
The Common State Filter for SLAM

Martin P. Parsley and Simon J. Julier

Abstract— This paper presents the Common State Filter
(CSF), a novel and efficient suboptimal Multiple Hypothesis
SLAM (MHSLAM) method for Kalman Filter-based SLAM
algorithms. Conventional MHSLAM algorithms require the
entire vehicle and map state to be copied for each hypothesis.
The CSF, by contrast, maintains a single, common instance
of the vast majority of the map and only copies the map
portion that varies substantially across different hypotheses. We
demonstrate the performance of the algorithm on the Victoria
Park data set.

I. INTRODUCTION

A key requirement for robust and practical simultaneous

localisation and mapping (SLAM) is the ability to handle

ambiguity. Ambiguity can arise in several ways. The most

common is the data association problem. This may be ad-

dressed by a number of methods including nearest neighbour

[1], matching appearance descriptors [2] and landmark con-

figurations [3]–[5], however the association is not guaranteed

to be unique. A second source of ambiguity are time delayed

measurements with unknown time delays [6]. A third cause

lies in multiple model estimation for a platform whose active

movement class (of a predefined set) at any instant in time is

not known [7]. One means of handling bearing-only SLAM

is to use range-parameterised filters, which create a set of

discrete range hypotheses [8]–[10].

In principle, all of these types of ambiguity can be

represented in a Multiple Hypothesis SLAM (MHSLAM)

framework: the set of all feasible candidates are enumerated

and, for each candidate, a new filter is created [11]. At

subsequent time steps, measurement likelihoods are used to

recursively compute the probability that a given hypothesis

is correct. Although MHSLAM is an exact solution, it has

not been widely used for two key reasons. The first is

that the number of hypotheses can grow exponentially over

time [11]. This problem can be mitigated through the use

of appropriate pruning strategies and hypothesis merging

methods [12], [13]. Second, each hypothesis must contain

a complete copy of the vehicle and all of the beacons in the

map. For large maps, even maintaining just a few hypotheses

becomes prohibitively expensive [4], [11], [14].

Particle filters are an alternative to EKF-based MHSLAM,

and can inherently handle multiple hypotheses. The most

popular such method is FastSLAM [15]. However, particle

filters have their own drawbacks compared to the EKF,

Martin Parsley was supported by a UK Research Council EPSRC
Doctoral Training Award number EP/P502802/1.

M. Parsley and S. Julier are with the Department of Computer Sci-
ence, University College London, Gower Street, London, WC1E 6BT, UK
M.Parsley@cs.ucl.ac.uk; S.Julier@cs.ucl.ac.uk

namely inconsistency [16], and thus an EKF-based solution

still has merit. In addition, the number of particles required

for performing MHSLAM may still grow exponentially as

the filter must sample over robot paths and data associations

[15].

In this paper we consider the problem of reducing the

computational and storage costs for EKF-based MHSLAM.

Our solution, which we call the Common State Filter (CSF),

exploits the intuition that the values of most map states are

very similar across all the different hypotheses. The CSF

maintains a single, common instance of the majority of the

map and each hypothesis only stores the small number of

states which vary substantially across the different hypothe-

ses. The algorithm leads to substantial reductions in both

computational and storage costs with only a slight reduction

in accuracy due to the suboptimality.

The structure of the paper is as follows. Section II provides

a brief overview of SLAM and introduces the notation used.

In Section III we describe the problem of data association

and show how it induces an MHSLAM structure. Section IV

introduces and describes the basic principles of the Common

State Filter (CSF). A practical demonstration of the CSF on

the Victoria Park data set is given in Section V. Finally,

conclusions and a summary are given in Section VI.

II. SLAM WITHOUT AMBIGUITIES

The structure of the full covariance SLAM solution is as

follows. At time k, the true state x(k) consists of the vehicle

pose xv(k) and the set of n static beacons x1...n,

x(k) =
[

xT
v xT

1 . . . xT
n

]T

k
.

