16,415 research outputs found

    The common state filter for SLAM

    Get PDF
    This paper presents the Common State Filter (CSF), a novel and efficient suboptimal Multiple Hypothesis SLAM (MHSLAM) method for Kalman Filter-based SLAM algorithms. Conventional MHSLAM algorithms require the entire vehicle and map state to be copied for each hypothesis. The CSF, by contrast, maintains a single, common instance of the vast majority of the map and only copies the map portion that varies substantially across different hypotheses. We demonstrate the performance of the algorithm on the Victoria Park data set. ©2008 IEEE

    Image-Aided Navigation Using Cooperative Binocular Stereopsis

    Get PDF
    This thesis proposes a novel method for cooperatively estimating the positions of two vehicles in a global reference frame based on synchronized image and inertial information. The proposed technique - cooperative binocular stereopsis - leverages the ability of one vehicle to reliably localize itself relative to the other vehicle using image data which enables motion estimation from tracking the three dimensional positions of common features. Unlike popular simultaneous localization and mapping (SLAM) techniques, the method proposed in this work does not require that the positions of features be carried forward in memory. Instead, the optimal vehicle motion over a single time interval is estimated from the positions of common features using a modified bundle adjustment algorithm and is used as a measurement in a delayed state extended Kalman filter (EKF). The developed system achieves improved motion estimation as compared to previous work and is a potential alternative to map-based SLAM algorithms

    A review: Simultaneous localization and mapping algorithms

    Get PDF
    Simultaneous Localization and Mapping (SLAM) involves creating an environmental map based on sensor data, while concurrently keeping track of the robot’s current position. Efficient and accurate SLAM is crucial for any mobile robot to perform robust navigation. It is also the keystone for higher-level tasks such as path planning and autonomous navigation. The past two decades have seen rapid and exciting progress in solving the SLAM problem together with many compelling implementations of SLAM methods. In this paper, we will review the two common families of SLAM algorithms: Kalman filter with its variations and particle filters. This article complements other surveys in this ?eld by reviewing the representative algorithms and the state-of-the-art in each family. It clearly identifies the inherent relationship between the state estimation via the KF versus PF techniques, all of which are derivations of Bayes rule

    Learning to Prevent Monocular SLAM Failure using Reinforcement Learning

    Full text link
    Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with trajectory planning frameworks is particularly challenging. This paper presents a novel formulation based on Reinforcement Learning (RL) that generates fail safe trajectories wherein the SLAM generated outputs do not deviate largely from their true values. Quintessentially, the RL framework successfully learns the otherwise complex relation between perceptual inputs and motor actions and uses this knowledge to generate trajectories that do not cause failure of SLAM. We show systematically in simulations how the quality of the SLAM dramatically improves when trajectories are computed using RL. Our method scales effectively across Monocular SLAM frameworks in both simulation and in real world experiments with a mobile robot.Comment: Accepted at the 11th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 2018 More info can be found at the project page at https://robotics.iiit.ac.in/people/vignesh.prasad/SLAMSafePlanner.html and the supplementary video can be found at https://www.youtube.com/watch?v=420QmM_Z8v

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Autonomous navigation with constrained consistency for C-Ranger

    Get PDF
    Autonomous underwater vehicles (AUVs) have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM), are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF) SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC) is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency
    corecore