
AN ANALYSIS OF FAILURE HANDLING IN CHAMELEON,
A FRAMEWORK FOR SUPPORTING COST-EFFECTIVE FAULT TOLERANT SERVICES

-_-__-

V

BY

ERIK EDWARD HAAKENSON

B.S., Rensselaer Polytechnic Institute, 1995

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois

https://ntrs.nasa.gov/search.jsp?R=19980021257 2020-06-16T00:43:49+00:00Z

I

m

--- Z

'qr "

(D Copyright by Erik Edward Hmukenson, 1998
w

I

r

I

I

I --

ACKNOWLEDGMENTS

I would like to thank Zbigniew Kalbarczyk and Saurabh Bagchi, for help with providing

ideas for the simulation and information about Chameleon. I would also like to thank Keith

Whisnant for playing a major part in the development of the simulation. Finally, I would

like to thank Professor Ravi Iyer, my research advisor, who was very helpful and provided

encouragement, guidance, and advice when I needed them.

\
,..

Ul

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION 1

2 RELATED WORK 3

3 CHAMELEON FRAMEWORK 6

3.1 Overview .. 6

3.2 Components of Chameleon 8

3.2.1 Fault Tolerance Manager 8

3.2.2 Reliable, Mobile Agents 11

3.2.3 Surrogate Managers 12
3.2.4 Host Daemons 12

3.2.5 Agent Libraries 13

3.3 Fault Tolerance Strategies 14

3.4 An Example Application 15

3.5 Summary .. 18

4 SIMULATION OF CHAMELEON 20

4.1 Overview : 20

4.2 DEPEND 20

4.3 Simulated System Description 21
4.4 Data Structures 22

4.4.1 Agent Classes 23

4.4.2 Manager Classes 23

4.4.3 Surrogate Manager Classes 24
4.5 Simulation Behavior 24

5 FAULT HANDLING IN THE SIMULATION 25

5.1 Overview .. 25

5.2 Fault Injection Strategy 25

5.3 Fault Detection Strategies 27

5.3.1 Agent 27

5.3.2 Surrogate Manager 28

5.3.3 User Application 28
5.3.4 Host 28

5.3.5 FTM 28

5.4 Fault Recovery Strategies 29

5.4.1 Execution Agent 29

5.4.2 Heartbeat Agent 30

5.4.3 Voter Agent 30

5.4.4 Surrogate Manager 31

iv

'--4
W

m

w

f _

5.5

5.6

5.4.5 User Application 31
5.4.6 Host 32

An Example Failure Scenario 32

Summary .. 34

6 EXPERIMENTAL RESULTS 36

6.1 Overview .. 36

6.2 Simulation Parameters 36

6.3 Scenarios Evaluated and Measurements Taken 36

6.4 Analysis of Results 38

7 CONCLUSIONS AND FUTURE WORK 45

REFERENCES .. 47

LIST OF TABLES

Table

3.1

5.1

6.1

6.2

6.3

6.4

6.5

Page

Chameleon system components, their tasks, and recovery mechanisms 9

Simulated fault injections, detections, and recoveries 26

Parameters used in the simulation 37

Overhead incurred by Chameleon under various loads and fault tolerance strategies. 39

Performance degradation caused by single failures in duplicated execution mode... 39

Performance degradation caused by single failures in TMR mode 41

Performance degradation caused by single failures in quad mode 42

: I

vi

_=

I

I[

v--

w

m

Figure

3.1

LIST OF FIGURES

Page

Chameleon: A reliable, networked computing environment (this figure is taken from
Iyer, et. al. [9]) .. 6

3.2 User communication and query agent 16

3.3 Agent and surrogate manager installation. 17

3.4 Application installation and execution 18

3.5 Completion of application 19

4.1 Class hierarchy of simulated Chameleon components 22

5.1 Host failure detected by heartbeat agent 33

5.2 Voter agent regeneration 34

5.3 Execution agents notified of new voter agent 35

6.1 Simultaneous failures in an execution agent and its surrogate manager 44

W-----

m

A vii

I

_w

11'

_mL

m

w

°

CHAPTER 1

INTRODUCTION

z_

t_

w

The desire for low-cost reliable computing is increasing. Most current fault tolerant com-

puting solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly

emerging applications in business, commerce, and manufacturing. It is important that users

have a flexible, reliable platform to support both critical and noncritical applications.