The mean and covariance of this estimate are

x̂(i|j) =
[

x̂T
v x̂T

1 . . . x̂T
n

]T

i|j
=

[

x̂T
v x̂T

b

]T

i|j
,

(1)

P(i|j)=

2

6

6

6

6

6

6

6

6

4

Pv PT
v1 . . . PT

vn

Pv1 P11 . . .
...

...
...

. . . PT
1n

Pvn P1n . . . Pnn

3

7

7

7

7

7

7

7

7

5

i|j

=

2

4

Pv pT
vb

pvb Pb

3

5

i|j

,

(2)
where (i|j) denotes the estimate at time i given observations

up to and including time j [17]. Pv is the vehicle pose

covariance, Pnn is the nth beacon covariance, Pvj are the

cross correlations between the vehicle and the jth beacon,

and Pnj are the cross correlations between the nth and jth

beacons.

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 2060

Authorized licensed use limited to: University College London. Downloaded on August 24, 2009 at 06:05 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1685579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

By assumption, the beacons are stationary and no process

noise acts upon them. Therefore, the motion model corre-

sponding to the vehicle pose xv at time k is

xv(k) = f [xv(k − 1),u(k), k,v(k)] , (3)

where u(k) are the control inputs and v(k) is the zero-mean

control noise with covariance Q(k). The estimated state x̂v

propagates according to

x̂v(k|k − 1) = f [x̂v(k − 1|k − 1),u(k), k,0] , (4)

and the covariances according to

P(k|k−1)=∇F(k) P(k−1|k−1)∇F(k)T +∇G(k) Q(k)∇G(k)T +Qs,

(5)

where ∇F(k) is the Jacobian of f, ∇G(k) is the con-

trol inputs Jacobian which takes the form ∇G(k) =
[

∇Gv 0 . . . 0
]

k
, the v subscript referring to the

vehicle, and Qs is optional stabilising noise.

An observation z(k) can arise from one of three sources

- either it is an observation of a beacon already in the map,

a new beacon not present, or clutter. When the status of the

observation is known implementing SLAM is, in principle,

very simple.

If the beacon is already present in the map, the state is

updated using the standard Kalman filter update equations.

The observation function that links the observation z(k) of

the jth beacon to the state x(k) is

zj(k) = hj [x(k),w(k)] . (6)

The observation noise w(k) is zero-mean noise with

covariance R(k). The observation Jacobian ∇H(k) for this

function is sparse.

The update is computed using the standard Kalman filter

update equations,

K(k) = P(k|k−1)∇HT (k)[∇HP(k|k−1)∇HT +R]−1

k
(7)

x̂(k|k) = x̂(k|k−1)+K(k)(z(k)−∇H(k)x̂(k|k−1)) (8)

J(k) = I−K(k)∇H(k)

P(k|k) = J(k)P(k|k−1) J(k)T +K(k) R(k) K(k)T , (9)

where K(k) is the Kalman gain.

New beacons are added to the map following the method

in [18]. Clutter observations arise from landmarks which are

not static, and should be ignored.

Given that there is no ambiguity the implementation of

SLAM is straightforward. However, as explained in the

introduction, ambiguities can arise for many reasons. One

important cause is data association - if the status of the

beacon (known, unknown, clutter) is unknown. In such

situations, the basic SLAM algorithm is not capable of

modelling the induced uncertainty.

III. AMBIGUOUS DATA ASSOCIATION AND MHSLAM

In the previous section we described Kalman Filter-based

SLAM algorithms when there is no ambiguity in data

association. However, ambiguities in data association can

arise whenever beacons are not uniquely identifiable. The

most well-known cause of this is loop-closing [19], but they

can occur whenever the environment has a large number of

repetitive beacons. Incorrect association can, at best, cause

the creation of additional spurious beacons and, at worst,

cause catastrophic filter failure [4]. Basic approaches such

as individual compatibility nearest neighbour (ICNN) are

computationally simple, but most prone to data association

failures [5]. Some methods for data association, such as

joint compatibility branch and bound (JCBB) [5], attempt to

make the most informed decision using all the observations,

however must do so at the time the observations are received.

Thus their decisions may still be incorrect.

