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1. Introduction

The counting complexity of the weighted constraint satisfaction problem, for both exact and approximate computation,
has been an active research area for several years. See, for example, [1–18]. The objective is to give a precise categori-
sation of the computational complexity of problems in a given class. Easily the most significant development in this
stream of research was a recent result of Bulatov [1]. This establishes a dichotomy for exact counting in the whole of (un-
weighted) #CSP. The dichotomy is between problems in FP and problems which are #P-complete. Dyer and Richerby [16]
have given an easier proof of this theorem, and have shown it to be decidable [17].

In this paper, we study equivalences among problems in weighted #CSP. These equivalences can greatly simplify
the classes of problems which need to be considered in studies of computational complexity. A particular consequence
of these results is that the dichotomy for unweighted #CSP can be extended to nonnegative rational-weighted #CSP.
In the results we present here, the weights will usually lie in some subset of the nonnegative algebraic numbers, since
the proofs do not appear to extend to negative weights [18] or complex weights [5]. Neither do we consider general real
numbers, since we want our results to apply to standard models of computation and their complexity classes. An extension
to a suitable model of real number computation may be possible, though statements about complexity would need to be
modified appropriately.

The plan of the paper is as follows. In Section 1.1 we define the weighted constraint satisfaction problem and estab-
lish some notation. In Section 1.2, we define a notion of reducibility, which we call weighted reduction, that is used in all
our proofs. Its advantage is that the same reductions apply to both exact and approximate computation. Section 2 proves
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the equivalence of unweighted and rational-weighted #CSP. Section 3 shows that a weighted #CSP problem can be as-
sumed to have only one function, while retaining several useful restrictions on instances. Finally, in Section 4, we show that
any rational-weighted problem is computationally equivalent to an unweighted problem with only binary constraints. Thus
any #CSP problem is equivalent to a canonical digraph-labelling problem. This gives another proof of the equivalence of
unweighted and rational-weighted #CSP.

1.1. Weighted constraint satisfaction

Let Z, Q, Q and A denote the integers, rational numbers, real algebraic numbers, and (complex) algebraic numbers,
respectively. Let Z� , Q� and Q� denote the nonnegative numbers in Z, Q and Q, respectively. The positive integers Z� \{0}
will be denoted by N, and the positive algebraic numbers Q� \ {0} by Q> . Also B will denote {0,1} and, if n ∈ N, then [n]
will denote {1,2, . . . ,n}.

Let D = {0,1, . . . ,q − 1} (q ∈ N), which we call the domain, and K ⊆ A, which we call the codomain. Let

Fr(D,K) = {
f : Dr → K

}
, F(D,K) =

⋃
r�1

Fr(D,K),

denote the sets of functions of all arities from D to K. We will write r = r( f ) for the arity of f ∈ F(D,K). If r( f ) = 1, f is
called a unary function and, if r( f ) = 2, it is a binary function.

A problem #CSP(F ) is parameterised by a finite set F ⊂ F(D,K) for some D and K. An instance I of #CSP(F ) consists
of a finite set of variables V and a finite set of constraints C . A constraint κ = 〈vκ , fκ 〉 ∈ C consists of a function fκ ∈ F (of
arity rκ = r( fκ )) and a scope, a sequence vκ = (vκ,1, . . . , vκ,rκ ) of variables from V , which need not be distinct. A configura-
tion σ for the instance I is a function σ : V → D . If v = (v1, . . . , vr), we will write σ(v) for (σ (v1), . . . , σ (vr)). The weight
of the configuration σ is given by

w(σ ) =
∏
κ∈C

fκ
(
σ(vκ )

)
.

Finally, the partition function Z F (I) is given, for an instance I , by

Z F (I) =
∑

σ :V →D

w(σ ).

Then #CSP(F ) denotes the problem of computing the function Z F . We will write

#CSPq[K] = {
#CSP(F ): F ⊂ F(D,K), |D| = q

}
, #CSP[K] =

∞⋃
q=2

#CSPq[K].

