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Abstract 

 

Simultaneous Localization and Mapping (SLAM) involves creating an environmental map based on sensor 
data, while concurrently keeping track of the robot’s current position. Efficient and accurate SLAM is 

crucial for any mobile robot to perform robust navigation. It is also the keystone for higher-level tasks such 

as path planning and autonomous navigation. The past two decades have seen rapid and exciting progress 
in solving the SLAM problem together with many compelling implementations of SLAM methods. In this 

paper, we will review the two common families of SLAM algorithms: Kalman filter with its variations and 

particle filters. This article complements other surveys in this field by reviewing the representative 
algorithms and the state-of-the-art in each family. It clearly identifies the inherent relationship between the 

state estimation via the KF versus PF techniques, all of which are derivations of Bayes rule. 
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1.0  INTRODUCTION 

 

Autonomous mobile robot is an intelligent agent which can 

explores and navigates in an unknown environment with less 

human control. Building a map of the surrounding environment is 

essential for the robot navigation. Possessing the spatial model of 

the environment (map), containing information location of 

landmarks and obstacles, enables the robot to estimate its pose, to 

plan its path and avoid collisions. On the other hand, if the robot 

pose is provided along with its trajectory, the map can be easily 

constructed through the information coming from robot sensors [1] 

Unfortunately, in many applications of practical relevance (e.g. 

exploration tasks or operations in hostile environments), the certain 

map is not available. In these cases, the autonomous agent must 

build a map of the surroundings. Hence, the simultaneous 

localization and mapping problem, known as SLAM, requires if it 

is possible for a mobile robot placed in an unknown environment 

to incrementally build a consistent map while simultaneously 

determining its location within this map. Dynamic objects, 

however, can lead to serious errors in the resulting maps such as 

spurious objects or misalignments due to localization errors [2]. 

The concept of simultaneous localization and mapping has 

attracted extensive interest in the mobile robotics literature and 

many stochastic SLAM frameworks have been developed so far. 

 

 

 
 
 
 

 
 

Figure 1  Illustration of feature-based SLAM 

 

 

2.0  BACKGROUND 

 

Unmanned mobile robots exist in many different shapes and sizes 

with varying degrees of intelligence and capability. Unmanned 

ground vehicles can operate on rough and rugged terrain, inside of 

buildings where hostile conditions may exist, and in constricted 

spaces that would otherwise be inaccessible for humans. 

Unmanned underwater vehicles can be deployed by the military to 

sneak undetected under the surface if necessary, can be used in 

search operations for missing planes or boats in oceans (recently 

used for MH 370), or can be used by scientists to analyze the ocean 

floor mapping or drilling purposes. Unmanned aerial vehicles range 
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from models with one foot wingspans that can be used for urban 

search and rescue, to the full-sized Predators deployed for 

reconnaissance and precision strikes in Iraq and Afghanistan [3]. 

Fully autonomous vehicles require significant cognitive abilities. 

Given only some tasks to perform, the robot must localize itself, 

put together a representation of its surroundings, plan a course of 

action through its surroundings to achieve its goal, and then act 

upon this plan. The problem of localization requires the robot to 

determine its pose and its destination is in a particular reference 

frame. One possible solution is the process known as simultaneous 

localization and mapping, or SLAM [4]. SLAM involves creating 

an environmental map based on sensor data, while concurrently 

keeping track of the robot’s current position. Another common 

approach is through the use of the Global Positioning System 

satellite network coupled with an inertial navigation system which 

can track the motion of the robot in the absence of accurate data 

from the satellites. 

  Since its early beginnings [5], [6], the SLAM scheme has 

undergone several developments and optimizations. The most 

frequent implementation uses an Extended Kalman Filter (EKF) 

[7], [8]. The principal of EKF is the minimization of the mean 

quadratic error of the system state and considers all variables as 

Gaussian random variables [6], [9]. The map obtained by an EKF-

based SLAM implementation is usually a feature-based map [10], 

[11], this type of methods is well known as feature-based SLAM as 

shown in Figure 1. In [12], a better performance of SLAM scheme 

is given by a SLAM approach based on the Unscented Kalman 

Filter, considering the non-linearity of the model of the robot and 

the model of the features. However, these variants of KF are 

relatively slow when dealing with huge number of landmarks due 

to the general update at every single measurement. Other 

approaches use a Particle Filter, [12], [13], to solve the SLAM 

problem. The advantage of Particle Filter SLAM implementation is 

that the features of the map are not restricted to be Gaussian. Many 

PF algorithm have been developed such as, FastSLAM and 

FastSLAM 2.0 [14]. Nevertheless, these filters suffer degeneration 

due to their inability to forget the past which conduct to loss in 

accuracy. The classification of a SLAM algorithm as the best one 

for a particular environment depends on hardware limitations, the 

size of the environment to be modeled by the robot and the 

optimization criterion of the processing time. 