The most general approach to the problem, adopted from

multiple target tracking, is to use multiple hypotheses [11],

[15]. Such a Multiple Hypothesis SLAM (MHSLAM) prop-

agates a set of m(k) hypotheses. The main advantage over

other methods is its generality, and the ability to defer asso-

ciation decisions, while making full use of the information

available. Dropping ambiguous observations as an alternative

is restrictive, and leads to increased ambiguity further on

[14].

In MHSLAM each hypothesis maintains its own mean and

covariance estimate and a weight, which is the probability

that the state is correct. Therefore, the MHSLAM state can

be written as

{

{x̂,P, w}1 {x̂,P, w}2
. . . {x̂,P, w}m

}

k|k
.

(10)
A normalised weighting w1...m(k) is maintained for each

filter, and represents the likelihood that that filter is the

correct hypothesis. In a SLAM context this has been referred

to as a “brute force” method [11], and the Gaussian Sum

filter (GSF) when using multiple Gaussians to approximate

another distribution [9], [20]. In all these cases, the filter

maintains a weighted bank of independent EKFs, each one

representing a hypothesis (combination of possible beacon

locations).

The steps for the algorithm are as follows:

1) Predict the state forwards in each hypothesis to the

current time. This is achieved by executing the mean

and covariance prediction equations (4) and (5).

2) Perform data association of the observation with each

hypothesis. The likelihood of a measurement being

consistent with a given hypothesis is computed. Several

approaches could be used, but we use gating [1], with

a threshold for association of 10−3.

3) Update and reweight. For a gated measurement, the

update equations (7) to (9) are applied and the weight

is updated (assuming a Gaussian likelihood)

wh(k|k)=wh(k−1|k−1) 1

(2π)n/2
√

|Sh|
e
− 1

2
(νT S−1 ν)h

,

(11)

where νh is the innovation, n is the dimension of the

innovation vector, and Sh is the innovation covariance

of the observed beacons in filter h.

4) Pruning. In this case filters with a normalised weight

falling below a threshold wt

m(k) (m(k) being the number

2061

Authorized licensed use limited to: University College London. Downloaded on August 24, 2009 at 06:05 from IEEE Xplore. Restrictions apply.

of hypotheses at time k) are trimmed and the remaining

set renormalised.

5) Spawn new hypotheses. A given observation is am-

biguous if there is more than one beacon that can corre-

spond to it. This is usually defined to be those beacons

whose likelihood is greater than a threshold dw. It is

also possible that the observation may correspond to a

new beacon that is not in the state, or be clutter. Of

the possible associations, only one is correct. Because

incorrectly associating an observation with a beacon in

the state can have negative consequences [3], [4], we

spawn off a number of parallel instances of the filter,

each of which make a separate hypothesis as to which

beacon, if any caused that observation. The assumption

is that in time the correct hypothesis will show itself to

be the most likely, allowing the rest of the (incorrect)

hypotheses to be pruned.

For subsequent measurements where there are multiple

hypotheses, data association must be performed on each filter

in turn. As the number of hypotheses spawned can grow

quickly, it is important that the filter is able to detect and

prune unlikely hypotheses as quickly as possible, to keep

the computational and storage cost feasible. Each filter that

survives at the end can be considered to correspond to a chain

of measurement association hypotheses which over time have

been shown to have a high likelihood of being correct.

If a hypothesis requires the addition of a new beacon, it

is added to the state using the same method as in regular

SLAM.

When there are multiple hypotheses 1 . . .m, the represen-

tative mean and covariance at time k is computed from [9],

x̄(k|k) =


m
P

h=1

whx̂h

ff

k|k
, (12)

P̄(k|k) =


m
P

h=1

wh
“

Ph+(x̂h−x̄)(x̂h−x̄)
T

”

ff

k|k
, (13)

where wh is the normalised weighting of the filter h and the

overbars show that this is the state representative of all the

hypotheses.

However, MHSLAM has two important disadvantages.

