
Bipolar Querying of Valid-Time Intervals

Subject to Uncertainty

Christophe Billiet1, José Enrique Pons2, Olga Pons2, and Guy De Tré1

1 Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium
Christophe.Billiet@UGent.be, Guy.DeTre@UGent.be

2 Department of Computer Science and Artificial Intelligence, University of Granada,
C/Periodista Daniel Saucedo Aranda, S/N, E-18071, Granada, Spain

jpons@decsai.ugr.es, opc@decsai.ugr.es

Abstract. Databases model parts of reality by containing data repre-
senting properties of real-world objects or concepts. Often, some of these
properties are time-related. Thus, databases often contain data repre-
senting time-related information. However, as they may be produced by
humans, such data or information may contain imperfections like uncer-
tainties. An important purpose of databases is to allow their data to be
queried, to allow access to the information these data represent. Users
may do this using queries, in which they describe their preferences con-
cerning the data they are (not) interested in. Because users may have
both positive and negative such preferences, they may want to query
databases in a bipolar way. Such preferences may also have a temporal
nature, but, traditionally, temporal query conditions are handled specif-
ically. In this paper, a novel technique is presented to query a valid-time
relation containing uncertain valid-time data in a bipolar way, which
allows the query to have a single bipolar temporal query condition.

Keywords: Bipolar Querying, Valid-time Relation, Valid Time, Tem-
poral Databases, Uncertainty, Possibility Theory, Ill-known Intervals

1 Introduction

Generally, database systems model (parts of) reality. For this, their databases
contain data representing properties of real-world objects or concepts. Some
essential properties of real-world objects or concepts are time-related. Thus,
databases often contain data representing temporal values [1], which are basi-
cally indications of time and describe such properties. These temporal values are
usually either time intervals [1] or instants [1], which may informally be seen as
infinitesimally short ‘periods’ or ‘points’ in time. Based on their interpretation
and purpose, temporal values can be classified into several categories, but the
presented work will only consider valid-time indications, which indicate when
corresponding data is a valid or true representation of the reality modelled by
its database [1–4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55734212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Christophe Billiet et al.

A lot of database data are produced by humans, but human-made data are
prone to imperfections, as some of these data may be vague or imprecise [5],
contradictory, incomplete or uncertain [3], [4], [6]. Of course, data representing
temporal values may contain such imperfections too [2–4], [7]. The work pre-
sented in this paper will consider databases containing data representing valid-
time intervals subject to uncertainty and will assume all non-temporal data in
these databases to contain no imperfections.

One of the most important purposes of a database is to allow its data to be
queried, to allow the information or knowledge represented by this data to be
retrieved. A user may query a database in a ‘regular’ way: the user describes
the data which he or she finds desired or satisfactory and thus wants to re-
trieve, by perfectly describing the allowed values of these data. A user may also
query a database in a ‘fuzzy’ way: the user describes the data which he or she
finds desired or satisfactory by imperfectly describing the allowed values of these
data [8]. These imperfect descriptions may contain vagueness or imprecision, of-
ten through the use of linguistic terms [9], [10]. A user may also query a database
in a ‘bipolar’ way. Generally, two main approaches to this exist. One is for the
user to describe the data which he or she finds acceptable and to describe the
data among this acceptable data, which he or she finds really desired, both by
describing the allowed values of these data [11]. The other is for the user to in-
dependently describe both the data which he or she finds desired or satisfactory
and the data which he or she finds undesired or unsatisfactory, both by describ-
ing the allowed values of these data [12], [13]. The descriptions used in bipolar
querying may contain imperfections. The presented work will only consider the
latter approach to bipolar querying and will allow a simple form of imprecision
in non-temporal elementary query conditions.

Compared to non-temporal user preferences, temporal user preferences usu-
ally have an uncommon nature and interpretation and thus expressing them
relies on uncommon mechanics in querying: users usually prefer using specific
temporal operators to express temporal preferences. Hence, several proposals
have considered specific sets of temporal operators, often based on the possible
temporal relationships between two time indications [2], [14], [15]. Such tempo-
ral relationships define semantically meaningful relationships with a temporal
nature, between two time indications. In [16], a collection of temporal relation-
ships between two time intervals (and as a special case instants) is introduced
and this collection is considered groundbreaking. Of course, to query temporal
data in a fuzzy way, fuzzy variants of such temporal operators are necessary
and several proposals have thus introduced such variants [4], [14], often based
on fuzzy variants of such temporal relationships [15], [17].

