
Network Science 7 (2): 215–241, 2019
doi:10.1017/nws.2019.13

OR I G I N A L ART I C L E

Assessing the computational complexity of multilayer
subgraph detection†

Robert Bredereck1, Christian Komusiewicz2, Stefan Kratsch3, Hendrik Molter4,∗, Rolf Niedermeier4
and Manuel Sorge5

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany (e-mail: robert.bredereck@tu-berlin.de)
2Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany (e-mail: komusiewicz@
informatik.uni-marburg.de) 3Humboldt-Universität zu Berlin, Berlin, Germany (e-mail: kratsch@informatik.hu-berlin.de)
4Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany (e-mails: h.molter@tu-berlin.de,
rolf.niedermeier@tu-berlin.de) and 5Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
(e-mail: manuel.sorge@mimuw.edu.pl)
∗Corresponding author. Email: h.molter@tu-berlin.de

Action Editor: Ulrik Brandes

Abstract
Multilayer graphs consist of several graphs, called layers, where the vertex set of all layers is the same but
each layer has an individual edge set. They are motivated by real-world problems where entities (vertices)
are associated via multiple types of relationships (edges in different layers). We chart the border of com-
putational (in)tractability for the class of subgraph detection problems on multilayer graphs, including
fundamental problems such as maximum-cardinality matching, finding certain clique relaxations, or path
problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot
some islands of computational tractability.

Keywords: parameterized computational complexity; exact algorithms; multi-modal data; matching; Hamiltonian path;
community detection

1. Introduction
Multilayer graphs consist of several graphs, called layers, where the vertex set of all layers is
the same but each layer has an individual edge set (Magnani & Rossi, 2011; Kivelä et al., 2014;
Boccaletti et al., 2014). They are also known as multidimensional networks (Berlingerio et al.,
2013), multiplex networks (Mucha et al., 2010), and edge-colored multigraphs (Cai & Ye 2014;
Agrawal et al. 2018a, 2018b), among others (Kivelä et al., 2014). In recent years, multilayer graphs
have gained considerable attention because observational data often come in amultimodal nature.
Typical topics studied here include clustering (Boden et al., 2017; Dong et al., 2012, 2014; Jiang
& Pei, 2009; Chen et al., 2018a), detection of network communities (Kim & Lee, 2015; Zeng
et al., 2007), data privacy (Rossi et al., 2015), matching problems (Chen et al., 2018b), and general
network properties (Berlingerio et al., 2013).

In several of these applications, the goal is to identify vertex subsets of a multilayer graph
that exhibit a certain structure in each layer. For example, motivated by applications in genome

†An extended abstract (Bredereck et al., 2017) appeared in the proceedings of the 10th International Conference on
Algorithms and Complexity (CIAC 2017), held in Athens, Greece, May 24–26, 2017. This long version now contains a reor-
ganization and much broader motivation and interpretation of the results, as well as full proofs of all results. Work started
while all authors were with TU Berlin.

© Cambridge University Press 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/328276463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/nws.2019.13
mailto:robert.bredereck@tu-berlin.de
mailto:komusiewicz@informatik.uni-marburg.de
mailto:komusiewicz@informatik.uni-marburg.de
mailto:kratsch@informatik.hu-berlin.de
mailto:h.molter@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
mailto:manuel.sorge@mimuw.edu.pl
mailto:h.molter@tu-berlin.de

216 R. Bredereck et al.

comparison in computational biology, Gai et al. (2003) searched for maximal vertex subsets in
a two-layer graph that induce a connected graph in each layer. Jiang & Pei (2009) and Boden
et al. (2017) searched for vertex subsets that induce dense subgraphs in many layers. Such vertex
subsets model communities in a multimodal social network.

To the best of our knowledge, however, a systematic study on computational complexity clas-
sification of such problems is lacking. Typically, authors observe the generalization of hardness
results for the one-layer case to the multilayer one (Boden et al., 2017; Jiang & Pei, 2009) or
perform case studies for special types of subgraphs (Agrawal et al. 2018a, 2018b). From a gen-
eral algorithmic viewpoint, we are aware only of Cai & Ye (2014), who derived some complexity
results for general classes of subgraphs, focusingmostly on the two-layer case. Our aim in this arti-
cle is hence to build a general foundation for studying the worst-case computational complexity
of a wide class of multilayer subgraph problems, and to provide results that may stimulate more
specific algorithmic analyses.

We first give a general problem definition that encompasses the problems sketched above. All
of these problems can be phrased as finding a large vertex subset that induces graphs with an
interesting property in many layers. Motivated by the heterogeneity of the desired properties and
analogous to the one-layer case (Garey & Johnson, 1979), we give a problem definition with a
generic graph property � as part of the problem name. Here, � is formally a fixed set of graphs.
For example,�may be the set of all connected graphs or the set of all complete graphs. This allows
us to study a wide variety of graph properties; we remark that throughout the paper we always
assume that testing membership is decidable for the graph properties � under consideration.

� MULTI-LAYER SUBGRAPH (�-ML-SUBGRAPH)
Input: A set of undirected graphs G1, . . . ,Gt all on the same vertex set V and two posi-
tive integers k and �.
Question: Is there a vertex set X ⊆V with |X| ≥ k such that for at least � of the input
graphs Gi it holds that the induced subgraph Gi[X] has the property �?

We study �-ML-SUBGRAPH mostly in the context of parameterized computational complexity
analysis (Cygan et al., 2015; Downey & Fellows, 2013; Flum&Grohe, 2006; Niedermeier, 2006). In
contrast to classical computational complexity analysis, where mostly only the input size is used to
estimate the worst-case running time of an algorithm, we consider running times depending also
on secondary measures of the input instances, so-called parameters. We study �-ML-SUBGRAPH
with respect to the following natural parameters:

• the total number t of layers,
• the number k of vertices to select, and
• the number � of layers to select, as well as
• their dual parameters |V| − k and t − �,

and combinations of these parameters. A combination of two parameters can be thought of as the
parameter obtained by taking the sum of the two individual parameters. The parameters |V| − k
and t − � are also called deletion parameters because they correspond to the equivalent problem of
deleting at most |V| − k vertices and t − � layers to obtain a desired subgraph in each remaining
layer.

In analyzing the parameterized computational complexity with respect to a parameter p,
we aim to find efficient algorithms if p is small. This is formalized in the concept of fixed-
parameter tractability (FPT) which states that there exists an algorithm that produces a solution in
f (p) · poly (|I|) time, where f is a computable function and |I| is the size of the input instance.
In contrast, polynomial-time algorithms for a constant parameter value p may have running
time O(|I|g(p)) for some computable function g. Such algorithms, called XP algorithms, usu-
ally have a prohibitively large running time, even for small values of p. Using W[1]-hardness, a
concept analogous to NP-hardness, one can show that a problem is unlikely to admit an FPT

Network Science 217

Table 1. Result Overview; k is the number of vertices to select, � is the number of layers to select, and t is the total number
of layers. A graph property� is vertex-partitionable if one can compute partitions of a graph into maximal components that
each satisfies � in polynomial time; for details see Definition 1 in Section 4. A graph property is staggered if we can build
a certain gadget based on the property; see Definition 2 in Section 4 for details. For all FPT, XP, and W[1]-hardness results,
we also have corresponding NP-hardness results. (In the case of vertex-partitionable graph properties, we get NP-hardness
if the property is also staggered, which is the case for all properties we consider in this paper.)

Graph Property� Complexity of�-ML-SUBGRAPH Reference

Hereditary and

- contains finitely many graphs Polynomial-time solvable Proposition 1

- includes all complete and
FPT w.r.t. (k, �) Proposition 1

all edgeless graphs

- includes either all complete
W[1]-hard w.r.t. k for all � Proposition 1

or all edgeless graphs

- characterizable by finitely many
FPT w.r.t. (|V| − k, t− �) Proposition 2

forbidden induced subgraphs
.. .

Vertex-partitionable FPT w.r.t. t and XP w.r.t. � Proposition 3

Staggered W[1]-hard w.r.t. (k, �) Theorem 1
.. .

Matching
Polynomial-time solvable for all � ≤ 2

Theorem 2
W[1]-hard w.r.t. k for all � ≥ 3

c-Factor W[1]-hard w.r.t. k for all � ≥ 2 Theorem 3

Hamiltonian W[1]-hard w.r.t. k for all � ≥ 2 Theorem 4

algorithm. To fully assess the computational complexity behavior of problems, it is important to
study them under various parameterizations and combinations thereof (Downey & Fellows, 2013;
Niedermeier, 2010; Komusiewicz & Niedermeier, 2012). Note that W[1]-hardness when param-
eterized by a combined parameter (p, q) implies W[1]-hardness when parameterized by either p
or q. On the contrary, W[1]-hardness with respect to a parameter p may still allow for an FPT
algorithm with respect to a combination of p with an additional parameter.

1.1 Our results
We give an overview of our results in Table 1. Observe that for �-ML-SUBGRAPH, NP-hardness
and W[1]-hardness for either k or |V| − k in the single-layer case directly imply hardness of the
multi-layer case. Our analysis of�-ML-SUBGRAPH starts with several easy observations on hered-
itary graph properties �, that is, � is closed under vertex deletions. Such properties � have been
well-studied in the single-layer case. Using Ramsey arguments and a theorem due to Khot and
Raman (2002), we show a trichotomy for the complexity of �-ML-SUBGRAPH with respect to the
inclusion of edgeless or complete graphs in �, distinguishing between polynomial-time solvabil-
ity, fixed-parameter tractability with respect to the combined parameter (k, �), andW[1]-hardness
with respect to k for all � (Proposition 1). Second, we generalize a result due to Cai (1996) by
showing that, for graph properties � characterized by a finite number of forbidden induced
subgraphs, �-ML-SUBGRAPH is fixed-parameter tractable with respect to the combined parame-
ter (t − �, |V| − k), and that in this case it additionally admits a polynomial-size problem kernel
(Proposition 2).

Next, we turn to graph properties that are not necessarily hereditary. An easy example would
be connectedness. For finding connected graphs of order at least k in at least � of t layers, there
is a simple FPT algorithm with respect to t that is also an XP algorithm with respect to t − � or
with respect to �. This algorithm admits a generalization to each graph property that implies
certain good-natured partitions of the input graphs (Proposition 3), for example, so-called c-
cores (Seidman, 1983) and c-trusses (Cohen, 2008). On the flip side, we spot W[1]-hardness

218 R. Bredereck et al.

for �-ML-SUBGRAPH for the combined parameter k and � for a specific large class of graph
properties � that we call staggered (Theorem 1). Such properties allow to efficiently construct
graphs that have three parts that are obligatory, optional, and forbidden for the solution, respec-
tively. Staggered graph properties� include connected graphs, c-cores, and c-trusses, for example
(see Corollary 5).

Finally, we exhibit three graph properties� for which Theorem 1 and Corollary 5 already yield
hardness, but where we can achieve stronger results by closer inspection. First, we consider the
property that includes all graphs that admit a perfect matching. While finding a vertex subset of
size k that induces subgraphs with a perfect matching in two layers is polynomial-time solvable,
it becomes NP-hard and W[1]-hard with respect to the number of vertices to select k in three
layers (Theorem 2). For a generalization of matchings, so-called c-factors, the subgraph detec-
tion problem already becomes NP-hard and W[1]-hard with respect to the number of vertices
to select k in two layers for all c≥ 2 (Theorem 3). Furthermore, we consider the property that
includes all graphs that admit a Hamiltonian path. While finding an order-k subgraph containing
a Hamiltonian path is fixed-parameter tractable with respect to the number k of vertices to select
in one layer (Monien, 1985), it becomesW[1]-hard in two layers (Theorem 4).

Apart from providing a broad overview over the complexity of �-ML-SUBGRAPH, the
main technical contributions are revealing conditions on � that make �-ML-SUBGRAPH hard
(Theorem 1) and understanding the transition from tractability to hardness for perfectly match-
able subgraphs (Theorem 2) and Hamiltonian subgraphs (Theorem 4).

1.2 Related work
As mentioned in the beginning, despite the numerous practical studies related to multilayer net-
works, systematic work pertaining to the computational complexity of �-ML-SUBGRAPH is not
well-developed. The following special cases were studied from this viewpoint. Gai et al. (2003) and
Bui-Xuan et al. (2008) studied the case where the graph property � is the set of connected graphs
and t = � = 2; that is, they studied the problem of finding connected subgraphs of size at least k in
two layers. They showed that the resulting problem is polynomial-time solvable. In contrast, Cai
& Ye (2014) studied a modified version of this problem, where the desired vertex subset shall be
of size exactly k instead of at least k.1 They showed NP-hardness and W[1]-hardness with respect
to the number k of vertices to select and with respect to |V| − k. Agrawal et al. (2018b) gave a
23tk · poly (n, t)-time algorithm for the case where � is the set of acyclic graphs and t = �.

