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Abstract

A database represents part of reality by containing data represent-
ing properties of real objects or concepts. To many real-world con-
cepts or objects, time is an essential aspect and thus it should of-
ten be (implicitly) represented by databases, making these temporal
databases. However, like other data, the time-related data in such
databases may also contain imperfections such as uncertainties. One
of the main purposes of a database is to allow the retrieval of infor-
mation or knowledge deduced from its data, which is often done by
querying the database. Because users may have both positive and
negative preferences, they may want to query a database in a bipolar
way. Moreover, their demands may have some temporal aspects. In
this paper, a novel technique is presented, to query a valid-time rela-
tion containing uncertain valid-time data in a heterogeneously bipolar
way, allowing every elementary query constraint a specific temporal
constraint.
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1 Introduction

Databases are collections of data. These data are usually the result of
measurements or descriptions of aspects or properties of real-world objects
or concepts. As these data represent properties of objects or concepts in
reality, the database itself represents a part of reality [3], [16].

To many real-world concepts or objects, time is an essential aspect. E.g.,
certain historical events are meaningless without time frame. Therefore,
many databases contain data representing temporal notions which describe
the temporal properties of real-world objects or concepts. In the context
of database systems, such temporal values [11], [4] can be classified into
different categories, based on their interpretation and purpose:

• valid-time indications describe when a database fact or data is
a true or valid representation of the reality modelled by the data-
base [11], [4].

• transaction-time indications describe when a fact or data is cur-
rent in the database, which means it is not logically deleted and can
thus be retrieved [11], [4].

• decision-time indications describe when certain events were de-
cided to happen [15].

A lot of data is made by humans. Human-made data is prone to im-
perfections: it can be vague or imprecise, may contain contradictions, be
incomplete or contain uncertainties [16], [17]. Uncertainties in data may be
caused by variability in the outcomes of an experiment and confidence in the
context of such uncertainty may be modelled using probability theory [5].
Uncertainties in data may also be caused by a (partial) lack of knowledge:
the exact value which is the answer to a certain question might not be
known, even if there is just one correct answer and as such no variability.
Confidence in the context of this kind of uncertainty may be modelled using
possibility theory [19], [9], [5], [16], [17]. Uncertainties caused by a (par-
tial) lack of knowledge may exist in temporal notions [17], [16], [5]. E.g.,
consider a medieval document defining a legal act. The document contains
the date defining the day on which the legal act took effect. Consider the
document damaged, making this date unreadable. In this case, there is
uncertainty about the exact day on which the legal act took effect and this
uncertainty is caused by the lack of some knowledge: it is known that there
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is exactly one day on which the act took effect, but it is not known which
one.

One of the most important purposes of a database is of course to allow
the retrieval of information and knowledge deduced from its data. Often,
this is done by querying the database. Databases can be queried in a ‘reg-
ular’ way: the user describes the data which are desired or satisfactory
to him or her and which he or she thus wants to retrieve, by perfectly
describing the allowed values of this data for certain attributes in clearly
stated user preferences. However, databases can also be queried in a ‘fuzzy’
way: the user describes the data which are desired or satisfactory to him
or her by imperfectly describing the allowed values of this data for cer-
tain attributes [6]. These imperfect descriptions may contain vagueness or
imprecision, often through the use of linguistic terms [13]. Databases can
also be queried in what is called a ‘bipolar’ way. Generally, there are two
main approaches to this. One is for the user to describe the data which
are required (acceptable) to him or her and to describe the data among the
required data, which are really desired (wished-for) to him or her, both by
describing the allowed values of this data for certain attributes [10]. In the
other, the user describes the data which are desired or satisfactory to him or
her and the data which are undesired or unsatisfactory to him or her, both
by describing the allowed values of this data for certain attributes [7], [14].
These descriptions might or might not contain imperfections. The pre-
sented work will only consider the latter approach to bipolar querying.