Techniques for the regular or fuzzy querying of valid-time databases contain-
ing valid-time data subject to uncertainty are considered by several existing pro-
posals [2], [4], [17]. However, to the knowledge of the authors, only one proposal
has considered the bipolar querying of valid-time databases (in [18], a technique
is proposed to query a valid-time database containing temporal data subject to
imprecision in a bipolar way) and none have considered the bipolar querying

Bipolar Querying of Valid-Time Intervals Subject to Uncertainty 3

of valid-time databases containing temporal data subject to uncertainty. Thus,
this paper presents a novel technique to query a valid-time relation containing
valid-time data subject to uncertainty in a bipolar way, which allows the user
to specify a single bipolar temporal query condition. This paper is structured as
follows: in section 2, some preliminary concepts and techniques are described, in
section 3, the novel technique which is the main contribution of the work pre-
sented in this paper, is explained and in section 4, the conclusions of this paper
and some directions for future research are given.

2 Preliminaries

2.1 General Preliminaries, Notations and Nomenclature

Databases may contain data representing temporal values. Based on their pur-
pose and interpretation, such time indications can be classified into different
categories [1], [3]. The work presented in this paper only considers temporal
values of the category valid time. Their purpose or interpretation is for every
valid-time indication to correspond to a collection of data and to indicate a
period of time during which this data is a valid or true representation of reality.

The work presented in this paper concerns time indications subject to un-
certainty. This uncertainty is always assumed to be caused by a (partial) lack of
knowledge: the exact, intended time indication is not known, eventhough there is
only one time indication intended and as such no variability. Confidence about
exactly which time indication is the intended one in the context of such un-
certainty is modelled using possibility theory [17], [19]. In the presented work,
‘possibility’ and ‘necessity’ are always interpreted as measures of plausibility,
respectively necessity, given all available knowledge. Time intervals not subject
to any imperfection are called crisp time intervals (CTI) in this paper.

2.2 Valid-Time Relations

A valid-time relation (VTR) always has valid-time attributes. These are at-
tributes describing a single valid time [1] for the objects or concepts represented
by the VTR’s tuples. A VTR may contain different tuples corresponding to the
same real-world concept or object. The non-valid-time attribute values of such
a tuple represent the capacities of the properties described by their correspond-
ing attributes which were, are or will be true or valid for the object or concept
corresponding to the tuple during the period in time indicated by the valid-time
indication represented by the tuple’s valid-time attribute values. Thus, such a
tuple represents the ‘version’ of the object or concept corresponding to this tuple
which was, is or will be real or valid or the ‘state’ this object or concept was,
is or will be in, during the period in time indicated by the valid-time indication
represented by the tuple’s valid-time attribute values. In the presented work,
such valid-time indications will always be time intervals [1] and will always be
referred to as valid-time intervals (VTI).

4 Christophe Billiet et al.

2.3 Uncertainty in Valid-Time Intervals

The presented work allows VTI to be subject to uncertainty, by allowing them to
be ill-known valid-time intervals (IKVTI). The concept of IKVTI is based on the
concepts of possibilistic variables (PV) and ill-known intervals (IKI) [3], [17], [20].

Definition 1. A possibilistic variable (PV) X on a universe U is a variable
taking exactly one value in U , but for which this value is (partially) unknown.
The possibility distribution πX on U models the available knowledge about the
value that X takes: for each u ∈ U , πX(u) represents the possibility that X takes
the value u.

Now consider a set U containing single values (and not collections of values).
When a PV Xv is defined on such a set U , the unique value Xv takes, which is
(partially) unknown, will be a single value in U and is called an ill-known value
(IKV) in U [3], [17], [20]. In this paper, IKV will be denoted using lower-case
letters. The work presented in this paper uses a specific kind of IKI, defined as
follows, although other definitions exist [3], [4].

