We consider partially observable Markov decision processes (POMDPs) with
limit-average payoff, where a reward value in the interval [0,1] is associated
to every transition, and the payoff of an infinite path is the long-run average
of the rewards. We consider two types of path constraints: (i) quantitative
constraint defines the set of paths where the payoff is at least a given
threshold lambda_1 in (0,1]; and (ii) qualitative constraint which is a special
case of quantitative constraint with lambda_1=1. We consider the computation of
the almost-sure winning set, where the controller needs to ensure that the path
constraint is satisfied with probability 1. Our main results for qualitative
path constraint are as follows: (i) the problem of deciding the existence of a
finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding
the existence of an infinite-memory controller is undecidable. For quantitative
path constraint we show that the problem of deciding the existence of a
finite-memory controller is undecidable.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence (UAI2013