Generally, in querying, temporal data are handled specifically. Because
of the temporal capacity and interpretation of temporal data, users usually
like expressing their temporal constraints or preferences using a specific
set of temporal operators [12], [17], [18]. Often, such temporal operators
are based on the possible temporal relationships between two temporal
values [12], [17], [18]. Such temporal relationships express semantically
meaningful relationships between two temporal values. In [1] a ground-
breaking collection of temporal relationships between two time intervals
(and as a special case time instants or time points) [11], [4] is presented.
To query temporal data in an imperfect way, fuzzy variants of temporal
operators are of course necessary. Thus, several proposals have considered
fuzzy variants of temporal relationships [18], [5] and of temporal operators
used for the fuzzy querying of temporal databases [12], [16].

Several existing proposals have covered the regular or fuzzy query-
ing of valid-time relational databases containing uncertain valid-time da-
ta [17], [16], [5]. However, to the knowledge of the authors, few proposals
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have considered the bipolar querying of valid-time databases and even fewer
the bipolar querying of valid-time databases containing temporal data sub-
ject to uncertainty. The presented work tries to fill part of this gap by
presenting a novel technique to query a valid-time relation containing un-
certain valid-time data in a bipolar way. This novel technique allows the
specification of a valid-time constraint related to each bipolar elementary
query constraint. This novel technique is presented in Section 3. In Sec-
tion 2, some necessary preliminary concepts and techniques are clarified
and in Section 4, the conclusions of this paper and some directions for
future research are given.

2 Preliminaries

In this section, some preliminary concepts and techniques are presented
and briefly explained.

2.1 Valid-time relations

The presented work considers the relational database model. Here, a rela-
tion is composed of a heading and a body. The heading, or relation schema,
is a set of attributes and describes a group of similar real-world concepts
or objects. These attributes describe different aspects of these concepts or
objects. For example, the heading of a relation describing wanted criminals
might contain the attributes ‘Date of Birth (DoB)’ and ‘Area of Operation
(AoO)’, describing the date of birth and the main city of operation of a
criminal. The body is a set of n-tuples, where n is the number of attributes
in the heading. Every tuple contains n values (each corresponding to an
attribute) and represents one real-world object or concept in the group de-
scribed by the heading. To achieve this, every such value represents the
result of a measurement or description of the aspect described by its cor-
responding attribute, of the real-world object or concept corresponding to
its tuple.

The heading of a valid-time relation also contains attributes describing
a single valid-time indication for each tuple. These are called ‘valid-time
attributes’. Its body may contain several different tuples corresponding to
the same real-world concept or object. Each such tuple then represents
a ‘state’ or ‘version’ of the real object or concept which was or is valid
(true, in existence,. . . ) during the period in time given by the valid-time
indication represented by the valid-time attribute values. Thus, the results

4



of the measurements or descriptions represented by the values in such a
tuple were or are true for the object or concept corresponding to the tuple,
during the period in time given by the valid-time indication represented by
the tuple’s valid-time attribute values. In the presented work, such valid-
time indications will always be time intervals [11] [4] and will always be
referred to as valid-time intervals.

2.2 Possibilistic Variables, Ill-known Values and Ill-known
Valid-time Intervals

The presented work allows the valid-time intervals of a valid-time relation’s
tuples to be subject to uncertainties caused by a (partial) lack of knowledge.
To accomplish this, these valid-time intervals are allowed to be ill-known
intervals [3]. In this section, possibilistic variables and the concepts of ill-
known values and ill-known intervals are introduced, based on [3], [5], [8].
These concepts rely heavily on possibility theory [9]. In this work, ‘possi-
bility’ is always interpreted as a measure of plausibility, given a (partial)
lack of knowledge. A possibilistic variable is defined as follows [3], [5], [16],
[9], [8].

Definition 1 A possibilistic variable X on a universe U is defined as a
variable taking exactly one value in U , but for which this value is (par-
tially) unknown. The variable’s possibility distribution πX on U models the
available knowledge about the value that X takes: for each u ∈ U , πX(u)
represents the possibility that X takes the value u. This possibility is inter-
preted as a measure of how plausible it is that X takes the value u, given
(partial) knowledge about the value X takes.

An ill-known value is now defined as follows [3], [5], [16], [9], [8]:

Definition 2 Consider a set R containing single values (and not collec-
tions of values). When a possibilistic variable Xv is defined on such a set
R, the unique value Xv takes, which is (partially) unknown, is called an
ill-known value in this work.