First, the number of hypotheses increase exponentially with

the number of ambiguous associations. Second, a complete

state must be maintained for each hypothesis. Clearly there

is a large computational storage and update complexity

associated with this. This can be avoided to a certain ex-

tent by considering hypotheses sequentially, as in lazy data

association [14]. Even if aggressive pruning techniques are

used, maintaining even a small number of hypotheses can

be prohibitively expensive. If we consider a state comprising

n beacons over m hypotheses, the storage requirements of

full MHSLAM are O(mn2), with an update complexity

of O(mn3). One way to make MHSLAM tractable is to

reduce the computational and storage costs associated with

each hypothesis. Several methods attempt to approximate

MHSLAM using a single state [21]. [22] loses information

by neglecting correlations between new features, while [23]

Fig. 1. Map showing a full MHSLAM run.

Fig. 2. Full MHSLAM (left) and CSF (right) covariance matrices shown as
a single large matrix for 3 hypotheses. The common state beacon covariances
are square hatches, the hypothesis state beacons are sparse black dots. The
cross terms between the vehicle and map and hypothesis covariances are
shown in lighter and darker shading respectively.

does not prevent hypothesis mixing, thus may become in-

consistent.

We have developed an algorithm, known as the Common

State Filter (CSF) to address these issues.

IV. THE COMMON STATE FILTER

The intuition for the CSF comes from Fig. 1. This figure

shows an example of a vehicle performing planar SLAM,

with the crosses representing beacons, and the covariance

ellipses representing 3σ beacon estimates. There are 6 hy-

potheses, and the ellipses for all the beacons on the map

across all the hypotheses have been superimposed (i.e. 6
ellipses are shown per beacon). Close examination shows

that the map may be segregated into beacons that are “near”

(i.e. being observed or which have been observed recently),

and “far”. “Near” beacon estimates vary substantially across

hypotheses, while “far” beacons have very similar estimates,

as the map shows. Full MHSLAM makes no distinction

between the two types of states and replicates the entire map

across all hypotheses. This is inefficient, as it can contain

hundreds of states in a large map. Based on the above

intuition, the CSF removes the need to copy distant beacons

across all hypotheses.

The benefit of this method is illustrated in Fig. 2 which

visually indicates the structure of the covariance matrices

required to maintain MHSLAM and CSF covariances. The

overall storage requirements of the CSF are less than in full

MHSLAM; this becomes more apparent as the number of

hypotheses or the size of the state grows.

This state partitioning concept is similar to postponement

[24], a method of amortising the computational costs as-

sociated with the Kalman filter, by deferring the updates

of “far” beacons in the state to a more convenient time.

Postponement, as applied to single hypothesis SLAM is

fully optimal and is intended to give the platform increased

2062

Authorized licensed use limited to: University College London. Downloaded on August 24, 2009 at 06:05 from IEEE Xplore. Restrictions apply.

flexibility in the times at which it updates beacons in the

state. The CSF by comparison is a suboptimal method that

is mainly intended to reduce the storage and computational

costs of MHSLAM at a given point in time.

In deriving the CSF let us consider the full MHSLAM

structure in (10) above. This will become the set of hy-

pothesis states
{

[

x̂
T
v x̂

T
b

]T
, P , w

}1...m

. We augment

this with a common state {x̂b, Pb}, which remains the same

across all hypotheses. The structure of all the hypotheses

becomes

x̂1...m(k|k) =

8

>

>

>

<

>

>

>

:

2

6

6

6

4

h

x̂b

i

2

4

x̂v

x̂b

3

5

1

3

7

7

7

5

,... ,

2

6

6

6

4

h

x̂b

i

2

4

x̂v

x̂b

3

5

m

3

7

7

7

5

9

>

>

>

=

>

>

>

;

k|k

.

(14)
The associated covariance structure of the common state

and each hypothesis state, along with the cross terms between

them is

P1...m(k|k) =
{[

[Pb] [pT

bv
pT

bb
]1

h

p
bv

p
bb

i1
»

P
v

P T

vb

P
vb

P
b

–1

]

, . . . ,

[

[Pb] [pT

bv
pT

bb
]m

h

p
bv

p
bb

im
»

P
v

P T

vb

P
vb

P
b

–m

]}

k|k

.

