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Abstract Autonomous underwater vehicles (AUVs) have 
become the most widely used tools for undertaking 
complex exploration tasks in marine environments. Their 
synthetic ability to carry out localization autonomously 
and build an environmental map concurrently, in other 
words, simultaneous localization and mapping (SLAM), 
are considered to be pivotal requirements for AUVs to 
have truly autonomous navigation. However, the 
consistency problem of the SLAM system has been greatly 
ignored during the past decades. In this paper, a 
consistency constrained extended Kalman filter (EKF) 
SLAM algorithm, applying the idea of local consistency, is 
proposed and applied to the autonomous navigation of the 
C-Ranger AUV, which is developed as our experimental 
platform. The concept of local consistency (LC) is 
introduced after an explicit theoretical derivation of the 
EKF-SLAM system. Then, we present a locally consistency-
constrained EKF-SLAM design, LC-EKF, in which the 
landmark estimates used for linearization are fixed at the 
beginning of each local time period, rather than evaluated 
at the latest landmark estimates. Finally, our proposed LC-
EKF algorithm is experimentally verified, both in 
simulations and sea trials. The experimental results show 
that the LC-EKF performs well with regard to consistency, 
accuracy and computational efficiency. 
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1. Introduction  

Since the first relevant equation was put forward, 
simultaneous localization and mapping (SLAM), which 
is one of the key issues that need to be addressed for 
truly autonomous vehicles probing an unknown 
environment, has drawn tremendous attention in the 
realm of mobile robotics. Roughly speaking, SLAM can 
be categorized according to the means of map 
representation and the algorithms of its estimation 
technique. The well-known approaches of describing 
environmental maps are the feature-based method, the 
grid-based method, and the topological method. In 
addition, substantial estimation algorithms have been 
introduced to solve the SLAM issue, for instance, the 
extended Kalman filter (EKF) [1], the Extended 
Information Filter (EIF) [2], the unscented Kalman filter 
(UKF) [3], FastSLAM [4] and many other variants. 
However, EKF is the most common choice among the 
aforementioned algorithms, because it can be easily 
implemented, especially with lower computational 
complexity. Essentially speaking, EKF is a state filter or 
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estimator. Therefore, consistency evaluation is essential 
for checking a filter design and evaluating its optimality. 

Ever more appealing developments have been made in 
addressing the SLAM problem during the past decades. 
However, a large proportion of the attention has been 
devoted to handling the problems of computational 
complexity [5, 6], loop closing [7] and data association [8]. 
Another fundamental problem, of crucial importance, the 
consistency issue, has been greatly ignored and has only 
started to receive much attention, recently. The work by 
Julier and Uhlmann [9] pointed out for the first time that 
the SLAM algorithm inevitably obtains an inconsistent 
environment map by analysing a special case (namely, an 
immobile vehicle without process noise), as well as the 
general case of a mobile vehicle with process noise. 
Castellanos et al. [10] demonstrated that the EKF-SLAM 
state filter becomes inconsistent because of the 
linearization error and proposed a consistency-improved 
robocentric mapping approach. Bailey et al. [11] checked a 
large amount of inconsistent situations for EKF-SLAM 
and reached the conclusion that the uncertainty of the 
vehicle’s orientation is the core reason for filter 
inconsistency. Later, theoretical analyses and 
experimental results presented by Huang and 
Dissanayake [12] also validated the corresponding 
conclusions reached by Bailey et al. and showed that the 
constrained Jacobians (i.e., Lemma 3.8 in reference [12]) 
could satisfy the prerequisite of filter consistency.  

Technically speaking, the referenced works presented 
numerous inconsistent symptoms in EKF-SLAM, but did 
not reveal the deeper reasons for the filter inconsistency. 
Recently, the consistency problem of the EKF-SLAM was 
researched, based on an observability analysis, by 
Guoquan Huang et al. [13, 14] and a novel EKF-SLAM 
algorithm, based on the first estimates Jacobian (FEJ) was 
put forward to ameliorate the filter consistency. FEJ-EKF 
has been proved to have better consistency, compared 
with the standard EKF. However, the landmark estimates 
used for the linearization in FEJ-EKF are fixed after the 
first time within the global observation time and never 
updated. The weakness of FEJ-EKF is obvious: if the 
landmark estimates are inaccurate (this is a common 
situation), the resulting linearization errors will increase 
with them. To overcome this problem, we try to explore 
the consistency issue of EKF-SLAM in the local time 
period, delimited by the system order, rather than in the 
global time like the FEJ-EKF estimator. In this paper, a 
consistency constrained EKF-SLAM model based on the 
idea of local consistency is proposed and applied for the 
autonomous navigation of the C-Ranger AUV, which is 
developed as our experimental platform. The main 
contributions of this paper are as follows: 