In terms of general graph properties, Cai & Ye (2014) proved a trichotomy for hereditary graph
properties similar to the one we give in Proposition 1 in the setting where the input consists only of
two layers whose edge sets are disjoint and one wants to satisfy two possibly distinct graph proper-
ties in the corresponding layers (see their Theorem 6). They also showed that�-ML-SUBGRAPH is
fixed-parameter tractable parameterized by |V| − k in the following modified setting: Each layer i
has a specific graph property�i that is characterized by a finite set of forbidden induced subgraphs
and the vertex sets of the layers may differ (see their Theorem 7). Our Proposition 2 is strongly
related to this result and when focusing on the plain �-ML-SUBGRAPH problem, it can be seen as
a generalization of their result and additionally provides a polynomial-size problem kernel.

In mathematical terms, multilayer graphs are equivalent to edge-colored multigraphs. These
have been studied from an algorithmic viewpoint; an overview can be found in the surveys of
Bang-Jensen & Gutin (2009), Chapter 26, and Kano & Li (2008). Most of the algorithmic results
presented there pertain to paths and cycles that do not contain two consecutive edges in the same
layer and to related questions like connectedness and Hamiltonicity using this notion of paths or
cycles.

If a multilayer graph is additionally equipped with a linear ordering of the layers, then the
model is mathematically equivalent to temporal graphs (Holme & Saramäki, 2012; Holme, 2015;

Network Science 219

Michail, 2016; Latapy et al., 2018). In this model, each layer models the state of the data set
at a different point in time. There is a huge body of research in this area and we refer to the
aforementioned surveys for an overview.

1.3 Organization
Section 2 contains some basic definitions and notation. In Section 3, we give general results
for hereditary graph properties �. In Section 4, we give general results for large classes of
graph properties � that are not necessarily hereditary. In the two succeeding sections, we
take a closer look at selected graph properties where a more in-depth inspection reveals
stronger results compared to the general result of Section 4. In Section 5, we investigate the
parameterized computational complexity of Matching-ML-SUBGRAPH and the generalization
c-Factor-ML-SUBGRAPH. In Section 6, we analyze the parameterized computational complexity
ofHamiltonian-ML-SUBGRAPH.We give a conclusion and directions for future work in Section 7.

2. Preliminaries
2.1 Parameterized complexity
A parameterized problem is a language L⊆ �∗ ×N, where the second component in an instance
(I, k) ∈ �∗ ×N is called the parameter. In the case of combined parameters, we write a tuple, for
example, (k1, k2). This is just notation for a parameter k= k1 + k2. A parameterized problem L
is fixed-parameter tractable if there is an algorithm that for each instance (I, k) ∈ �∗ ×N decides
whether (I, k) ∈ L in f (k) · |I|O(1) time, where f is a computable function and |I| is the encod-
ing length of the input I. We also say that |I| is the instance size. The class of fixed-parameter
tractable problems is FPT. A parameterized problem L is in the class XP if there is an algorithm that
decides for each instance (I, k) ∈ �∗ ×N whether (I, k) ∈ L in |I|f (k) time, where f is a computable
function. W[1]-hard parameterized problems are generally assumed not to be fixed-parameter
tractable. W[1]-hardness can be shown by a parameterized reduction from another W[1]-hard
problem such as INDEPENDENT SET (given a graph G and an integer k, decide whether there is
a k-vertex subset in G that does not contain any edge). A parameterized reduction from a param-
eterized problem Q to a parameterized problem L is an algorithm that maps an instance (I, k)
of Q to an instance (I′, k′) of Q in f (k) · |I|O(1) time such that (I, k) ∈Q if and only (I′, k′) ∈ L and
k′ ≤ g(k), where f and g are arbitrary computable functions.

Furthermore, parameters allow us to mathematically rigorously study efficient data reduction.
Formally, given a parameterized problem L, a kernelization algorithm is a polynomial-time algo-
rithm that maps instances (I, k) of L to instances (I′, k′) (called a problem kernel) of L such that
the size of I′ is upper-bounded by a function of the parameter p and (I′, k′) is a yes-instance if
and only if (I, k) is a yes-instance. If the kernel size can be upper-bounded by a polynomial in
the parameter, we call it a polynomial kernel. For more context and methodology, we refer to the
literature (Cygan et al., 2015; Downey & Fellows, 2013; Flum & Grohe, 2006; Niedermeier, 2006).

2.2 Graphs
All graphs in this work are undirected and without self loops or parallel edges. We use standard
graph notation (Diestel, 2017). A graph property � is hereditary if removing any vertex from a
graph in � results again in a graph in �. We consider the following graph properties. A graph is a
c-core if each vertex has degree at least c (Seidman, 1983). A graph is a c-truss if it is connected and
each edge is contained in at least c− 2 triangles (Cohen, 2008).We say that a graph isHamiltonian
if it contains a simple path that comprises all vertices in the graph. The length of a path is the

220 R. Bredereck et al.

number of its edges. A c-factor in a graph is a subset of the edges such that each vertex is inci-
dent with exactly c edges. In sans serif font face, we often denote graph properties. For example,
c-Truss is the set of all c-trusses. By Matching, we refer to the set of all graphs containing a perfect
matching; note that then finding a maximum matching is equivalent to finding a maximum sized
Matching-subgraph. By c-Factor, we refer to the set of all graphs containing a c-factor. For a list
of definitions of all graph properties mentioned in this article, see Appendix.

3. Hereditary graph properties
In this section, we study the (parameterized) computational complexity of�-ML-SUBGRAPH with
respect to hereditary graph properties�. Many natural graph properties fall into this category, for
example, being planar or being a forest. We give a trichotomy of the complexity, classifying each
problem either as polynomial-time solvable or as NP-hard, and further classifying the parame-
terized complexity of the NP-hard cases with respect to the parameters number k of vertices to
select and number � of layers to select. In addition, we observe fixed-parameter tractability for the
deletion parameters |V| − k and t − �.

The single-layer case has been studied by Lewis & Yannakakis (1980) as well as Khot &
Raman (2002); the latter studied the parameterized complexity of the subgraph detection prob-
lem for hereditary properties. Cai & Ye (2014) studied this problem on two layers with disjoint
edge sets (see their Theorem 6) and for multiple layers when layers cannot be deleted (in their
Theorem 7).We generalize in the following thementioned results to themultilayer case where lay-
ers can be deleted. This allows us to classify all hereditary graph properties� by the parameterized
complexity of the corresponding �-ML-SUBGRAPH problem.

Proposition 1 (Complete classification of hereditary graph properties). If � is a hereditary graph
property, then the following statements are true:

(1) If � excludes at least one complete graph and at least one edgeless graph, then �-ML-SUB-
GRAPH is solvable in polynomial time.

(2) If � includes all complete graphs and all edgeless graphs, then �-ML-SUBGRAPH is NP-hard
and FPT when parameterized by the combined parameter number k of vertices to select and
number � of layers to select.

(3) If� includes either all complete graphs or all edgeless graphs (but not both), then�-ML-SUB-
GRAPH is NP-hard and W[1]-hard when parameterized by the number k of vertices to select
for all numbers � of layers to select.

Proof. We utilize the concept of Ramsey numbers. The Ramsey number R(p, q) is the minimum
number x such that every graph with x vertices has either a clique of size p or an independent
set of size q. It is well known that R(p, q)≤ (p+q−2

q−1
)
(Jukna, 2011). We give separate proofs for all

three statements in the theorem. Note that for the second and third statements, NP-hardness even
in the single-layer case was shown by Lewis & Yannakakis (1980).

Statement 1. Let p, q be the sizes of the smallest excluded complete and edgeless graph, respec-
tively. Note that any graph on at least R(p, q) vertices contains either a clique of size p or an
independent set of size q and hence is not included in �. Hence, there are only finitely many
graphs that have property �. Furthermore, if k≥ R(p, q), then we face a no-instance.

If k< R(p, q), then we consider every order-k vertex subset X and check whether G[X] ∈ �

in at least � layers. If this is the case for some X, then we output X; otherwise, we output that the
instance is a no-instance. The running time for this algorithm isO(t

(n
k
)
f (k)), where f (k) is the time

to check membership of�. Note that k is constant since k< R(p, q) and p and q are constants only
depending on �. Hence, the overall running time is polynomial.

Network Science 221

Statement 2. The NP-hardness follows from the NP-hardness of the single-layer case. For the
proof of fixed-parameter tractability, we introduce nested Ramsey numbers as follows:

R(1)(p, q)= R(p, q)
R(i)(p, q)= R(R(i−1)(p, q), R(i−1)(p, q))

We show that if |V| ≥ R(�)(k, k), then we face a yes-instance. Indeed, we show the more general
statement that, for each set of � layers Gi, i= 1, . . . , �, on vertex set V with |V| ≥ R(�)(k, k), there
is a vertex subset X ⊆V with X ≥ k such that Gi[X] ∈ � for each i ∈ 1, . . . , �. We prove this by
induction on �.

For � = 1, we have |V| ≥ R(k, k). Hence, each graph on vertex set V contains either a clique of
size k or an independent set of size k, proving the statement. Assume that � > 1 and that the state-
ment holds for each �′ < �. Since |V| ≥ R(�)(k, k), each layer has either a clique of size R(�−1)(k, k)
or an independent set of size R(�−1)(k, k). Let X′ ⊆V with |X′| = R(�−1)(k, k) be either a clique or
an independent set in layer 1. By the induction hypothesis, there is a vertex set X ⊆ X′ with |X| ≥ k
such that Gi[X] ∈ � for all i such that 2≤ i≤ �. Since X ⊆ X′, we also have G1[X] ∈ �. Hence,
Gi[X] ∈ � on each of the � layers Gi, as required.

The algorithm is now as follows. If |V| ≥ R(�)(k, k), then accept immediately. By the above, each
subset of � layers of the input multilayer graph contains a solution. Otherwise, if |V| < R(�)(k, k),
then find a solution by brute force, if it exists: Simply try all possible vertex subsets X of size k
and check whether Gi[X] ∈ � for at least � layers i. By heredity, if there is a solution, then there is
one of size k and thus the algorithm is correct. If g(k) denotes the time needed to check whether
Gi[X] ∈ � for some fixed i, then the running time for the brute-force step is at most |V|k+O(1) · t ·
g(k)≤ (R(�)(k, k))k+O(1) · g(k) · t = f (k, �) · t for some function f , showing that the problem is FPT
with respect to k and � combined.

Statement 3. Khot & Raman (2002) showed that for hereditary properties � including either all
complete graphs or all edgeless graphs,�-SUBGRAPH isW[1]-hard when parameterized by k. This
directly translates to the multilayer case, as does NP-hardness.

Note that every hereditary graph property falls into one of the three cases of Proposition 1.
Properties that fall into the first case are exactly those containing only a finite number of graphs.
In the following corollary, we give a number of hereditary properties � that fall in the second
and third cases and give the corresponding complexity results for �-ML-SUBGRAPH implied by
Proposition 1. For their definitions, we refer to the literature (Brandstädt et al., 1999; Golumbic,
2004) or to Appendix: Definitions.

Corollary 1.
(1) �-ML-SUBGRAPH is NP-hard and FPT when parameterized by the combined parameter

number k of vertices to select and number � of layers to select for � ∈ {Asteroidal Triple Free
Graph, Chordal Graph, Comparability Graph, Interval Graph, Perfect Graph, Permutation
Graph, Split Graph}.

(2) �-ML-SUBGRAPH isNP-hard andW[1]-hard when parameterized by the number k of vertices
to select for all numbers � of layers to select for � ∈ {c-Colorable Graph, Complete Graph,
Complete Multipartite Graph, Edgeless Graph, Forest, Planar Graph}.

Next, we consider properties � whose complements are hereditary or, equivalently, � is closed
under the operation of adding a new vertex v and connecting v arbitrarily to the rest of the graph.
For these, we can observe that polynomial-time solvability transfers to the multilayer case.

222 R. Bredereck et al.

Observation 1. Let � be a graph property such that whenever G ∈ � for some graph G, then we
have that for all graphs H = (V , E) if there is a vertex set X ⊆V such that H[X] is isomorphic to G,
then H ∈ �. If � can be decided in T(|V|) time for some function T, then �-ML-SUBGRAPH can
be decided in O(t · T(|V|)) time for all numbers k of vertices to select and all numbers � of layers to
select.

