127,538 research outputs found

    The Complexity of Finding S-Factors in Regular Graphs

    Get PDF
    A graph G has an S-factor if there exists a spanning subgraph F of G such that for all v in V: deg_F(v) in S. The simplest example of such factor is a 1-factor, which corresponds to a perfect matching in a graph. In this paper we study the computational complexity of finding S-factors in regular graphs. Our techniques combine some classical as well as recent tools from graph theory

    Assessing the Computational Complexity of Multi-Layer Subgraph Detection

    Get PDF
    Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability

    Approximability of Connected Factors

    Get PDF
    Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte's reduction to the matching problem. By the same reduction, it is easy to find a minimal or maximal d-factor of a graph. However, if we require that the d-factor is connected, these problems become NP-hard - finding a minimal connected 2-factor is just the traveling salesman problem (TSP). Given a complete graph with edge weights that satisfy the triangle inequality, we consider the problem of finding a minimal connected dd-factor. We give a 3-approximation for all dd and improve this to an (r+1)-approximation for even d, where r is the approximation ratio of the TSP. This yields a 2.5-approximation for even d. The same algorithm yields an (r+1)-approximation for the directed version of the problem, where r is the approximation ratio of the asymmetric TSP. We also show that none of these minimization problems can be approximated better than the corresponding TSP. Finally, for the decision problem of deciding whether a given graph contains a connected d-factor, we extend known hardness results.Comment: To appear in the proceedings of WAOA 201

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Conditional Reliability in Uncertain Graphs

    Full text link
    Network reliability is a well-studied problem that requires to measure the probability that a target node is reachable from a source node in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Many approaches and problem variants have been considered in the literature, all assuming that edge-existence probabilities are fixed. Nevertheless, in real-world graphs, edge probabilities typically depend on external conditions. In metabolic networks a protein can be converted into another protein with some probability depending on the presence of certain enzymes. In social influence networks the probability that a tweet of some user will be re-tweeted by her followers depends on whether the tweet contains specific hashtags. In transportation networks the probability that a network segment will work properly or not might depend on external conditions such as weather or time of the day. In this paper we overcome this limitation and focus on conditional reliability, that is assessing reliability when edge-existence probabilities depend on a set of conditions. In particular, we study the problem of determining the k conditions that maximize the reliability between two nodes. We deeply characterize our problem and show that, even employing polynomial-time reliability-estimation methods, it is NP-hard, does not admit any PTAS, and the underlying objective function is non-submodular. We then devise a practical method that targets both accuracy and efficiency. We also study natural generalizations of the problem with multiple source and target nodes. An extensive empirical evaluation on several large, real-life graphs demonstrates effectiveness and scalability of the proposed methods.Comment: 14 pages, 13 figure
    corecore