Definition 2. Consider an ordered set U . An ill-known interval (IKI) in U is
an interval in U of which both boundary values are IKV in U .

Specifically concerning valid time, an IKI in a time domain represented by
the domains of a VTR’s valid-time attributes is called an ill-known valid-time
interval (IKVTI). The work presented in this paper requires the possibility dis-
tributions defining an IKVTI’s IKV to be convex [17]. In this paper, an IKVTI
with boundary IKV s and e will be noted [s, e].

2.4 Evaluation of Temporal Relationships

To express temporal elementary query conditions, operators based on temporal
relationships are necessary. In the presented work, only Allen relationships [16]
between a CTI and a IKVTI are considered. To evaluate such relationships, the
ill-known constraints (IKC) framework presented in [17] is used. It relies on the
concept of IKC.

Definition 3. Given an ordered set U , an ill-known constraint (IKC) C =
(R, v) on U is specified by means of a binary relation R ⊆ U2 and a fixed IKV
v in U . Any set A ⊆ U now satisfies IKC C = (R, v) if and only if:

∀a ∈ A : (a, v) ∈ R

The satisfaction of an IKC C by a set A will be noted C(A) in this paper.
Consider an ordered set U , an IKC C = (R, v) on U and a set A ⊆ U . Due to
the uncertainty inherent to v, it is uncertain whether A satisfies C or not. The
degree of possibility Pos(C(A)) that A satisfies C and the degree of necessity
Nec(C(A)) that A satisfies C, can be calculated as follows [17]:

Bipolar Querying of Valid-Time Intervals Subject to Uncertainty 5

Pos(C(A)) = min
a∈A

(

sup
(a,w)∈R

πXv
(w)

)

(1)

Nec(C(A)) = min
a∈A

(

inf
(a,w)/∈R

1− πXv
(w)

)

(2)

Given an ordered set U , degrees of possibility and necessity that a set A ⊆ U
satisfies a boolean combination of IKC on U can be found by using the possibilis-
tic extensions of boolean operators ‘and’ (∧), ‘or’ (∨) and ‘not’ (¬), as described
in [3], [4], [17].

The IKC framework now allows evaluating a given Allen relationship AR be-
tween a given CTI I and a given IKVTI J = [s, e] by allowing the calculation of
the degrees of possibility and necessity that I AR J holds. For this, the combina-
tion of AR and J is translated to a specific boolean combination of specific IKC.
These translations are shown in table 1. Every row of this table corresponds to
a given Allen relationship between I and J , indicated by the row’s value in the
‘Allen Relationship’ column. The collections of specific IKC for given Allen rela-
tionships are shown in the ‘Constraints’ column (every Ci, i ∈ {1, 2, 3, 4} denotes
an IKC) and the specific combination of these IKC used for evaluation of the
Allen relationships are shown in the ‘Combination’ column. Finally, the degrees
of possibility and necessity that I AR J holds are then the degrees of possi-
bility, respectively necessity that I satisfies the specific aggregation of specific
IKC found as translation of the combination of AR and J . Using the formulas
shown above, the requested possibility and necessity degrees can be calculated
from these.

2.5 Bipolar Querying

As mentioned before, humans may express their query preferences using both
positive and negative query conditions [12], [13]. If the semantics of these con-

Table 1. The translations of Allen relationships to the IKC framework

Allen Relationship Constraints Combination

I before J C1

△

= (<, s) C1(I)

I equal J
C1

△

= (≥, s), C2

△

= (6=, s) C1(I)∧ ¬C2(I)∧

C3

△

= (≤, e), C4

△

= (6=, e) C3(I)∧ ¬C4(I)

I meets J C1

△

= (≤, s) C2

△

= (6=, s) C1(I)∧ ¬C2(I)

I overlaps J C1

△

= (<, e), C2

△

= (≤, s), C3

△

= (≥, s) C1(I)∧ ¬C2(I)∧ ¬C3(I)

I during J
C1

△

= (>, s), C2

△

= (≤, e)
(

C1(I)∧ C2(I)
)

∨

C3

△

= (≥, s), C4

△

= (<, e)
(

C3(I)∧ C4(I)
)

I starts J C1

△

= (≥, s), C2

△

= (6=, s) C1(I)∧, ¬C2(I)

I finishes J C1

△

= (≤, e), C2

△

= (6=, e) C1(I)∧ ¬C2(I)

6 Christophe Billiet et al.

ditions are non-symmetric, meaning that the positive preferences can not be
derived from the negative or vice versa, the bipolarity in this query is called het-
erogenous [13]. The presented work will concern only such heterogenous query
bipolarity.