An ill-known interval and an ill-known valid-time interval are now de-
fined as follows [3], [17], [16], [8]:

Definition 3 Consider a set R containing single values and its powerset
℘(R). Now consider a subset ℘I(R) of ℘(R) and let this subset contain
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every element of ℘(R) that is an interval, but no other elements. When a
possibilistic variable Xi is defined on the subset ℘I(R) of the powerset ℘(R)
of some set R, the unique value Xi takes will be a crisp interval and the
possibility distribution πXi of Xi will be a possibility distribution on ℘I(R).
This πXi will define the possibility of each value of ℘I(R) (a value of ℘I(R)
is a crisp interval in R) being the value Xi takes. This exact value the
variable takes, is called an ill-known interval here. Seen as the ill-known
interval basically defines an interval in R, it is also called an ill-known
interval in R in this context. When the set R is an ordered set of time
points which is represented by the domain of a set of valid-time attributes,
such ill-known interval will be called an ill-known valid-time interval in the
presented work.

The definition above uses the most general approach to defining ill-
known valid-time intervals. However, in the presented work, another ap-
proach will be used. Here, an ill-known valid-time interval is defined by its
start and end point, which are ill-known values in the time domain [11],
[4] represented by the valid-time attributes’ domain. An ill-known valid-
time interval is seen as an interval of which the exact start and end point
are (partially) unknown, which implies that the interval itself is (partially)
unknown.

Investigating the differences and similarities between these approaches
and the correspondences, interactions and transformations between them
are part of the current research of the authors.

In the presented work, the possibility distributions defining the ill-
known values which define an ill-known valid-time interval, will take a
triangular shape [17], [16]. This means, for a possibility distribution πX
on an ordered set of time points T , there will be a single value m ∈ T
for which πX(m) = 1, there will be a single value m − a ∈ T , determined
by the distance a, for which m − a = inf{u ∈ T : πX(u) > 0}, there
will be a single value m + b ∈ T , determined by the distance b, for which
m+ b = sup{u ∈ T : πX(u) > 0} and every value in T will comply with:

πX(u) =



0 if u ≤ m− a
u−m+ a

a
if u ≥ m− a and u ≤ m

1 if u = m
m− u

b−m
+ 1 if u ≥ m and u ≤ m+ b

0 if u ≥ m+ b.
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ID IID DoB AoO VST VET

1 1 11/08/77 Bruges [5/11/02, 1, 2] [10/11/02, 1, 1]
1 2 11/08/77 Ghent [16/11/02, 1, 1] [24/11/02, 4, 3]
1 3 11/08/77 Antwerp [10/06/03, 5, 3] [11/08/04, 2, 2]
2 1 23/05/77 Antwerp [16/11/02, 1, 1] [24/11/02, 4, 2]
2 2 23/05/77 Ghent [20/06/03, 4, 7] [11/08/04, 4, 7]

Table 1: A visualisation of an example relation, containing information on
criminals. The value for attribute ID uniquely identifies a criminal, the
combination of values for attributes ID and IID uniquely identify a state
or version of a criminal.

The triangular shape described above will allow such possibility dis-
tribution and thus its corresponding ill-known value to be totally defined
and described by its values m, a and b alone. Therefore, such possibility
distribution will be noted [m,a, b] in this paper. Crisp time points (and
thus crisp time intervals) can now still be defined by setting their values a
and b to 0.

Thus, in what follows, the valid-time indications in the valid-time rela-
tion will be ill-known valid-time intervals. For reasons of convenience, these
intervals will be described by two valid-time attributes: a so-called ‘valid
start time’ (VST), which describes the ill-known value which is the inter-
val’s start point and a so-called ‘valid end time’ (VET), which describes the
ill-known value which is the interval’s end point. All of this is illustrated
in Table 1, which is a visualisation of the example relation which will be
used throughout the rest of the paper.

2.3 Ill-known Constraints

In the presented paper, the specific evaluation of a temporal constraint for
a given record is done using the framework of ill-known constraints [5], [16],
[17]. In [5], the notion of an ill-known constraint is introduced:

Definition 4 Given a universe U , an ill-known constraint C is specified
by means of a binary relation R ⊆ U2 and a fixed, ill-known value defined
by its possibilistic variable V on U , i.e.,

C , (V,R).