(15)

The covariance matrix of each hypothesis state is shown

in uppercase, and the cross terms with the common state

are shown in lowercase. Beacons that have not had a recent

observation will eventually be moved into the common

state, as described in Section IV-C. The joint common and

hypothesis state across all hypotheses is shown in (14), with

corresponding covariance structure (15).

A. CSF prediction

The CSF prediction step applies (4) and (5) to each

hypothesis in turn. In the covariance update step (5), the

structure of the control inputs Jacobian corresponding to

hypothesis h at time k, ∇Gh(k) is
[

0 ∇Gh
v 0

]T

k
.

∇Fh(k) has the form

∇Fh(k) = diag
(

[

1,∇Fh
v (k),1

]h
)

with respect to (14), where diag(·) is the diagonal matrix,

and ∇Fh
v (k) is the vehicle Jacobian for the hypothesis h.

B. CSF update

When there is a single hypothesis, the single map is

updated using (7) to (9). When there are multiple hypotheses,

we cannot use the standard Kalman update equations to

update x̂ and P as the cross correlations would update

the common state, corrupting it in the case of incorrect

hypotheses. We use the Schmidt-Kalman [25] [26] form of

the update equations to update x̂
h

(and its corresponding

P h and ph) without updating the common state x̂ or its

covariance P.

Common state beacons which have been associated with

an observation (in any hypothesis) are transferred into each

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

x 10
4 Storage and computation comparison

S
to

ra
g
e
 (

e
le

m
e
n
ts

)

Common State size (elements)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

6

C
o
m

p
u
ta

ti
o
n
 (

F
L
O

P
s
)

CSF storage

MHSLAM storage

CSF FLOPs

MHSLAM FLOPs

Fig. 3. Covariance storage and computational requirements for the CSF
and full MHSLAM as the state size increases. This assumes each hypothesis
state has 50 elements, and that there are 5 hypotheses.

hypothesis state and are updated using their respective hy-

pothesis vehicles. Moving beacons from the common state

into each hypothesis state is simple; for a beacon j, reorder

every state in (14) and the rows and columns of every

covariance matrix in (15), so that Pj and its cross terms

are placed at the end of the hypothesis state in P
b
.

As all beacons with observations will be found in the

hypothesis state, any non-zero terms in the observation

Jacobian will be confined to entries in the hypothesis states,

so we need only consider this part of the Jacobian, ∇Hh.

The gain Kh(k), which corresponds to the h hypothesis state

is computed from (7). The hypothesis state is updated by (8)

and the covariance by

J = Kh(k)∇Hh(k),
"

P (ph)T

ph P h

#

k|k

=

"

P JT (ph)
T

J ph J P h JT

#

k|k−1

+

»

0 0

0 Kh R (Kh)
T

–

k

.

(16)

Because the common state P is not updated, there is

a computational improvement over the standard Kalman

update.

Following the update stage, the hypotheses weights are

updated and trimmed based on (11), in the same way as in

full MHSLAM.

New beacons are appended to their respective hypothesis

states in the same way as in regular MHSLAM, following

the method in [18].

The CSF reduces the full MHSLAM storage and update

complexity to O(n(m+n)) for storage and O(n(m+n2)) for

the update. Fig. 3 compares the storage requirements of full

MHSLAM and the CSF for a typical scenario, showing how

even for a small number of hypotheses the storage savings of

the CSF over full MHSLAM become readily apparent. This

efficiency comes at a penalty; there is an information loss

associated with this simplification, however we have found

this to be small in practice.

C. Merging

Once all except one hypothesis have been trimmed, the

hypothesis state beacons are moved into the common state.

If we consider the remaining hypothesis state c, then just

prior to merging, the state and covariance appear as follows;

x̂(k|k) =
[

x̂
T
b

[

x̂
T
v x̂

T
b

]c
]T

k|k
,

2063

Authorized licensed use limited to: University College London. Downloaded on August 24, 2009 at 06:05 from IEEE Xplore. Restrictions apply.