A query usually takes the form of a boolean combination of elementary query
conditions. Every elementary query condition then expresses the user’s demands
concerning a single attribute. Bipolarity in a query can either be specified be-
tween or inside the elementary query conditions. In [13], it is shown that combin-
ing both approaches makes no sense and that the approach where bipolarity is
specified inside elementary query conditions, using intuitionistic fuzzy sets [21],
is a more intuitive one. In the presented work, only the latter approach is used.
In this approach, elementary query conditions express both what is accepted
and what is not accepted by the query, at once, and are called bipolar query
conditions (BQC) [13].

Consider a relation attribute A. Let domA be the domain of A’s data type,
let µcA and νcA be membership functions from domA to the unit interval [0, 1],
where µcA(x) represents to what extent x ∈ domA is satisfactory and νcA(x)
to what extent x is unsatisfactory to a user, then a BQC cA expressing this
user’s preferences concerning A can be modelled by an Intuitionistic Fuzzy Set
(IFS) [21] as [12], [13]:

cA = {(v, µcA(v), νcA(v)) : v ∈ domA} (3)

Note that to allow overspecification of the user’s preferences, the IFS’s con-
sistency condition can be relaxed, which means that there may exist values
v ∈ domA for which µcA(v) + νcA(v) > 1 [12], [13].

If the user explicitely defines µcA , but doesn’t define νcA , then νcA will be
assumed to be the inverse of µcA [13]. If the user explicitely defines νcA , but
doesn’t define µcA , then µcA will be assumed to be the inverse of νcA [13]. Thus,
in the absence of clear heterogenousness of the bipolarity in a query condition,
the bipolarity will be assumed homogenous [13].

The evaluation of a BQC results in a so-called bipolar satisfaction degree
(BSD) [13], which is a pair

(s, d), s, d ∈ [0, 1]

where s is called the satisfaction degree and d is called the dissatisfaction de-
gree [13]. Here, s and d are independent from each other and express to which
extent the BSD respectively represents ‘satisfied’ and ‘dissatisfied’ [13]. Extreme
values for s and d are 0 (‘not at all’) and 1 (‘fully’). For example: the BSD (1, 0)
represents ‘fully satisfied, not dissatisfied at all’ [13].

As explained in [13], there is no consistency condition for BSD’s and for a
BSD (s, d), s+ d > 1 is allowed. The motivation is that BSD’s try to reflect het-
erogenous bipolarity in human reasoning, which can sometimes be inconsistent.

In general, the evaluation of a BQC cA on relation attribute A for a tuple r
will result in a BSD (srcA , d

r
cA), which is calculated as follows. Let r[A] denote

the value of tuple r for attribute A, then [13]:

(srcA , d
r
cA) = (µcA(r[A]), νcA(r[A])) (4)

Bipolar Querying of Valid-Time Intervals Subject to Uncertainty 7

Remark that the traditional approach to fuzzy querying using regular fuzzy
sets can be obtained from this as a special case, where the bipolarity involved is
homogenous. In that case, a user only specifies positive query preferences [13].

3 A Novel Querying Approach

3.1 Valid-Time Relations Subject to Uncertainty

The presented proposal will concern VTR where the VTI are IKVTI. Generally,
such a VTR R can be seen as constructed in the following way. Let R have n
non-temporal attributes Ai, 1 ≤ i ≤ n, i ∈ N and two valid-time attributes V ST
and V ET . Every tuple T of R represents an object or concept version or state
which is valid during the time period indicated by the tuple’s IKVTI IT . This
IKVTI IT is now defined by two IKV, which respectively describe the starting
and ending instants of IT and are represented by the tuple’s VST, respectively
VET values. The interpretation is that the version or state corresponding to a
tuple was, is or will be valid during a period of time, but exactly which period
this is intended to be, is unknown. Confidence about exactly which period is
intended, is modelled by the tuple’s IKVTI [2], [4].