Chameleon [9], currently under development at the Center for Reliable and High-Perform-

ance Computing at the University of Illinois, is a software framework for supporting cost-

effective, adaptable, networked fault tolerant service. Because of a desire for efficiency and

adaptability, the Chameleon architecture is intended to support heterogeneity and scalability.

Scalability here implies physical scalability, resource scalability, and fault tolerance scalability.

During the design of such complex systems as Chameleon, there is a need to validate the

capabilities and measure the performance of the system. This can be done through analytical

methods, experimentation, or simulation. Once a functional architecture is defined, simulation

is often the most viable of these options. No working version of the system is necessary, and it
I

allows for a more complex model of the system than mathematical analysis.

In the case of Chameleon, we are interested in analyzing the effectiveness of different types

of fault detection and recovery strategies. We are also interested in measuring the overhead

incurred by the fault detection and recovery mechanisms. These measurements will allow deci-

sionsto be madeabout whichrecoverystrategiesshouldbeusedin the.actualimplementation

of Chameleon.

Thegoalof this thesisis to givea detaileddescriptionoftheeffortsto simulatefault injection,

detection,and recoveryin Chameleon,and of the resultsobtainedfrom this simulation.This

thesisis divided into sevenchapters.The secondchapterdiscussesrelatedwork in the areaof

distributedand rehablecomputing.The third chaptergivesa generaloverviewof Chameleon

and its components.The fourth chapterdescribesthe simulation.Chapter5 givesa detailed

descriptionof the fault injection,detection,and recoverystrategiesthat havebeensimulated.

Theexperimentalresultsobtainedfrom the simulationaredescribedthesixth chapter,andthe

conclusionis givenin thefinal chapter.

g

J

I

_m

Z
'qr

w

m

m

_M

W

_L

: L

CHAPTER 2

= . RELATED WORK

7--

'm'

m

I--

E

w--
W

Current approm:hes to designing reliable networked computing environments from unreli-

able components are based primarily on taking advantage of distributed groups of cooperating

processes. Most of these designs require a specialized, complex software layer that must be

installed on each participating computation node. Several of these systems are focused on pro-

viding a software environment designed to handle distributed applications. Several of these

approaches are discussed in this chapterJ

Isis [2] provides tools for managing and programming with process groups. Using these

tools allows a programmer to construct group-based software that provides reliability through

explicit replication of code and data.

Transis [6] is a multicast communication layer that enables the creation and execution of

fault tolerant distributed applications in a networked environment. It supports reliable group

communication for high-availability applications. Transis allows partitionable operation with

the ability to reliably merge components when recovering.

Horus [18] also uses the group communication paradigm. It provides a framework for de-

signing distributed applications at a minimal cost. The Horus tool can be used to aid in the

construction of reliable services. It is a newer generation of the Isis toolkit.

m

J

1Cristian [4] provides more detail about the concepts behind distributed fault tolerant systems. Birman [1]

discusses group communications and numerous existing fault tolerant distributed systems in more detail.

3

The systems outlined above are primarily concerned with the group processing paradigm

rather than being particularly geared toward fault tolerance. A few systems described below

did place a primary emphasis on fault tolerant and/or highly available computing.

Delta-4 [13] was one of the earlier efforts to build a dependable distributed system. It used

an open arcKitecture in which a trusted module was loaded on each participating host to execute

a multipoint communication protocol. The protocol was used to coordinate process groups,

process errors, and perform fault treatment. Delta-4 also required a specialized hardware

network adaptor card to guarantee proper fail-silent behavior.

Some aspects of service availability are addressed in the Piranha [10] tool. Piranha acts

as a fault tolerant process manager, exploiting the dynamic replication of objects to achieve

high availability. It is designed to be a CORBA-based application-restart service and monitor.

Piranha addresses needs for heterogeneity, interoperability, extensibility, and availability by

making use of CORBA's Interface Description Language.

The Wolfpack [11] system from Microsoft® provides clustering extensions to Windows

NT® for improving service availability and system scalability. Issues intended to be addressed

in future versions of Wolfpack include distributed applications4 higher performance intercon-

nects, distributed storage, and load balancing.