  However, it seems that almost none of the current approaches 

can perform consistent maps for large areas, mainly due to the 

increase on computational cost and on the uncertainties. Therefore 

this is possibly the most important factor that needs to be improved. 

Some recent publications solve the problem by using multiple maps 

or sub-maps that are lately used to build a larger global map [15]–

[18]. However these methods rely considerably on assuming proper 

data association, which is another important issue that needs to be 

improved. 

 

 

3.0  BAYESIAN RECURSIVE ESTIMATION 

 

All probabilistic SLAM algorithms are derived from the recursive 

Bayes rule 

 

𝑝(𝑥𝑘| 𝑧𝑘)𝑝( 𝑧𝑘) = 𝑝( 𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘)                                           (1) 

 

  Where 𝑥𝑘 is the state vector including the robot pose and of 

environment landmarks at time 𝑘. As the robot moves through its 

environment, it observes nearby landmarks, 𝑧𝑘 = {𝑧𝑖 , 𝑖 = 1, . . . , 𝑘} 

is a set of measurements from time 1 to 𝑘, where 𝑧𝑘 is a 

measurement by robot sensor at time k, which is used to estimate 

the state 𝑥𝑘: 

𝑧𝑘 = ℎ(𝑥𝑘)                                                                                  (2) 

where ℎ is a possibly nonlinear function. 

 

  The process evolution of the state between time 𝑘 − 1 and 𝑘 

is governed by a nonlinear function𝑓, such that: 

 

𝑥𝑘 = 𝑓(𝑥𝑘−1)                                                                          (3) 

 

  In probabilistic form, the simultaneous localization and map 

building problem requires that the probability distribution  

𝑝(𝑥𝑘|𝑧𝑘) be computed for all times 𝑘. This probability distribution 

describes the joint posterior density for landmark locations and 

vehicle state (at time 𝑘) given the observations up to time 𝑘. 

Generally, the probability distribution can be obtained in a 

prediction–update recursion. 

  Consider that a posterior probability distribution 

𝑝(𝑥𝑘−1|𝑧𝑘−1) is given, then the prior of the state at time 𝑘 can be 

computed via the Chapman–Kolmogorov equation: 

 

𝑝(𝑥𝑘|𝑧𝑘−1)  = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑝(𝑥𝑘−1|𝑧𝑘−1) )𝑑𝑥𝑘−1                

(4) 

 

  where the probability distribution 𝑝(𝑥𝑘|𝑥𝑘−1) is defined by 

(3). This procedure is the called prediction stage. 

In the update stage, a new measurement 𝑧𝑘 is employed to update 

the prior 𝑝(𝑥𝑘|𝑧𝑘−1)  to determine the posterior  𝑝(𝑥𝑘|𝑧𝑘) via the 

conditional Bayes rule by rewriting (1): 

 

𝑝(𝑥𝑘|𝑧𝑘) = 𝑝(𝑥𝑘|𝑧𝑘 , 𝑧𝑘−1)

=  𝑝(𝑧𝑘|𝑥𝑘 , 𝑧𝑘−1)𝑝(𝑥𝑘|𝑧𝑘−1) 𝑝(𝑧𝑘|𝑧𝑘−1)⁄  

                                    (5) 

 

  By knowing the stat 𝑥𝑘, no past measurement would provide 

us additional information. In mathematical term: 

 

𝑝(𝑧𝑘|𝑥𝑘 , 𝑧𝑘−1) = 𝑝(𝑧𝑘|𝑥𝑘) 
 

  Therefore (5) is reformulated as follows: 

 

𝑝(𝑥𝑘|𝑧𝑘) =  𝜂𝑝(𝑧𝑘|𝑥𝑘) 𝑝(𝑥𝑘|𝑧𝑘−1)                                  (7) 

 

  From (7), the recursive Bayesian estimator allows new 

information to be added simply by multiplying a prior by a current 

(𝑘 − 𝑡ℎ) likelihood. 