Proof. Let � be a graph property such that if G ∈ � for some graph G and H[X]=G for some
graph H and vertex set X, then H ∈ �. Observe that if G /∈ �, then no induced subgraph of G
can be in �. Let (G1, . . . ,Gt , k, �) be an instance of �-ML-SUBGRAPH. We decide for each graph
G1, . . . ,Gt whether it satisfies property �. We face a yes-instance if and only if there are at least �
graphs that have property �: We can set X =V , and hence |X| ≥ k, for any k≤ n.

In the following corollary, we give two examples of properties � for which by Observation 1
�-ML-SUBGRAPH is solvable in polynomial time.

Corollary 2. �-ML-SUBGRAPH is solvable in polynomial time for
• � = “The graph has maximum degree at least x.”
• � = “The graph contains a triangle.”
• � = “The graph has an h-index2 of at least x.”

Finally, we consider the dual parameterizations for hereditary graph properties characterized
by a finite number of forbidden subgraphs. In the single-layer case, this problem has been studied
by Lewis & Yannakakis (1980) as well as Cai (1996). A result of Cai & Ye (2014) (Theorem 7)
implies a fixed-parameter algorithm for �-ML-SUBGRAPH if t − � = 0; that is, no layers can be
deleted. In the following, we give a more general fixed-parameter algorithm for the case where
t − � ≥ 0 and we furthermore present a polynomial kernel.

Proposition 2. Let � be a hereditary graph property that is characterized by finitely many forbid-
den induced subgraphs. Then �-ML-SUBGRAPH is NP-hard and FPT when parameterized by the
combined parameter number t − � of layers to delete and number |V| − k of vertices to delete. It
also admits a polynomial-size problem kernel with respect to this combined parameter.

Proof. To see the fixed-parameter tractability, consider the search-tree algorithm that recursively
searches for a forbidden induced subgraph G′ in one of the layers, and branches, for each vertex v
in G′, into the branch of deleting v and, additionally, into the branch of deleting the layer of G′.
Hence, in each branch we either delete a layer or a vertex, so the depth of the search-tree is upper-
bounded by (t − �)+ (|V| − k). FindingG′ takes polynomial time because there is only a constant
number of different forbidden subgraphs and each one has constant size. Furthermore, each node
in the resulting search tree has a constant number of children. Hence, the search-tree algorithm
has a running time of ct−�+|V|−k · poly (I), where c is a constant, and I is the instance size, as
required. This procedure is correct since each forbidden subgraph is either destroyed by deleting
one of its vertices or by deleting the layer it exists in. Hence each of the remaining layers does not
contain a forbidden subgraph and therefore has property �.

To see that�-ML-SUBGRAPH admits a polynomial kernel with respect to the combined param-
eter (t − �, |V| − k), we use a reduction to 2-COLOR HITTING SET, a variant of HITTING SET, and
then apply a (basically folklore) kernelization for 2-COLOR HITTING SET. Herein, we are given
two disjoint ground sets B and W, a family F of subsets of B∪W, and two integers b,w. We are
to decide whether there is a hitting set S⊆ B∪W; that is, each subset F ∈F has F ∩ S
= ∅, con-
taining b elements from B and w elements fromW. Clearly, 2-COLOR HITTING SET is contained
in NP.

Network Science 223

The reduction works as follows. Given an instance of �-ML-SUBGRAPH, we put the ground
set B:=V and put a distinct new vertex into W for each layer. For each layer, we enumerate all
forbidden induced subgraphs. This takes polynomial time, as the maximum size of these sub-
graphs is a constant. To defineF , for each forbidden induced subgraph G′ we add its vertex set V ′
plus the vertex v ∈W corresponding to the layer in which G′ is contained as a set V ′ ∪ {v} to F .
Integer b is set to |V| − k and integerw to t − �. As mentioned, the reduction works in polynomial
time. Since we have to “hit” each forbidden induced subgraph by either deleting a vertex from it,
or deleting its layer completely, it is not hard to verify that the reduction is correct.

We now apply the so-called sunflower kernelization procedure (Moser, 2009; Kratsch, 2012;
van Bevern, 2014) to the resulting 2-COLOR HITTING SET instance. A sunflower in F is a sub-
family F ′ ⊆F such that there is a set C ⊆ B∪W with the property that each pair F, F′ ∈F ′ has
F ∩ F′ = C. The size of a sunflower is |F ′|. If there is a sunflower of size b+w+ 1 inF , then every
hitting set contains at least one element of C. Hence, we can safely remove one set out of every
sunflower of size at least b+w+ 2. This can be done exhaustively in polynomial time (Moser,
2009; Kratsch, 2012; van Bevern, 2014). After this procedure has been carried out, Erdős and
Rado’s Sunflower Lemma (Erdös & Rado, 1960) guarantees that the remaining set family F has
size O((b+w)c), where c is the size of the largest set in F . This is a polynomial because the
sets in F have constant size. By removing elements of B∪W that are not contained in any set
in F , we obtain an overall size bound on the resulting instance of 2-COLOR HITTING SET that is
polynomial in b= |V| − k and w= t − �.

Finally, we transfer the instance of 2-COLOR HITTING SET created in this way to an equivalent
instance of �-ML-SUBGRAPH by using a polynomial-time many-one reduction. Such a reduction
exists because 2-COLOR HITTING SET is in NP and �-ML-SUBGRAPH is NP-hard for every graph
property � that is characterizable by a finite number of forbidden induced subgraphs (Lewis &
Yannakakis, 1980).

In the following corollary, we give several hereditary properties � that are characterized by a
finite number of forbidden subgraphs. For these, �-ML-SUBGRAPH is fixed-parameter tractable
with respect to the number t − � of layers to delete and the number |V| − k of vertices to delete
combined. For their definitions, see Appendix: Definitions.

Corollary 3. Let� ∈ {Cluster Graph, Cograph, Line Graph, Quasi-Threshold Graph, Split Graph}.
Then, �-ML-SUBGRAPH is NP-hard. When parameterized by the combined parameter number t −
� of layers to delete and number |V| − k of vertices to delete, then �-ML-SUBGRAPH is FPT and
admits a polynomial kernel.

While this collection of graph properties might seem motivated only from a graph-theoretic
point of view, we note that quasi-threshold graphs are a model for familial groups in social net-
works (Nastos & Gao, 2013) and split graphs are a model of communities with core/periphery
structures (Borgatti & Everett, 2000).

4. Nonhereditary graph properties
In contrast to the previous section, we now give two results related to graph properties that are
not necessarily hereditary. Two examples of such nonhereditary properties that are prominent
in network analysis are Connectivity and c-Core (recall that graph is a c-core if each vertex has
degree at least c). First, we consider graph properties in which each graph admits a certain nice
vertex partitioning. This family of graph properties includes Connectivity and c-Core, among oth-
ers. We give an FPT algorithm for the parameter total number t of layers; this algorithm is also
an XP algorithm with respect to the number � of subgraph layers. Second, we provide a gen-
eral sufficient condition for graph properties � for which �-ML-SUBGRAPH is W[1]-hard for

224 R. Bredereck et al.

the combined parameter (k, �). This general sufficient condition captures many prominent graph
properties such as Connectivity, c-Core, c-Truss, and Matching.

4.1 Vertex-partitionable graph properties
We start with investigating graph properties � that allow for efficiently computable partitions
of a graph into maximal components that each satisfies �. For such properties � it turns out
that finding large �-subgraphs in all layers of the input graph is tractable. This can be seen as a
generalization of the component-detection algorithm in two layers by Gai et al. (2003).

First, we define the type of partition that the graph property shall allow.

Definition 1. Let � be a graph property and let G= (V , E) be a graph. A partition P :=
{X1, . . . , Xx} of V is a �-partition if
(i) G[Xi] ∈ � for all Xi ∈P ,
(ii) for all X ⊆V such that G[X] ∈ �, we have X ⊆ Xi for some Xi ∈P .

Informally, the existence of a �-partition means that there are maximal components contain-
ing all induced subgraphs that fulfill the property �. In the case of Connectivity, these are exactly
the connected components of the graph. We now show that if �-partitions can be computed
efficiently, then we can solve �-ML-SUBGRAPH efficiently if t, �, or t − � are small.

Proposition 3. Let � be a graph property such that every graph G= (V , E) has a �-partition that
can be computed in T(|V|, |E|) time where T is non-decreasing in both arguments. Then, �-ML-
SUBGRAPH can be solved in

(t
�

) ·O(|V| · t) ·max1≤i≤t (|Ei| + T(|V|, |Ei|)) time.

Proof. We describe an algorithm that works when � = t, that is, when we aim for satisfying prop-
erty � in all layers. To apply this algorithm for all other cases, we iterate through all possibilities
to select � layers where property � shall be satisfied and then apply the algorithm for this selec-
tion. This gives an additional factor of

(t
�

)
to the overall running time. In each application, our

algorithm outputs all maximal sets X ⊆V such that Gi[X] ∈ � for all selected input graphs Gi.
We refer to these sets as solutions in the following. The algorithm maintains a partition P of V
where, initially, P = {V}.

The algorithm checks whether there is a Y ∈P such that Gi[Y] /∈ � for some input graph Gi.
If there is such a vertex set Y ∈P , then it computes in T(|V|, |Ei|) time a �-partition PY of Gi[Y].
The partition P is replaced by (P \ {Y})∪PY . If there is no such vertex set, then the algorithm
outputs all Y ∈P . It accepts if one of the outputs has size at least k and rejects otherwise.

To see the correctness of the algorithm, first observe that, for each output Y , we have
that Gi[Y] ∈ � for all selected input graphs Gi. To show maximality of each Y , we show that the
algorithm maintains the invariant that each solution X is a subset of some Y ∈P . This invariant
is trivially fulfilled for the initial partition {V}. Now consider a set Y that is further partitioned by
the algorithm. By the invariant, any solution X that has non-empty intersection with Y is a subset
of Y . Since PY is a �-partition of Gi[Y], by Property (ii) of �-partitions, there is no solution X
that contains vertices of two distinct sets Y1, Y2 of PY . Thus, each solution that is a subset of Y is
also a subset of some Y ′ ∈PY . Hence, each output set X is a solution as it is an element of the final
partition P and all solutions are subsets of elements of P .

To upper-bound the running time, observe that for each Y ∈P , we can test in O(t ·
max1≤i≤t T(|V|, |Ei|)) time whether it needs to be partitioned further. At most |V| partitioning
steps are performed and if a set Y ∈P does not need to be partitioned further, then it can be dis-
carded for the remainder of the algorithm. Thus, in O(|V|) applications of the “maximality test”
the result is that Y is a solution and in O(|V|) applications of the maximality test, Y is further

Network Science 225

partitioned. Hence, the overall number of sets Y that are elements of P at some point is O(|V|).
The overall running time now follows from the assumptions on T and from the fact that the
induced subgraphs for all Gi can be computed in O(t ·max1≤i≤t |Ei|) time for each Y .

Examples of graph properties covered by Proposition 3 are Connectivity and c-Edge-
Connectivity. If we assume that graphs on one vertex are considered as (trivial) c-cores, then
the c-Core property is also covered: The nontrivial c-core of a graph is uniquely determined (it is
the subgraph remaining after deleting any vertex with degree less than c). Similarly, the c-Truss
property is covered by Proposition 3 if we allow one-vertex graphs to be considered as c-trusses.
Observe that we can also require the c-cores and c-trusses to be connected. For definitions of the
graph properties mentioned above and in the following corollary, see Appendix: Definitions.

If T is a polynomial function, which holds for all examples described above, then �-ML-SUB-
GRAPH is fixed-parameter tractable with respect to t and polynomial time solvable if � or t − � are
constants.

Corollary 4. Let � ∈ {c-Core, c-Edge-Connectivity, Connectivity, c-Truss}. �-ML-SUBGRAPH is
FPT when parameterized by the total number t of layers and polynomial-time solvable if the
number � of layers to select or the number t − � of layers to delete is constant.

4.2 A general hardness reduction
We now describe a large class of graph properties � for which �-ML-SUBGRAPH is NP-hard
and W[1]-hard when parameterized by the combined parameter number k of vertices to select
and number � of layers to select. We call these graph properties staggered (Definition 2). The
definition is somewhat technical but covers many natural graph properties � that are not hered-
itary, such as Connectivity. In the main theorem of this paragraph (Theorem 1), we show that
for staggered graph properties �, �-ML-SUBGRAPH is NP-hard andW[1]-hard when parameter-
ized by the combined parameter number k of vertices to select and number � of layers to select.
Furthermore, since all graph properties from Corollary 4 are staggered, it shows that for those
properties, �-ML-SUBGRAPH becomes intractable when parameterized by � instead of t. We list
some graph properties � for which Theorem 1 can be applied in Corollary 5 and explain how the
theorem yields the results in said cases.

