1,177 research outputs found

    Pareto Optimal Allocation under Uncertain Preferences

    Get PDF
    The assignment problem is one of the most well-studied settings in social choice, matching, and discrete allocation. We consider the problem with the additional feature that agents' preferences involve uncertainty. The setting with uncertainty leads to a number of interesting questions including the following ones. How to compute an assignment with the highest probability of being Pareto optimal? What is the complexity of computing the probability that a given assignment is Pareto optimal? Does there exist an assignment that is Pareto optimal with probability one? We consider these problems under two natural uncertainty models: (1) the lottery model in which each agent has an independent probability distribution over linear orders and (2) the joint probability model that involves a joint probability distribution over preference profiles. For both of the models, we present a number of algorithmic and complexity results.Comment: Preliminary Draft; new results & new author

    Optimal Partitions in Additively Separable Hedonic Games

    Get PDF
    We conduct a computational analysis of fair and optimal partitions in additively separable hedonic games. We show that, for strict preferences, a Pareto optimal partition can be found in polynomial time while verifying whether a given partition is Pareto optimal is coNP-complete, even when preferences are symmetric and strict. Moreover, computing a partition with maximum egalitarian or utilitarian social welfare or one which is both Pareto optimal and individually rational is NP-hard. We also prove that checking whether there exists a partition which is both Pareto optimal and envy-free is Σ2p\Sigma_{2}^{p}-complete. Even though an envy-free partition and a Nash stable partition are both guaranteed to exist for symmetric preferences, checking whether there exists a partition which is both envy-free and Nash stable is NP-complete.Comment: 11 pages; A preliminary version of this work was invited for presentation in the session `Cooperative Games and Combinatorial Optimization' at the 24th European Conference on Operational Research (EURO 2010) in Lisbo

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    Pareto Optimal Matchings of Students to Courses in the Presence of Prerequisites

    Get PDF
    We consider the problem of allocating applicants to courses, where each applicant has a subset of acceptable courses that she ranks in strict order of preference. Each applicant and course has a capacity, indicating the maximum number of courses and applicants they can be assigned to, respectively. We thus essentially have a many-tomany bipartite matching problem with one-sided preferences, which has applications to the assignment of students to optional courses at a university. We consider additive preferences and lexicographic preferences as two means of extending preferences over individual courses to preferences over bundles of courses. We additionally focus on the case that courses have prerequisite constraints: we will mainly treat these constraints as compulsory, but we also allow alternative prerequisites. We further study the case where courses may be corequisites. For these extensions to the basic problem, we present the following algorithmic results, which are mainly concerned with the computation of Pareto optimal matchings (POMs). Firstly, we consider compulsory prerequisites. For additive preferences, we show that the problem of finding a POM is NP-hard. On the other hand, in the case of lexicographic preferences we give a polynomial-time algorithm for finding a POM, based on the well-known sequential mechanism. However we show that the problem of deciding whether a given matching is Pareto optimal is co-NP-complete. We further prove that finding a maximum cardinality (Pareto optimal) matching is NP-hard. Under alternative prerequisites, we show that finding a POM is NP-hard for either additive or lexicographic preferences. Finally we consider corequisites. We prove that, as in the case of compulsory prerequisites, finding a POM is NP-hard for additive preferences, though solvable in polynomial time for lexicographic preferences. In the latter case, the problem of finding a maximum cardinality POM is NP-hard and very difficult to approximate

    Counting Houses of Pareto Optimal Matchings in the House Allocation Problem

    Get PDF
    Let A,BA,B with A=m|A| = m and B=nm|B| = n\ge m be two sets. We assume that every element aAa\in A has a reference list over all elements from BB. We call an injective mapping τ\tau from AA to BB a matching. A blocking coalition of τ\tau is a subset AA' of AA such that there exists a matching τ\tau' that differs from τ\tau only on elements of AA', and every element of AA' improves in τ\tau', compared to τ\tau according to its preference list. If there exists no blocking coalition, we call the matching τ\tau an exchange stable matching (ESM). An element bBb\in B is reachable if there exists an exchange stable matching using bb. The set of all reachable elements is denoted by EE^*. We show Ei=1,,mmi=Θ(mlogm).|E^*| \leq \sum_{i = 1,\ldots, m}{\left\lfloor\frac{m}{i}\right\rfloor} = \Theta(m\log m). This is asymptotically tight. A set EBE\subseteq B is reachable (respectively exactly reachable) if there exists an exchange stable matching τ\tau whose image contains EE as a subset (respectively equals EE). We give bounds for the number of exactly reachable sets. We find that our results hold in the more general setting of multi-matchings, when each element aa of AA is matched with a\ell_a elements of BB instead of just one. Further, we give complexity results and algorithms for corresponding algorithmic questions. Finally, we characterize unavoidable elements, i.e., elements of BB that are used by all ESM's. This yields efficient algorithms to determine all unavoidable elements.Comment: 24 pages 2 Figures revise
    corecore