48 research outputs found

    The complexity of weighted boolean #CSP*

    Get PDF
    This paper gives a dichotomy theorem for the complexity of computing the partition function of an instance of a weighted Boolean constraint satisfaction problem. The problem is parameterized by a finite set F of nonnegative functions that may be used to assign weights to the configurations (feasible solutions) of a problem instance. Classical constraint satisfaction problems correspond to the special case of 0,1-valued functions. We show that computing the partition function, i.e., the sum of the weights of all configurations, is FP#P-complete unless either (1) every function in F is of “product type,” or (2) every function in F is “pure affine.” In the remaining cases, computing the partition function is in P

    The Complexity of Weighted Boolean #CSP with Mixed Signs

    Get PDF
    We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set of rational-valued functions, which generalize constraints. Each function assigns a weight to every assignment to a set of Boolean variables. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (-1)^s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is in polynomial time if either every weight function can be defined by a "pure affine" magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of "product type" with a linear sign polynomial. In all other cases, computing the partition function is FP^#P-complete.Comment: 24 page

    The Complexity of Weighted Boolean CSP Modulo k

    Get PDF
    We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for any positive integer k> 1. This generalizes a theorem by Faben for the unweighted setting. In the weighted setting, there are new interesting tractable problems. We first prove a dichotomy theorem for the finite field case where k is a prime. It turns out that the dichotomy theorem for the finite field is very similar to the one for the complex weighted Boolean #CSP, found by [Cai, Lu and Xia, STOC 2009]. Then we further extend the result to an arbitrary integer k

    The complexity of weighted and unweighted #CSP

    Get PDF
    We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.Comment: 11 page

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    The Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

    Get PDF
    Holant problem is a general framework to study the computational complexity of counting problems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain with non-negative weights. It is the first complete Holant dichotomy where constraint functions are not necessarily symmetric. Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard become tractable when restricted to read-twice instances. To capture them, we introduce the Block-rank-one condition. It turns out that the condition leads to a clear separation. If a function set F satisfies the condition, then F is of affine type or product type. Otherwise (a) Holant(F) is #P-hard; or (b) every function in F is a tensor product of functions of arity at most 2; or (c) F is transformable to a product type by some real orthogonal matrix. Holographic transformations play an important role in both the hardness proof and the characterization of tractability

    The Complexity of Counting Homomorphisms to Cactus Graphs Modulo 2

    Full text link
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class parity-P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.Comment: minor change
    corecore