The case q = 1 is clearly trivial, so we omit it from the definition of #CSP[K]. The case q = 2 is called Boolean #CSP[K].
If Γ is a set of relations, as in [1,2], we regard it as a set of functions F (Γ ) ⊂ F(D,B), so #CSP means #CSP[B]. If

R ∈ Γ is r-ary, we define f (R) ∈ F so that, for each a ∈ Dr , f (a) = 1 if a ∈ R , and otherwise f (a) = 0. Then we write
#CSP(Γ ) rather than #CSP(F (Γ )), and ZΓ rather than Z F (Γ ) .

We consider here only non-uniform #CSP, where D and F are considered to be objects of constant size. Thus it is only
the variable set V , and the constraint set C , that determine the size of an instance.

Various other restrictions on #CSP[K] have been considered in the literature, often in combination. For example, we
may insist that |F | = m, for some m ∈ N, particularly m = 1, e.g. [5]. We may insist that no function has arity greater
than r, for some r ∈ N, particularly r = 2, e.g. [4]. We may insist that no variable occurs more than k times in an instance,
e.g. [10]. We may insist that the functions in F possess some particular property, such as symmetry, e.g. [13]. We do not
consider these restrictions in any detail here. However, we will make use of the following restricted version of #CSP[K] in
Section 4.

A unary function which must be applied exactly once to each variable v ∈ V will be called a vertex weighting, and its
function values vertex weights. Thus, if λ : D → K is a vertex weighting, any instance I must contain exactly one constraint
of the form 〈(v), λ〉 for each v ∈ V . Observe that it is not necessary to allow multiple vertex weightings λ1, λ2, . . . , λm , since
these can be combined into one equivalent vertex weighting λ = λ1λ2 · · ·λm .

Our definition of vertex weights conforms to the use of similar terminology elsewhere, for example in [15]. We will
denote the problem with F ⊂ F(D,K) and vertex weighting λ : D → K by #CSP(F ;λ). The problem #CSP(F ;λ) is a
restriction on the inputs to an associated #CSP[K] problem, #CSP(F ∪ {λ}). In an instance of #CSP(F ∪ {λ}), 〈(v), λ〉 can
appear any number of times, including zero, for each v ∈ V ; in an instance of #CSP(F ;λ), each 〈(v), λ〉 appears precisely
once.

We will also consider approximate evaluation of Z F , meaning relative approximation. Thus, given ε > 0 we wish to
compute an estimate Ẑ F (I) of Z F (I), for all I , such that∣∣ Ẑ F (I) − Z F (I)

∣∣ � ε
∣∣Z F (I)

∣∣. (1)



A. Bulatov et al. / Journal of Computer and System Sciences 78 (2012) 681–688 683
For randomised approximation, we require only that this holds with sufficient probability. See [9], for example, for further
details. Observe that definition (1) applies equally if Z F can take negative or complex values, though we consider only
nonnegative real weights, here.

1.2. Weighted reductions

Let Σ be a finite alphabet, and let F : Σ∗ → A. We are interested in evaluating F only for strings x that encode in-
stances I of some computational problem. However, we will make F into a total function by setting F (x) = 0 if x ∈ Σ∗ does
not encode an instance. In particular, F (ε) = 0 for the empty string ε.

Definition 1. Let F1, F2 : Σ∗ → A. A weighted reduction from F1 to F2 is a pair of FP-computable functions φ : Σ∗ → Q> ,
ψ : Σ∗ → Σ∗ such that F1(x) = φ(x)F2(ψ(x)) for all x ∈ Σ∗ .

In constructing a weighted reduction, we can clearly restrict attention to strings x that encode instances. Otherwise, we
will simply take φ(x) = 1, and ψ(x) = ε, the empty string.