  Thus, (4) and (7) establish the basis for the optimal Bayesian 

solution for SLAM. However, such a solution is a theoretical 

approach that cannot be practically implemented in the real-world 

[17]. Optimal solutions, such as Kalman Filter and Particle Filter, 

employing the probability distribution in two stages, will be 

introduced in the following section. 

 

 

4.0  FILTERS FOR SLAM 

 

The SLAM problem can be traced back to 25 years ago, where few 

dominant probabilistic approaches were introduced (i.e. Kalman 

Filters (KF), Particle Filters (PF) and 1.3. Expectation 

Maximization based methods (EM)). The two techniques are 

mathematical derivations of the recursive Bayes rule. The reason 

that makes these probabilistic techniques very popular is the fact 

that robot mapping is characterized by sensor noise and 

uncertainty, and the probabilistic algorithms overcome the problem 

by expressing the different sources of noise with their effects on the 

observations [20]. 
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4.1  Kalman Filter SLAM 

 

Kalman filters are Bayes filters that represent posteriors using 

Gaussians, i.e. unimodal multivariate distributions that can be 

represented compactly by a small number of parameters. KF 

SLAM relies on the assumption that the state transition and the 

measurement functions are linear with added Gaussian noise, and 

the initial posteriors are also Gaussian. Figure 2 describes the 

general scheme of Kalman filter estimation, where a system has a 

control signal and system error sources as inputs. A measuring 

device enables measuring some system states with errors. The 

Kalman filter is a mathematical mechanism for producing an 

optimal estimate of the system state based on the knowledge of the 

system and the measuring device, the description of the system 

noise and measurement errors and the uncertainty in the dynamics 

models. Thus the Kalman filter fuses sensor signals and system 

knowledge in an optimal way. 

 

 
 

Figure 2  General scheme of Kalman filter [18] 

 

 

  There are two main variations of KF in the state-of-the-art 

SLAM: the Extended Kalman Filter (EKF) and its related 

Information Filtering (IF) or Extended IF (EIF). The EKF considers 

all variables as Gaussian random variables and minimizes the mean 

quadratic error of the system state [21], [22]. The map obtained by 

an EKF-based SLAM implementation is usually a feature-based 

map [23], [24]. The features of the map obey some geometrical 

constrain of the environment. Thus, in [25] is presented a line-

based SLAM where lines are related to walls; in [24] is shown a 

point-based SLAM where all significant points are related to trees 

of the environment [24]. Several existing SLAM approaches use 

the EKF [22], [25], [27], [28]. The IF is implemented by 

propagating the inverse of the state error covariance matrix. There 

are several advantages of the IF filter over the KF. Firstly, the data 

is filtered by simply summing the information matrices and vector, 

providing more accurate estimates [29]. Secondly, IF are more 

stable than KF [29]. Finally, EKF is relatively slow when 

estimating high dimensional maps, because every single vehicle 

measurement generally affects all parameters of the Gaussian, 

therefore the updates requires prohibitive times when dealing with 

environments with many landmarks [30]. 

  However, IF have some important limitations, a primary 

disadvantage is the need to recover a state estimate in the update 

step, when applied to nonlinear systems. This step requires the 

inversion of the information matrix. Further matrix inversions are 

required for the prediction step of the information filters. For high 

dimensional state spaces the need to compute all these inversions 

is generally believed to make the IF computationally poorer than 

the Kalman filter. In fact, this is one of the reasons why the EKF 

has been vastly more popular than the EIF [12]. These limitations 

do not necessarily apply to problems in which the information 

matrix possesses structure. In many robotics problems, the 

interaction of state variables is local; as a result, the information 

matrix may be sparse. Such sparseness does not translate to 

sparseness of the covariance. Information filters can be thought of 

as graphs, where states are connected whenever the corresponding 

off-diagonal element in the information matrix is non-zero. Sparse 

information matrices correspond to sparse graphs. Some algorithms 

exist to perform the basic update and estimation equations 

efficiently for such fields [31], in which the information matrix is 

(approximately) sparse, and allows developing an extended 

information filter that is significantly more efficient than both 

Kalman filters and non-sparse Information Filter. 

