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Graphs with high symmetry or regularity are the main source for
experimentally hard instances of the notoriously difficult graph
isomorphism problem. In this paper, we study the computational
complexity of isomorphism testing for line graphs of t-(v,k, λ)

designs. For this class of highly regular graphs, we obtain a worst-
case running time of O (v log v+O (1)) for bounded parameters t,
k, λ.
In a first step, our approach makes use of the Babai–Luks algorithm
to compute canonical forms of t-designs. In a second step, we
show that t-designs can be reconstructed from their line graphs in
polynomial-time. The first is algebraic in nature, the second purely
combinatorial. For both, profound structural knowledge in design
theory is required. Our results extend earlier complexity results
about isomorphism testing of graphs generated from Steiner triple
systems and block designs.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Graph Isomorphism (GI) problem consists in deciding whether two given finite graphs are
isomorphic – that is, whether there exists an edge-preserving bijection between the vertex sets of the
graphs. Besides of its practical importance, the inability to directly classify the GI problem into either
of the conventional complexity classes P or NP-complete until now have made it one of the central
topics in structural complexity theory. Consequently, it is of interest to identify the difficult instances
of the problem.
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The best worst-case algorithm for arbitrary graphs with v vertices has running time
exp(O (

√
v log v)), see [5,6]. This has mainly been achieved by a combination of Luks’ seminal

polynomial-time algorithm for graphs of bounded degree [29], together with a combinatorial de-
gree reduction due to Zemlyachenko et al. [42]. After a quarter-century, this moderately exponential
bound for graph isomorphism still remains the state of the art despite extensive efforts.

Apparently, many graphs that seem to capture much of the computational difficulty are obtained
from highly regular combinatorial structures, like combinatorial designs and related configurations,
see [16,31]. Hence, it is a primary goal to reduce for these types of graphs the leading

√
v term in

the exponent to v1/2−ε for some constant ε > 0. For important special cases, that of strongly regular
graphs and that of line graphs derived from Steiner 2-designs, Spielman [40] reduced the exponent of
the exponent to 1/3 and 1/4, respectively. For the former, Babai [2] had initially given an elementary
combinatorial algorithm in v O (

√
v log v) time. Far more efficient isomorphism tests (polynomial-time

or even better) are known for several parameterized classes with bounded values for their param-
eters. The most prominent classes are planar graphs, graphs of bounded degree, bounded genus,
bounded color class, or bounded eigenvalue multiplicity. For a unifying treatment of these parameter-
ized classes, see [17]. A strict generalization of the results for bounded degree and bounded genus was
obtained in [33,34]. On the other hand, GI-completeness (i.e. there exists a polynomial-time Turing
reduction from the GI problem) has been proved for a number of restricted graph classes, including
regular graphs, bipartite graphs, chordal graphs, self-complementary graphs, split graphs, and perfect
graphs (cf. [42] for some further classes).

In this paper, we consider the computational problem of testing isomorphism of line graphs de-
rived from t-(v,k, λ) designs. For bounded parameters t,k, λ, we obtain a sub-exponential algorithm
for this important special class of the GI problem. This extends earlier complexity results about iso-
morphism testing of graphs generated from Steiner triple systems and block designs. Moreover, as
t-(v,k, λ) designs can be viewed as k-uniform hypergraphs on v vertices, this problem is also inter-
esting in view of the recent moderately exponential bound for hypergraph isomorphism: Babai and
Codenotti [4] have shown that isomorphism of hypergraphs of bounded rank with v vertices can be
tested in time exp(Õ (

√
v)) (where, as usual, the Õ -notation suppresses polylogarithmic factors).

We state our main result:

Main Theorem. Isomorphism of line graphs of t-(v,k, λ) designs can be determined in O (v log v+O (1)) time
for bounded parameters t,k, λ.

In a first step, our approach makes use of the Babai–Luks algorithm to compute canonical forms
of t-designs. In a second step, we show that t-designs can be reconstructed from their line graphs in
polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound
structural knowledge in design theory is required. Specifically, we make use of the Ray-Chauduri–
Wilson theorem on the minimal number of blocks, an extension of the Erdős–Ko–Rado theorem to
t-designs due to Rand, as well as a recent result of Kreher and Rees concerning the maximal size of
a subdesign in a t-design.