Weighted reductions generalise the “simulates” concept defined in [11]. Parsimonious reductions [19] are contained as
the special case φ(x) = 1 for all x ∈ Σ∗ . Weighted reduction relaxes the definition of parsimonious reduction by allowing
a positive “weight” φ(x) for each x ∈ Σ∗ . The generalisation is valuable in two respects. First, it preserves relative approx-
imation of the functions F1 and F2 and, hence retains the most useful property of parsimonious reductions. If F̂2(x) is an
approximation to F2(x) with relative error ε , it follows easily that F̂1(x) = φ(x) F̂2(ψ(x)) is an approximation to F1(x) with
relative error ε . Weighted reduction is, in fact, a simple type of AP-reduction, as defined in [9].

Second, weighted reductions allow us to relax the cumbersome condition F1, F2 → Z� , required by parsimonious
reductions, so we can work with the natural classes of functions. All reductions used in this paper will be weighted re-
ductions.

We write F1 �w F2 to indicate the existence of a weighted reduction from F1 to F2. If F1 �w F2 and F2 �w F1, we
say that the functions are equivalent (under weighted reductions), and we write F1 ≡w F2. Thus, if F1 ≡w F2, then F1 and
F2 will have the same computational complexity for both exact and approximate computation. This would not be true for
approximate computation if we were to use the weaker notion of Turing reducibility, as is usual for exact computation in
the class #P [20].

If F1 and F2 are two classes of functions such that, for all F1 ∈ F1, there is an F2 ∈ F2 such that F1 ≡w F2, and
conversely, for all F2 ∈ F2, there is an F1 ∈ F1 such that F2 ≡w F1, we will write F1 ≡w F2.

The reason for making this definition in terms of equivalence, rather than reduction, is that, when F1 has a classification
into functions of different complexity, for example a dichotomy, then this classification is inherited by any F2 ≡w F1. In our
proofs below, we will always have F2 ⊂ F1, so proving that F1 ≡w F2 will only require showing that, for all F1 ∈ F1, there
is an F2 ∈ F2 such that F1 ≡w F2.

2. Equivalence of #CSP[Q�Q�Q�] and #CSP

Under weighted reductions, we may assume that all instances of #CSP(F ) have every v ∈ V appearing in the scope of
some constraint. Otherwise, suppose the variables in V 0 ⊆ V do not appear in the instance I , and let n0 = |V 0|. Let I ′ be
identical to I except that V ′ = V \ V 0. Then Z F (I) = |D|n0 Z F (I ′), so there is an equivalent problem of the required type
using the reversible reduction φ(I) = |D|n0 and ψ(I) = I ′ . We will assume that this has been done, so all variables in V
appear in the scope of some constraint in C .

Observe also that repeated constraints are irrelevant in #CSP, but not in #CSP[K] when K 
= B. We may assume that
instances of #CSP(Γ ) do not have repeated constraints, since otherwise there is trivial equivalence with this case.

First, suppose F ⊂ F(D,Q). Then, by computing a common denominator N ∈ N for the ranges of the functions in F , we
can write f ′(a) = N f (a), for each f ∈ F and we have f ′(a) ∈ Z for all a ∈ Dr( f ) . Let F ′ = { f ′: f ∈ F }.

Lemma 1. If F ′ is obtained from F as above, then #CSP(F ) ≡w #CSP(F ′).

Proof. If I is an instance of #CSP(F ), and I ′ is the corresponding instance of #CSP(F ′), we have Z F (I) = N−k Z F ′ (I ′),
where k = |C(I)|. Thus, letting φ(I) = N−k and ψ(I) = I ′ , there is a weighted reduction from Z F (I) to Z F ′ (I ′), and hence
#CSP(F ) �w #CSP(F ′). Reversing this reduction gives #CSP(F ) ≡w #CSP(F ′). �
Corollary 1. #CSP[Q] ≡w #CSP[Z].