Intuitively, Theorem 1 covers graph properties � for which it is possible to construct graphs G
with the following properties:

• The vertices are partitionable in three sets: a fixed number of obligatory vertices, a variable
number of optional vertices, and a variable number of forbidden vertices.

• A sufficiently large subgraph of G has property � if and only if it contains all obligatory
vertices and no forbidden vertices.

Formally, we characterize these graph properties � as follows.

Definition 2. Let � be a graph property and f , g:N→N two polynomial-time computable func-
tions. We say that � is (f , g)-staggered if there is an algorithm A� and a constant c� depending
only on � such that A� takes as input a set W, a subset W′ ⊆W, and an integer α ≥ c�, runs in
(|W| + α)O(1) time, and computes a graph G= (V , E) fulfilling the following conditions:
(1) For each w ∈W, there is a vertex set Xw ⊆V with |Xw| = f (α);
(2) {Xw |w ∈W} ∪ {Y} is a partition of V for some Y with |Y| = g(α);
(3) for all X ⊆V with |X| ≥ α · f (α)+ g(α), we have that

G[X] ∈ � ⇔ ∃W ′′ ⊆W′ such that X =
⋃

w∈W′′
Xw ∪ Y

The output of Algorithm A� is the graph G= (V , E) as well as the partition of its vertex set {Xw |
w ∈W} ∪ {Y}.

226 R. Bredereck et al.

The intuition is that each set Xw corresponds to one vertex w ∈W and every sufficiently large
set X such that G[X] ∈ � either fully contains Xw or not. Furthermore, Y is the set of obligatory
vertices that have to be included in X in order to have that G[X] ∈ �. Finally, the sets Xw that
correspond to vertices w ∈W \W′ are forbidden; that is, they have to be fully excluded from X in
order to have thatG[X] ∈ �. For the proof, we reduce fromBICLIQUE, which isNP-hard (Johnson,
1987) andW[1]-hard when parameterized by the size h of the biclique (Lin, 2015).

Theorem 1. Let � be an (f , g)-staggered graph property. Then, �-ML-SUBGRAPH is NP-hard
and W[1]-hard when parameterized by the combined parameter number k of vertices to select and
number � of layers to select.

Proof. We give a parameterized reduction from BICLIQUE that, given an undirected graph H
and a positive integer h, asks whether H contains a 2h-vertex biclique, a complete bipartite
subgraph Kh,h in which both partite sets have size h.

Reduction idea. The main idea is to construct a layer for each vertex v of the input graph
using Algorithm A� from Definition 2 such that the optional vertices correspond to the open
neighborhood of v in the input graph. Then we can show that selecting layers corresponds to
selecting one half of the biclique and the optional vertices that are part of the selected subgraph
form the second half of the biclique.

Let (H = (U, F), h) be an instance of BICLIQUE and assume h≥ 2 without loss of generality. Let
A�, f , g be the algorithm and functions promised by the definition of being (f , g)-staggered. We
construct an instance of �-ML-SUBGRAPH in the following way.

For all v ∈U, let NH(v) be the neighborhood of v with respect to H. Run Algorithm A� (see
Definition 2) on input (U,NH(v), h) to create graphs Gv for each v ∈U. A graph Gv created that
way has a vertex set Vv = ⋃

u∈U Xu ∪ Y . For all created graphs, we identify the vertices of the
sets Xu in an arbitrary but fixed fashion, the same for vertices in Y . This allows us to say that all
graphs Gv are defined over the same vertex set. Set k:= h · f (h)+ g(h) and �:= h. Note that the
parameters k and � only depend on the solution size h of BICLIQUE. ByDefinition 2, this procedure
runs in polynomial time. Now we show that ({Gv | v ∈U}, k, �) is a yes-instance of �-ML-SUB-
GRAPH if and only if (H, h) is a yes-instance of BICLIQUE.

(⇒): Assume that (H, h) is a yes-instance of BICLIQUE and let (C,D) with C,D⊆U and |C| =
|D| = h represent a biclique. Then we setX:= ⋃

v∈C Xv ∪ Y , where Y and theXv are the vertex sets
promised by Conditions 1 and 2 of Definition 2. Note that |X| = h · f (h)+ g(h)= k. Furthermore,
for all v′ ∈D and all v ∈ C such that Xv ⊂ X, it holds that v ∈NH(v′). Hence, by Condition 3 of
Definition 2, Gv′[X] ∈ �. It follows that the number of layers Gv with Gv[X] ∈ � is at least h= �.
Consequently, (X,D) is a solution of �-ML-SUBGRAPH.

(⇐): Assume that ({Gv | v ∈U}, k, �) is a yes-instance of �-ML-SUBGRAPH. Then we know
that there are graphs Gi, with i ∈ L, L⊆U, |L| ≥ h, and a vertex set X ⊆V with |X| ≥ k, such
that Gi[X] ∈ � for all i ∈ L. By the construction of Gi (Conditions 1, 2, and 3 of Definition 2),
we know that X = ⋃

v∈W′ Xv ∪ Y for some W′ ⊆U with |W′| ≥ h. Furthermore, we know that
if i ∈ L then for all j ∈W′ (that is Xj ⊂ X) we have that i is a neighbor of j. Lastly, i ∈ L implies
that Xi
⊂ X and hence i /∈W′. Hence, we have that (L,W′) is a biclique in H with |L| ≥ h
and |W′| ≥ h.

In the following corollary, we present several graph properties � for which the single-layer
case �-SUBGRAPH is polynomial-time solvable but by application of Theorem 1, �-ML-SUB-
GRAPH is NP-hard and W[1]-hard when parameterized by the combined parameter number k of
vertices to select and number � of subgraph layers. The proof of Corollary 5 simply consists of the
description of Algorithm A� of Theorem 1 for those graph properties. For the definitions of the
graph properties appearing in Corollary 5, see Appendix: Definitions.

Network Science 227

Figure 1. Visualization of the graph constructed by
Algorithm A� for� ∈ {c-Core, c-Connectivity}with c= 3.

Corollary 5. �-ML-SUBGRAPH is NP-hard and W[1]-hard when parameterized by the combined
parameter number k of vertices to select and number � of layers to select for � ∈ {c-Connectivity,
c-Core, c-Factor, Connectivity, c-Truss, Hamiltonian, Matching, Star, Tree}.

Proof. For each of the listed properties �, we show that � is (f , g)-staggered for some functions f
and g. To this end, we describe the polynomial-time algorithmA� with inputsW,W′ ⊆W, and α.
Theorem 1 then yields NP-hardness and W[1]-hardness of �-ML-SUBGRAPH when parameter-
ized by the combined parameter number k of vertices to select and number � of subgraph layers.
Figure 1 shows the graph constructed by Algorithm A� for � ∈ {c-Core, c-Connectivity} with
c= 3.
Algorithm A� for � ∈ {Connectivity, Tree, Star, 1-Core}:

We construct the graph G= (V , E) as follows. Let Xw:= {w} for all w ∈W and Y := {u} and
hence V =W ∪ {u}. Add an edge {u,w} to the edge set E for each vertex w ∈W′. This clearly
fulfills Conditions 1 and 2 from Definition 2 for f (α)= g(α)= 1. Note that the graph G con-
tains a star with u as center and all vertices w ∈W′ as leaves and all other vertices are isolated.
Furthermore, it is easy to see that no graph that satisfies one of the properties Connectivity, Tree,
Star, and 1-Core can contain an isolated vertex. Hence, each subgraph of G that satisfies one of
those properties is a subtree of the star in G and therefore has to contain the center u. It follows
that Condition 3 from Definition 2 is fulfilled.
Algorithm A� for � ∈ {c-Core, c-Connectivity} with c> 1:

We construct the graph G= (V , E) as follows. Let Xw:= {w} for all w ∈W and Y :=
{u1, . . . , uc} and hence V =W ∪ {u1, . . . , uc}. Add edges {u,w} to E for all vertices u ∈ Y and
w ∈W′. This clearly fulfills Conditions 1 and 2 from Definition 2 for f (α)= 1 and g(α)= c. Note
that the graph G contains a complete bipartite subgraph where one part is Y and the other is W ′
and all other vertices are isolated. Furthermore, it is easy to see that no graph that satisfies one
of the properties c-Core and c-Connectivity can contain an isolated vertex. It follows that every
subgraph of G that satisfies one of those properties has to be a subgraph of the complete bipartite
subgraph in G. In order to be a c-core or c-connected, a complete bipartite graph has to have at
least c vertices in each part. Since we have that |Y| = c, all vertices of Y have to be contained in
each subgraph of G satisfying one of the properties c-Core and c-Connectivity and we get that
Condition 3 from Definition 2 is fulfilled. The resulting graph is visualized in Figure 1.
Algorithm A� for � = c-Truss:

We construct the graph G= (V , E) as follows. Let Xw:= {w} for all w ∈W and Y :=
{u1, . . . , uc−1} and hence V =W ∪ {u1, . . . , uc−1}. Add edges {u,w} to E for all vertices u ∈ Y
and w ∈W′ ∪ Y with u
=w. This clearly fulfills Conditions 1 and 2 from Definition 2 for f (α)= 1
and g(α)= c− 1. Note that the vertices in Y form a clique of size c− 1. Furthermore, every vertex
fromW′ is connected exactly to all vertices in Y and hence every triangle inG contains at least two

228 R. Bredereck et al.

vertices from Y and for every w ∈W′, we have that Y ∪ {w} forms a clique of size c and hence a
c-truss. It follows that for eachW ′′ ⊆W′ withW′′
= ∅, we have that G[W′′ ∪ Y] is a c-truss. Since
vertices in W′ are not connected to each other, all vertices in Y are necessary to produce enough
triangles for the edges going fromW′′ to Y . Also, we cannot add any isolated vertices to the sub-
graph since we require c-trusses to be connected. It follows that Condition 3 from Definition 2 is
fulfilled.
Algorithm A� for � ∈ {Matching, c-Factor}:

Recall that Matching= 1-Factor. Hence, we describe the algorithm only for the more general
c-Factor property. We construct the graph G= (V , E) as follows. (For Matching set c= 1.) Let
Xw:= {w1, . . . ,wc+1} for all w ∈W and Y := ∅. Add all edges {wi,wj} with 1≤ i< j≤ c+ 1 to
E for all w ∈W′. This clearly fulfills Conditions 1 and 2 from Definition 2 for f (α)= c+ 1 and
g(α)= 0. Note that for eachw ∈W′,G[Xv] is a complete graph of size c+ 1 and hence a connected
c-regular graph. Furthermore, for any set X′ ⊂ Xw and any set X′′ ⊆V \ Xw, we have that G[X′]
is a connected component of G[X′ ∪ X′′] with a minimum degree strictly smaller than c. Hence,
G[X′ ∪ X′′] does not have a c-factor. Together with the fact that all vertices in the sets Xw with
w ∈W \W′ are isolated, it follows that if there is a vertex set X such that G[X] has a c-factor, then
X = ⋃

w∈W′′ Xv for someW′′ ⊆W′. Hence, we get that Condition 3 from Definition 2 is fulfilled.
Algorithm A� for � = Hamiltonian:

We construct the graph G= (V , E) as follows. Let Xw:= {w} for all w ∈W and Y := ∅ and
hence V =W. Add edges {u, v} to E for all vertices u, v ∈W ′. This clearly fulfills Conditions 1
and 2 from Definition 2 for f (α)= 1 and g(α)= 0. Note that the vertices W′ form a clique in G
and all other vertices are isolated. Furthermore, we have that any clique is also a Hamiltonian
subgraph and any Hamiltonian subgraph cannot contain any isolated vertices. Hence, we get that
Condition 3 from Definition 2 is fulfilled.

The results follow from the existence of the described algorithms.

A particular consequence of Corollary 5 is that, while the polynomial-time solvability of the
connected component detection algorithm for two layers by Gai et al. (2003) generalizes to any
constant number of layers (Proposition 3), it does not generalize to an arbitrary, given number of
layers.