A set A ⊆ U now satisfies this constraint C if and only if:

∀a ∈ A : (V, a) ∈ R.
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An example of an ill-known constraint is C> , (X,>). A set A then
satisfies C> if ∀a ∈ A : X > a.

Basically, the satisfaction of a crisp constraint by a set A is a boolean
matter (A either satisfies the constraint or not) and can be seen as a boolean
proposition. However, for an ill-known constraint C , (V,R), due to the
uncertainty inherent to the ill-known value V , it can be uncertain whether
C is satisfied by A or not [5], [3]. Based on the possibility distribution πV
of V , the possibility and necessity that A satisfies C can be determined.
This proposition can thus be seen as a possibilistic variable on B. The
possibility and necessity are obtained by:

Pos(A satisfies C) = min
a∈A

(
sup

(w,a)∈R
πV (w)

)
(1)

Nec(A satisfies C) = min
a∈A

(
inf

(w,a)/∈R
(1− πV (w))

)
. (2)

Such possibility and necessity pairs can be aggregated in order to reflect
the evaluation of logical compositions of ill-known constraints [5].

2.4 Bipolar Querying

As mentioned before, sometimes people express their preferences using both
positive and negative statements. In some cases, the semantics of these
statements are non-symmetric in such a way that the positive preferences
can not be derived from the negative or vice versa. In these cases, the
bipolarity in the query specification is called ‘heterogeneous’. The presented
work will consider such heterogeneous bipolar querying.

In database querying, bipolarity can either be specified inside elemen-
tary query conditions, or it can be specified between elementary query
conditions. In [14], it is shown that combining both approaches makes no
sense and, more importantly, the approach where bipolarity is specified
inside elementary query conditions, using intuitionistic fuzzy sets [2], is a
more intuitive one. Thus, in the presented work, we will only use the latter
approach.

In this approach, elementary query conditions are allowed to express
both what is accepted and what is not accepted as a result of the query, at
once. Such query conditions are called ‘bipolar query conditions’ [14].

As described in [14], [7], a bipolar query condition cA expressing the
user’s preferences about the values of an attribute A can be modelled by
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an Intuitionistic Fuzzy Set (IFS) [2] as:

cA = {(x, µcA(x), νcA(x)) : x ∈ domA}.

Here, domA is the domain of attribute A’s data type, the membership
degree µcA(x) corresponding to a value x ∈ domA represents to what ex-
tent value x is satisfactory to the user, whereas the non-membership degree
νcA(x) corresponding to a value x ∈ domA represents to what extent value
x is unsatisfactory to the user [14], [7]. Note that to allow the user’s pref-
erences to be overspecified, the IFS’s consistency condition can be relaxed,
which means that

∀x ∈ domA : µcA(x) + νcA(x) ≤ 1

does not necessarily have to hold.
If the user defines µcA(x), explicitly providing his or her positive pref-

erences, but doesn’t define νcA(x), then the non-membership function will
be assumed to be the inverse of the membership function, i.e.,

νcA(x) = 1− µcA(x),∀x ∈ domA.

If the user defines νcA(x), explicitly providing his or her negative prefer-
ences, but doesn’t define µcA(x), then the membership function will be
assumed to be the inverse of the non-membership function, i.e.,

µcA(x) = 1− νcA(x),∀x ∈ domA.

Thus, in the absence of clear heterogeneousness of the bipolarity, the bipo-
larity will be assumed homogeneous.

In the approach presented in [14], the evaluation of a bipolar query
condition cA results in a so-called bipolar satisfaction degree (BSD), which
is a pair

(s, d), s, d ∈ [0, 1]

where s is called the satisfaction degree and d is called the dissatisfaction
degree. Both s and d take their values in the unit interval [0, 1] and are
independent of each other: they independently denote to which extent the
BSD respectively represents ‘satisfied’ and ‘dissatisfied’. Extreme values
for s and d are 0 (‘not at all’) and 1 (‘fully’). As such and as special cases,
the BSD (1, 0) represents ‘fully satisfied, not dissatisfied at all’, whereas
(0, 1) represents ‘not satisfied at all, fully dissatisfied’.
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From a semantical point of view, BSD’s are closely related to Atanassov
intuitionistic fuzzy sets (AFS) [2], except that it is explicitly assumed that
there is no consistency condition for BSD’s, i.e., a condition like 0 ≤ s+d ≤
1 is missing. Indeed, because s and d are considered to be completely
independent of each other, it is allowed that s + d > 1. The motivation
for this is that BSD’s try to reflect heterogeneous bipolarity in human
reasoning, and that human reasoning can sometimes be inconsistent.

