,object>  as the shorthand for <modifier, 
{<object, entire_time_span>}>.    

Temporal entity type may also have modifiers, e.g., granularity, time zone, etc., 
to account for various contexts.  

4.3. Temporal extensions to mediation 

Given a user query expressed in the user’s context, the mediator detects and 
reconciles semantic differences by examining involved modifiers and applying 
appropriate conversion functions if the values differ between any source and the 
receiver. With temporal extensions, modifiers are no longer singly valued. However, 
at any point in time, there is only one valid value for each attribute. The mediator 
needs to find the maximum time interval over which all involved modifiers are 
singly valued. Over this interval, an MQ can be generated as in the case of existing 
COIN; the interval appears in the MQ as additional constraints over the attribute of 
temporal entity type.  

The mediator translates history set for modifiers into temporal constraints, which 
are posted into a constraint store concurrently solved by solvers in CHR. Through 
back tracking, all intervals over which modifiers are singly valued are found.  

In our framework, contexts are declaratively defined using First Order Logic 
(FOL) rules. This can be done because of the equivalence of F-logic and FOL. The 
mediator is a general abductive reasoner. When new sources are added, we only 
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need to add context and semantic mapping rules for them. External functions can be 
called to convert between contexts. These features lend COIN great flexibility and 
scalability. 

5. Prototype and preliminary results 

We are able to solve a range of temporal heterogeneity problems exemplified in 
Section 2 by implementing a fraction of the suggested extensions. 

5.1. Representation and mediation 

Representation. Figure 3 shows the ontology for the example. Here, we use the 
most general concept temporal entity. Using elevation axioms, we create the 
mappings between attributes in the data source and the types in the ontology.  

 

monetaryValue

profit

scaleFactor

type

temporalEntity
tempAttr

basic

…
7.9735.330.62002
48002000025.32001
250013000120002000
1.14.251001999

…
TaxProfitNum_EmployeeYear

…
7.9735.330.62002
48002000025.32001
250013000120002000
1.14.251001999

…
TaxProfitNum_EmployeeYear

sem_number
tempAttr

scaleFactor

Subtype rel.
Attribute
Modifier

Legend
Semantic type

Elevation

Subtype rel.
Attribute
Modifier

Legend
Semantic type

Elevation

currency

 
 
Figure 3. Example ontology and elevations 
 
 

We model the time line as discrete and unbounded with both points and intervals 
as primitives. The past and future infinities are represented by constants bottom and 
top.  We implement the ≤ relation between points as a tle (i.e., temporal less than or 
equal to) constraint. The contains relation between an interval and a point is 
translated into tle constraints; the overlaps relation between intervals are also 
translated into tle constraints.    

This simple model has sufficient expressive power to represent the temporal 
knowledge needed in Table 2.  For example, internally we use the following Prolog 
statements to represent the source context for currency: 
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modifier(monetaryValue,O,currency,c_src,M):-  
     containObj([bottom, 2000], O),  
     cste(basic, M, c_src, "FRF"). 
modifier(monetaryValue,O,currency,c_src,M):- 
     containObj([2001, top],O),  
     cste(basic, M, c_src, "EUR"). 

 The head of the statement reads: O of type monetaryValue has a modifier 
currency, whose value in source context c_src is M.  Its body has two predicates. 
containObject(I, O) uses the tempAttr of O to obtain its temporal attribute T (which 
corresponds to Year attribute in the data source) of type temporalEntity and add 
constraint contains(I, T).  The helper predicate cste specifies the primitive value of 
M in c_src context.  Thus, the history of each modifier is now a set of pairs <Vi, Ii>, 
where Ui iI = [bottom, top]. 

For context that does not change over time, we could have used [bottom, top] 
interval in containObj predicate. Since the translated constraints are always true, we 
will not include this predicate for this case.  

Mediation. As described earlier, the mediation service needs to find the 
maximum interval over which all modifiers are singly valued. Figure 4 helps 
visualize this task by graphically representing the context knowledge in Table 2. For 
example, [bottom, 1999] is such an interval where the source context can be 
described with a set of singly valued modifiers:  

{<monetaryValue.currency, “FRF”>,  
   <monetaryValue.scale, “1000000”>,  
   <profit.type, “taxExluded”>,  
   <sem_num.scale, “1”>}. 

 

1999

2000

2001

2002

FRFFRF

EUREUR

1K

1M1M

1M1M

Excl
Tax
Excl
Tax

Incl
Tax
Incl
Tax

11

1K1K

monetaryValue profit sem_num
currency     scale         type         scale

USDUSD 1K1K

c_src: source context c_target: receiver context

Incl
Tax
Incl
Tax 1K1K

monetaryValue profit sem_num
currency    scale       type        scale

 
 
Figure 4. Visualization of temporal contexts 
 
 

Recall that we translate all temporal relations into tle constraint over points. Each 
modifier generates two tle constraints for the temporal variable. The above problem 
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is thus turned into to a problem of solving the constraints generated by all the 
modifiers, which is solved concurrently using a solver implemented in CHR.  