Table 2. The example relation used in this paper

ID Author VST VET

1 Alöısius [4/4/1208, 6/4/1208, 16/4/1208] [10/12/1208, 1/1/1209, 26/1/1209]

2 Theofilus [2/4/1209, 12/4/1209, 22/4/1209] [21/12/1209, 1/1/1210, 21/1/1210]

3 Gerardus [14/1/1209, 15/1/1209, 16/1/1209] [21/12/1209, 15/1/1210, 25/1/1210]

4 Euforius [21/12/1210, 1/1/1211, 11/1/1211] [21/12/1211, 1/1/1212, 11/1/1212]

5 Ambrosius [11/12/1213, 21/12/1213, 15/1/1214] [9/10/1216, 10/10/1216, 15/10/1216]

6 Alöısius [21/12/1213, 1/1/1214, 11/1/1214] [9/6/1217, 9/6/1217, 12/6/1217]

7 Gerardus [29/12/1214, 1/1/1215, 8/1/1215] [9/6/1217, 10/6/1217, 12/6/1217]

In this paper, the relation shown in table 2 will be used as example relation.
This relation models the being in effect of medieval legal acts. Since the prop-
erties of a legal act cannot change once it has taken effect, every legal act has
only one version or state. This was deliberately done to simplify the example.
Thus, every tuple of the relation corresponds to a legal act. A tuple’s value for
attribute ‘ID’ is a number uniquely identifying the legal act corresponding to the
tuple. A tuple’s value for attribute ‘Author’ is a character string representation
of the name of the author of the legal act corresponding to the tuple. A tuple’s
IKVTI represents the time period during which the act corresponding to the
tuple was in effect. For this, every value for V ST , respectively V ET represents
an IKV describing the day on which the legal act respectively took effect and
stopped taking effect. For this, every value for V ST or V ET is a triple [d1, d2, d3],
where d1, d2, d3 are elements of the ordered set of days in history. Such a triple
[d1, d2, d3] now defines a triangular (and thus convex) possibility distribution π
which defines the mentioned IKV and which is defined by (differences in dates
in this function prescription are expressed in amounts of days):

8 Christophe Billiet et al.

π(x) =

x−d1

d2−d1

, if d1 ≤ x < d2
d3−x
d3−d2

, if d2 ≤ x ≤ d3

0, else

(5)

3.2 Querying Using Bipolar Valid-Time Conditions

The presented work introduces a novel querying technique. The most interesting
aspect of this technique is that it allows the user to specify a bipolar valid-time
demand. According to this technique, a user query Q consists of two separate
parts Qn and Qt: Q = (Qn, Qt). Here, Qn is a boolean combination of BQC
on non-valid-time attributes, expressing the user’s non-temporal demands. Qt

expresses the user’s valid-time demands and is a single crisp temporal BQC
((AR+, I+), (AR−, I−)), where both AR+ and AR− are Allen relationships and
both I+ and I− are CTI. The interpretation is that the user requires an object or
concept that has a version or state that complies with his or her non-temporal
demands and was, is or will be valid during a time interval which is in Allen
relationship AR+ with I+ and wasn’t, isn’t or won’t be valid during a time
interval which is in Allen relationship AR− with I−.

Consider the example relation shown in table 2. Now assume a user queries
the relation to find all legal acts of which the author is preferably named Alöısius,
less preferably Euforius and perhaps Eugenius, and of which the author is prefer-
ably not named Ambrosius, rather not Theofilus and perhaps not Antonius and
which took effect preferably before 2/1/1210 and preferably not after 1/1/1214.
These demands can now be translated to a query Qex in the following way:

Qex = (Qn,ex, Qt,ex) = (Qn,ex, ((AR+,ex, I+,ex), (AR−,ex, I−,ex))),

Qn,ex = {(x, µex(x), νex(x)), ∀x ∈ S}

AR+,ex = AR−,ex = DURING

I+,ex =]−infinity, 1/1/1210] , I−,ex = [1/1/1214,+infinity[

and µex and νex are the membership functions of the fuzzy sets:

{(Aloisius, 1), (Euforius, 0.7), (Eugenius, 0.1)}, respectively

{(Ambrosius, 1), (Theofilus, 0.7), (Antonius, 0.1)}

and S is the set of all author names in the example relation’s ‘Author’ attribute
domain.