Related work. There are only a few known complexity results about isomorphism problems related
to combinatorial t-designs: Prior to Spielman’s result for Steiner 2-designs, Miller [32] had shown
that the specific case of isomorphism of line graphs derived from Steiner triple systems (i.e. Steiner
2-designs with block size 3) can be determined in sub-exponential, O (v log v+O (1)), time. His proof
uses the fact that a Steiner triple system can be represented as a quasigroup, and hence has a set
of at most 1 + log v generators. He also obtained the same bound for testing isomorphism of graphs
from Latin squares. Moreover, he gave an O (v log log v+O (1)) isomorphism algorithm for affine and pro-
jective planes. Miller’s algorithm has been applied by M. Colbourn [13] to perform isomorphism of
Steiner t-designs with block size t +1 in O (v log v+O (1)) time. Concerning isomorphism testing of block
designs (i.e. 2-designs with arbitrary λ), Babai and Luks [6] derived as a consequence of Luks’ tech-
niques [29] an algorithm for bounded block size k and bounded λ in time O (v log v+ f (k,λ)). On the
other hand, C. Colbourn and M. Colbourn [10] verified that the isomorphism problem for block de-
signs is GI-complete, even for triple systems. For a few other results regarding specific designs, we



M. Huber / Journal of Combinatorial Theory, Series A 118 (2011) 341–349 343
refer to the survey [14, Sect. 3]. We note that the complexity of the Steiner t-design isomorphism
problem in relation to the GI problem is still unresolved (even for fixed t). This is also the case for
the isomorphism problem of Steiner triple and quadruple systems, respectively.

Overview. Relevant definitions and concepts from combinatorial design theory including line graphs
will be summarized in Section 2. The reader may want to skim this section and return to it when
necessary. In Section 3, we apply the Babai–Luks algorithm to compute canonical forms of t-designs.
In Section 4, we show that t-designs can be reconstructed from their line graphs in polynomial-time.
We finally combine the results of these sections to prove our main theorem.

For further detailed discussion in particular on the GI problem, we refer to the excellent litera-
ture: the books by Hoffmann [19], Köbler, Schöning and Torán [26] as well as the surveys by Arvind
and Torán [1], Babai [3], Booth and Colbourn [8], Goldberg [18], Köbler [25], Read and Corneil [38],
and Zemlyachenko et al. [42]. The current standard reference on the complexity of group-theoretic
computation is Seress [39].

2. Designs and line graphs

Combinatorial designs. Combinatorial design theory is a rich subject on the interface of several
disciplines, including coding and information theory, cryptography, combinatorics, group theory, and
geometry. In particular, the study of designs with high symmetry properties has a very long history
and establishes deep connections between these areas (see, e.g., [12,15,20–23,30]).

For positive integers t � k � v and λ, we define a t-(v,k, λ) design to be a finite incidence structure
D = (X, B, I), where X denotes a set of points, |X | = v , and B a set of blocks, |B| = b, satisfying
the following regularity properties: each block B ∈ B is incident with k points, and each t-subset of
X is incident with λ blocks. A flag of D is an incident point-block pair (x, B) ∈ I with x ∈ X and
B ∈ B. If t < k < v holds, then we speak of a non-trivial t-design. In this paper, ‘repeated blocks’
are not allowed, that is, the same k-element subset of points may not occur twice as a block. Thus,
alternatively a t-(v,k, λ) design can be viewed as a k-uniform hypergraph on v vertices with the
property that every set of t vertices is contained in λ common edges.

Incidence preserving maps which take points to points and blocks to blocks are of fundamental
importance. We recall the formal definition of an isomorphism between incidence structures: Let

S1 = (X1, B1, I1) and S2 = (X2, B2, I2) be two incidence structures. A bijective map

α : X1 ∪ B1 −→ X2 ∪ B2

is an isomorphism of S1 onto S2, if the following holds:

(i) for x ∈ X1 and B ∈ B1, we have xα ∈ X2 and Bα ∈ B2,
(ii) for all x ∈ X1 and all B ∈ B1, we have

(x, B) ∈ I1 ⇐⇒ (
xα, Bα

) ∈ I2.

In this case, the incidence structures S1 and S2 are isomorphic. An isomorphism of an incidence struc-
ture S onto itself is called an automorphism of S . The full group of automorphisms of an incidence
structure S will be denoted by Aut(S).