In general, the evaluation of a database tuple R against a bipolar query
condition cA over attribute A will result in a BSD, which is calculated as
follows (R[A] is the value of tuple R for attribute A):

(sRcA , d
R
cA
) = (µcA(R[A]), νcA(R[A])) (3)

with sRcA and dRcA the satisfaction degree, respectively dissatisfaction degree,
of tuple R for condition cA.

If only positive information is given by the user (µcA), this is reduced
to

(sRcA , d
R
cA
) = (µcA(R[A]), 1− µcA(R[A]))

Analogously, when only negative information is given (νcA), this is reduced
to

(sRcA , d
R
cA
) = (1− νcA(R[A]), νcA(R[A]))

Remark again that the traditional approach with regular satisfaction
degrees can be obtained as a special case, namely in the case of symmetric
bipolarity. In that case, one merely has to omit the dissatisfaction degree
from the BSD to receive the traditional satisfaction degrees.

3 Bipolar Querying of a Valid-time Relation

In this section, a novel technique is proposed to query a valid-time rela-
tion with valid-time indications subject to uncertainty in a heterogeneously
bipolar way. The novelty of this technique is that it allows a local specifi-
cation of the user’s temporal preferences, i.e., for every elementary query
condition, the user can specify during which crisp valid-time interval this
condition should hold. First, the assumed structure of the valid-time rela-
tion is discussed, next the proposals for the construction of a query and the
evaluation of such a query are presented and last, some issues concerning
record ranking and the technique adopted here are given.
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3.1 Structure of the Relation

The presented work will consider valid-time relations with valid-time indica-
tions which are ill-known valid-time intervals, as described in Section 2.2.
The example given in that section will continue to serve as an example
throughout the rest of the paper.

3.2 Construction of the Query

In the current proposal, a query Q is constructed as:

Q = (cA1 , tcA1) op1 . . . opn−1 (cAn , tcAn).

Here, for every i ∈ N, for which 1 ≤ i ≤ n, every cAi is a bipolar elemen-
tary query condition specified using an IFS (as shown in Section 2.4) and
every opi is an operator, which can be either ‘AND’ or ‘OR’. Every tcAi

is now a temporal constraint. Such a temporal constraint tcAi is now any
construction which can be evaluated to a single Allen relationship and a
single crisp time interval.

The interpretation here is that the user requires records for which the
corresponding elementary query condition is valid during a time interval
related to the time interval to which the temporal constraint evaluates. The
nature of this relationship is given by the Allen relationship. Remembering
that a record in a valid-time relation represents a state or version of a
real object or concept (as opposed to a real object itself), the user’s query
demands are interpreted as demands towards the state of an object or
concept during the given corresponding time period(s). This means that
the user may express demands about the current state of an object or
concept (by specifying a time interval containing the present) and demands
about previous states of an object or concept (by specifying time intervals
in history). Thus, the user can describe the current and previous states
of the object or concept he or she requires and thus some kind of required
‘history’. Obviously, several elementary query conditions may concern the
same attribute, but indicate a different time period.

Considering the example relation given in Section 2.2, a user could be
interested in identifying a criminal who ‘was born somewhere in the summer
of 1977, operated in the vicinity of Bruges from 6/11/02 until 10/11/02 and
operated in the surroundings of Ghent, but certainly not around Bruges any
more, since 16/11/02’. The corresponding query would then be:

Qex = (cDoB, tcDoB) AND (cAoO,1, tcAoO,1) AND (cAoO,2, tcAoO,2)
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where

• (cDoB, tcDoB) models the criterion ‘was born somewhere in the sum-
mer of 1977’.