5. Matching and c-Factors
In this section, we consider the graph properties Matching and its generalization c-Factor. To
recall, a graph G has property Matching if it contains a perfect matching and G has property c-
Factor if it has a c-regular subgraph containing all vertices of G. Finding a maximum c-factor
for a given graph is polynomial-time solvable for all c (see Plummer 2007 or Nichterlein 2014,
Chapter 3, for an overview on graph factors). For these properties, Theorem 1 shows that �-ML-
SUBGRAPH is W[1]-hard with respect to the number k of vertices and the number � of layers to
select. Theorem 1 does not rule out fixed-parameter tractability with respect to the total number t
of layers, or with respect to the number k of vertices to select if the number � of layers to select
is constant. In this section, however, we show that both Matching-ML-SUBGRAPH and c-Factor-
ML-SUBGRAPH are hard even for a constant number of layers, thus strengthening the statement
of Theorem 1 for these properties.

5.1 Matching
As mentioned, through Theorem 1 we get in Corollary 5 in Section 4 that Matching-ML-SUB-
GRAPH is W[1]-hard when parameterized by the combined parameter number k of vertices to
select and number � of layers to select. Through closer inspection, we can get a stronger result.
We show that Matching-ML-SUBGRAPH is polynomial-time solvable for � ≤ 2 and becomes

Network Science 229

Figure 2. Construction of the graph G′ = (V ′, E′) from graphs G1 = (V , E1) and G2 = (V , E1). Black edges have weight |V| + 1
and gray dashed edges have weight |V|. The thick edges are a maximum-weight matching for G′.

W[1]-hard when parameterized by the number k of vertices to select already for � ≥ 3. Intuitively,
the reason for the computational complexity transition from two layers to three layers is as fol-
lows. By overlaying two matchings, one may create cycles and paths but without connections
between them. We can cope with this by finding a maximum weighted matching in an auxil-
iary graph. Adding a third layer, however, allows arbitrary connections between cycles and paths,
which allows the construction of gadgets to show hardness.

We now reduce Matching-ML-SUBGRAPH with � = 2 layers to MAXIMUM WEIGHT
MATCHING, that is, to the problem where we are given a graph with edge weights and ask to
find a matching with maximum edge weights. To this end, let G1 = (V , E1) and G2 = (V , E2) be
the two layers of the input graph for which we would like to know whether there is an X ⊆V of
size at least k such that both G1[X] and G2[X] have a perfect matching. The reduction is given in
the following lemma and visualized in Figure 2.

Lemma 1. Given two graphs G1 = (V , E1) and G2 = (V , E2), define a graph G′ = (V ′, E′) as follows:
• V ′ = {v1, v2 | v ∈V} and
• E′ = {{v1, v2} | v ∈V} ∪ {{ui, vi} | {u, v} ∈ Ei}.

Define a weight function w : E′ →N as follows; let n:= |V|:

w({ui, vj})=
{
n if i
= j and u= v
n+ 1 if i= j (and u
= v)

Let k ∈N. Then, there is a set X ⊆V of size at least k such that both G1[X] and G2[X] have a perfect
matching if and only if the graph G′ has a matching of w-weight at least n2 + k.

Proof. Assume that G′ has a matching M′ ⊆ E′ with w(M′)≥ n2 + k. Let us first check that M′ is
in fact a perfect matching: If |M′| ≤ n− 1, then w(M′)≤ (n+ 1)(n− 1)= n2 − 1< n2 + k, which
would contradict the choice ofM′. Thus |M′| ≥ n but thenM′ must have exactly n edges since G′
has 2n vertices. That is,M′ is a perfect matching. Now we show how to get a vertex set X ⊆V such
that both G1[X] and G2[X] have perfect matchings. Let Y := {v | v ∈V ∧ {v1, v2} ∈M′}; that is, Y
is the set of vertices ofV whose copies inG′ are matched to each other underM′. Let X:=V \ Y . It
can be easily checked that both G1[X] and G2[X] have perfect matchings; we show this for G1[X]:
For any v ∈ X, we know that {v1, v2} /∈M′, or else we would have v ∈ Y and v /∈ X. Thus, using that
M′ is a perfect matching, v1 must be matched to another vertex u1, which is then also in X, by
definition. It follows thatM′ induces a perfect matching on G′[X1], where X1:= {v1 | v ∈ X}. Since
G1[X] is an isomorphic copy of G′[X1] under the canonical isomorphism φ : v �→ v1, we get that
G1[X] also has a perfect matching.

230 R. Bredereck et al.

It remains to check that X has size at least k: Observe that |X| + |Y| = n since every vertex of V
is either in X or in Y . Each v ∈ Y corresponds to a matching edge {v1, v2} ∈M′ which has weight
n under w. Thus, if |X| < k, then |Y| > n− k, which implies that w(M′)≤ |X| · (n+ 1)+ |Y|n<

kn+ k+ (n− k)n= n2 + k, contradicting the choice ofM′.
Assume now that both G1[X] and G2[X] have perfect matchingsM1 andM2 for some X of size

at least k. Clearly, the size of X must be even. Define a matchingM′ of G′ by

M′:= {{v1, v2} | v ∈V \ X} ∪ {{ui, vi} | {u, v} ∈Mi}
In other words,M′ is obtained by copyingM1 andM2 to G′ in the obvious way and matching all
leftover vertices by the edges between the copies of the same vertex.

Clearly, for each vertex v ∈V \ X this adds an edge {v1, v2} of weight n toM′. FromM1 andM2,
we copied |X|

2 edges each, which results in exactly |X| ≥ k edges of weight n+ 1 in M′. Thus, the
total weight ofM′ is n2 + k, as claimed.

To show that Matching-ML-SUBGRAPH remainsW[1]-hard for any � ≥ 3 when parameterized
by k, we reduce fromMULTICOLORED CLIQUE that is known to beW[1]-hardwhen parameterized
by the solution size (Fellows et al., 2009).

Theorem 2. Matching-ML-SUBGRAPH can be solved in polynomial time if � ≤ 2. It is NP-hard and
W[1]-hard when parameterized by the number of vertices to select k for all � ≥ 3 and total numbers
of layers t ≥ �.

Proof. We get the polynomial-time solvability of Matching-ML-SUBGRAPH for the case � ≤ 2
from Lemma 1. For the case of � ≥ 3, we give a parameterized reduction from MULTICOLORED
CLIQUE. InMULTICOLORED CLIQUE, we are given an h-partite graphH = (U1 � . . . �Uh, F) and
need to determine whether it contains a clique of size h. Note that such a clique necessarily con-
tains exactly one vertex from each set Ui, and cliques of more than h vertices are impossible. We
say that vertices from Ui have color i.

Reduction idea. The main idea is to create the first two layers in such a way that selecting
a subgraph that admits a perfect matching in both layers corresponds to selecting exactly one
vertex of each color. The third layer is constructed in a way that each subgraph that admits perfect
matchings in the first two layers admits also a perfect matching in this layer if all selected vertices
are pairwise connected and hence form a multicolored clique.

Without loss of generality, we assume that the number h of colors is even. We construct an
instance ofMatching-ML-SUBGRAPH for t = � = 3 as follows and then argue that the construction
is easily generalizable to larger numbers of layers.

Vertices. First, create h− 1 vertices for each vertex in graph H (one vertex for each color
other than its own color). Formally, for each color 1≤ j≤ h and each ui ∈Uj, create the vertex set
Vi consisting of the vertices v(i,j′), j′ ∈ ({1, . . . , h} \ { j}). Second, create one color vertex wj for each
color j ∈ {1, . . . , h}. We denote the set of color vertices asW:= ⋃

1≤j≤h{wj}.
Vertex selection gadget by graphs G1 and G2. The vertex selection gadget is intended to

make sure the vertices selected in any valid solution of the constructed Matching-ML-SUBGRAPH
instance correspond to pairwise differently colored vertices of H. The vertex selection gadget is
visualized in Figure 3. We construct it as follows. For each color 1≤ j≤ h, create for each ui ∈Uj
one cycle on {wj} ∪Vi in the graphG1 ∪G2 such that the edges are alternatingly fromG1 and from
G2. These |Uj| cycles are all of length h and share only the color vertex wj. To realize this, create
the following edges. For each 1≤ z ≤ h− 2, create an edge in graph G(z mod 2)+1 between v(i,z) and
v(i,z+1) if z < j− 1, between v(i,z+1) and v(i,z+2) if z ≥ j, and between v(i,z) and v(i,z+2) if z = j− 1.
Create an edge between wj and v(i,1) in graph G2, between v(i,h) and wj in graph G1 if j
= h, and
between v(i,h−1) and wj in graph G1 if j= h.

Network Science 231

v(1,1) v(1,2) v(1,3) v(1,5) v(1,6)

w4

v(2,1) v(2,2) v(2,3) v(2,5) v(2,6)

Figure 3. Parts of the vertex selection gadget G1
and G2 for two vertices u1, u2 ∈ U4, where the num-
ber of colors is h= 6. Black edges belong to E1 and
red dashed edges belong to E2. The thick and the
thin edges both create cycles that have edges alter-
nating between Layers 1 and 2. Since the color ver-
texw4 is contained in both cycles, only one of these
cycles can be contained in a matching subgraph.

w1

w4

w2

w5

w3

w6

v(1,1) v(1,2) v(1,3) v(1,5) v(1,6)

{v(i,4) | ui ∈ NH(u1)∩U2}

Figure 4. Parts of the validation gadget G3 for h= 6
and a vertex u1 ∈ U4. The color vertices w1 to w6
form a matching and each vertex v(1,j) is connected
to all vertices v(i,4) with ui ∈ NH(u1)∩ Uj, as exem-
plarily visualized for v(1,2).

Figure 5. Parts of the validation gadget G3 for h= 4 and a triangle consisting of u1 ∈ U1, u2 ∈ U2, and u3 ∈ U3. The triangle
(to be interpreted as a part of the original graph) is depicted on the left, and the corresponding part of the gadget is depicted
on the right. The color verticesw1 tow4 are omitted.

Validation gadget by graph G3. The validation gadget is intended to make sure the vertices
selected in any valid solution of the constructed Matching-ML-SUBGRAPH instance correspond
to a clique inH. The validation gadget is visualized in Figures 4 and 5. It is constructed as follows.
For each vertex pair ui, ui′ with ui ∈Uj and ui′ ∈Uj′ such that ui and ui′ are adjacent in H, we
create an edge between v(i,j′) and v(i′,j) in G3. Furthermore, create the edge {wj,wj+h/2} for each
1≤ j≤ h/2.

Finally, by setting k= h2 and t = � = 3, we complete the construction, which can clearly be
performed in polynomial time and the new parameter k solely depends on h.

Correctness. It remains to show that graph H has a clique that contains each color exactly
once if and only if there is a vertex set X ⊆V with |X| ≥ k such that graphGz[X] contains a perfect
matching for each 1≤ z ≤ 3.

232 R. Bredereck et al.

(⇒): Assume that graph H has a clique K:= {u1, u2, . . . , uh} and, without loss of gen-
erality, ui ∈Ui for all 1≤ i≤ h. We show that X:=W ∪V1 ∪V2 ∪ · · · ∪Vh is a solution for
our Matching-ML-SUBGRAPH instance. By construction, X is of size h+ h · (h− 1)= h2 = k. It
remains to show that graphGz[X] has a perfect matching for each 1≤ z ≤ 3. Recall that we created
for each color 1≤ j≤ h and for each vertex ui ∈Uj one cycle on {wj} ∪Vi in the graph G1 ∪G2
such that the edges alternatingly are from G1 and G2. Since X only contains one of these cycles for
each color, a perfect matching is easy to find for graphs G1[X] and for G2[X]. For graph G3[X],
we can find the matching {{v(i,j), v(j,i)} | (1≤ i, j≤ h)∧ (i
= j)} ∪ {{wj,wj+h/2} | 1≤ j≤ h/2}, since,
by construction, v(i,j) is adjacent to v(j,i) if ui is adjacent to uj, and ui ∈Ui and uj ∈Uj (which is the
case since K is a clique).