3.3 Elementary Query Condition Evaluation

Generally, a first step in determining which objects or concepts corresponding
to tuples to present to a user as answer to his or her query, is evaluating the
query’s elementary conditions for every tuple. In the presented work, given a user
query Q constructed as proposed in section 3.2 and using the same notations,
the following is done separately for every tuple T of VTR R:

Bipolar Querying of Valid-Time Intervals Subject to Uncertainty 9

– every non-temporal BQC in Qn is evaluated as described in [13], resulting
in a BSD for each. The interpretation is as described in [13]: the BSD’s
satisfaction, respectively dissatisfaction degrees express to which extent T
satisfies, respectively dissatisfies the user preferences expressed by the BQC.

– the query’s temporal BQC Qt is evaluated as follows. Let IT be the tuple’s
IKVTI. Then, independently, the statements ‘IT AR+ I+’, respectively ‘IT
AR− I−’ are evaluated using the IKC framework as described in [2], [4], [17].
These evaluations result in a possibility degree Pos+(IT) and a necessity de-
gree Nec+(IT), respectively a possibility degree Pos−(IT) and a necessity
degreeNec−(IT). The interpretation is that Pos+(IT) andNec+(IT) express
the possibility, respectively necessity, that the time interval during which the
version or state represented by T is valid and which is intended by IT , is in
relationship AR+ with I+ and thus complies with the user’s positive tempo-
ral demand. Furthermore, the interpretation is that Pos−(IT) and Nec−(IT)
express the possibility, respectively necessity, that the time interval during
which the version or state represented by T is valid and which is intended
by IT , is in relationship AR− with I− and thus complies with the user’s
negative temporal demand.

Table 3 shows the results of the evaluation of the example query’s elementary
query conditions for the tuples of the example relation.

Table 3. Elementary query condition evaluation results for the example relation

ID BSDQN,ex
(T) (Pos+(IT), Nec+(IT) (Pos−(IT), Nec−(IT)

1 (1, 0) (1, 1) (0, 0)

2 (0, 0.7) (1, 0) (0, 0)

3 (0, 0) (11/25, 0) (0, 0)

4 (0.7, 0) (0, 0) (0, 0)

5 (0, 1) (0, 0) (14/25, 0)

6 (1, 0) (0, 0) (1, 0)

7 (0, 0) (0, 0) (1, 1)

3.4 Aggregation and Ranking

Generally, a second step in determining which objects or concepts corresponding
to tuples to present to a user as answer to his or her query, is aggregating, for
every tuple, the tuple’s evaluation results for the query’s elementary conditions,
in order to determine how well the tuple complies with the entire user request
expressed by the combination of the elementary query conditions. Usually, these
evaluation results are quantifications of (dis)satisfaction. However, in the pre-
sented proposal, two different types of evaluation results can be discerned:

– the BSD’s (dis)satisfaction degrees constitute quantifications of (dis)satisfaction:
they quantify to which extent a tuple’s attribute values (dis)satisfy a user’s
non-temporal preferences and thus assess an answer to the question: ‘To
what extent does a version or state represented in the relation (dis)satisfy
the user’s request and could thus be a (un)wanted result?’

10 Christophe Billiet et al.

– the possibility and necessity degrees Pos+, Nec+, respectively Pos−, Nec−
constitute quantifications of possibility and necessity: they quantify the pos-
sibility that a tuple’s intended crisp VTI does (not) comply with the user’s
temporal demands by quantifying confidence about exactly which crisp VTI
is the tuple’s intended VTI. Thus, they assess an answer to the question:
‘Given all available knowledge, how plausible is it that a version or state
represented in the relation (that may or may not (dis)satisfy the user’s non-
temporal preferences) actually existed, exists or will exist during the time
period indicated by the user?’

