365 research outputs found

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page

    Chameleon: A Software Infrastructure and Testbed for Reliable High-Speed Networked Computing

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNASA / NAG 1-61

    A Smart Voting Subsystem for Distributed Fault Tolerance

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Fault-Injection-Based Assessment of Fail-Silence Provided by Process Duplication versus Internal Error Detection in Scientific-Based Applications

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    An Analysis of Failure Handling in Chameleon, A Framework for Supporting Cost-Effective Fault Tolerant Services

    Get PDF
    The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce, and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the University of Illinois, is a software framework. for supporting cost-effective adaptable networked fault tolerant service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition, information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly small amount of overhead. No single point of failure from which Chameleon could not recover was found. Chameleon was also found to be capable of recovering from several multiple failure scenarios

    Enhancing Planning-Based Adaptation Middleware with Support for Dependability: a Case Study

    Get PDF
    Recent evolutions of mobile devices have opened up for new opportunities for building advanced mobile applications. In particular, these applications are capable of discovering and exploiting software and hardware resources that are made available in their environment. A possible approach for supporting these ubiquitous interactions consists in adapting the mobile application to reflect the functionalities that are provided by the environment. However, these approaches often fail in offering a sufficient degree of resilience to potential device, network, and software failures, which are particularly frequent in ubiquitous environments. Therefore, the contribution of this paper is to integrate the dependability concern in the process of mobile applications adaptation. In particular, we propose to reflect dependability mechanisms as alternative configurations for a given application. This reflection allows the planning-based adaptation middleware to automatically decide, based on contextual information, to enable the support for dependability or not

    Run Time Models in Adaptive Service Infrastructure

    Full text link
    Software in the near ubiquitous future will need to cope with vari- ability, as software systems get deployed on an increasingly large diversity of computing platforms and operates in different execution environments. Heterogeneity of the underlying communication and computing infrastruc- ture, mobility inducing changes to the execution environments and therefore changes to the availability of resources and continuously evolving requirements require software systems to be adaptable according to the context changes. Software systems should also be reliable and meet the user's requirements and needs. Moreover, due to its pervasiveness, software systems must be de- pendable. Supporting the validation of these self-adaptive systems to ensure dependability requires a complete rethinking of the software life cycle. The traditional division among static analysis and dynamic analysis is blurred by the need to validate dynamic systems adaptation. Models play a key role in the validation of dependable systems, dynamic adaptation calls for the use of such models at run time. In this paper we describe the approach we have un- dertaken in recent projects to address the challenge of assessing dependability for adaptive software systems
    corecore