For historical reasons, a t-(v,k, λ) design with λ = 1 is called a Steiner t-design (sometimes also
a Steiner system). The special case of a Steiner design with parameters t = 2 and k = 3 is called
a Steiner triple system STS(v) of order v . A Steiner design with parameters t = 3 and k = 4 is called
a Steiner quadruple system SQS(v) of order v . For example if we consider Steiner quadruple systems,
the vector space Z

d
2 with the set B of blocks taken to be the set of all subsets of four distinct elements

of Z
d
2 whose vector sum is zero, is a boolean SQS(2d). More geometrically, these SQS(2d) consist of

the points and planes of the d-dimensional binary affine space AG(d,2).
By a well-known result of Hanani, a necessary and sufficient condition for the existence of

a SQS(v) is that v ≡ 2 or 4 (mod 6). For v = 8 and v = 10 there exists a SQS(v) in each case,
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Fig. 1. Illustration of the unique SQS(8), with three types of blocks: faces, opposite edges, and inscribed regular tetrahedra.

unique up to isomorphism. These are the affine space AG(3,2) (cf. Fig. 1) and the Möbius plane of
order 3. For v = 14 there are exactly 4, and for v = 16 exactly 1,054,163 distinct isomorphism types.
Lenz [28] proved that for admissible values v , the number N(v) of non-isomorphic SQS(v) grows
exponentially, i.e.

lim inf
v→∞

log N(v)

v3
> 0.

For a detailed treatment of combinatorial designs, we refer the reader to the encyclopedic ac-
counts [7,11].

We provide some combinatorial tools which will be helpful for the remainder of the paper. For
the existence of t-designs, the following basic necessary conditions can be obtained via elementary
counting arguments (see, for instance, [7]):

Lemma 1. Let D = (X, B, I) be a t-(v,k, λ) design, and for a positive integer s � t, let S ⊆ X with |S| = s.
Then the number of blocks incident with each element of S is given by

λs = λ

(v−s
t−s

)(k−s
t−s

) .

In particular, for t � 2, a t-(v,k, λ) design is also an s-(v,k, λs) design.

It is customary to set r := λ1 denoting the number of blocks incident with a given point.

Lemma 2. Let D = (X, B, I) be a t-(v,k, λ) design. Then the following holds:

(a) bk = vr.

(b)
(v

t

)
λ = b

(k
t

)
.

(c) r(k − 1) = λ2(v − 1) for t � 2.

Lemma 3. Let D = (X, B, I) be a t-(v,k, λ) design. Then

λ

(
v − s

t − s

)
≡ 0

(
mod

(
k − s

t − s

))
for each positive integer s � t.

A generalized version of Fisher’s Inequality for t-designs by Ray-Chaudhuri and Wilson [37, Thm. 1]
gives lower bounds on the number of blocks:

Theorem 4 (Ray-Chaudhuri and Wilson, 1975). Let D = (X, B, I) be a t-(v,k, λ) design. If t is even, say
t = 2s, and v � k + s, then b �

(v
s

)
. If t is odd, say t = 2s + 1, and v − 1 � k + s, then b � 2

(v−1
s

)
.

Line graphs. For an incidence structure S = (X, B, I), the line graph G(S) of S has as set of vertices
the set B of blocks, whereas any two vertices are adjacent if and only if their corresponding blocks
are incident with at least one common point. Line graphs of incidence structures are sometimes
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Fig. 2. The Fano plane P G(2,2), and its line graph K7.

alternatively called block graphs or block intersection graphs (or Steiner graphs in the case of Steiner
t-designs). As an example, we consider a Steiner 2-(7,3,1) design, the well-known Fano plane, which
is the smallest design arising from a finite projective geometry. Since any two of its seven blocks have
a point in common, its line graph is isomorphic to the complete graph K7 (see Fig. 2). We note that
a line graph of a Steiner 2-design is a strongly regular graph, i.e. each pair of adjacent vertices has the
same number of common neighbors, and each pair of non-adjacent vertices has the same number of
common neighbors.

Some further notation. An incidence structure S1 = (X1, B1, I1) is called a substructure of an inci-
dence structure S = (X, B, I), if the following holds:

(i) X1 ⊆ X and B1 ⊆ B,
(ii) for all x ∈ X1 and all B ∈ B1, we have

(x, B) ∈ I1 ⇐⇒ (x, B) ∈ I.