Constraints over bottom and top can be removed using simplification rules so 
that these two literals do not appear in the list of abducted predicates. Constraints 
over other time points can be pair-wise simplified. We also implement overlaps to 
simplify tle constraints over four points at a time. These rules tighten the bounds of 
the temporal variable or signify a failure if inconsistencies are found.  

Together with the rules that handle equality constraint, this point-based temporal 
constraint solver covers the 13 relations for temporal intervals in (Allen 1983). 
Relations before, after, meets, and met_by generate a failure, all the rest relations are 
subsumed into overlaps.  

Through backtracking, the recursive algorithm finds all intervals over which 
modifiers are singly valued. Conversions are applied as in the case of existing COIN 
implementation. This simple temporal constraint-based extension transforms a 
temporal context problem into a set of non-temporal problems, thereby allows us to 
reuse the non-temporal implementation of the COIN mediator.  

5.2. Preliminary results 

These temporal extensions to COIN framework enable semantic interoperability 
for the integration example. The prototype can generate MQs that reconcile temporal 
context differences.  

As an example, suppose a user in the receiver context wants to retrieve data from 
the company time series relation named Financials in Table 1 using the following 
SQL query: 

Select Year, Num_Employee, Profit  
From Financials; 

and expects the returned data to be in his context. The query is translated into a well 
formed Datalog query in our prototype. The extended COIN mediator takes this 
query and the representation of the integration as input, and produces the following 
mediated query in Datalog (which COIN eventually converts to SQL): 

%1. =<1999: currency,scale,type;scale 
answer('V32', 'V31', 'V30') :- 
  'V29' is 'V28' * 1000.0,   'V31' is 'V27' * 0.001, 
  olsen("FRF", "USD", 'V26', 'V32'), 
  'V28' is 'V25' * 'V26', 
  financials('V32', 'V27', 'V25', 'V24'), 
  'V32' =< 1999, 'V23' is 'V24' * 'V26', 
  'V22' is 'V23' * 1000.0, 'V30' is 'V29' + 'V22'. 
%2. 2000: currency and type;scale 
answer(2000, 'V21', 'V20') :-  
  'V21' is 'V19' * 0.001, 'V20' is 'V15' + 'V14', 
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  financials(2000, 'V19', 'V18', 'V17'), 
  olsen("FRF", "USD", 'V16', 2000), 
  'V15' is 'V18' * 'V16', 'V14' is 'V17' * 'V16'. 
%3. 2001: currency;scale 
answer(2001, 'V13', 'V12') :- 
  'V13' is 'V11' * 0.001, 'V12' is 'V10' * 'V8', 
  financials(2001, 'V11', 'V10', 'V9'), 
  olsen("EUR", "USD", 'V8', 2001). 
%4. >=2002: currency,scale;none 
answer('V7', 'V6', 'V5') :-  
  olsen("EUR", "USD", 'V4', 'V7'), 
  financials('V7', 'V6', 'V3', 'V2'), 
  2002 =< 'V7',  'V1' is 'V3' * 'V4', 
  'V5' is 'V1' * 1000.0. 

The mediated query has four subqueries, each resolves a set of semantic conflicts 
that exist in the time specified by the timestamp attribute. Note that olsen predicate 
corresponds to a currency conversion data source introduced by the conversion 
function for currency modifier. These subqueries resolve all the semantic conflicts 
in Table 2 or in Figure 4.  

6. Discussion and future plan 

We identified three types of semantic heterogeneity in the integration of 
temporal data. There is an ever increasing need to efficiently handle temporal 
heterogeneity as more historical data is used for auditing, forecasting, investigation, 
and many other purposes. We have described temporal extensions to the COIN 
framework. A prototype of the extensions shows that our approach is capable of 
solving temporal context problems. A demonstration of solving the problems of the 
historic stock prices example can be found in (Madnick and Zhu 2006). With its 
declarative knowledge representation and its capability of dynamically composing 
data conversions, this approach has been shown to have good flexibility and 
scalability (Zhu and Madnick 2004, Zhu and Madnick 2006). 

 Our future research aims to develop this approach in several aspects. Current 
representation of temporal context explicitly compares an interval with the temporal 
attribute of an object. The representation may be made cleaner by using an annotated 
temporal constraint logic (Frühwirth 1996) . We need to investigate how this logic 
can be integrated with the ACLP based COIN mediator. 

An important part of future research will be focused on the heterogeneity of 
temporal entities. We plan to add various modifiers to the temporal entity type in the 
ontology and use external functions to convert between contexts. If this is not 
expressive enough to represent the diversity of time, a richer time ontology may be 
necessary. We also need to incorporate metric temporal reasoning, which often 
involves computations of one or more calendars. We will investigate the feasibility 
of leveraging web services like those in (Bettini 2003). This is a challenging and 
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important research area because misunderstanding date and time can have serious 
consequences, as history has shown in an 1805 event (Madnick 1999) where the 
Austrian troops were forced to surrender largely because of the misunderstanding of 
a date in two different calendar systems.  
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