67 research outputs found

    Games with recurring certainty

    Full text link
    Infinite games where several players seek to coordinate under imperfect information are known to be intractable, unless the information flow is severely restricted. Examples of undecidable cases typically feature a situation where players become uncertain about the current state of the game, and this uncertainty lasts forever. Here we consider games where the players attain certainty about the current state over and over again along any play. For finite-state games, we note that this kind of recurring certainty implies a stronger condition of periodic certainty, that is, the events of state certainty ultimately occur at uniform, regular intervals. We show that it is decidable whether a given game presents recurring certainty, and that, if so, the problem of synthesising coordination strategies under w-regular winning conditions is solvable.Comment: In Proceedings SR 2014, arXiv:1404.041

    The Complexity of Synthesizing Uniform Strategies

    Full text link
    We investigate uniformity properties of strategies. These properties involve sets of plays in order to express useful constraints on strategies that are not \mu-calculus definable. Typically, we can state that a strategy is observation-based. We propose a formal language to specify uniformity properties, interpreted over two-player turn-based arenas equipped with a binary relation between plays. This way, we capture e.g. games with winning conditions expressible in epistemic temporal logic, whose underlying equivalence relation between plays reflects the observational capabilities of agents (for example, synchronous perfect recall). Our framework naturally generalizes many other situations from the literature. We establish that the problem of synthesizing strategies under uniformity constraints based on regular binary relations between plays is non-elementary complete.Comment: In Proceedings SR 2013, arXiv:1303.007

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    Lossy Channel Games under Incomplete Information

    Get PDF
    In this paper we investigate lossy channel games under incomplete information, where two players operate on a finite set of unbounded FIFO channels and one player, representing a system component under consideration operates under incomplete information, while the other player, representing the component's environment is allowed to lose messages from the channels. We argue that these games are a suitable model for synthesis of communication protocols where processes communicate over unreliable channels. We show that in the case of finite message alphabets, games with safety and reachability winning conditions are decidable and finite-state observation-based strategies for the component can be effectively computed. Undecidability for (weak) parity objectives follows from the undecidability of (weak) parity perfect information games where only one player can lose messages.Comment: In Proceedings SR 2013, arXiv:1303.007

    Two-Person Stochastic Duel with Energy Fuel Constraint Ammo

    Full text link
    This paper deals a novel variation of the versatile stochastic duel game, which incorporates an energy fuel constraint in a two-player duel game. The energy fuel not only measures the vitality of players but also determines the power of the shooting projectile. The game requires players to carefully balance their energy usage while trying to outmaneuver their opponent. This unique theoretical framework of the stochastic game model provides a valuable method for understanding strategic behavior in competitive environments, particularly in decision-making scenarios with fluctuation processes. The proposed game provides players with the challenge of optimizing their energy fuel usage while managing the risk of losing the game. The unique rules and constraints of the game in this research are expected for contributing insights into the decision-making strategies and behaviors of players in a wide range of practical applications.Comment: Song-Kyoo Kim, Two-Person Stochastic Duel with Energy Fuel Constraint Ammo, Mathematics 11:7 (2023), 362

    Computing Weakest Strategies for Safety Games of Imperfect Information

    Get PDF
    CEDAR (Counter Example Driven Antichain Refinement) is a new symbolic algorithm for computing weakest strategies for safety games of imperfect information. The algorithm computes a fixed point over the lattice of contravariant antichains. Here contravariant antichains are antichains over pairs consisting of an information set and an allow set representing the associated move. We demonstrate how the richer structure of contravariant antichains for representing antitone functions, as opposed to standard antichains for representing sets of downward closed sets, allows CEDAR to apply a significantly less complex controllable predecessor step than previous algorithms

    Non-Cooperative Rational Interactive Proofs

    Get PDF
    Interactive-proof games model the scenario where an honest party interacts with powerful but strategic provers, to elicit from them the correct answer to a computational question. Interactive proofs are increasingly used as a framework to design protocols for computation outsourcing. Existing interactive-proof games largely fall into two categories: either as games of cooperation such as multi-prover interactive proofs and cooperative rational proofs, where the provers work together as a team; or as games of conflict such as refereed games, where the provers directly compete with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of service providers in outsourcing applications. How to design and analyze non-cooperative interactive proofs is an important open problem. In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-proof model in which the provers are rational and non-cooperative - they act to maximize their expected utility given others\u27 strategies. We define a strong notion of backwards induction as our solution concept to analyze the resulting extensive-form game with imperfect information. We fully characterize the complexity of our proof system under different utility gap guarantees. (At a high level, a utility gap of u means that the protocol is robust against provers that may not care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational interactive proofs with a polynomial utility gap is exactly equal to the complexity class P^{NEXP}

    POMDPs under Probabilistic Semantics

    Full text link
    We consider partially observable Markov decision processes (POMDPs) with limit-average payoff, where a reward value in the interval [0,1] is associated to every transition, and the payoff of an infinite path is the long-run average of the rewards. We consider two types of path constraints: (i) quantitative constraint defines the set of paths where the payoff is at least a given threshold lambda_1 in (0,1]; and (ii) qualitative constraint which is a special case of quantitative constraint with lambda_1=1. We consider the computation of the almost-sure winning set, where the controller needs to ensure that the path constraint is satisfied with probability 1. Our main results for qualitative path constraint are as follows: (i) the problem of deciding the existence of a finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding the existence of an infinite-memory controller is undecidable. For quantitative path constraint we show that the problem of deciding the existence of a finite-memory controller is undecidable.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Observation and Distinction. Representing Information in Infinite Games

    Get PDF
    We compare two approaches for modelling imperfect information in infinite games by using finite-state automata. The first, more standard approach views information as the result of an observation process driven by a sequential Mealy machine. In contrast, the second approach features indistinguishability relations described by synchronous two-tape automata. The indistinguishability-relation model turns out to be strictly more expressive than the one based on observations. We present a characterisation of the indistinguishability relations that admit a representation as a finite-state observation function. We show that the characterisation is decidable, and give a procedure to construct a corresponding Mealy machine whenever one exists
    corecore