  The Unscented Kalman Filter (UKF) addresses the 

approximation issues of the EKF and the linearity assumptions of 

the KF. KF performs properly in the linear cases, and it is 

considered as an efficient method for analytically propagating a 

Gaussian Random Variable (GRV) through a linear system 

dynamics. For nonlinear models, the EKF approximates the 

optimal terms by linearizing the dynamic equations. The EKF can 

be viewed as a first-order approximation to the optimal solution. In 

these approximations the state distribution is approximated by a 

GRV, which then is propagated analytically through the first-order 

linearization of the nonlinear system. These approximations can 

introduce large errors in the true posterior mean and covariance, 

which may lead sometimes to divergence of the filter. In the UKF 

the state distribution is once more represented by a GRV, but is 

now quantified using an optimum set of carefully chosen sample 

points. This set of points fully seizures the true mean and 

covariance of the GRV, and after propagation through the non-

linear system, captures the new mean and covariance accurately to 

the 3rd order for any nonlinearity. In order to do that, the unscented 

transform is used. 

  One of the main drawbacks of the EKF and the KF 

implementation is the fact that for long time executions, computer 

resources will not be sufficient to update the map in real-time, 

because of the increasing number of landmarks. This large scaling 

problem arises because each landmark is correlated to all other 

landmarks. The correlation appears since the observation of a new 

landmark is obtained with one of the mobile robot’s sensors and 

therefore the error in the location of the landmark will be correlated 

with the error in the vehicle location and the errors in the rest of 

landmarks of the map. This correlation is of a crucial importance 

for the long-term convergence of the algorithm, and needs to be 

sustained for the full duration of the execution. The Compressed 

Extended Kalman Filter (CEKF) [32] algorithm significantly 

reduces the computational requirement without introducing any 

penalties in the accuracy of the results. A CEKF stores and 

maintains all the information gathered in a local area with a cost 

proportional to the square of the number of landmarks in the area. 

This information is then transferred to the rest of the global map 

with a cost that is similar to full SLAM but in only one iteration. 

  The advantage of KF and its variants is that provides optimal 

Minimum mean-square Error (MMSE) estimates of the state (robot 

and landmark positions), and its covariance matrix seems to 

converge strongly. However, the Gaussian noise assumption 

restricts the adaptability of the KF for data association and number 

of landmarks. 

 

4.2  Particle Filter SLAM 

 

The second principal SLAM paradigm is based on particle filters. 

Particle filters can be traced back to [33], but they have become 

popular only in recent years. Particle filters, also called the 

Sequential Monte-Carlo (SMC) method, is a recursive Bayesian 
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filter that is implemented in Monte Carlo simulations. It executes 

SMC estimation by a set of random point clusters (particles) 

representing the Bayesian posterior. For the beginner in SLAM, 

each particle is best thought as an actual guess as to what the 

genuine estimation of the state may be. By collecting many such 

guesses into a set of guesses, or set of particles, the particle filters 

captures a representative sample from the posterior distribution. 

The particle filter has been shown under mild conditions to 

approach the true posterior as the particle set size goes to infinity. 

It is also a nonparametric representation that represents multimodal 

distributions with ease. In recent years, the advent of extremely 

efficient microprocessors has made particle filters a popular 

algorithm [34]. 

  The key problem with the particle filter in the context of 

SLAM is the evolution of the computational complexity on the 

state dimension as new landmarks are observed, becoming not 

appropriate for real time applications [14]. Thus, Particle Filter has 

just been effectively applied to localization, i.e. determining 

position and orientation of the robot, but not to map-building, i.e. 

landmark position and orientation; therefore, there are no important 

papers using Particle Filter for the whole SLAM framework, but 

there exist few works that deal with the SLAM problem using a 

combination of Particle Filter with other techniques. 

  The trick to make particle filters amenable to the SLAM 

problem goes back to [35]. The trick was introduced into the SLAM 

literature in [36], followed by [37], who coined the name 

FastSLAM. 

  FastSLAM takes advantage of an important characteristic of 

the SLAM problem (with known data association): landmark 

estimates are conditionally independent given the robot’s path [39]. 

FastSLAM algorithm decomposes the SLAM problem into a robot 

localization problem, and a collection of landmark estimation 

problems that are conditioned on the robot pose estimate. A key 

characteristic of FastSLAM is that each particle makes its own 

local data association. In contrast, EKF techniques must commit to 

a single data association hypothesis for the entire filter. In addition 

FastSLAM uses a particle filter to sample over robot paths, which 

requires less memory usage and computational time than a standard 

EKF or KF. Sampling over robot paths leads to efficient scaling 

and robust data association, however it also has its drawbacks. 