1) On the theoretical basis of local observability, we 
introduce the concept of local consistency, which is 

useful for the consistency analysis of the EKF-SLAM 
system in the local period;  

2) A novel LC-EKF estimator is proposed to improve 
the filter consistency of the EKF-based SLAM 
system efficiently by applying the methodology of 
local consistency.  

3) Sea trials on our own test platform, C-Ranger AUV 
are carried out to evaluate the performance of the 
LC-EKF. We also adopt the process of sensor data 
updating into the LC-EKF estimator for the purpose 
of improving performance. 

The remainder of this work is structured as follows: 
section 2 briefly restates the basic theory of the standard 
EKF-SLAM. In section 3, we introduce the concept of 
local consistency and then propose the LC-EKF estimator 
to improve the filter consistency in EKF-SLAM systems. 
Section 4 presents the general framework of our test 
platform, the C-Ranger AUV, as well as the on-board 
sensors installed on the C-Ranger. In Section 5, a set of 
experimental comparisons using simulations and our 
own datasets are carried out, while we also discuss the 
corresponding experimental results. Lastly, section 6 
sketches out the crucial conclusions of this work.  

2. Restatement of standard EKF-SLAM algorithm 

As a recursive solution to the SLAM problem, the EKF 
model estimates the system state by minimizing the mean 
of the square error [15]. In this section, we briefly restate 
the state vector, the process model and prediction stage, 
the measurement model and update stage of the standard 
EKF-SLAM algorithm. 

2.1 State vector in EKF-SLAM 

In stochastic mapping, we can represent the system state 
at time step k by an augmented vector x k including the 
vehicle pose vector x

kR
and the position vector p

kL
of a set 

of kN  landmarks in a known global reference frame and 
its covariance matrix Pk by correlations between the 
vehicle and landmarks: 
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where the vehicle pose TTx =[ ]p
k k kR R Rφ  includes the 

position p
kR

and orientation 
kR

φ of the mobile robot. If we 
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suppose that the vehicle keeps running or moving in a 
plane, the vehicle position can be represented by the 
coordinates T[ ]

k kR Rx y in the EN (east-north) reference 

frame, and the vehicle orientation is normally referred to 
as the heading, referenced to the north. Tp =[ ]

k k k

j
L

j j
L Lx y

denotes the position of the thj  landmark.  

2.2 Process model and prediction stage for EKF-SLAM 

The process model for the state prediction of the EKF-
SLAM system is usually written as a first order non-linear 
formulation.

( )1 ,x f x u wk k k k+ = + (3)

where u k  is the known control input, ( )w ~N 0,k kQ
denotes the zero mean white Gaussian noise. The 
prediction formulation above (Equation (3)) can also be 
expressed by Equations (4)-(6) in detail as: 

1 1
C ˆp pΔˆ p̂ ( )ˆ

k k k k k k k kR R RRφ
+ +

= + (4)

1 1

ˆ ˆ ˆΔ
k k k k k kR R Rφ φ φ

+ +
= + (5)

1
ˆ ˆp p
k k k kL L+

= (6)

where C( )⋅ presents the  rotation matrix, the displacement 

1 1 1

T
T ˆˆˆΔx Δp Δ

k k k k k kR R Rφ
+ + +

=  
  between time step k and k+1 is 

estimated by odometry.  

Aside from the frequently used expression above, we can 
also express the EKF-SLAM system in its indirect form, 
i.e., the error-state space equation, where the state error 
x  is the difference between the true state x and the 
estimated state x̂ .