At Sun Microsystems, work has been done on Ultra Enterprise Clusters [16], designed to

provide highly available data services. The Ultra Enterprise Cluster High Availability 1.3

server provides automatic, software-based fault detection and recovery mechanisms. Specialized

software allows a set of two computing nodes to monitor each other and redirect data requests

in the case of a software or hardware failure.

i

m

z

m

m

qP

W

mm

B

u

w

,up

,.

m

V

r_

v

ServerNet [8] from Tandem Computers is a system area network designed to support reliable,

efficient communications. It provides a combination hardware/software layer on which fault

tolerant systems can be built. ServerNet is flexible in that the routers in the system can be

configured in several different topologies. Error detection and recovery are also provided in

the form of checksums on messages andan access validation and translation table for memory

requests.

The systems described here that explicitly address fault detection and recovery each require

a specialized and complex software layer and, in some cases, additional hardware. Also, many of

the systems described above provide an environment for constructing distributed applications.

Chameleon, on the other hand, explicitly provides fault tolerance through a wide range of error

detection and recovery mechanisms. Not all of these systems have such explicit mechanisms,

and many rely only on timeouts.

v

r

F.

CHAPTER 3

CHAMELEON FRAMEWORK

3.1 Overview

Chameleon (Figure 3.1) is a network-based infrastructure with the capability of adapting to

application-specific availability requirements. Primary issues addressed in designing Chameleon

include efficient and rapid error detection and recovery techniques which provide a basis for

implementing fault tolerance strategies required by each user application.

FAULT TOLERANCE
MANAGER

-mapping thenetwork

-invokingthedaemons

-determingfaulttolerance

strategy

-generatingagents and

Figure 3.1 Chameleon: A reliable, networked computing environment (this figure is taken

from Iyer, et. al. [9]). ._

6

v

To achieve these goals, Chameleon uses several specialized software components. These com-

ponents include: (1) Fault Tolerance Manager (FTM), a specialized independent and intelligent

entity capable of establishing an appropriate fault tolerance strategy complying to the required

level of dependability for a given user request, (2) Reliable, Mobile, and Intelligent Agents

capable of migrating through the networked environment and operating independently on be-

half of the FTM according to built-in specifications and instructions, (3) Surrogate Managers

operating as pseudomanagers for particular applications, capable supporting proper commu-

nications with the agents, which guard against faulty behavior of the application's execution

on remote hosts, (4) Host Daemons residing on each node (throughout this thesis, the words

node and host will be used interchangeably to refer to a machine participating in the reliable

networked environment) and responsible for handshaldng with the agents and managers and

monitoring their behavior, and (5) Software Libraries providing basic building blocks to create

or re-engineer agents. The goal of the system is to prevent any single point of failure from

compromising the entire system.

The Chameleon implementation does not use a specialized language framework, rather it

is based on Widely available scripting languages, such as TCL, and high-level programming

languages, such as C÷÷. The goal is to provide a relatively thin software layer, which must

be present in each machine in the structure. It should be noted that nothing prevents using

a framework, such as C ORBA (Common Object Request Broker Architecture) [12], for imple-

menting some of the features of Chameleon. It is believed, however, that an implementation

with CORBA, while providing for easie r interoperability between processes executing on differ-

ent machines in a heterogeneous environment, will increase Chameleon's complexity, at least

in terms of the software that must be pre-installed on each node in the system. Chameleon

attempts to maintain simplicity by allowingthe userto developthe applicationin a regular

fashionand to executeit with the user'sdesiredlevelof dependability.

As describedin Chapter2, mostof thecurrentapproachesusedin distributedcomputations

requirea specialized,complexsoftwarelayerthat mustbe installedin eachcomputationnode,

e.g.,sophisticatedand complexunderlyingprotocolsfor supportinga groupmembershipand

• atomicbroadcast. Becausea primary objectiveof developingthesesystemsis to providea

softwareenvironmentfor executingdistributedapplications,the serviceavailability issue is

not often considered to be critical. Consequently, there is no dedicated mechanism for error

detection, and the fault tolerance is somewhat a side effect of the use of the group communication

approach. The system usually relies on error detection that is based on capturing the timeout

in a response from one of processes in the group.

3.2 Components of Chameleon

The five main components of Chameleon, as stated above, are described in more detail

in this section. Each component's responsibilities, modes of operation, and communication

patterns are discussed. Table 3.1 gives a brief summary of the main components.