A fundamental question arises now: should one consider combining quan-
tifications of these different categories? On one hand, such quantifications have
clearly different semantics and it would not be clear what exactly the meaning
would be of the result of such a combination or what the semantically most
coherent ways would be to further process such combination results. Thus, it is
important, for every query result tuple presented to the user, to certainly keep
both different types of evaluation results as separate (meta)data. On the other
hand, without an unambiguous and straightforward ranking of the query result
tuples, the user cannot clearly discern the result tuples which comply well with
his or her demands from those which don’t. This would defeat the purpose of
querying. Reasonably, such a ranking should be based on the elementary query
condition evaluation results. As there cannot exist a ranking between quantifi-
cations of categories with different semantics, a combination of quantifications
of satisfaction and possibility seems to be required. In most existing proposals
requiring a combination of quantifications of satisfaction and possibility, both
quantifications are combined as to restrict one another. The result is usually
seen as a quantification of possibility. Below, this approach is translated to the
specific situation encountered in the presented work.

For every tuple T , the BSD’s which are the evaluation results of the non-
temporal BQC are combined to a single BSD (sn(T), dn(T)) as described in [13].
In this combination method, satisfaction degrees are combined with each other
and separately, dissatisfaction degrees are combined with each other. This rea-
soning is now extended to include Pos+(IT),Nec+(IT), Pos−(IT) andNec−(IT):
a couple (Pos+(T), Nec+(T)), respectively (Pos−(T), Nec−(T)) is calculated,
expressing the possibility and necessity that the version or state corresponding
to T complies with all of the user’s positive, respectively negative demands. This
calculation is done as follows:

Pos+(T) =min(sn(T), Pos+(IT))

Nec+(T) =

{

0, if Pos+(T) < 1

min(sn(T), Nec+(IT)), else

Pos−(T) =min(dn(T), Pos−(IT))

Nec−(T) =

{

0, if Pos−(T) < 1

min(dn(T), Nec−(IT)), else

Bipolar Querying of Valid-Time Intervals Subject to Uncertainty 11

Next, a tie-break approach is used to rank the versions or states represented
in R: ranking is done based on the value of Pos+(T), with Nec+(T) as tie-
breaker for Pos+(T), with Pos−(T) as tie-breaker for (Pos+(T), Nec+(T)) and
finally Nec−(T) as tiebreaker for (Pos+(T), Nec+(T), Pos−(T)). The results of
this aggregation and ranking approach for the example relation and query are
shown in table 4.

The introduced technique for aggregating elementary query condition eval-
uation results and determining a ranking does not require the combination of
quantifications with different interpretations and still presents the query result
tuples in a ordered manner, where this ordering is consistent with the expected
extend to which each tuple is usefull to the user. However, the technique still
requires the user to decide which objects or concepts constitute the best query
answer, although this decision is heavily supported.

Table 4. Aggregation and ranking results for the example relation and query

ID Pos+(T) Nec+(T) Pos−(T) Nec−(T) BSDQn,ex (Pos+(IT), Nec+(IT)) (Pos−(IT), Nec−(IT))

1 1 1 0 0 (1, 0) (1, 1) (0, 0)

2 0 0 0 0 (0, 0.7) (1, 0) (0, 0)

3 0 0 0 0 (0, 0) (11/25, 0) (0, 0)

4 0 0 0 0 (0.7, 0) (0, 0) (0, 0)

6 0 0 0 0 (1, 0) (0, 0) (1, 0)

7 0 0 0 0 (0, 0) (0, 0) (1, 1)

5 0 0 14/25 0 (0, 1) (0, 0) (14/25, 0)

4 Conclusions and Future Work

In this paper, a novel technique to query a valid-time relation containing valid-
time data subject to uncertainty in a bipolar way, is presented. This technique al-
lows the user to specify a single valid-time bipolar query condition. A major issue
concerning the need to combine quantifications of (dis)satisfaction with quan-
tifications of possibility resulting from this technique is presented and shortly
discussed, along with a solution for this issue. In the near future, the interactions
between these types of quantifications and between uncertainty in valid-time
data and bipolar querying will be further studied. Also, an approach to allow
the valid-time bipolar query condition to be fuzzy will be considered.