3 2

1
2 3 2 2 3

F 0 G
w F G w

0 I p 0

x
x x

k kk k k

k k kk k

RR N R

k k k k k k k k
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

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That is, 
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(9)

where the transition matrices F
kR

and G
kR

are as follows: 

11 22
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ˆ ˆ ˆˆ I J(p p )I JC( )Δp
F
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k k k kk k k k
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φ
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with
0 1

J
1 0

−
=
 
  

. Then the prediction covariance matrix 

will be: 

1
T TF F G GP Pk k k k k k k k kQ+ = + (12)

2.3 Measurement model and update stage for EKF-SLAM  

The measurement model for the on-board sensor (e.g., 
sonar), observing the environmental features, can be 
expressed by the following nonlinear function h( )⋅ :

z h(x ) vk k k= + (13)

where ( )v ~N 0,k kR  is the zero mean white Gaussian 
noise. The general relative position measurement can be 
written, in detail, as: 

1

2

cos ( )Δx sin ( )Δyh x
z

h x sin ( )Δx cos

( )

( )) ( Δy
k k

k k

j j
R k R kk

k j j
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+
= =

− +
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    
(14)

whereΔx
k kL
j

R
j
k x x= − ,Δy

k kL
j

R
j
k y y= − , 0,1,..., kj M= . Similarly, 

the linearized error-state equation for measurement is: 

1

1

1

x
H H v H

p
z x v

k k

k k

k k

R

k R L k k k k k
L

−

−

−+ +
 

       


 


 (15)

That is, 

H H H
k kk R L=    (16)

where H
kR

and H
kL

 denote the Jacobian matrixes of 

h( )⋅ for the vehicle pose and the landmark position: 

1 1 1

T
2

ˆ ˆ ˆH ( h )C ( ) I J(p p )
k k k k k k kR k R L Rφ

− − −
= ∇ − − − 

  (17)

1

T (H ( )ˆh )C
k k kL k Rφ

−
= ∇ (18)

where h k∇ is the Jacobian matrix of h( )⋅ calculated by the 
landmark’s local position in the vehicle’s coordinate 
system. Then, the innovation covariance matrix and the 
Kalman gain can be evaluated as: 

1
TPH HS k k k kk kR−= + (19)
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( )1

1
HPW Sk k kk k−

−
= (20)

Finally, the system state vector and its covariance matrix 
are updated as: 

| | 1ˆ ˆx x Wk k k k k kυ−= + (21)

| | 1
TP P W S Wk k k k k k k−= − (22)

where kυ presents the innovation sequence (also called 
the measurement residual). 

3. Local consistency and LC-EKF estimator 

Inevitably, the nonlinear functions in Equation (3) and (13) 
will cause errors, and the corresponding estimate results 
of the process and measurement model are not always 
accurate. In addition, the Jacobians in Equation (8), (9), 
(17) and (18) are evaluated using the latest estimated 
value of the system state vector, rather than its true value. 
Therefore, it is inevitable that the EKF system will 
confront the inconsistency problem. In this section, the 
consistency issue will be discussed in a local period for 
the classical EKF-SLAM system. 

3.1 Local consistency based on observability analysis 

Simply speaking, the typical EKF-SLAM system can be 
roughly classified into two sub-systems: the nonlinear 
SLAM sub-system and the linearized EKF sub-system. 

3.1.1 Observability analysis for the nonlinear SLAM  
sub-system 

Through the derivations of previous works [13, 14, 16], 
based on the important theory of observability rank 
condition [17], the observability matrix of the nonlinear 
SLAM sub-system with kM observed landmarks at time 
step k can be given by1

1 1
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2 2N span

c Δx s Δyc s c 0 0 0 0

s Δx c Δyc c s 0 0 0 0

c c Δx s Δy 0 0 s c 0 0

O = c s s Δx c Δy 0 0 c s 0 0

c 0 0 0 0 s cc Δx s Δy

c 0 0 0 0 c ss Δx c Δy

k k

k k

k k

k k

M M

k k

M M

k k

k k

k k

k

s

s

s

s

s

φ φφ φ φ φ
φ φφ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φφ φ
φ φ φ φφ φ

− −− −

− − −

− − − −

− − −

− −− −

− −−

 











        