3.2.1 Fault Tolerance Manager

The Fault Tolerance Manager (FTM) is the component of Chameleon that is responsible

for interfacing between the user and the system internals. The FTM has four main functions:

(1) mapping the network, i.e., identifying the network configuration and collecting information

about the nodes in the system. The FTM maintains an internal data structure that contains
. I

this data and is updated when nodes are'added to or removed from the system, (2) invoking a

V

E

__m

V

Agent Library

Component Task Recovery

Fault Tolerance Manager Oversees execution environment Sar.kup FTM

(FTM) takes over

Agent Implements specific techniques Host daemon

providing application-required notifies surrogate
dependability manager

Surrogate Manager Oversees execution of a particular Host daemon

application notifies FTM

Host Daemon Provides Communication gateway to Heartbeat agent

agents and makes resources at a host notifies FTM

available to the Chameleon environment

N/XProvides predefined agents and

agent building blo_s

Table 3.1 Chameleon system components, their tasks, and recovery mechanisms:

daemon process on each node in the network to support communication with the FTM, (3) col-

lecting information about applications from users, and (4) determining fault tolerance strategies

to allow the application to execute at the required level of dependability. The FTM's decision

may be based on a history of failures in the system as well as on application requirements.

Detection and recovery techniques are taken from the agent libraries to construct the agents

necessary to implement the chosen fault tolerance strategy.

In the initialization phase, the FTM collects information about 'the system configuration

and characteristics of individual nodes, such as type of architecture(operating system, size of

the RAM, etc. Initialization agents are sent to the hosts to obtain this data and to install the

host daemons on participating machines. After successful initialization, Chameleon is ready to

accept user requests. ..

When a user request arrives, the FTM designates a query agent to acquire the necessary

information on the application specifics, such as the required availability level, needed system

resources, type of results, etc. Based on information collected about the application, the FTM

can identify the necessaryfault tolerancestrategyand candesignatea set of agents to initiate

and monitor the application. Creation of agents is performed according to a predefined pro-

cedure that uses two software libraries: (1) a library of building blocks and (2) a library of

agents. The FTM may create new agents from the basic building blocks or may re-engineer

already existing agents to extend their functions. Agents designated to support the applica-

tion's execution migrate through the network to the selected nodes and initiate the application's

execution. One of the designated agents is resident in FTM and is responsible for supporting

proper communications with the agents that monitor the application on the remote hosts. To

ensure a rapid reaction to the application's failures, the application is watched by the agent

that evoked it. The agent communicates to the FTM any detectable application misbehavior.

As the agent itself may fail, it is watched by the host daemon, which is capable of notifying

the FTM about agent failures. The FTM can regenerate a new agent either to complete or to

restart the application (if the application failed). It should be emphasized that agents, once

generated, can act autonomously, and the FTM is free to serve other user requests. In order

to detect node failures, the FTM uses heartbeat messages, which are sent with a predefined

frequency. In the case of node failure, the application(s) executed on the node are migrated to

other available nodes. To operate reliably, the FTM must be resilient to errors. Consequently

it must provide a sufficient level of redundancy to cope with errors. To handle FTM failures, a

backup FTM is used. The role of the backup FTM is to periodically send a heartbeat to the

FTM to determine whether it is alive. In the case of an FTM failure, the backup FTM has the

capability to act as the FTM until the primary FTM can be recovered.

10

3.2.2 Reliable, Mobile Agents

The agents in Chameleon are designed as fault resilient carriers of information to and i_om

the FTM and other managing entities. They are designated by their manager to perform

the actions and operations needed, for successful completion of an application, while adhering

to the user's needs for dependability. Each agent is designed to be sufficiently intelligent to

execute specified functions in an autonomous fashion. This autonomous nature of the agents

aids in offioading much of the processing from the FTM. This decreasing of the burden on the

FTM enables the FTM to concentrate on its primary tasks as described above. The primary

characteristics of agents axe (1) mobility, (2) reliability, and (3) scalability.

Mobility: Agents migrate through Chameleon's network in order to accomplish their tasks

as defined by their manager. Well-known communication protocols such as TCP/IP can be

used to support this mobility.