Fig. 4. Overview of the map and vehicle trajectories. The maps and
trajectories created by full MHSLAM and the CSF have been overlaid,
showing how they are almost identical. Note the vehicle trajectory being
corrected at the end of each blackout. Close-ups show the selected regions
in detail. Bottom: different beacon positions due to different data association
decisions being made at this location. Top: the vast majority of the map
shows almost identical agreement between the filters.

P(k|k) =

[

[Pb] [pT

bv
pT

bb
]c

h

p
bv

p
bb

ic
»

P
v

P T

vb

P
vb

P
b

–c

]

k|k

.

Moving the vehicle to the top, the merged state is

x̂
′

(k|k) =
[

x̂
T
v x̂

T
b x̂

T
b

]T

k|k
,

and the covariance

P
′

(k|k) =

[

P
v

pT

bv
P T

vb

p
bv

Pb pT

bb

P
vb

p
bb

P
b

]

k|k

.

V. VICTORIA PARK EXPERIMENT

We compared the performance of the Common State and

full MHSLAM filters on part of the popular Victoria Park

data set [27], shown in Fig. 4. As we did not make any

provisions for large maps (e.g. submapping), we ran each test

for a total of 10 500 time steps (230s), this being sufficient

to demonstrate the method. Because there are very few

native data association problems in the data set [28], we

created them by allowing the vehicle to run for 5000 time

steps to build up the map, then discarding the sensor data

for selected time periods, thus allowing motion error and

data association ambiguity to build up. We compared the

results with those obtained from full MHSLAM using all the

available observations. The GPS data was always discarded,

as its accuracy is questionable in this region of the map.

The blackouts occured at 5100, 6000, 7800 and 8900 time

steps (with durations 700, 1500, 600 and 600 time steps

respectively). These spacings were chosen as they caused

the nearest neighbour approach to fail at the end of each

blackout.

The vehicle was a pickup truck, described in [27], with

motion and sensor specifications from personal correspon-

dence with J. Guivant. The motion standard deviations

0 2000 4000 6000 8000 10000
0

0.05

0.1

Time steps

x
,y

 r
M

S
E

 (
m

)

Absolute difference between the CSF and MHSLAM vehicles

0 2000 4000 6000 8000 10000
0

0.1

0.2

Time steps

θ
 r

M
S

E
 (

d
e

g
)

θ

x

y

Fig. 5. Comparison of the absolute differences between the vehicle poses
of full MHSLAM and the CSF. (Top) the x and y positions and (bottom) the
orientation. During the blackouts the vehicle orientation difference remained
constant, as the orientations were solely determined by the control inputs
during this time.

(covariance Q(k)) were 0.1m for the velocity and 3o

for the orientation, with additonal stabilising noise Qs =
diag(

[

0.4 0.4 0.003
]

).10−3 according to (5), where

diag(·) is the diagonal matrix. The observation range and an-

gular standard deviations were 0.15m and 1.5o respectively.

For comparing the agreement between the filters in Fig. 5,

we compared the absolute difference between the represen-

tative CSF and full MHSLAM vehicles,| x̄v(k)−x̄v(k) | over

time, x̄v(k) and x̄v(k) being the weighted average poses

from (12).

Fig. 5 shows that the CSF and full MHSLAM vehicle

positions remain within 12cm of each other; often far less. In

the final maps produced the beacon positions were all within

50cm (mean 10cm), and the covariances were very similar, as

shown in Fig. 4. The main difference between the maps was

the presence of a few (less than 5 in 216) spurious beacons

in each filter that were not present in the other. These appear

to be caused by an observation being incorrectly classified as

a new beacon, though the effect on map quality is minimal;

the maps shown in Fig. 4 are typical. These results show that

the CSF and full MHSLAM give similar accuracy. It should

be noted that in the absence of data from an ideal filter, we

cannot infer the accuracy of full MHSLAM over the CSF

due to the propagation of linearisation errors.

Fig. 6 shows that where there is more than one hypothesis,

the storage requirements of the CSF are consistently lower

than those of full MHSLAM. This is most clearly shown at

the end of the blackouts (at 5800, 7500, 8400 and 9500 time

steps).