(23)

where sφ and cφ are the simplified modes of ( )sin
kR

φ

and ( )cos
kR

φ . Examining the above matrix, we can see 

                                                                
1 The superscripts ‘N’ and ‘L’ in equation (23) and (24) stand for 
the nonlinear and linearized system respectively. 

that the size of NOk  is 2 2( 3)k kM M× + . If the Gaussian 
elimination technique is applied to the observability 
matrix NOk  by row operations, we can obtain a reduced 
matrix in row echelon form where the number of nonzero 
rows is 2 kM . That is, the number of basic columns in NOk

is 2 kM . This number is defined as the rank of a matrix [18] 
which is an extremely important concept in the 
development of our work. Thus, we can obtain the 
following conclusion that: 

Conclusion 1: The rank of the observability matrix for the 
general nonlinear SLAM sub-system, with kM  observed 
landmarks at time step k, is 2 kM .

3.1.2 Local observability analysis for the linearized EKF  
sub-system 

Since the EKF system has been proven to be unobservable 
[16, 19], the local rather than the global observability 
matrix is chosen for the observability analysis for the EKF 
sub-system. The local observability matrix [20, 21] over 
the time period [ ], 1k k n+ −  is defined as 

1

1 2

L

H

H F
O

H F F

k

k k

k n k n k

k
+

+ − + −

 
 
 =
 
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 




(24)

where n is the order of the linear time-varying (LTV) 
dynamical system, described by the error-state space 
Equations (7) and (15). According to reference [22], the 
system order n is defined as the number of state variables 
in the system, represented by state-space equations. 
Parameter n here is equal to the size of the state vector 
x k in Equation (1). For example, the state vector is 

0 0 0

T

0x R R Rx y φ=     at the initial time (i.e., 0k = ) with 

no landmarks observed, so the EKF system is locally 
observable in the time interval [ ], 2k k + .

Suppose k iM +  landmarks are observed at time step k i+ ,

where 0,1,..., 1i n= −  , then the measurement matrix can 
be written as 

1 1
2 2

2 2

H H 0

H

H 0 H

k i k i

k i k i

k i k i

R L

k i
M M
R L

+ +

+ +
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   


(25)

Substituting the above equation into Equation (24), the 
observability matrix LOk now becomes 
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1) Ideal EKF sub-system 

The ideal EKF sub-system refers to a system where the 
true value of the state vector is known and thus 
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Substituting it into Equation (26), we can obtain2
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Since the landmarks are static and their true values are 
known, the positions of the landmarks do not change 
with time, that is 

1
p p p p

k k k i

j j j j
L L L L+ +

= = = = (32)

                                                                
2 We use the superscripts, ‘I’ and ‘S’, to stand for the ideal and 
standard EKF sub-systems in the following derivation. 

So Equation (31) can be simplified as  
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(33)

Since I
2O  is composed of n repetitive block rows, which 

can be described as: 

( )

( )

1

2 2 2 2

2 2 2 2

J p pI I 0

I 0 IJ p p

k

k i

k

k

L R

M
L

i
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o
+

×

×

+

− − 
 
 =
 
 

−

− − − 


    


(34)

where 0,1,..., 1i n= − , and the size of each block row k io +

is 2 2( 3)k i k iM M+ +× + . That is,

1

1

I
2O

k

k

k i

k n

o
o

o

o

+

+

+ −

 
 
 
 

=  
 
 
 
  





(35)

The elements of 1 1, ,k k no o+ + − can be converted to zero by 
the Gaussian elimination, as 1 1, ,k k n ko o o+ + − ⊆ . There are 
2 kM nonzero rows in ko , thus the rank of I

2O  is 2 kM .
Therefore, we can reach the following conclusion that: 

Conclusion 2: The rank of the observability matrix over 
the local time period [ ], 1k k n+ − for the ideal EKF sub-
system, with kM  observed landmarks at time step k, 
is 2 kM , if 1 1, ,k k n kM M M+ + − ≤ .
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We can see the rank of the observability matrix for the 
ideal EKF sub-system is equal to the nonlinear SLAM 
sub-system over the local time period, namely, they have 
the same observability property. 