FastSLAM, and particle filters in general, have some unusual 

properties. For example, the performance of the algorithm will 

eventually degrade if the robot’s sensor is too accurate. This 

problem occurs when the proposal distribution is poorly matched 

with the posterior. In FastSLAM, this happens when the motion of 

the robot is noisy relative to the observations. 

  FastSLAM 2.0, a further improvement to SLAM, was 

discussed by [36] This systems makes a more-efficient use of the 

particle filter principle, particularly in situations where motion 

noise is high relative to measurement noise. FastSLAM 2.0 is also 

better than other algorithms at overcoming the data association 

problem, which can arise when different landmarks in the 

environment look alike. The classic solution to the data association 

problem in SLAM is to select a feature on the landscape such that 

it maximizes the likelihood of the sensor measurement given all 

available data, and to align all other data based on this step. 

FastSLAM 2.0 solves the problem by calculating the maximum 

likelihood for each particle, meaning that the additional step is not 

needed. However statistically, FastSLAM 2.0 suffers degeneration 

due to its inability to forget the past. Marginalizing the map in this 

algorithm introduces dependence on the pose and measurement 

history, and so, when resampling depletes this history, statistical 

accuracy is lost [7]. Recently, the hierarchical RBPF SLAM, 

proposed in [39], is a robust SLAM framework in indoor 

environments with sparse and short-range sensors. In order to 

overcome the sensor limitations, this approach divided the entire 

region into several local maps, which are assumed to be 

independent of each other. However, these approaches have not 

been attempted in dynamic environments. 

 

4.3  Expectation Maximization Based Methods (EM) 

 

EM estimation is a statistical algorithm that was developed in the 

context of maximum likelihood (ML) estimation and it offers an 

optimal solution, being an ideal option for map-building, but not 

for localization. The EM algorithm is able to build a map when the 

robot’s pose is known, for instance, by means of expectation [40]. 

EM iterates two steps: an expectation step (E-step), where the 

posterior over robot poses is calculated for a given map, and 

maximization step (M-step), in which the most likely map is 

calculated given these pose expectations. The final result is a series 

of increasingly accurate maps. The main advantage of EM with 

respect to KF is that it can tackle the correspondence problem (data 

association problem) surprisingly well [37]. This is possible thanks 

to the fact that it localizes repeatedly the robot relative to the 

present map in the E-step, generating various hypotheses as to 

where the robot might have been (different possible 

correspondences). In the latter M-step, these correspondences are 

translated into features in the map, which then get reinforced in the 

next E-step or gradually disappear. However, the need to process 

the same data several times to obtain the most likely map makes it 

inefficient, not incremental and not suitable for real-time 

applications [41]. Even using discrete approximations, when 

estimating the robot’s pose, the cost grows exponentially with the 

size of the map, and the error is not bounded; hence the resulting 

map becomes unstable after long cycles. These problems could be 

avoided if the data association was known, what is the same, if the 

E-step was simplified or eliminated. For this reason, EM usually is 

combined with PF, which represents the posteriors by a set of 

particles (samples) that represent a guess of the pose where the 

robot might be. For instance, some practical applications use EM 

to construct the map (only the M-step), while the localization is 

done by different means, i.e. using PF-based localizer to estimate 

poses from odometer readings. 

 

 

5.0  CONCLUSION 

 

This overview allows finding the most interesting filtering 

techniques and identifying many of its particularities. These 

filtering strategies are Kalman Filter (KF) with its variaitions 

(Information Filter (IF), Unscented Kalman Filter (UKF) and 

Compressed Kalman Filter (CKF)) and Particle Filter (PF).  

  The most interesting outcome from the study is that for large 

scenarios, or maps with high population of landmarks, the CKF 

seems to be better as compared to other methods. When dealing 

with these kinds of maps, the state vector and its associated 

covariance matrix keeps growing with the quantity of landmarks 

observed. This growth makes the mathematical operations more 

complex and increases dramatically the time consumption, i.e. the 

computational cost. The strategy used by the CKF to compute local 

KFs and then update its output to a global map seems really 

consistent, because it only needs to handle with small amounts of 

data during the local iteration process. Although Gaussian noise is 

assumed in all models presented so far, not always reflects the 

problems of the real world. It seems that UKF could handle with 

different types of noise, but this topic has not been investigated in 

deep yet. 
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