Fig. 7 shows the theoretical update cost of full MHSLAM

(9) and the CSF (16). In the initial stages there was mainly a

single hypothesis, so both filters were performing a regular

Kalman update. Following each of the 4 blackouts, when

there were multiple hypotheses (as shown in Fig. 6), the

computational cost of full MHSLAM far outweighed that of

the CSF, whose net update cost actually decreased due to the

partitioned update. The sum total FLOPs at the end of the run

was 4.42 GFLOPs for full MHSLAM, and 1.55 GFLOPs for

the CSF; almost a three-fold decrease. For comparison, an

EKF using ICNN (with no blackouts) requires 2.21 GFLOPs

(summed over the non-blackout parts of the run). These

figures correspond well to the Matlab Profiler times, which

for the total updates summed over each run were 140s for

full MHSLAM and 40s for the CSF, on a 3 GHz dual-core

2064

Authorized licensed use limited to: University College London. Downloaded on August 24, 2009 at 06:05 from IEEE Xplore. Restrictions apply.

Fig. 6. (Top) Log plot of the number of elements required to store the
covariance matrices for all active hypotheses (not exploiting symmetry) for
full MHSLAM and the CSF. (Bottom) The number of hypotheses present.
The spikes correspond to times at which there were ambiguous beacon
observations requiring the creation of multiple hypotheses.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
10

4

10
6

10
8

Time Step

F
L

O
P

s

Update cost

Full MHSLAM

CSF

Fig. 7. Computational cost for full MHSLAM (9) and CSF (16) updates
over the run (FLOPs). The empty spaces correspond to the sensor blackouts,
when no updates were made. The summed FLOPs over the run were 4.42
and 1.55 GFLOPs for full MHSLAM and the CSF respectively.

machine using unoptimised code.

VI. CONCLUSION

We have presented the Common State filter, a compu-

tationally efficient method of performing MHT using the

EKF. The performance is comparable to full MHSLAM,

at a significant saving in computational storage and update

complexity. The test using real data has shown that the

information loss has a very small impact on the quality of the

map produced. Considering the storage savings available, the

CSF is a viable alternative to full MHSLAM in applications

which maintain large states.

In further work we will consider the role of a common

state vehicle, and the use of an information measure to move

key beacons between the common and hypothesis states. We

will investigate the performance using simulations in additon

to real data. The aim is to both increase the robustness of

the filter, whilst ensuring that the storage and computational

improvements do not compromise the quality of the results

produced.

REFERENCES

[1] S. B. Williams, H. Durrant-Whyte, and G. Dissanayake, “Constrained
Initialization of the Simultaneous Localization and Mapping Algo-
rithm,” The International J. Robotics Research, vol. 22, no. 7-8, pp.
541–564, 2003.

[2] A. Davison, “Real-time simultaneous localisation and mapping with a
single camera,” in Computer Vision, 2003. Proc. Ninth IEEE Interna-

tional Conference on, 2003, pp. 1403–1410 vol.2.
[3] U. Frese, “A discussion of simultaneous localization and mapping,”

Auton. Robots, vol. 20, no. 1, pp. 25–42, 2006.

[4] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and
mapping (slam) part 2: State of the art,” Robotics and Automation

Magazine, 2006.
[5] J. Neira and J. Tardos, “Data association in stochastic mapping using

the joint compatibility test,” Robotics and Automation, IEEE Trans.,
vol. 17, no. 6, pp. 890–897, 2001.

[6] S. Julier and J. Uhlmann, “Fusion of time delayed measurements with
uncertain time delays,” in American Control Conference, 2005. Proc.

the 2005, J. Uhlmann, Ed., 2005, pp. 4028–4033 vol. 6.
[7] S. Ching and E. Davison, “Control of plants which change using

switching controllers,” in American Control Conference, 2005. Proc.

the 2005, E. Davison, Ed., 2005, pp. 1181–1185 vol. 2.
[8] T. Lemaire, S. Lacroix, and J. Sola, “A practical 3d bearing-only slam

algorithm,” in Intelligent Robots and Systems, 2005. (IROS 2005).