2) Standard EKF sub-system 

For the standard EKF sub-system, Jacobian matrices are 
calculated using the latest estimated state, and thus 

( )12

1 2

ˆ ˆI J p p
F

0 1
k i k i k i k i

k i

R R
R

+ + + + +

+

×

−
=
 
 
  

(36)

( ) ( ) ( )1 1 1

T
2

ˆ ˆ ˆH h C I J p p
k i k i k i k i k i k i k i

j j
R k i R L Rφ

+ + + − + + − + + −+= ∇ − − − 
  (37)

( ) ( )1

T ˆH h C
k i k i k i

j
L k i Rφ

+ + + −+= ∇ (38)

Furthermore, we can also derive a formula analogous to 
Equation (30) as 

1

R 1

1 1 1 1

2

2

) H F

=

(H F
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(39)

Substituting it into Equation (26), we can obtain that 
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(40)

As the state estimates generally differ at different times, 
the following formulas are normally tenable: 

1 1 1
ˆ ˆ ˆp p p

k k k k k i k i

j j j
L L L− + + + −

≠ ≠ ≠ (41)

1 1 1 2 1
ˆ ˆp p 0

l l l lR R+ + + ×− ≠ (42)

Therefore, variables in the third column of S
2O are not 

equal for different rows. Thus, we have to perform the 
column operations for the Gaussian elimination. As only 
the first two columns of S

2O  , which comprise 2 +3kM

columns, can be eliminated, the rank of S
2O  is 2 +1kM .

Then we can conclude that: 

Conclusion 3: The rank of the observability matrix over 
the local time period [ ], 1k k n+ − for the standard EKF 
sub-system, with kM  observed landmarks at time step k,
is 2 1kM + , if 1 1, ,k k n kM M M+ + − ≤ .

We can see that the standard EKF sub-system is not 
identical to the rank of the observability matrix of the 
nonlinear SLAM sub-system, in other words, the 
observability properties of the two sub-systems are not 
the same. 

3.2 Local Consistency and LC-EKF estimator 

In the preceding section, we performed an observability 
analysis of the nonlinear SLAM sub-system and the 
linearized EKF sub-system with any number of 
landmarks. Specially, when the number of landmarks is 
just one, we can come to the same conclusions as those in 
work [13] and find the corresponding relationship 
between observability and consistency as follows: 

1) The ideal EKF sub-system has the same observability 
properties as the nonlinear SLAM sub-system within 
the local time period [ ], 1k k n+ − , consequently, the 
ideal EKF-SLAM system is consistent. 

2) The standard EKF sub-system’s observability matrix 
has a higher rank than that of the nonlinear SLAM sub-
system over the local time period [ ], 1k k n+ − , which 
makes the standard EKF-SLAM system inconsistent. 

The two corollaries above, as well as the three 
conclusions drawn in section 3.1, look similar to those 
presented in references [13, 14], but  they are actually 
restricted to the local time period rather than the global 
one, used by Huang et al. We think our conclusions are 
precise, because the theoretical basis of all the derivations, 
namely the local observability matrix, is defined over the 
local time period [ ], 1k k n+ − . So it is necessary to 
introduce the concept of local consistency for the EKF-
SLAM system. 

Definition: The EKF-SLAM system is “locally consistent” 
if the linearized EKF sub-system has the same 
observability properties as the nonlinear SLAM sub-
system over the time period [ ], 1k k n+ − , where n is the 
order of the system. 
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The local consistency, thus defined, differs from the well-
known complete consistency, for the latter, the statement 
in the definition must be true for all values of k. Therefore, 
a system can be locally consistent for certain time 
intervals but not completely consistent. 

As the extreme limit for FEJ-EKF is the usage of initial 
state estimates at the global time period for computing 
the filter Jacobians, we try to solve this problem in the 
local period by modifying the algorithm as follows: 

1) If the Jacobian matrix in the EKF prediction stage is 
evaluated using the predicted value 

1
p̂

k i k iR + + −
rather than 

the updated value p̂
k i k iR + +

as in the standard EKF, we can 
obtain

( )1 -12

1 2
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k i k i k i k i
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+ + + + +
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×

−
=
 
 
  

(43)

2) If the Jacobian matrices
1

H , ,H
k k n

j j

R R + −
 of the EKF update 

stage during every local time period [ ], 1k k n+ − are all 

evaluated using the landmark estimate 
1

p̂
k k

j

L −
which is 

obtained at the first time instant of the local time period, 
we can obtain 
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+

+

=

∇
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(44)

Then it is easy to obtain that 

( )1 1 1

1 ' '
2

' ˆ ˆ(H ) H F F I J p p F
k i k i k i k k ik k k k

j j j
L R R R L R R+ + + − +− −
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  (45)

So, the observability matrix is 
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(46)

If 1 1, ,k k n kM M M+ + − ≤ , the rank of the observability 
matrix is 2 kM . Consequently, the above-modified system, 
which we call local consistency (LC) EKF SLAM, is locally 
consistent. The main process of the LC-EKF SLAM can be 
outlined by the following algorithm description. 