– Under the consideration that T is a time domain containing all
dates in time,

cDoB = {(x, µcDoB (x), 1− µcDoB (x)) : x ∈ T}

with membership function

µcDoB (x) =


0 if x is a date with month in

{Jan, Feb,Mar,Apr,Oct,Nov,Dec}
0.5 if x is a date with month in {May, Sep}
1 if x is a date with month in

{Jun, Jul, Aug}

and the non-membership function νcDoB is the inverse of the
membership function µcDoB .

– tcDoB = during ]−∞,∞[, which reflects that there are no spe-
cific constraints on the valid time for this criterion.

• (cAoO,1, tcAoO,1) models the criterion ‘operated in the vicinity of
Bruges from 6/11/02 until 10/11/02’. Hereby

– cAoO,1 = {(x, µcAoO,1(x), 1 − µcAoO,1(x)) : x ∈ Cities} where the
membership function µcAoO,1 is the one of the fuzzy set

{(Bruges, 1), (Ghent, 0.7), (Antwerp, 0.3)}

and the non-membership function νcAoO,1 is the inverse of the
membership function µcAoO,1 .

– tcAoO,1 = during [6/11/02, 10/11/02] models ‘from 6/11/02 un-
til 10/11/02’.

• (cAoO,2, tcAoO,2) models the criterion ‘certainly not around Bruges
any more, since 16/11/02’. Hereby

– cAoO,2 = {(x, µcAoO,2(x), 1 − µcAoO,2(x)) : x ∈ Cities} where the
membership function µcAoO,2 is the one of the fuzzy set

{(Bruges, 0.3), (Ghent, 1), (Antwerp, 0.7)}
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and the non-membership function νcAoO,2 is the membership
function of the fuzzy set

{(Bruges, 1), (Ghent, 0.3), (Antwerp, 0.3)}.

– Under the consideration that ‘NOW ’ indicates the current date,
tcAoO,2 = during [16/11/02, NOW ] models ‘since 16/11/02’.

3.3 Query Evaluation

The query is evaluated for every record in the relation. For every record in
the relation, the following happens distinctly:

• Every non-temporal elementary query condition is evaluated, result-
ing in a BSD for each. This evaluation is done as described in [14],
using Eq. (3). The resulting BSD expresses the extend to which the
record’s value for the corresponding attribute satisfies and dissatisfies
the user’s non-temporal demand expressed in the elementary query
condition.

• Every temporal constraint corresponding to an elementary query con-
dition is evaluated, resulting in a possibility degree and a necessity
degree. For this evaluation, the possibility and necessity degrees ex-
pressing respectively the possibility and necessity that the record’s
valid-time interval is in the given Allen relationship with the given
crisp time interval are calculated using ill-known constraints. This
calculation is done exactly as described in [16], [5], using Eq. (1)-(2).

The interpretation here is that the resulting BSD expresses to which
extend the state of an object or concept satisfies the user’s request, while
the possibility and necessity degrees express how plausible, respectively
necessary it is that the object or concept under consideration is in this
state during a time period related to the time period specified by the user
in the manner specified by the user.

In Table 2, the resulting BSD’s, possibilities and necessities after eval-
uation of the individual criteria in the example query for the records of
Table 1 are shown.

3.4 Object Ranking

The purpose of evaluating a query is of course to provide the user with
the objects or concepts most fitting to his or her needs. In this case, two
different criteria play a role.
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ID IID cDoB tcDoB cAoO,1 tcAoO,1 cAoO,2 tcAoO,2

1 1 (1,0) (1,1) (1,0) (1, 0) (0.3,1) (0,0)
1 2 (1,0) (1,1) (0.7, 0.3) (0, 0) (1,0.7) (1,0)
1 3 (1,0) (1,1) (0.3, 0.7) (0, 0) (0.7,0.3) (1,1)
2 1 (0.5, 0.5) (1,1) (0.3, 0.7) (0, 0) (0.7,0.3) (1,0)
2 2 (0.5, 0.5) (1,1) (0.7, 0.3) (0, 0) (1,0.7) (1,1)

Table 2: The example query evaluation for the example table. The values
for the non-temporal constraints show BSD’s (s, d), the others pairs (p, n)
consist of a possibility degree p and necessity degree n.