References

1. Böhlen, M.H., Clifford, J., Elmasri, R., Gadia, S.K., Grandi, F., Hayes, P., Jajodia,
S., Käfer, W., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari, A., Nonen, D.,
Peressi, E., Pernici, B., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snod-
grass, R.T., Soo, M.D., Tansel, A.U., Tiberio, P., Wiederhold, G.: The Consensus
Glossary of Temporal Database Concepts-February 1998 Version. In: Lecture Notes
in Computer Science. Volume 1399/1998. (1998) 367–405

2. Pons, J.E., Maŕın, N., Pons, O., Billiet, C., De Tré, G.: A Relational Model for
the Possibilistic Valid-time Approach. International Journal of Computational
Intelligence Systems 5(6) (2012) 1068–1088

12 Christophe Billiet et al.

3. Billiet, C., Pons, J.E., Pons Capote, O., De Tré, G.: Evaluating Possibilistic Valid-
Time Queries. In: Communications in Computer and Information Science. Volume
297. (2012) 410–419

4. Pons, J.E., Billiet, C., Pons Capote, O., De Tré, G.: A Possibilistic Valid-Time
Model. In: Communications in Computer and Information Science. Volume 297.
(2012) 420–429

5. Medina, J.M., Pons, O., Amparo Vila, M.: Gefred: A Generalized Model of Fuzzy
Relational Databases. Information Sciences 76(1-2) (1994) 87–109

6. Bosc, P., Pivert, O.: Modeling and Querying Uncertain Relational Databases:
A Survey of Approaches Based on the Possible Worlds Semantics. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18(5) (2010) 565–
603

7. Dyreson, C.E., Snodgrass, R.T.: Supporting Valid-Time Indeterminacy. ACM
Transactions on Database Systems 23(1) (1998) 1–57

8. Zadrozny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: An overview of fuzzy
approaches to flexible database querying. In: Handbook of Research on Fuzzy
Information Processing in Databases. IGI Global (2008)

9. Devos, F., Maesfranckx, P., De Tré, G.: Granularity in the Interpretation of Around
in Approximative Lexical Time Indications. Journal of Quantitative Linguistics
5(3) (1998) 167–173

10. Kacprzyk, J., Zadrozny, S.: Computing with Words in Intelligent Database Query-
ing: Standalone and Internet-based Applications. Information Sciences 134(1-4)
(2001) 71–109

11. Dubois, D., Prade, H.: Bipolarity in Flexible Querying. In: LNCS. Volume 2522.
(2002) 174–182

12. De Tré, G., Zadrozny, S., Bronselaer, A.: Handling Bipolarity in Elementary
Queries to Possibilistic Databases. IEEE Transactions on Fuzzy Systems 18(3)
(2010) 599–612

13. Matthé, T., De Tré, G., Zadrozny, S., Kacprzyk, J., Bronselaer, A.: Bipolar
Database Querying Using Bipolar Satisfaction Degrees. International Journal of
Intelligent Systems 26(10) (2011) 890–910

14. Galindo, J., Medina, J.M.: FTSQL2: Fuzzy Time in Relational Databases*. In:
Proceedings of the 2nd International Conference in Fuzzy Logic and Technology.
(2001) 47–50

15. Schockaert, S., De Cock, M., Kerre, E.E.: Fuzzifying Allen’s Temporal Interval
Relations. IEEE Transactions on Fuzzy Systems 16(2) (2008) 517–533

16. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications
of the ACM 26(11) (1983) 832–843

17. Pons, J.E., Bronselaer, A., De Tré, G., Pons, O.: Possibilistic evaluation of sets.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
(2012) Accepted for publication in the International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems.

18. Billiet, C., Pons, J.E., Matthé, T., De Tré, G., Pons Capote, O.: Bipolar Fuzzy
Querying of Temporal Databases. In: Lecture Notes in Artificial Intelligence. (2011)
60–71

19. Dubois, D., Prade, H.: Possibility Theory. Plenum Press (1988)
20. Dubois, D., Prade, H.: Incomplete Conjunctive Information. Computers & Math-

ematics with Applications 15(10) (1988) 797–810
21. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20(1) (1986)

87–96