Reliability: It is imperative that agents are resilient to network and node failures. To

achieve this, the agent code in the existing agent libraries is tested rigorously against erroneous

execution. It is also important to ensure that a failure in the agent does not cause a crash of

the application it was in charge of executing and that the agent's crash does not propagate out

of the node on which the agent currently resides. To prevent such behavior, agents are watched

by host daemons. The host daemon is notified which agents it will have to monitor for possible

crashes when each agent is installed on its host. If an agent fails, the daemon notifies the

agent's manager. To protect the agent from corruption in the network it and its transmissions

are guarded with a checksum.

Scalability: It is simple to create or re-engineer agents using elementary building blocks

or already existing agents. Chameleon provides a unified, general framework for creating

11

newagents or extending functions of already= existing agents, e.g., the user might provide an

application-specific detection mechanism to be incorporated into an agent. Two basic software

libraries support this approach: (1) a library of building primitives and (2) a library of agents.

These libraries are discussed in more detail below.

3.2.3 Surrogate Managers

A surrogate manager is spawned by the FTM after the required fault tolerance configuration

has been determined. It is created using a procedure similar to the one employed for creating

agents. Each surrogate manager is associated with an application (or possibly several applica-

tions may share the same surrogate manager). The surrogate manager can be seen either as a

"super agent" or pseudomanager. It is capable of acting as a regular agent, e.g., it can travel

through the network to the designated nodes, and it is recognized and monitored by the host
L

daemon. At the same time, it is capable of operating as a manager, i.e., it supervises agents

designated to control the application, and it can regenerate agents that failed during operation.

To facilitate autonomous and independent operation of the surrogate manager, a portion of the

system information maintained by the FTM is also kept with the surrogate manager. By this

means, the application can survive even in the case of FTM failure. The system information

that must be available to the surrogate manager includes full specification of the application

and access to the software libraries used to create and re-engineer the agents.

3.2.4 Host Daemons

The host daemons are entities at each of the hosts which are responsible for handling

communication between agents, surrogate managers, and the FTM. The daemon processes

-- - . L

are responsible for accepting and installing any agents sent to their host; they interact with

12

the agents to accomplish their task. The daemon processes have the intelligence to recognize

the type of agent' being sent over, and they have a well-defined handshaking protocol for

communicating with each of the agents. The daemon process is also responsible for monitoring

the behavior o£ agents and surrogate managers. When the host daemon detects a malfunctioning

agent, it notifies the agent's manager. In the case of an error encountered in a surrogate

manager, the FTM is notified directly of the failure. The manager of the malfunctioning

component then sends over a clone of the agent or surrogate manager to the host on which the

erroneous behavior occurred (alternately, a new host could be chosen for the regenerated agent

or manager). The new agent/manager becomes a part of the process to complete the execution

of the application in the mode defined by the FTM.
• i

3.2.5 Agent Libraries

The agent libraries are used to construct different types of agents for executing user requests

in the required mode of dependability. There are two distinct libraries for agents: the library

of building blocks and the hbrary of agents. The agent building-block library contains basic

building blocks used to implement the different types of agents required by Chameleon. The

library of agents contains already constructed agents ready for use by the FTR/I.

The library of building blocks contains micro- and macro-operations for supporting ap-

plication execution in the distributed environment. Agents can be created, modified, and re-

engineered using these operations. These operations may include capabilities such as installing

a user application, comparing two or more results files, or notifying another component of a

specific event (e.g., an application failure).

13

The library of agents contains hierarchically arranged, already available agents, which have

the flexibility of extension: (1) basic agents, (2) agents extended from the basic agents using

primitive building blocks, (3) complex agents derived from the combination of existing agents,

and (4) user--defined agents from existing or user-defined building blocks.

i_ 3.3 Fault Tolerance Strategies

Once the FTM has decided to run an apphcation using a particular fault tolerance strategy,

the Set of agents and an associated surrogate manager are invoked to set up the environment to

support the selected strategy (e.g., triple modular redundant mode). The surrogate manager

takes over management of the application from this point, and the agents begin their duty

of installing, executing, and monitoring the application. When the application completes, the

agents are responsible for notifying the surrogate manager of the final results.

There are five predefined modes of application execution: single machine With no recovery,

single machine with recovery, duphcated execution, triple modular redundant execution, and

quad execution. Each of these is outlined below.