Algorithm 1. LC-EKF SLAM 
Inputs: initial estimates x k and Pk
Steps:
1. Initialize the filter. 
2. Compute the system order ( )=size x kn .

for : 1t k k n= + −
3. // EKF prediction stage 

while data from odometry sensor do 
Predict the system state 1|x k k+ by Equation (4)-

(6);
Compute the prediction Jacobian 'Fk by
substituting Equation (43) into (8); 
Predict the covariance matrix 

1Pk k+
by

Equation (12); 
end while 

4.   // EKF update stage 
while data from measurement sensor do 

Data association; 
if the measurement is an existing landmark 

Compute the measurement Jacobian 'H k by
Equation (44); 
Update the system state 1|x k k+  and its 

covariance matrix 
1Pk k+

by Equation (19)-(22); 

end if 
if the measurement is a new landmark 

 Augment the system state vector; 
end if 

end while 
5.  if t k=

Save
1

p̂
k k

j

L −
;

else if 
1k kM M+ >

   
1 1k k kM M M+ += ∩

end if 
end for 

Outputs: estimates |x̂ t t and |Pt t

4. Overview of the C-Ranger AUV

The C-Ranger vehicle was initially developed as a 
research platform for the testing and verification of 
various algorithms in underwater navigation. As detailed 
in our previous works [23-25], C-Ranger (Figure 1) is an 
open-frame-structure vehicle with the architecture of a 
control system, presented in Figure 2. 
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The C-Ranger is 1.6m long, 1.3m wide and 1.1m high. The 
total weight of the C-Ranger is about 206kg when working 
at full load. The maximum speed of the C-Ranger is close 
to 3 knots (1.5 m/s). Its continuous running time can reach 
eight hours when the C-Ranger travels at a speed of 1 knot 
and is fully charged. 

Numerous internal sensors, such as gyroscopes, digital 
compasses, pressure sensors and AHRS (Attitude and 

Heading Reference Systems), are installed on the C-
Ranger. In addition, there are some external sensors--
sonar, GPS and DVL (Doppler Velocity Log), for 
example. 

The basic sensors installed on the C-Ranger AUV are 
detailed in Table 1, as well as the newly added sensors, 
which enable the C-Ranger to perform the visual SLAM 
and multi-AUV SLAM. 

(a) C-Ranger in deployment (b) The coordinate frame of C-Ranger

Figure 1. C-Ranger AUV 

     

Figure 2. Control system of C-Ranger 
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Fundamental sensors Variable Update rate Accuracy Range

Super SeaKing DST  imaging sonar Polar coordinate 0.05-0.2 Hz 
15 mm (distance) 
0.225 deg (angle) 

0.4-300 m 

XW-GPS1000  GPS XYZ position 1-20 Hz 1.1 m (CEP) - 

NavQuest 600 DVL Velocity 1-5 Hz 1%  ± 1 mm/s 0.3-140 m 

Honeywell HMR3000 digital compass Attitude 1-20 Hz 0.5 deg (RMS) 
360 deg (heading) 
± 40 deg (tilt) 

VG951D  Gyroscope Angular velocity 20 Hz 1 deg/h  60 deg/s 

Desert-star SSP-1 300PSIG Digital 
Pressure Sensor 

Depth 0.25-16 Hz 0.1% of full scale 300 m 

UWM3000  Acoustic Modems Communication  5 Kbps <10-9 5000 m 

New  sensors 

Gemini 720i Multibeam Imaging Sonar Polar coordinate 5-30 Hz
8 mm (distance) 
0.5 deg (angle) 