(⇐): Assume that there is a vertex set X ⊆V with |X| ≥ k such that graph Gz[X] contains
a perfect matching for each 1≤ z ≤ 3. First, consider the graph G1 ∪G2 and some pair of ver-
tices {x1, x2} ⊆ X that is matched in G1 or in G2. Then, these two vertices must be from the same
cycle {wj} ∪Vi for some 1≤ j≤ h and ui ∈Uj, since otherwise there is no edge between them
in any of the two graphs. Furthermore, if two vertices from {wj} ∪Vi are in X, then all vertices
from {wj} ∪Vi must be in X because otherwise neither G1 nor G2 has a perfect matching: Every
vertex except wj has exactly one neighbor in G1 and one neighbor in G2, which are both enforced
to be also contained in X—this enforces the whole cycle {wj} ∪Vi to be contained in X. However,
X contains the vertices from {wj} ∪Vi for at most one i for every color 1≤ j≤ h, because wj can
only be matched to one vertex in G1 and to one vertex in G2. This implies that X contains for
each 1≤ j≤ h all vertices from {wj} ∪Vi for exactly one i, since |X| ≥ k= h2 and |{wj} ∪Vi| = h.
Without loss of generality, let Vi ⊆ X for all 1≤ i≤ h and let ui be the vertex in graph H corre-
sponding to Vi. We show that K = {u1, u2, . . . , uh} is a clique in H. In graph G3[X], each color
vertex wj must be matched to its only neighbor: wj+h/2 if j≤ h/2 and wj−h/2 if j> h/2 (and can-
not be matched to v(i,j)-vertices). Let {ui, ui′ } ⊆K, with ui ∈Uj and ui′ ∈Uj′ . Then, note that v(i,j′)
and v(i′,j) must be matched since, by construction ofG3, vertex v(i,j′) is only adjacent to vertex v(i′,j).
Moreover, if v(i,j′) is adjacent to v(i′,j) in G3, then ui is adjacent to ui′ in H. Thus overall, K is a
h-vertex clique in H, as required.

To make this reduction work for any t ≥ � > 3, we insert � − 3 additional layers of complete
graphs and t − � layers of edgeless graphs.

5.2 c-Factors
We now show that c-Factor-ML-SUBGRAPH with c≥ 2 isW[1]-hard when parameterized by k for
� ≥ 2. We reduce from MULTICOLORED CLIQUE that is known to be W[1]-hard when parame-
terized by the solution size (Fellows et al., 2009). The hardness reduction is similar to the one we
use in the proof of Theorem 2. Intuitively, since there are connected c-regular graphs for c≥ 2, we
only need one layer to build a vertex selection gadget, whereas in the 1-factor (matching) case we
need two layers.

Theorem 3. For c≥ 2, c-Factor-ML-SUBGRAPH is NP-hard andW[1]-hard when parameterized by
the number k of layers to select for all � ≥ 2 and all t ≥ �.

Proof. In the following, we prove that, for c≥ 2, c-Factor-ML-SUBGRAPH is W[1]-hard when
parameterized by k for t = � = 2 and then argue that the construction is easily generalizable. As in
the proof of Theorem 2, we give a parameterized reduction from MULTICOLORED CLIQUE: We
are given an h-partite graph H = (U1 � . . . �Uh, F) and need to determine whether it contains a
clique of size h.

Reduction idea. The idea of the reduction is similar to the one for Matching in the proof of
Theorem 2 but already works for � = 2 in the c-factor case (c≥ 2). The reason that we only need

Network Science 233

v(1,1)

v(1,2) v(1,3) v(1,5)

v(1,6)

w4

v(2,1)

v(2,2) v(2,3) v(2,5)

v(2,6)

Figure 6. Parts of the vertex selection gadget G1 for
two vertices u1, u2 ∈ U4, where the number of colors
is h= 6 and c= 3. The normal and the dashed edges
both create c-regular subgraphs. Since the color ver-
tex w4 is contained in both subgraphs, only one
of these subgraphs can be selected. The complete
subgraph on VF is not depicted.

v(1,1) v(1,2) v(1,3) v(1,5) v(1,6)

{v(i,4) | ui ∈ NH(u1)∩U2}

Figure 7. Parts of the validation gadget
G2 for c= 3, h= 6, and a vertex u1 ∈ U4.
Each vertex v(1,j) and each vertex v(i,4) with
ui ∈ NH(u1)∩ Uj together with the vertices
in V{u1,ui} (depicted as the small vertices)
forms a complete subgraph of size c, as
exemplarily visualized for v(1,2). The color
verticesw1 tow6 form a complete subgraph
and are not depicted.

two layers is that we can construct connected c-regular graphs for c≥ 2 of almost arbitrary size
and this allows us to construct a vertex selection gadget with only one layer.

We say that vertices fromUi have color i. Without loss of generality, assume that h≥ c+ 1, that
h is even, and that |F| ≥ 3.

Vertices. For each color j, 1≤ j≤ h, we do the following: We create a color vertex wj and
for each vertex ui in Uj, and we create a set of h− 1 vertices Vi = {v(i,j′) | 1≤ j′ ≤ h and j′
= j}.
Note that we have one vertex in Vi for each color except the color of ui. Let W = {wj | 1≤ j≤
h}. Furthermore, for each edge f ∈ F, we create a set of vertices Vf with |Vf | = c− 1. Let VF =⋃

f∈F Vf and V = ⋃
i Vi ∪W ∪VF .

Vertex selection gadget by graph G1. The vertex selection gadget is intended to make sure
the vertices selected in any valid solution of the constructed Matching-ML-SUBGRAPH instance
correspond to pairwise differently colored vertices of H. The vertex selection gadget is visualized
in Figure 6. It is constructed as follows. For every 1≤ j≤ h and every ui inUj, we do the following:
We create a connected c-regular graph on the vertex set Vi ∪ {wj}. Note that this can be done
as follows: We order the vertices in Vi ∪ {wj} arbitrarily and connect each vertex to the �c/2�
subsequent vertices, wrapping around at the end. If c is odd, then we additionally connect each
vertex v with the vertex at position (x+ h/2) mod h in the ordering, where x is the position of
vertex v. Furthermore, we create a complete graph on the vertices in VF .

Validation gadget by graph G2. The validation gadget is intended to make sure the vertices
selected in any valid solution of the constructed Matching-ML-SUBGRAPH instance correspond
to vertices of H that form a clique in H. The validation gadget is visualized in Figure 7. It is
constructed as follows. For each edge f ∈ F, we do the following: Let ui and ui′ be the endpoints
of f and ui ∈Uj and ui′ ∈Uj′ . We create a complete graph on the vertices in Vf ∪ {v(i,j′), v(i′,j)}.
Note that this complete graph has order c+ 1 and hence is a c-regular graph. Furthermore, we
create a complete graph on all vertices inW.

234 R. Bredereck et al.

By setting k= h2 + 1
2h(h− 1) · (c− 1), we complete the construction, which can clearly be

performed in polynomial time and the new parameter k solely depends on h.
Correctness. (⇒): Assume that graph H has an h-colored clique K and without loss of gen-

erality K = {u1, u2, . . . , uh} and ui ∈Ui for each i ∈ {1, . . . , h}. Let FK denote the set of all edges
in the clique K. Furthermore, let VK = ⋃

1≤i≤h Vi and VFK = ⋃
f∈FK Vf . We show that X =W ∪

VK ∪VFK is a solution for c-FACTOR-ML-SUBGRAPH. Note that |X| = h2 + 1
2h(h− 1) · (c− 1) by

construction. It remains to show that G1[X] and G2[X] each have c-factors. Observe that for any
graph G= (V , E) and any partition P = {P1, P2, . . . , Pp} of V , we have that, if G[Pi] has a c-factor
for all i, 1≤ i≤ p, then G has a c-factor as well.
(1) Note that G1[VFK] is a complete graph of order 1

2h(h− 1) · (c− 1)≥ 2c+ 1 and hence has a
c-factor. Furthermore, let ui ∈K and assume that ui ∈Uj. Then we have that G1[Vi ∪ {wj}]
is by construction a c-regular graph and hence also has a c-factor. Since K is h-colored,
{Vi ∪ {wj} | ui ∈K and ui ∈Uj} is a partition of VK ∪W.

(2) Note that G2[W] is a complete graph of size h≥ c+ 1 and hence has a c-factor.
Let f ∈ FK be the edge connecting ui and ui′ , and let ui ∈Uj and ui′ ∈Uj′ . Then we
have that G2[Vf ∪ {v(i,j′), v(i′,j)}] is by construction a complete graph of order c+ 1
and hence also has a c-factor. Since K is an h-colored clique, we have that {Vf ∪
{v(i,j′), v(i′,j)} | f ∈ FK and f = {ui, ui′ }} is a partition of VFK ∪VK . Notably, we also have
that PK = {{v(i,j′), v(i′,j)} | {ui, ui′ } = f for some f ∈ FK} is a partition of VK , since any ui is
connected to h− 1 other vertices with a different color each and therefore we have that
{v(i,j′) | {v(i,j′), v(i′,j)} ∈PK} =Vi.

(⇐): Assume that there is a vertex set X ⊆V such that |X| ≥ k and Gi[X] has a c-factor for �

different layers i. By construction of the layers, we have that G1[X] and G2[X] both have c-factors.
Furthermore, we show the following facts:
Fact 1: If v(i,j′) ∈ X and ui ∈Uj, then Vi ⊆ X and wj ∈ X: By construction G1[Vi ∪ {wj}] is a con-

nected c-regular graph and each v(i,j′) ∈Vi is only connected to other vertices in Vi ∪ {wj} in
G1. Note that any proper subgraph of a connected c-regular graph is not c-regular and does
not have a c-factor. It follows that as soon as any v(i,j′) ∈Vi is included in X, all other vertices
in Vi have to be included, as well as wj, the vertex corresponding to the color of ui.

Fact 2: If Vi ⊆ X and Vi′ ⊆ X and ui ∈Uj, then ui′ /∈Uj: Note that G1[Vi′] does not have a
c-factor. By construction, we get a connected c-regular graph by adding the vertex corre-
sponding to the color of ui′ , hence G1[Vi′] is a proper subgraph of a connected c-regular
graph. Furthermore, we have that wj is already part of the c-regular spanning graph of
G1[Vi ∪ {wj}]; therefore, ui′ cannot have color j, that is, ui′ /∈Uj.

Fact 3: If X ∩Vf
= ∅ for some f ∈ F, then Vf ∪ {v(i,j′), v(i′,j)} ⊆ X, where ui ∈Uj and ui′ ∈Uj′ are
the endpoints of f : By construction, G2[Vf ∪ {v(i,j′), v(i′,j)}] is a clique of size c+ 1 and hence
a connected c-regular graph. Furthermore, this clique is disconnected from the rest of G2
and hence as soon as one of its vertices is included in X, all of them are included.

Now we show that K = {ui | Vi ⊆ X} is an h-colored clique inH. First, we show that there must be
some v(i,j) ∈ X: Since |X| ≥ h2 + 1

2h(h− 1) · (c− 1), we have that X
=W and from Fact 3 we get
that X
⊆W ∪VF .

By Fact 1, we know that anyVi is either a subset of X or X ∩Vi = ∅. Furthermore, ifVi ⊆ X and
ui ∈Uj, so is wj. Fact 2 yields that we cannot have two vertices of the same color in K. This implies

|
⋃
Vi⊆X

Vi ∪W| ≤ h2 (1)

Note that |X| ≥ h2 + 1
2h(h− 1) · (c− 1) and Inequality (1) imply thatX ∩VF
= ∅. By Fact 3,X can

only include vertices corresponding to edges between vertices ui and ui′ ifVi ∪Vi′ ⊆ X. Therefore,

|X ∩VF| ≤ 1
2
h(h− 1) · (c− 1) (2)

Network Science 235

Note that |X| = h2 + 1
2h(h− 1) · (c− 1) if and only if both Inequalities (1) and (2) are equali-

ties. This implies that |K| = h, all vertices in K have different colors and all colors are present
(Inequality 1), and that K is a clique in H (Inequality (2)).

To make this reduction work for any t ≥ � > 2, we insert � − 2 additional layers of complete
graphs and t − � layers of edgeless graphs.

6. Hamiltonian paths
In this section, we investigate the problem of finding Hamiltonian subgraphs, that is, subgraphs
that have a simple path visiting all vertices. Corollary 5 in Section 4 states that Hamiltonian-ML-
SUBGRAPH isW[1]-hard when parameterized by the combined parameter k and �. Through closer
inspection, we can get a stronger result. Hamiltonian-SUBGRAPH is known to be NP-hard and
FPTwhen parameterized by the size of the subgraph k (Monien, 1985). For the multilayer case, we
can show that it is alreadyW[1]-hard for any constant � ≥ 2.

Theorem 4. Hamiltonian-ML-SUBGRAPH is NP-hard and W[1]-hard when parameterized by the
number k of vertices to select for all � ≥ 2 and t ≥ �.