2005 IEEE/RSJ International Conference on, 2005, pp. 2449–2454.
[9] N. Kwok, G. Dissanayake, and Q. Ha, “Bearing-only slam using a sprt

based gaussian sum filter,” in Robotics and Automation, 2005. Proc.

the IEEE International Conference on, 2005, pp. 1109–1114.
[10] N. Peach, “Bearings-only tracking using a set of range-parameterised

extended kalman filters,” IEE Proc. - Control Theory and Applications,
vol. 142, no. 1, pp. 73–80, 1995.

[11] C. Smith, “Integrating mapping and navigation,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1998.

[12] S. Julier, J. Uhlmann, and D. Nicholson, “A method for dealing with
assignment ambiguity,” in American Control Conference, 2004. Proc.

the 2004, vol. 5, June-2 July 2004, pp. 4102–4107 vol.5.
[13] J. Williams and P. Maybeck, “Cost-function-based gaussian mixture

reduction for target tracking,” in Information Fusion, 2003. Proc. the

Sixth International Conference of, vol. 2, 2003, pp. 1047–1054.
[14] D. Hähnel, W. Burgard, B. Wegbreit, and S. Thrun, “Towards lazy data

association in SLAM,” in Proc. the 11th International Symposium of

Robotics Research (ISRR’03). Sienna, Italy: Springer, 2003.
[15] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam:

A factored solution to the simultaneous localization and mapping
problem,” 2002.

[16] T. Bailey, J. Nieto, and E. Nebot, “Consistency of the fastslam
algorithm,” in Robotics and Automation, 2006. ICRA 2006. Proc. 2006

IEEE International Conference on, 2006, pp. 424–429.
[17] X.-R. Li and Y. Bar-Shalom, “Multiple-model estimation with variable

structure,” Automatic Control, IEEE Trans., vol. 41, no. 4, pp. 478–
493, Apr 1996.

[18] S. Julier and J. Uhlmann, “A counter example to the theory of simul-
taneous localization and map building,” in Robotics and Automation,

2001. Proc. 2001 ICRA. IEEE International Conference on, vol. 4,
2001, pp. 4238–4243 vol.4.

[19] M. Bosse, P. Newman, J. Leonard, and S. Teller, “An atlas framework
for scalable mapping,” 2002.

[20] D. Alspach and H. Sorenson, “Nonlinear bayesian estimation us-
ing gaussian sum approximations,” Automatic Control, IEEE Trans.,
vol. 17, no. 4, pp. 439–448, 1972.

[21] M. Bryson and S. Sukkarieh, “Building a robust implementation of
bearing-only inertial slam for a uav,” J. Field Robotics, vol. 24, no.
1-2, pp. 113–143, 2007.

[22] N. Kwok and G. Dissanayake, “An efficient multiple hypothesis filter
for bearing-only slam,” in Intelligent Robots and Systems, 2004. (IROS

2004). Proc. 2004 IEEE/RSJ International Conference on, vol. 1, 2004,
pp. 736–741 vol.1.

[23] J. Sola, A. Monin, M. Devy, and T. Lemaire, “Undelayed initialization
in bearing only slam,” Intelligent Robots and Systems, 2005. (IROS

2005). 2005 IEEE/RSJ International Conference on, pp. 2499–2504,
Aug. 2005.

[24] J. Knight, A. Davison, and I. Reid, “Towards constant time slam using
postponement,” 2001.

[25] S. F. Schmidt, “Application of state space methods to navigation
problems,” Advanced Control Systems, vol. 3, pp. 293–340, 1966.

[26] P. Y. C. Hwang and R. G. Brown, Introduction to Random Signals

and Applied Kalman Filtering. J. Wiley, 1992.
[27] J. Guivant and E. Nebot, “Optimization of the simultaneous local-

ization and map-building algorithm for real-time implementation,”
Robotics and Automation, IEEE Trans., vol. 17, no. 3, pp. 242–257,
2001.

[28] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and
E. Nebot, “Fastslam: An efficient solution to the simultaneous local-
ization and mapping problem with unknown data association,” 2004.

2065

Authorized licensed use limited to: University College London. Downloaded on August 24, 2009 at 06:05 from IEEE Xplore. Restrictions apply.