0.2-120 m 

Innalabs® AHRS M2  Attitude 1-100 Hz 
0.7 deg (heading) 
0.4 deg (roll/pitch) 

0-360 deg (heading)
±90 deg (pitch) 
±180 deg (roll) 

Kongsberg Maritime OE14-376 (PAL) 
Colour Camera 

Colour image 50 Hz 625 Line 3000m

Table 1. Sensors installed on C-Ranger AUV 

5. Experiments and analysis 

In this section, the following five algorithms are 
compared by using a large number of Monte Carlo 
simulations and our own sea trial dataset: 

(1) the ideal EKF SLAM 
(2) the standard EKF SLAM 
(3) the FEJ-EKF SLAM 
(4) the OC-EKF SLAM [26] 
(5) the proposed LC-EKF SLAM 

It should be noted that for the standard EKF SLAM, we 
relied on an existing Matlab implementation, developed 
by Tim Bailey, and the other three algorithms are all 
modified based on this. All the algorithms are executed in 
Matlab R2009a with 2.60GHz Pentium® Dual-Core CPU 
E5300 and 2GB RAM. 

5.1 Simulation Experiment 

The first test was carried out in a simulated environment, 
which allows comparison between the true states and the 
estimates to be made, as the true locations of the vehicle 
and landmarks are both available. In particular, all the 
simulations were carried out with known data association, 
so as to eliminate the influence of mismatching on the 
estimation of performance. As shown in Figure 3, there 
are 34 randomly generated point features and a vehicle 
trajectory with loop closure in a 200m×200m environment. 
The simulation parameters are detailed in Table 2. 

Parameter  Value
Vehicle speed 5m/s
Max scan range 30m

Deadreckoning sampling time 0.025s

Observation sampling time  0.125s

Vehicle speed std dev 0.3m/s

Steering angle std dev 3°

Range  observation std dev 0.1m

Bearing observation std dev  1° 

Table 2. Simulation parameters 
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Figure 3. The simulation environment 
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Figure 4. Mean RMS errors of the vehicle pose 
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Figure 5. Mean consistency index (CI) of the vehicle pose

To evaluate the performance of the estimators, 50 Monte 
Carlo tests are performed in the simulation scenario, 
where the vehicle fulfils five loops. The average Root 
Mean Square (RMS) errors of the vehicle pose are shown 
in Figure 4 to evaluate the accuracy of the five filters: the 
ideal EKF, the standard EKF, FEJ-EKF, OC-EKF and the 
LC-EKF. In addition, the average Consistency Index (CI) 
[5] of the vehicle pose presented in Figure 5 is used to 
evaluate the filters' consistency. It can be seen that our 
proposed LC-EKF algorithm performs better than the 
standard EKF and the FEJ-EKF, and has a performance 
comparable with the OC-EKF, pertaining to the accuracy 
and consistency. 

5.2 Sea Trial  

5.2.1 SLAM for C-Ranger 

Consider that in our current system, the C-Ranger always 
remains stable in the DOFs (degrees of freedom) of roll and 
pitch, the state vector of the C-Ranger can be presented by: 

Tx R R R x y zRR x y z v v vφ  = (47)

where [ ]T
R R R Rx y z φ  denotes the 3-D coordinates 

and the heading of the C-Ranger in the global reference 

frame and 
T

x y zv v v   are the linear velocities in the 

vehicle reference frame.  

The motion model of the C-Ranger moving at a constant 
velocity from time k-1 to k can be written as 

( )1
x f x u, w

k kR R k k−
= + (48)
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(49)

with the displacements: 
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(50)

where the control input vector Tu [ ]xk y zw a a a=  is 

composed of the angular velocity and the accelerations.3

Furthermore, wk  denotes the white Gaussian control 
noise with a zero mean and covariance matrix kQ :

2

2

2

2

0 0 0
0 0 0

0 0 0

0 0 0
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a
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Q
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σ
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 
 
 

(51)

For the C-Ranger, using sonar as the observing sensor, the 
range-bearing measurement model can be written in the 
form4

2 2

1

( ) ( )

tan
v

( )

L R L R
S S
k kL R

R
L R

x x y yr
z y yψ

x x
φ−

 − + −
   = = +−   −   − 

(52)