Proof. We reduce from the MULTICOLORED BICLIQUE problem. In MULTICOLORED BICLIQUE,
we are given a bipartite graphH = (U ∪W, F) and a partitioning that partitions vertices in U and
W into h parts each, that is, U =U1 � . . . �Uh and W =W1 � . . . �Wh. We call these 2h parts
colors, that is, each vertex of H is of exactly one color in {U1, . . . ,Uh,W1, . . . ,Wh}. We need to
determine whetherH contains a biclique of size 2h that contains one vertex of each color. A simple
parameterized reduction from CLIQUE shows that MULTICOLORED BICLIQUE isW[1]-hard (Dell
& Marx, 2012). Observe that the vertex coloring implies that any solution contains h vertices
fromU and h vertices fromW. We will call the vertices fromU low, and the vertices fromW high,
imagining that the vertices fromW are on top of the vertices from U. Similarly, we call colors Ui
low and colorsWi high. Note that all colors are different. Given an instanceH of MULTICOLORED
BICLIQUE, we construct an instance of Hamiltonian-ML-SUBGRAPH for t = � = 2 as follows and
then argue that the construction is easily generalizable.

Reduction idea. The main idea is to create new vertices for both the vertices of the
MULTICOLORED BICLIQUE instance as well as the edges. We create two layers where in the first
one any maximal Hamiltonian subgraph contains a path that “selects” one vertex from each color
and one edge of each combination of a high and low color. The second layer is constructed in such
a way that each maximal Hamiltonian subgraph of the first layer is also Hamiltonian in the second
layer if and only if the selected edges indeed connect the selected vertices of the respective colors,
implying that the selected vertices form a multicolored biclique.

Vertices. The vertex set V consists of the following subsets:
• all vertices U ∪W of H,
• {s1, s2}, where we assume that s1 and s2 are not vertices of H,
• Ai,j, 1≤ i≤ h, 1≤ j≤ h, where Ai,j:= {α{u,w} | {u,w} ∈ F ∧ u ∈Ui ∧w ∈Wj}, and
• Di,j, 1≤ i≤ h, 1≤ j≤ h, where Di,j:= {δ{w,u} | {w, u} ∈ F ∧w ∈Wi ∧ u ∈Uj}.

Informally, the latter two sets are constructed by adding two vertices for each edge of H, each
corresponding to one orientation of the undirected edge. The vertices are then assigned to the
vertex sets according to the colors of their endpoints and the orientations. Oriented edges from U
toW (and their corresponding vertices inV) are called ascending, and oriented edges fromW toU
(and their corresponding vertices) are called descending. Note that all these sets are non-empty
unless we face a no-instance.

Now we describe how to construct a vertex and edge selection gadget by graph G1 and a
validation gadget by graph G2. We organize the vertices of both graphs in levels. Each graph

236 R. Bredereck et al.

Figure 8. The lower half of the vertex selection gad-
get G1 for h= 5. The circles annotated with Ui or Ai,j
correspond to the respective vertex set from the con-
struction, and s1 and s2 are single vertices connected
by an edge. The thick gray edges represent the edges
between the two vertex sets they connect. The thick
black edges indicate that all edges between the two
vertex sets are present. The upper half of the gadget is
symmetric and not depicted.

has 2h2 + 2h+ 2 levels of vertices with edges only between neighboring levels; each Ui, Wi, Ai,j
and each Di,j forms one level, and the two remaining levels contain s1 and s2, respectively.

Vertex and edge selection gadget by graph G1. Informally, graph G1 is constructed by putting
all low vertices and their incident ascending edges into low levels, then adding two levels for s1
and s2, and then putting all high vertices and their incident descending edges into high levels.
More precisely, U1 is the first level of G and A1,1 is the second level. Then edges are added from
each u ∈U1 to all vertices of A1,1 that correspond to an edge incident with u. Then, the ascending
vertices “incident” with vertices from U1 are added for increasing colors of the high endpoints.
Afterwards, the vertices from U2 are added and then the vertices corresponding to their incident
edges, and so on. The special vertices s1 and s2 are added in twomiddle levels, separating the levels
containing low vertices from those containing high vertices. Formally, the graphG1 is constructed
as follows:

• For each u ∈Ui, 1≤ i≤ h, add an edge to each α{u,w} ∈Ai,1;
• for each α{u,w} ∈Ai,j, 1< j< h, add an edge to each α{u,w′} ∈Ai,j+1;
• for each α{u,w} ∈Ai,h, 1≤ i< h, add an edge to each u′ ∈Ui+1;
• for each α{u,w} ∈Ah,h, add an edge to s1;
• add the edge {s1, s2};
• for each w ∈W1, add the edge {s2,w};
• for each w ∈Wi, 1< i≤ h, add an edge to each δ{w,u} ∈Di,1;
• for each δ{w,u} ∈Di,j, 1≤ j< h, add an edge to each δ{w,u′} ∈Di,j+1; and
• for each δ{w,u} ∈Di,h, 1≤ i< h, add an edge to each w′ ∈Wi+1.

The idea behind the construction is that any path from the first level to the last level corresponds
to a selection of 2h vertices and of 2h2 edges incident with these vertices. The vertex selection
gadget is visualized in Figure 8.

Validation gadget by graph G2. With the second graphG2, we enforce that the selected ascend-
ing and descending edges between each color pair Ui and Wj correspond to the same edge in H
and that any path of length 2h+ 2h2 + 1 passes through each level of G1 and each level of G2.

Network Science 237

D5,5

D2,5

D1,5

A5,5

A2,5

A1,5 D1,2 A1,2

D5,1

D2,1

D1,1

A5,1

A2,1

A1,1

s1

s2

Figure 9. The lower half of the levels of the
validation gadget G2 for h= 5. The circles anno-
tatedwith Ai,j orDi,j correspond to the respective
vertex set from the construction, and s1 and s2
are single vertices. The thick gray edges repre-
sent the edges between the two vertex sets they
represent. The thick black edges indicate that
all possible edges between the respective ver-
tex sets are present. Dashed edges indicate that
some vertex sets are not visualized. The higher
levels of the gadget are not depicted.

Formally, G2 is constructed as follows. Herein, assume an arbitrary but fixed ordering on pairs of
low and high colors.

• Level 1 contains s1;
• level 2i, 1≤ i≤ h2, contains all ascending vertices of the ith color pair;
• level 2i+ 1, 1≤ i≤ h2, contains all descending vertices of the ith color pair;
• level 2h2 + 2 contains s2;
• level 2h2 + 2+ i, 1≤ i≤ h, contains all vertices from Ui; and
• level 2h2 + h+ 2+ i, 1≤ i≤ h, contains all vertices fromWi.

All edges between consecutive levels are added except for the levels 2i and 2i+ 1, 1≤ i≤ h2: Here,
we add only an edge between vertices that correspond to the same edge; that is, we add the edge
set {α{u,w}, δ{w,u} | {u,w} ∈ F}. The validation gadget is visualized in Figure 9.

To finish the construction, we set k:= 2h+ 2h2 + 2. The reduction clearly runs in polynomial
time and the new parameter k depends only on the parameter h of theMULTICOLORED BICLIQUE
instance.

Correctness. Thus it remains to show equivalence of the instances.
(⇒): Let K = {u1, . . . , uh,w1, . . . ,wh} be a multicolored biclique inH. Let X be the vertex set

containing K, s1, and s2, and for each edge e of H[K], the ascending and the descending vertex
corresponding to e. We show that G1[X] and G2[X] have a Hamiltonian path. In G1, this path
starts at u1, then visits αu1,w1 , and then αu1,w2 until αu1,wh . Then it visits u2 and the ascending ver-
tices corresponding to edges incident with u2 in the same fashion, that is, first αu2,w1 , then αu2,w2 ,
and so on. This is continued until αuh,wh is visited. Then, the path visits s1 and s2. Then it vis-
its the high vertices and the descending vertices for their incident edges in the same fashion. By
construction, all necessary edges are present: Neighboring edge vertices correspond to edges that
share one endpoint, and after a vertex αi, the next visited edge vertex is incident with αi.

In G2, the path visits each level exactly once, going from level 1 through level k. The necessary
edges are present since the only neighboring levels that are not complete bipartite graphs are those
that contain ascending and descending vertices of the same color pair. Since for each color pair
the ascending and descending vertices in S correspond to the same edge in H, they are adjacent
in G2.

(⇐): Observe that any vertex set consisting only of vertices from {s1, s2} ∪ ⋃
1≤i≤h (Ui ∪Wi)

is disconnected either inG1 or inG2. Thus, the set X contains at least one ascending or descending
vertex. In either case, it must also contain an edge vertex of the other type: InG2, the levels contain-
ing ascending and descending vertices alternate and any set containing either only vertices of the
first two levels ofG2 or only of vertices of the last 2h+ 2 levels is disconnected inG1. Now, since X
contains an ascending and a descending vertex and sinceG1[X] is connected, the vertices s1 and s2

238 R. Bredereck et al.

are contained in X. Thus, the vertex set X contains a vertex from the first and the last levels of 2h+
2h2 + 2 levels in G2. This implies that it contains exactly one vertex of each level of G2. Thus, the
vertex set X contains exactly h low vertices and h high vertices with different colors and it contains
for each color pair an ascending and a descending vertex. By construction of G2 and since G2[X]
has a Hamiltonian path visiting each level exactly once, these two vertices are the same; that is,
the 2h2 ascending and descending vertices correspond to h2 edges in H. By construction of G1
and since G1[X] has a Hamiltonian path visiting each level of G1 exactly once, these edges are
incident only with vertices of (U ∪W)∩ X. Thus, H[(U ∪W)∩ X] is a multicolored biclique.

To make this reduction work for any t ≥ � ≥ 2, we can insert � − 2 additional layers of
complete graphs and t − � layers of edgeless graphs.

7. Conclusion
We performed a systematic study of the (parameterized) computational complexity of subgraph
detection problems in multilayer networks. In particular, we encountered several computational
hardness results for multilayer subgraph detection problems that are solvable in polynomial time
in the single-layer case. In the following, we list some possibilities for future research with the goal
to obtain positive algorithmic results.

First, the case of two-layer graphs should continue to receive special attention. We showed
that Matching-ML-SUBGRAPH is solvable in polynomial time in the two-layer case, whereas it
is W[1]-hard when parameterized by the number of vertices to select k for three or more layers.
Considering acyclic subgraphs, Agrawal et al. (2018b) also showed specialized algorithms for the
two-layer case. Also Cai & Ye (2014) focused mostly on the two-layer case. It would be interesting
to systematically explore which subgraph detection problems are tractable in the two-layer case
and to identify more problems that behave differently for two and three layers.

Second, in many applications the input graphs are directed. One of our hardness results trans-
fers directly to this case: The construction in the reduction from MULTICOLORED BICLIQUE to
Hamiltonian-ML-SUBGRAPH (proof of Theorem 4) can be easily adapted to yield directed acyclic
graphs by orienting all edges from lower levels to higher levels, implying that Hamiltonian-ML-
SUBGRAPH is NP-hard and W[1]-hard when parameterized by k for all � ≥ 2 and t ≥ � if every
layer is a directed acyclic graph. Hence, for directed acyclic graphs the complexity gap between
the cases with one and two layers is even bigger because we can find a longest path in a directed
acyclic graph in polynomial-time (as opposed to being NP-hard and FPT with respect to subgraph
order k in the undirected single-layer case). As also already mentioned by Cai & Ye (2014), finding
positive algorithmic results for multilayer subgraph problems in directed graphs is a challenging
open direction.

Finally, in some applications, one is interested in different subgraph properties for each
layer (Cai & Ye, 2014; Agrawal et al., 2018a). For example, in the SUPPORTED PATH problem,
one layer is undirected and one layer is directed, and one aims to find an induced subgraph that
is connected in the undirected layer and Hamiltonian in the directed layer (Fertin et al., 2015).
There is only limited systematic investigation of the complexity of suchmixedmultilayer subgraph
problems (Cai & Ye, 2014; Agrawal et al., 2018a).

Acknowledgments. HM was partially supported by the DFG, projects DAPA (NI 369/12) and
MATE (NI 369/17). MS was supported by the DFG, project DAPA (NI 369/12), the People
Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement number 631163.11, by the Israel Science Foundation
(grant no. 551145/14), and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program under grant agreement number 714704. Parts of
MS work were done while with TU Berlin, Germany, and Ben-Gurion University of the Negev,
Beer Sheva, Israel. CK was supported by the DFG, project MAGZ (KO 3669/4-1). RB was par-
tially supported by the DFG, fellowship BR 5207/2. This work was initiated at the research retreat
of the TU Berlin Algorithmics and Computational Complexity research group held in Darlingerode,
Harz mountains, Germany, April 2014. The authors would like to thank Sepp Hartung for initial
discussions.

Network Science 239

Conflict of interest. All authors have nothing to disclose.