Proof. Since Z ⊂ Q, this follows immediately from Lemma 1. �
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Now, given F ⊂ F(D,Z�), we will construct a set of relations Γ (F ), with domain A, as follows. For each function f ∈ F
and each a ∈ Dr , where r = r( f ), we create a set D f ,a of cardinality f (a) such that these sets are all mutually disjoint, and
also disjoint from D . Let

A = D ∪
⋃
f ∈F

⋃
a∈Dr

D f ,a, so |A| = |D| +
∑
f ∈F

∑
a∈Dr

f (a).

Now, for every f ∈ F , we construct a relation R( f ) ⊆ Ar+1, as follows. For each r-tuple a with f (a) > 0, we create an
(r + 1)-tuple (a, w) ∈ R( f ) for every w ∈ D f ,a .

Observation 1. All tuples (a, w) ∈ R( f ) have a ∈ Dr and w /∈ D .

Observation 2. For each w ∈ A \ D , there is a unique f ∈ F and a ∈ Dr such that (a, w) ∈ R( f ).

We use these observations to prove the following equivalence.

Lemma 2. If Γ = Γ (F ), as defined as above, then #CSP(F ) ≡w #CSP(Γ ).

Proof. Suppose I is an instance of #CSP(F ). For each constraint κ = 〈vκ , fκ 〉, we create the constraint κ ′ = 〈(vκ , vκ ), R( fκ )〉
in an instance I ′ of #CSP(Γ ), where vκ is a new variable. Thus I ′ has variable set V ′ = V ∪ {vκ : κ ∈ C}. Now, each
configuration σ : V → D in I can be identified with the set of configurations σ ′ : V ′ → A in I ′ that agree with σ over V .
Thus σ ′(vκ ) = σ(vκ ) and σ ′(vκ ) ∈ D fκ ,σ (vκ ) . By Observation 2, these partition the set of all σ ′ having nonzero weight. Since
there are exactly f (σ (vκ )) choices for σ ′(vκ ), we have Z F (I) = ZΓ (I ′). We take φ(I) = 1, ψ(I) = I ′ and hence we have
#CSP(F ) �w #CSP(Γ ).

Conversely, let I be an instance of #CSP(Γ ), and let κ = 〈(v, v), R( f )〉 be any constraint. If v also appears in the tuple v′
of a constraint κ ′ = 〈(v′, v ′), R( f ′)〉, then there can be no configuration σ : V → A with nonzero weight, by Observation 1.
Thus ZΓ (I) = 0, so we take φ(I) = 1 and ψ(I) = ε. Now, if v appears other than in constraint κ , it must be in a constraint
κ ′ = 〈(v′, v), R( f ′)〉. But then, from Observation 2, any σ : V → A has nonzero weight only if σ(v′) = σ(v) and f ′ = f . Thus
we may add the equalities v′ = v and delete the constraint κ ′ . Repeating this procedure, we construct an instance I0 of
#CSP(Γ ) such that ZΓ (I0) = ZΓ (I), and each constraint κ = 〈(v, v), R( f )〉 in the constraint set C0 of the instance I0 has
a unique variable v = vκ . Thus I0 is precisely the instance of #CSP(Γ ) which would result from applying the construction
in the first part of the proof to the instance I ′0 of #CSP(F ) with variables V ′ = V \ {vκ : κ ∈ C0} and constraints 〈vκ , fκ 〉
(κ ∈ C0). It follows that ZΓ (I) = ZΓ (I0) = Z F (I ′). So we may take φ(I) = 1, ψ(I) = I ′ and hence we have #CSP(Γ ) �w
#CSP(F ). �
Remark 1. The reader will note that the size of the resulting unweighted problem increases dramatically with the size of
the weights. Since these weights are constants in the non-uniform model, this has no impact on the complexity. However,
we make no claims for the practicality of the reduction.

Theorem 1. #CSP[Q�] ≡w #CSP.