A subdesign of a t-(v,k, λ) design is a substructure of the incidence structure which itself is a
t-(w,k, λ) design. The subdesign is proper if w < v .

A composition series for a finite group G is a chain of normal subgroups of the form

1 = Gm � · · · � G2 � G1 � G0 = G,

in which the quotients Gi/Gi+1 are simple groups. The factor groups are the composition factors of G .
They are independent of the choice of composition series by the Jordan–Hölder theorem. The compo-
sition width of G , denoted by cw(G), is defined to be the smallest positive integer n such that every
non-Abelian composition factor of G embeds in the symmetric group Sn .

Throughout this paper, logarithms are taken base 2. All other notation is standard.

3. Isomorphism testing of designs

A standard algorithmic approach for testing isomorphism of graphs is to try to assign to each
graph a canonical label (canonical form), so that two graphs are isomorphic if and only if the have the
same label. For instance, one could start out by labeling the vertices by their degrees, and then refine
this labeling by further distinguishing equal labels through other local properties of the vertices. If,
after refinement, it is possible to endow a unique label to every vertex, then a canonical label for
the graph has been found. This procedure with its numerous variations has provided good algorithms
for a variety of special classes of graphs. On the other hand, obstacles may occur if the graphs ex-
hibit a high degree of regularity or symmetry, e.g. for regular graphs or graphs associated with highly
regular combinatorial structures. In some cases it is possible to break up the symmetry by individual-
izing particular vertices before endowing them with unique labels. For further details on the different
methods used for canonical labeling, we refer to [6,38,41] and [9, Sect. 2].

Particularly important for our purposes, Miller [32] showed that a canonical labeling can be found
in O (v log v+O (1)) time for Steiner triple systems. His proof relies on the fact that a Steiner triple
system can be represented as a quasigroup, and hence has a set of at most 1 + log v generators.
By individualizing these, it is then possible to order in polynomial-time the remaining vertices in
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a canonical way. Babai and Luks [6] extended this approach by an algebraization of the problem
which involves information about the groups of automorphisms. Applied to 2-designs, they obtained
the subsequent result.

Theorem 5 (Babai and Luks, 1983). Canonical forms (and hence isomorphism testing) for non-trivial
2-(v,k, λ) designs can be computed in O (v log v+ f (k,λ)) time. In particular, the time bound is O (v log v+O (1))

for bounded parameters k, λ.

A crucial observation in the Babai–Luks approach is the following well-known fact (see, e.g.,
[11, Ch. II.1]): If there is a 2-(v,k, λ) design containing a proper 2-(w,k, λ) subdesign, then v �
(k − 1)w + 1. As the set of all subdesigns is closed under intersection, any subset ‘generates’ a subde-
sign. In order to extend Theorem 5 to t-designs, we need a recent result by Kreher and Rees [27].

Theorem 6 (Kreher and Rees, 2001). Suppose D is a non-trivial t-(v,k, λ) design with t � 2 containing
a proper t-(w,k, λ) subdesign. Then v � 2w when t is odd, while v � 2w + 1 when t is even.

We can now prove the following result.

Theorem 7. Canonical forms (and hence isomorphism testing) for non-trivial t-(v,k, λ) designs with t � 2 can
be computed in O (v log v+ f (t,k,λ)) time. In particular, the time bound is O (v log v+O (1)) for bounded parameters
t, k, λ.

Proof. Let D = (X, B, I) be a non-trivial t-(v,k, λ) design with t � 2. In view of Theorem 6, we
establish the key observation

(1) D has a generating set S of size at most 1 + log v .

By individualizing S , we may proceed for the remainder of the proof by straightforwardly adapting
the method of proof used for Theorem 5 (cf. [6, Thm. 4.6]). We note that this method relies on results
of Luks [29]. In what follows, we describe the basic steps. We first obtain

(2) For fixed t , the composition factors of the setwise stabilizer AutS(D) are subgroups of Sn , where
n = max(λ,k − t). In particular, the composition width cw(AutS(D)) is at most n.