1. The possibility and necessity degrees constitute quantifications of con-
fidence in a context of valid-time uncertainty and thus portray the
confidence in and necessity of the presence of an object able to fulfill
the user’s requests. These quantifications answer the question: ‘How
plausible is it that a suitable object or concept is available?’.

2. The (dis)satisfaction degrees constitute quantifications of satisfaction
and dissatisfaction and thus portray the level of (dis)satisfaction an
object could bring the user with respect to his or her demands. These
quantifications answer the question: ‘To what extend would a possibly
available object (dis)satisfy the user’s demands?’.

A fundamental question poses itself now: how can both quantifications
be combined so as to obtain a single ranking of the results? An unambigu-
ous and straightforward ranking allows to easily present the query results
best fitting the user’s demands. When ranking the results, the importance
the user allocates to availability and (dis)satisfaction should be carefully
examined and taken into account: some users might not care so much about
availability, as long as they are sufficiently satisfied with the object, or vice
versa. It is important to keep both quantifications as separate (meta)data
in the ranked results presented to the users, else the mutually different
interpretations of both quantifications would be lost.

In most existing proposals dealing with a similar situation, both quan-
tifications are combined as to restrict each other. The result is generally
seen as a quantification of the possibility that the user requirements are
met. In the presented work, this same approach will be followed.

For every couple (cAi , tcAi) of a non-temporal elementary query con-
straint cAi and the corresponding temporal constraint tcAi , let

• (sRcAi
, dRcAi

) be the BSD and
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• (posRtcAi
, necRtcAi

) be the possibility and necessity pair

all resulting from the evaluation of (cAi , tcAi) for a database tuple R. First,
a score

scRcAi
=

(sRcAi
− dRcAi

+ 1)

2
is calculated, expressing how well the record fulfils the positive and neg-
ative non-temporal user demands about attribute Ai. This calculation is
based on a scoring function suggested in [14] (but rescaled to cover the unit
interval) and could be replaced by another consistent one. Now, the possi-
bility posRAi

and the necessity necRAi
that the user’s requirements about Ai

are met, are calculated as follows:

posRAi
= min(scRcAi

, posRtcAi
)

necRAi
=

{
0 if posRAi

< 1

min(scRcAi
, necRtcAi

) else.

Every database tuple R represents an object or concept state. Let

{Ro,i : i ∈ N ∧ 1 ≤ i ≤ m}

be the set of tuples Ro,i representing states of object o. Then, for every

such couple (cA, tcA), for every object or concept o, the degrees pos
Ro,i

A

and nec
Ro,i

A , i ∈ N ∧ 1 ≤ i ≤ m must be combined in a general possibility
degree posoA, respectively necessity degree necoA, to express how possible
(resp. necessary) it is that o meets the user’s demands about A. For this,
a maximum function is used, to express that if any state of o has a high
plausibility of meeting the user’s demands, then o should be seen similar.
Thus:

posoA = max
1≤i≤m

(pos
Ro,i

A )

necoA = max
1≤i≤m

(nec
Ro,i

A ).

The results of these calculations for the example are shown in Table 3.
Based on these possibility and necessity degrees, a consistent ranking can
be made easily. In the context of the presented work, it is suggested to
model the ‘AND’ query operator with a minimum function and the ‘OR’
query operator with a maximum function. This would result in the objects
with ID’s respectively 1 and 2 having final possibilities 0.7, resp. 0 and
final necessities 0, resp. 0.
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ID posDoB necDoB posAoO,1 necAoO,1 posAoO,2 necAoO,2

1 1 1 1 0 0.7 0
2 0 0 0 0 0.7 0

Table 3: The resulting possibility and necessity degrees.

4 Conclusions

In this paper, a novel technique is presented, to query a valid-time rela-
tion containing uncertain valid-time data in a heterogeneously bipolar way,
allowing every elementary query constraint a specific temporal constraint.
Furthermore, a major issue in combining quantifications of (dis)satisfaction
with quantifications of confidence in a context of partial knowledge is de-
scribed and shortly discussed. In the near future the possible interactions
between valid-time uncertainty and bipolar querying will be further ex-
plored and some considerable attention will be dedicated to the issue in
combining semantically different quantifications.
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