Proof. This follows directly from B ⊂ Q� and Lemma 2. �
As noted above, Bulatov [1] has shown a dichotomy for #CSP into problems which are in FP and problems which are

#P-complete (see also [16]). Combining this with Theorem 1, and an argument given in Section 1.3 of [11], we have the
following.

Theorem 2 (Dichotomy). Any problem in #CSP[Q�] is either in FP or is complete for FP#P .

Remark 2. The method of proof used in Theorem 1 clearly fails for irrational weights. However, since this paper was written,
Cai, Chen and Lu [6] have proved a general dichotomy theorem for weights in Q� .

Remark 3. Theorem 1 may have analogues for mixed-sign and complex weights. However, the above method of proof
encounters technical problems with repeated constraints in these cases.

3. Reduction to a single function

Here we consider F ⊂ F(D,Q�). We will show that #CSP(F ) is equivalent to #CSP({g}) for a single function g ∈
F(D,Q�). We abbreviate #CSP({g}) to #CSP(g).
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We may assume that no f ∈ F is identically zero. Otherwise, if f (a) = 0 for all a ∈ Dr( f ) , then Z F (I) = 0 for any instance
I of #CSP(F ) where f appears in a constraint. Then, letting F ′ = F \ { f }, Z F (I) = Z F ′ (I), we have #CSP(F )�w#CSP(F ′).

Let

M( f ) =
∑
a∈Dr

f (a) > 0 ( f ∈ F ).

Now, let � = |F |, and let F = {g1, g2, . . . , g�}, r j = r(g j) and M j = M(g j) ( j ∈ [�]). Let s = ∑�
j=1 r j and define g : Ds → Q�

by

g(a1,a2, . . . ,a�) =
�∏

j=1

g j(a j)
(
a j ∈ Dr j ; j ∈ [�]).

If κ = 〈vκ , fκ 〉 is a constraint of an instance I of #CSP(F ), let iκ be defined by iκ = j if fκ = g j .

Theorem 3. For all F ⊂ F(D,Q�), there exists g ∈ F(D,Q�) such that #CSP(F ) ≡w #CSP(g).

Proof. The required g is the function g(F ) constructed above. For any instance I of #CSP(F ), construct an instance I ′ =
ψ(I) of #CSP(g) by padding each constraint κ = 〈vκ , fκ 〉 that has fκ = giκ , to give

κ ′ = 〈
(u1,κ , . . . ,uiκ−1,κ ,vκ ,uiκ+1,κ , . . . ,u�,κ ), g

〉
,

where u j,κ ( j ∈ [�], j 
= iκ ) is an r j -tuple of new variables not in V , and disjoint for each j 
= iκ and κ ∈ C . Thus I ′ has
variable set V ′ , with∣∣V ′∣∣ = |V | +

∑
κ∈C

∑
j 
=iκ

r j � s|C|.

Any σ ′ : V ′ → D decomposes into σ : V → D and σ j,κ : u j,κ → D ( j 
= iκ , κ ∈ C ). Clearly, for each value of j and κ ,∑
σ j,κ

g j
(
σ j,κ (u j)

) =
∑

a∈Dr j

g j(a) = M j > 0.

Thus, it follows that

Z g
(

I ′
) = χ(I)Z F (I), where χ(I) =

∏
κ∈C

∏
j 
=iκ

M j > 0,

which gives a weighted reduction from #CSP(F ) to #CSP(g) with φ(I) = 1/χ(I).
In the other direction, the reduction is straightforward. Suppose κ = 〈vκ , g〉 is a constraint of an arbitrary instance I of

#CSP(g), where vκ = (v1,κ , . . . ,v�,κ ), with v j,κ ∈ V r j ( j ∈ [�]). Create the instance I ′ = ψ(I) of #CSP(F ) with constraints
C′ = {〈v j,κ , f j〉: j ∈ [�], κ ∈ C}. Clearly, Z g(I) = Z F (I ′), so we have a weighted reduction from #CSP(g) to #CSP(F ) with
φ(I) = 1. �
Remark 4. Theorem 3 does not appear to carry over to negative or complex weights. The proof above fails because we may
have M( f ) = 0, so χ(I) = 0, and hence φ(I) will be undefined.