This is then employed in an inductive procedure for finding canonical forms through a nested se-
quence of graphs. We indicate the underlying construction for the nested graphs. For a sequence
S = (u1, . . . , us), a chain {Yi}i of subsets of X is constructed as follows: Y1 = {u1} and while Yi �= X ,
if Yi induces a subdesign then Yi+1 = Yi ∪ {first u j not in Yi} else Yi+1 = Yi ∪ {B ∈ B: |B ∩ Yi | � t}.
The nested graphs {H j} j are defined as bipartite graphs, H2i−1 and H2i , both having the set Yi on one
side and on the other side the vertices representing those blocks entirely in Yi (for H2i−1) or those
in Yi+1 (for H2i ), and edges correspond to flags. The procedure invokes as a subroutine an algorithm
of Babai and Luks (described in detail in [6, Sect. 4.2]) for finding canonical forms for a bipartite
graph with respect to a group action on one of its sides, the complexity of which is sensitive to the
maximum degree on that side and to the composition width of the group. With respect to the given
construction of the nested sequence, it can be shown (again via applying techniques of Luks [29]) that
the maximum degree on the side of group action is bounded by k − t . We therefore obtain

(3) For fixed t , the total running time is O (v log v+ω(max(λ,k−t))+O (1)).

This establishes the claim. �
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4. Reconstruction of designs from line graphs

If we now give an efficient method of reconstructing a t-design from its line graph, then isomor-
phism of line graphs of t-(v,k, λ) designs can be tested in O (v log v+O (1)) time for bounded t,k, λ. To
accomplish this task, we utilize an extension of the well-known Erdős–Ko–Rado theorem to t-designs,
which has been obtained by Rands [36].

Theorem 8. Let D = (X, B, I) be a t-(v,k, λ) design. Given 0 < s < t � k, then there exists a function
f (k, t, s) with the following property: suppose there is a subset A ⊆ B of blocks such that |A ∩ B| � s for
all A, B ∈ A, then if v � f (k, t, s), it follows that

|A| � λs (with λs as in Lemma 1),

and the only families of blocks reaching this bound are those consisting of all blocks incident with an s-subset
of X .

Furthermore, the function f can be estimated as follows:

f (k, t, s) �
{

s + (k
s

)
(k − s + 1)(k − s) if s < t − 1,

s + (k − s)
(k

s

)2
if s = t − 1.

This result will enable us to efficiently find the maximum cliques in a line graph and hence to
reconstruct the points of the corresponding t-design. The idea of distinguishing cliques (i.e. sets of
mutually adjacent vertices) by simple degree considerations, and using the maximum cliques in re-
construction goes back to Miller [32], while retrieving Latin squares, k-nets, and STS(v). It has further
been applied by Spielman [40] in case of Steiner 2-designs, and by Östergård et al. [24,35] for STS(v),
SQS(v), and Steiner t-designs via Rands’ theorem.

We obtain the following result:

Theorem 9. Let G(D) be a line graph on b vertices derived from a t-(v,k, λ) design D, where t � 2. If b >

k2(k − 1), then D can be reconstructed (up to isomorphism) in time polynomial in b.

Proof. Let D = (X, B, I) be a t-(v,k, λ) design with t � 2. Any point x ∈ X is incident with r distinct
blocks. When we consider the line graph G(D) of D, these blocks correspond to vertices in G(D), and
x induces edges between all mutual pairs of them. Hence, the blocks intersecting in x define a clique
of size r in G(D). Choosing the case s = 1 in Theorem 8, only this type of clique is of maximum size,
if we presume that v � f (k, t,1). Clearly, for t � 2, always f (k, t,1) � 1 + k2(k − 1), as well as b � v
by Theorem 4. Thus, under the assumption that b > k2(k − 1), we may distinguish algorithmically
the maximum cliques and identify them with the points of D in polynomial time in b. The claim
follows. �

We note that b = Θ(v O (1)) for bounded parameters t,k, λ in view of Lemma 2(b).

Remark 10. Spielman [40, Prop. 10] elementary derived the stronger necessary condition
√

b − 2 >

(k − 1)2 in the special case of Steiner 2-designs. We also remark that, in general, reconstructibility
from line graphs fails for arbitrary incidence structures. The most natural and oldest graph represen-
tation of an incidence structure arguably is by its point-block incidence graph (or Levi graph). However,
this graph representation is normally less compact.

Proof of the Main Theorem. The result is obtained by putting together Theorem 7 and Theorem 9. �
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