                                                                
3 The accelerations can be obtained from the on-board sensor of 
the AHRS. 
4 The superscripts 'S', 'P', 'C', 'D' in Equations (52)-(55) denote the 
sonar, pressure sensor, compass and DVL, respectively.
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where vSk  denotes the white Gaussian measurement 

noise for sonar with zero mean and covariance matrix S
kR :

2

2

0
0
rS

kR
ψ

σ
σ

 
=  
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(53)

As described in Section 4, the C-Ranger is also equipped 
with many other sensors, which can supply direct 
observations of components in the state vector. For the 
pressure sensor, the digital compass and the DVL, the 
measurement models are linear, and their measurement 
matrix and measurement noise can be given as: 
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Substituting Equations (54) and (55) into Equations (19)-
(22), the sensor data in the state vector can be updated. 
This process is called sensor data updating, which can 
make the sensor data more accurate before they are fed 
into the motion model of the C-Ranger.

5.2.2 Experimental results 

We carried out the sea trial at Tuandao Bay, in Qingdao, 
China. Figure 6 demonstrates the experimental results 
integrated with the environmental satellite image. The 
magenta points denote the point features, extracted from 
the sonar data, which match well with landmarks in the 
real world. 

  
Figure 6. Results of the sea trial combined with the satellite 
image 

A clear path comparison is presented in Figure 7, where 
the GPS trajectory (the cyan line) works as the ground 
truth for the comparison of the algorithms. It can be seen 
that the path deviation of our proposed LC-EKF relative 
to the GPS is smaller than that of the standard EKF and 
the FEJ-EKF. The LC-EKF’s outperformance can also be 
confirmed by comparisons with RMS (Figure 8) and CI 
(Figure 9). 
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Figure 7. Path comparison 

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

Timestep

Po
sit

io
n 

RM
S 

(m
)

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

Timestep

H
ea

di
ng

 R
M

S 
(r

ad
)

Std.
FEJ
OC
LC

Figure 8. RMS errors of the vehicle pose 

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

Timestep

V
eh

ic
le

 P
os

e 
CI

Std.
FEJ
OC
LC

Figure 9. CI of the vehicle pose 

11Shujing Zhang, Bo He, Lulu Ying, Minghui Li and Guang Yuan: 
Autonomous Navigation with Constrained Consistency for C-Ranger



0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

Timestep

CP
U

 T
im

e 
(s

)

LC-EKF

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

Timestep

CP
U

 T
im

e 
(s

)

OC-EKF

Figure 10. CPU time for each timestep 

Moreover, the computational cost is used to evaluate the 
performance of the estimator. The standard EKF, FEJ-EKF 
and LC-EKF estimators are all based on the EKF-SLAM 
systems, and the essential differences between them are 
just their usage of state estimates to compute the Jacobian 
matrix at different time points. Therefore, the 
computational costs for the standard EKF, FEJ-EKF and 
LC-EKF estimators are almost the same. We only need to 
compare the proposed LC-EKF with the OC-EKF. The 
total cost of the CPU time for the LC-EKF is 131.5 seconds 
and that for the OC-EKF is about 1108.8 seconds. The 
detailed CPU time required for each timestep is shown in 
Figure 10. As the time cost of the LC-EKF is far less than 
that of the OC-EKF, the LC-EKF is more appropriate for 
real time application. 

6. Conclusion 

In this paper a consistency constrained EKF-SLAM 
algorithm based on the idea of local consistency is 
proposed and applied for the autonomous navigation of 
our test platform, the C-Ranger AUV. The concept of local 
consistency is introduced after an explicit theoretical 
derivation of the EKF-SLAM system. Furthermore, we 
present a locally consistency-constrained EKF-SLAM 
design, LC-EKF, in which the landmark estimates used 

for linearization are fixed at the beginning of each local 
time period rather than evaluated at the latest landmark 
estimates. Finally, the experimental results of our 
simulation and real-world tests show that our proposed 
LC-EKF algorithm performs well with respect to 
consistency, accuracy and computational efficiency. With 
this improved algorithm, autonomous navigation 
systems can be extended to numerous engineering 
applications, such as autonomous underwater vehicles 
(AUV), unmanned land vehicles and unmanned 
aerospace vehicles (UAV). 
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