The important features of the equivalence of Theorem 3 are

(i) it does not change the domain D;
(ii) it preserves approximation, since the reductions are weighted;

(iii) it preserves relations, since B is closed under product;
(iv) it preserves the maximum number of occurrences (degree) of variables.

Thus, for most complexity studies, allowing multiple functions or relations in #CSP does not increase generality. Theorem 3
can be used to simplify proofs given, for example, in [1,8,10–12,16].

4. Reduction to binary constraints

The proof of equivalence of #CSP[Q�] and #CSP in Section 2 is probably the simplest, but not the only construction.
We present a different proof here, which is of interest in its own right. An instance of #CSP(F ) is reduced to an in-
stance #CSP(Γ ), where Γ is a set of binary relations. Thus any problem in #CSP can be stated as an equivalent problem
concerning digraphs.
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We give the proof in two parts. In the first part, we show equivalence of any problem in #CSP[Q�] with a problem
having a vertex weighting and a set of binary relations. We will then show that this vertex-weighted problem is equivalent
to an unweighted digraph problem.

Theorem 4. If F is a finite subset of F(D,Q�), then #CSP(F ) ≡w #CSP(B;λ), where B is a finite set of binary relations and
λ : D → Q� is a vertex weighting.

Proof. We may assume, by Theorem 3, that F = {g} with g ∈ Fr(D,Q�), for some r. Thus, to specify a constraint, we need
only give its scope. We also assume that every variable appears in some scope, as discussed in Section 2. Then #CSP(B;λ)

is specified as follows.

(a) The domain A = Dr , so a = (a1,a2, . . . ,ar) ∈ A for all a1,a2, . . . ,ar ∈ D .
(b) For all a ∈ A, λ(a) = g(a).
(c) For each i,k ∈ [r], there is a βik ∈ B such that for all a,b ∈ A,

βik(a,b) =
{

1, if ai = bk;
0, otherwise.

Let I be any instance of #CSP(g), with variable set V and constraint set C . We can construct an equivalence relation ∼ on
C × [r] such that (ι, i) ∼ (κ,k) if, and only if, vι,i and vκ,k are the same variable v ∈ V . Thus ∼ has |V | equivalence classes,
each class corresponding to a variable in V .

We now construct an instance I ′ = ψ(I) of #CSP(B;λ), which has variable set V ′ and constraint set C′ , as follows.

(i) For each κ ∈ C , we have a variable κ ∈ V ′ . Thus V ′ = C .
(ii) For all κ ∈ V ′ , we have one constraint 〈(κ), λ〉 ∈ C′ . Thus λ is a vertex weighting.

(iii) For all ι, κ ∈ C , we have a constraint 〈(ι, κ),βik〉 ∈ C′ for each i, k with (ι, i) ∼ (κ,k).

Let σ : V → D be any configuration for I . Then (ι, i) ∼ (κ,k) implies βik(σ (vι), σ(vκ )) = 1. In turn, this implies σ(vι,i) =
σ(vκ,k), as is required by the variables vι,i and vκ,k being identical. Thus there is a bijection between the configurations σ
of I having nonzero weight and the configurations σ ′ of I ′ having nonzero weight. Let us write σ ′ = ξ(σ ) for this bijection.
Note that σ ′ = ξ(σ ) then satisfies βik(σ

′(ι),σ ′(κ)) = βik(σ (vι), σ (vκ )) = 1 if (ι, i) ∼ (κ,k). Thus, with σ ′ = ξ(σ ), we have

w
(
σ ′) =

∏
κ∈C

λ
(
σ ′(κ)

) ∏
(ι,i)∼(κ,k)

βik
(
σ ′(ι),σ ′(κ)

) =
∏
κ∈C

g
(
σ(vκ )

) = w(σ ),

so the bijection ξ is weight-preserving. Thus Z B;λ(I) = Z g(I ′), and we have a weighted reduction from #CSP(g) to
#CSP(B;λ), with φ(I) = 1.