Notes
1 Note that for hereditary graph properties requiring vertex sets of size exactly k or at least k is equivalent in terms of
computational complexity. However, for connectivity, which is not a hereditary property, it can make a difference.
2 The h-index of a graph is the largest integer h such that the graph contains at least h vertices with degree at least h (Eppstein
& Spiro, 2012).

References
Agrawal, A., Krithika, R., Lokshtanov, D., Mouawad, A., & Ramanujan, M. S. (2018a). On the parameterized complexity of

simultaneous deletion problems. Proceedings of the 37th IARCS annual conference on foundations of software technology
and theoretical computer science (FSTTCS ’17) (pp. 9:1–9:14). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 93. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Agrawal, A., Lokshtanov, D., Mouawad, A., & Saurabh, S. (2018b). Simultaneous feedback vertex set: A parameterized
perspective. ACM Transactions on Computation Theory, 10(4), 18:1–18:25.

Bang-Jensen, J., & Gutin, G. (2009). Digraphs: theory, algorithms and applications (2nd ed.). Springer.
Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2013). Multidimensional networks: foundations of

structural analysis. Proceedings of the 22nd International World Wide Web Conference (WWW ’13), 16(5–6), 567–593.
van Bevern, R. (2014). Towards optimal and expressive kernelization for d-hitting set. Algorithmica, 70(1), 129–147.
Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., . . . Zanin, M. (2014). The structure

and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.
Boden, B., Günnemann, S., Hoffmann, H., & Seidl, T. (2017). Mimag: mining coherent subgraphs in multi-layer graphs with

edge labels. Knowledge and Information Systems, 50(2), 417–446.
Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21(4), 375–395.
Brandstädt, A., Le, V. B., & Spinrad, J. P. (1999). Graph classes: A survey. SIAM Monographs on Discrete Mathematics and

Applications, vol. 3. SIAM.
Bredereck, R., Komusiewicz, C., Kratsch, S., Molter, H., Niedermeier, R., & Sorge, M. (2017). Assessing the computational

complexity of multi-layer subgraph detection. Proceedings of the 10th international conference on algorithms and complexity
(CIAC ’17) (vol. 10236, pp. 128–139). LNCS. Springer.

Bui-Xuan, B.-M., Habib, M., & Paul, C. (2008). Competitive graph searches. Theoretical Computer Science, 393(1–3), 72–80.
Cai, L. (1996). Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing

Letters, 58(4), 171–176.
Cai, L., & Ye, J. (2014). Dual connectedness of edge-bicolored graphs and beyond. Proceedings of the 39th international

symposium on mathematical foundations of computer science (MFCS ’14) (vol. 8635., pp. 141–152). LNCS, Springer.
Chen, J., Molter, H., Sorge,M., & Suchý, O. (2018a). Cluster editing inmulti-layer and temporal graphs. Proceedings of the 29th

international symposium on algorithms and computation (ISAAC ’18) (vol. 123, pp. 24:1–24:13). LIPIcs, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Chen, J., Niedermeier, R., & Skowron, P. (2018b). Stable marriage with multi-modal preferences. Proceedings of the 2018 ACM
conference on economics and computation (EC ’18) (pp. 269–286). ACM.

Cohen, J. (2008). Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report, 16.
Cygan,M., Fomin, F. V., Kowalik, L., Lokshtanov, D.,Marx, D., Pilipczuk,M., . . . Saurabh, S. (2015). Parameterized algorithms.

Springer.
Dell, H., & Marx, D. (2012). Kernelization of packing problems. Proceedings of the 23rd annual ACM-SIAM symposium on

discrete algorithms (SODA ’12) (pp. 68–81). SIAM.
Diestel, R. (2017). Graph theory (vol. 173, 5th ed.). Graduate Texts in Mathematics. Springer.
Dong, X., Frossard, P., Vandergheynst, P., & Nefedov, N. (2012). Clustering with multi-layer graphs: A spectral perspective.

IEEE Transactions on Signal Processing, 60(11), 5820–5831.
Dong, X., Frossard, P., Vandergheynst, P., & Nefedov, N. (2014). Clustering on multi-layer graphs via subspace analysis on

Grassmann manifolds. IEEE Transactions on Signal Processing, 62(4), 905–918.
Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Springer.
Eppstein, D., & Spiro, E. S. (2012). The h-index of a graph and its application to dynamic subgraph statistics. Journal of Graph

Algorithms and Applications, 16(2), 543–567.
Erdös, P., & Rado, R. (1960). Intersection theorems for systems of sets. Journal of the London Mathematical Society, 35(1),

85–90.
Fellows, M. R., Hermelin, D., Rosamond, F. A., & Vialette, S. (2009). On the parameterized complexity of multiple-interval

graph problems. Theoretical Computer Science, 410(1), 53–61.
Fertin, G., Komusiewicz, C., Mohamed-Babou, H., & Rusu, I. (2015). Finding supported paths in heterogeneous networks.

Algorithms, 8(4), 810–831.

240 R. Bredereck et al.

Flum, J., & Grohe, M. (2006). Parameterized complexity theory. Springer.
Gai, A.-T., Habib, M., Paul, C., & Raffinot, M. (2003). Identifying common connected components of graphs. Techical Report,

RR-LIRMM-03016, LIRMM, Université de Montpellier II.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. Freeman.
Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs (vol. 57, 2nd ed.). Annals of Discrete Mathematics.

Elsevier B. V.
Holme, P. (2015). Modern temporal network theory: a colloquium. The European Physical Journal B, 88(9), 234.
Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.
Jiang, D., & Pei, J. (2009). Mining frequent cross-graph quasi-cliques. ACM Transactions on Knowledge Discovery from Data,

2(4).
Johnson, D. S. (1987). The NP-completeness column: An ongoing guide. Journal of Algorithms, 8(3), 438–448.
Jukna, Stasys. (2011). Extremal Combinatorics—with applications in computer science. Texts in Theoretical Computer Science.

An EATCS Series. Springer.
Kano, M., & Li, X. (2008). Monochromatic and heterochromatic subgraphs in edge-colored graphs—A survey. Graphs and

Combinatorics, 24(4), 237–263.
Khot, S., & Raman, V. (2002). Parameterized complexity of finding subgraphs with hereditary properties. Theoretical

Computer Science, 289(2), 997–1008.
Kim, J., & Lee, J. (2015). Community detection in multi-layer graphs: A survey. SIGMOD Record, 44(3), 37–48.
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of

Complex Networks, 2(3), 203–271.
Komusiewicz, C., & Niedermeier, R. (2012). New races in parameterized algorithmics. Proceedings of the 37th international

symposium on mathematical foundations of computer science (MFCS ’12) (vol. 7464). LNCS. Springer.
Kratsch, S. (2012). Polynomial kernelizations for MIN f+�1 and MAX NP. Algorithmica 63(1–2), 532–550.
Latapy, M., Viard, T., &Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social

Network Analysis and Mining, 8(1), 61.
Lewis, J. M., & Yannakakis, M. (1980). The node-deletion problem for hereditary properties is NP-complete. Journal of

Computer and System Sciences, 20(2), 219–230.
Lin, B. (2015). The parameterized complexity of k-biclique. Proceedings of the 26th annual ACM-SIAM symposium on discrete

algorithms (SODA ’15) (pp. 605–615). SIAM.
Magnani, M., & Rossi, L. (2011). The ML-model for multi-layer social networks. Proceedings of the international conference

on advances in social networks analysis and mining (ASONAM ’11) (pp. 5–12). IEEE Computer Society.
Michail, O. (2016). An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics, 12(4), 239–280.
Monien, B. (1985). How to find long paths efficiently. Annals of Discrete Mathematics, 25, 239–254.
Moser, H. (2009). Finding optimal solutions for covering and matching problems. Ph.D. thesis, Institut für Informatik, Fried-

rich-Schiller Universität Jena.
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent,

multiscale, and multiplex networks. Science, 328(5980), 876–878.
Nastos, J., & Gao, Y. (2013). Familial groups in social networks. Social Networks, 35(3), 439–450.
Nichterlein, A. (2014). Degree-constrained editing of small-degree graphs. Ph.d. thesis, TU Berlin.
Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford University Press.
Niedermeier, R. (2010). Reflections on multivariate algorithmics and problem parameterization. Proceedings of the 27th inter-

national symposium on theoretical aspects of computer science (STACS ’10) (vol. 5, pp. 17–32). Germany: LIPIcs IBFI
Dagstuhl.

Plummer, M. D. (2007). Graph factors and factorization: 1985-2003: A survey. Discrete Mathematics, 307(7–8), 791–821.
Rossi, L., Musolesi, M., & Torsello, A. (2015). On the k-anonymization of time-varying and multi-layer social graphs.

Proceedings of the 9th international conference on web and social media (ICWSM ’15) (pp. 377–386). AAAI Press.
Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.
Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core coherent closed quasi-clique mining from large dense graph

databases. ACM Transactions on Database Systems, 32(2), 13.

Appendix: Definitions
Asteroidal Triple-Free Graph An independent set of size three where each pair of vertices is joined by a path that avoids the

neighborhood of the third is called an asteroidal triple. A graph is asteroidal triple-free if it does not contain asteroidal
triples.

c-Colorable Graph A graph is c-colorable if there is a way of coloring the vertices with at most c different colors such that no
two adjacent vertices share the same color.

c-Connectivity A graph is called c-connected if it contains at least c+ 1 vertices, but does not contain a set of c− 1 vertices
whose removal disconnects the graph.

c-Core A graph is called a c-core if each vertex has degree at least c.

Network Science 241

c-Edge-Connectivity A graph is called c-edge-connected if it does not contain a set of c− 1 edges whose removal disconnects
the graph.

c-Factor A graph has a c-factor if it has a c-regular spanning graph.
c-Regular Graph A graph is called c-regular if every vertex has degree c.
c-Truss A graph is called a c-truss if it is connected and each edge is contained in at least c− 2 triangles.
Chordal Graph A graph is called chordal if each induced cycle has at most three vertices.
Cluster Graph A graph is called a cluster graph if it is a collection of disjoint cliques.
Cograph A graph is called a cograph if it does not contain any induced path of length four.
Comparability Graph A graph is called a comparability graph if there is a partial order over the vertices such that each pair

of vertices is adjacent if and only if it is comparable.
Complete Multipartite Graph A graph is called complete multipartite if the vertex set can be partitioned such that each

vertex pair is adjacent if and only if the two vertices are in different partitions.
Edgeless Graph A graph is called edgeless is it does not contain any edges.
Forest A graph is called a forest if it is a collection of trees.
Hamiltonian Graph A graph is called Hamiltonian if it contains a Hamiltonian path, that is, a simple path that visits each

vertex exactly once.
h-Index The h-index of a graph is the largest integer h such that the graph contains at least h vertices with degree at least h.
Interval Graph A graph is called an interval graph if an interval of the real numbers can be assigned to each vertex such that

two vertices are adjacent if and only if the intervals overlap.
Line Graph A graph is called a line graph if there is another graph such that each vertex of the line graph corresponds to an

edge of the other graph and two vertices in the line graph are adjacent if the corresponding edges in the other graph
share a common endpoint.

Matching A graph has amatching if it has a 1-factor.
Perfect Graph A graph is called perfect if the chromatic number of every induced subgraph equals the size of the largest

clique of that subgraph. The chromatic number of a graph is the smallest c such that the graph is c-colorable.
Permutation Graph A graph is called a permutation graph if the vertices represent elements in a permutation such that two

vertices are adjacent if and only if the respective pair of elements is reversed by the permutation.
Planar Graph A graph is called planar if it can be embedded in the plane without edge-crossings; that is, it can be drawn on

the plane such that its edges only intersect at their endpoints.
Quasi-Threshold Graph A graph is called a quasi-threshold graph if it does not contain any induced path of length four and

any induced cycle of length four.
Split Graph A graph is called a split graph if its vertices can be partitioned into a clique and an independent set.
Star A graph is called a star if it is a tree with only one internal node.

Cite this article: Bredereck R., Komusiewicz S., Kratsch S., Molter H., Niedermeier R., and Sorge M. (2019). Assessing
the computational complexity of multilayer subgraph detection. Network Science 7, 215–241. https://doi.org/10.1017/
nws.2019.13

https://doi.org/10.1017/nws.2019.13
https://doi.org/10.1017/nws.2019.13

	Assessing the computational complexity of multilayer subgraph detection
	Introduction
	Our results
	Related work
	Organization

	Preliminaries
	Parameterized complexity
	Graphs

	Hereditary graph properties
	Nonhereditary graph properties
	Vertex-partitionable graph properties
	A general hardness reduction

	Matching and c-Factors
	Matching
	c-Factors

	Hamiltonian paths
	Conclusion
	Definitions