Conversely, suppose I is any instance of #CSP(B;λ) with variable set V and constraint set C . We construct an instance
I ′ = ψ(I) of #CSP(g), with variable set V ′ and constraint set C′ , as follows. Note that A and the βik are not arbitrary, but
have been derived as in (a) and (c) above. Thus, in particular, we can easily deduce the value of r. We now create a relation
∼ on the set V ∗ = V × [r], as follows. For ease of notation, we will write (u, i) ∈ V ∗ as ui . For u, v ∈ V , let ui ∼ vk if there
is a constraint 〈(u, v), βik〉 ∈ C .

Now, suppose σ is any configuration of I . Then, for any v ∈ V , we have σ(v) = (a1, . . . ,ar) ∈ Dr , from (a) above. Let us
write σi(v) = ai (i ∈ [r]). Now, define σ ′ : V ∗ → D from σ by σ ′(vi) = σi(v) for all v ∈ V ∗ , i ∈ [r]. We will write σ ′ = ζ(σ )

for this function. If, for any u, v ∈ V , we have ui ∼ vk , then we must have βik(σ (u),σ (v)) = 1. From (c) above, this implies
that σi(u) = σk(v), and hence σ ′(ui) = σ ′(vk), where σ ′ = ζ(σ ). Thus we can extend the relation ∼, as follows. We have
ui ∼ vk if σ ′(ui) = σ ′(vk) for all σ ′ = ζ(σ ), where σ is a configuration of I . Clearly, ∼ is now an equivalence relation, which
“identifies” the variables ui and vk . More precisely, the variable set V ′ of I ′ will be the set of equivalence classes V ∗/ ∼. For
any vk ∈ V ∗ , we write v̄k for its equivalence class. Let σ ′ : V ∗ → D be such that σ ′ = ζ(σ ) for some σ : V → Dr . Then we
can define σ̄ : V ′ → D by σ̄ (v̄k) = σ(vk) for all vk ∈ v̄k . Thus we have constructed a bijection between the configurations
σ of I having nonzero weight and the configurations σ̄ of I ′ having nonzero weight. We will write σ̄ = ξ(σ ) for this
bijection.

Now, I ′ will have constraint set

C′ = {〈v̄, g〉: v̄ = (v̄1, . . . , v̄r), v ∈ V
}
.

Then, with σ̄ = ξ(σ ), we have

w(σ̄ ) =
∏

v∈V ′
g
(
σ̄ (v̄)

) =
∏
v∈V

λ
(
σ(v)

) ∏
ui∼vk

βik
(
σ(u),σ (v)

) = w(σ ),

so the bijection ξ is weight-preserving. Thus Z g(I ′) = Z B;λ(I), and we have a weighted reduction from #CSP(B;λ) to
#CSP(g) with φ(I) = 1. �
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Remark 5. In fact, Theorem 4 holds, more generally, for F ⊂ F(D,A). The proof above needs modification, however, since
we cannot apply Theorem 3. Instead, we use binary relations β

f ,h
i, j for each f ,h ∈ F , i ∈ [r( f )], j ∈ [r(h)], and domain

A = ⋃
f ∈F {a f : a ∈ Dr, r = r( f )}. We omit the details, since we currently have no application for this generalisation. The

proof of Theorem 5 below is valid only for F ⊂ F(D,Q�).

This yields a different proof of the equivalence of #CSP[Q�] and #CSP.

Theorem 5. Let B be a set of binary relations, and let λ : D → Q� be a vertex weighting. Then #CSP(B;λ) ≡w #CSP(Γ ), where Γ

is a set of binary relations.

Proof. We will use the equivalence proved in Lemma 1. Thus we may take λ : A → Z� . Then we use a construction similar
to that of Section 2. Note that, if λ(a) = 0 for any a ∈ A, we can delete a from A. All configurations with σ(v) = a for any
v ∈ V have zero weight and do not contribute to the partition function. Thus we may assume λ(a) > 0 for all a ∈ A. Then
let

Ba = {
(a, i): i ∈ [

λ(a)
]}

(a ∈ A), B =
⋃
a∈A

Ba,

where we will again write (a, i) as ai . Then Γ will comprise a set of binary relations γ on the domain B such that, for each
β ∈ B, there is a γ (β) defined by

γ (β) = {
(ai,b j): (a,b) ∈ β, i ∈ [

λ(a)
]
, j ∈ [

λ(b)
]}

.

Clearly, this gives a bijection between B and Γ , so we may also write β = β(γ ).
Now, let I be any instance of #CSP(B;λ) with variable set V and constraint set C . Then I ′ = ψ(I) will have variable set

V ′ = V and constraint set

C′ = {〈
(u, v), γ

〉
: γ = γ (β),

〈
(u, v),β

〉 ∈ C
}
.

Let σ ′ be any satisfying configuration of I ′ . This can be mapped to a configuration σ of I satisfying all its binary constraints
by σ(v) = a if σ ′(v) = ai for some i ∈ [λ(a)]. Let us write σ = η(σ ′) for this function. Then,

∑
σ ′∈η−1(σ )

w
(
σ ′) = ∣∣η−1(σ )

∣∣ =
∣∣∣∣∏

v∈V

{
σ ′(v): σ ′(v) ∈ Bσ (v)

}∣∣∣∣
=

∏
v∈V

|Bσ (v)| =
∏
v∈V

λ
(
σ(v)

) = w(σ ).

Thus Z B;λ(I) = ZΓ (I ′), so we have φ(I) = 1, and we have shown that #CSP(B;λ) �w #CSP(Γ ).
Conversely, if I is any instance of #CSP(Γ ) with variable set V ′ and constraint set C′ , we create an instance I ′ = ψ(I)

with variable set V = V ′ and constraint set

C = {〈
(u, v),β

〉
:

〈
(u, v), γ

〉 ∈ C′, β = β(γ )
}
.

Reversing the above calculation yields Z B;λ(I ′) = ZΓ (I), so φ(I) = 1 and #CSP(Γ ) �w #CSP(B;λ). Hence #CSP(B;λ) ≡w
#CSP(Γ ). �
Remark 6. Observe that this proof does not really require that the relations in B are all binary. We have made this restriction
only for notational simplicity, and because it is the case needed for the following application.

Combining Theorems 4 and 5, we have an alternative proof of the results implied by Theorem 1. That is, #CSP[Q�] ≡w
#CSP and a dichotomy theorem for #CSP[Q�].

Remark 7. Theorems 4 and 5 determine a canonical form for #CSP[Q�]. The general problem is a set of k digraphs,
H1, H2, . . . , Hk on the same vertex set D . An instance is a set of k digraphs, G1, G2, . . . , Gk on the same vertex set V .
A satisfying configuration is a labelling of V with D that induces a homomorphism from Gi to Hi for all i ∈ [k]. Cai and
Chen [4] have given a decidable dichotomy theorem for the case k = 1 of this problem.

Remark 8. The digraphs H1, H2, . . . , Hk in the canonical problem of Remark 7 can be taken to be directed acyclic graphs
(DAGs), though possibly with loops. A decidable dichotomy theorem for the case k = 1 of this problem (without loops) was
given by Dyer, Goldberg and Paterson [14]. The simplification can be justified as follows. Suppose we impose an arbitrary
linear order on A. By the symmetries βi j(u,v) = β ji(v,u) in the proof of Theorem 4, we need only include (u,v) in the
relation βi j if u � v. Thus each βi j describes a DAG, perhaps having loops on its vertices.
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