In single machine with no recovery mode, the user application is run on a single node with

no special recovery steps taken in the event of failure. This mode is the least reliable of the

predefined modes Of execution.

Single machine with recovery mode also executes the application on a single system node,

but it provides recovery in the event of application failure. This recovery includes restarting

the application (possibly from a checkpoint) in the event of abnormal application termination.

The monitoring and restarting is performed by a specialized execution agent.

• In duplicated execution mode, the user application is executed concurrently on two separate

machines. When results are obtained from each application, they are compared by a specialized

voter agent. If the voter agent finds a discrepancy between the two results, it notifies the

surrogate manager that the application failed; otherwise, the application is considered to have

completed successfully.

In triple modular redundant mode, the application is executed on three separate machines,

with the results compared by a voter agent when all execution has completed.

Quad execution mode provides the highest level of dependability of the predefined execution

modes. The application is run on four nodes as two sets of duplicated applications. Each set

has a voter agent, which compares the results of the two applications. If no discrepancies are

found, another voter agent compares the results from these two voters and notifies the surrogate

manager of the results.

3.4 An Example Application

This section describes the steps taken to execute a user application in duplicated execution

mode. The figures below provide a graphical portrayal of this process. It is assumed that all

initialization has completed at the beginning of the application's execution.

Figure 3.2 shows the processing of the user request. The FTM is notified of the request and

sends a query agent to the user's machine to obtain information about the request. The query

agent is installed on the user's machine and collects in.formation about the application from the

user. The query agent then returns with the query results and application code to the FTM.

Figure 3.3 portrays the selection of fault tolerance strategy by the FTM and the installation

of the appropriate agents and associated surrogate manager. In this case, the FTM has chosen

15

i i u

NETWORK

_ HOST B I

Qfiery Agent returns results _,_

\
Query Agent MANAGF.R

Figure 3:2 User communication mad query agent.

to execute the apphcation in duplicated execution mode, as described above. The FTM is

responsible for retrieving and/or constructing the proper agents from the agent libraries. Each

host daemon receives, installs, and initiates execution of its incoming agent or manager. It is

worthwhile to note that the user's host need not be a part of the execution environment.

The application installation and execution is depicted in Figure 3.4. Once the execution

agents have been installed, they request the application code from the FTM. After recei:cing

this code, it is compiled by the agent and executed. During the execution, the application-

is periodically monitored by the agent, which is in turn periodically monitored by the host

daemon,

When the applications have completed, the sequence of events shown in Figure 3.5 Occurs.

The results from each application are sent to the voter agent. Once all results have been

16

W

_d

m

[]

HOST B

NETWORK

Execution

Agent

Execution

Agent

MANAGER x_

Analysis of user request I I

parameters, decision to] I

execute in duplicated mode, [fl
agents and surrogate constructed J/

/

Figure 3.3 Agent and surrogate manager installation.

obtained by the voter agent, a comparison is done. This comparison may check for an exact

-match, or it may check that the differences lie within an allowable range as specified by the

user to the query agent at the beginning of the user request. After a successful comparison,

results are sent by the voter agent to the surrogate manager, which in turn sends them to the

FTM. When the FTM receives the results of the application, it notifies the user and sends and

recursively uninstalls the surrogate manager and its agents. (Recursive uninstallation means

that each manager uninstalls those entities directly under its command, e.g., in under duplicated

execution, the FTM uniustalls the surrogate manager, and the surrogate manager uninstalls

the two execution agents and the voter agent.)

The scenario described above does not show system behavior under failures. A similar

scenario detailing the steps taken to detect and recover from a failure is detailed in Chapter 5.

17

HOST B

HOST

The USER

NETWORK

0 HOST E

m

L_

w

w

v

m

m

W

w

m

m
m

Figure 3.4 Application installation and execution.

3.5 Summary .

Chameleon provides an environment for efficient creation and execution of dependable ap-

plications. It provides various mechanisms to detect and recover from failures in a dynamically

changing networked environment. Chameleon allows for applications with varying dependabil-

ity requirements to be efficiently executed on the same reliable networked platform using an

applicatiom-specific fault tolerance strategy for each user-submitted application.

w

m

w

w

18

w

m

NETWORK

HOST

The USER
results

Final results

Application
results

MANAGER

Successful

results

w

E
W

W

Figure 3.5 Completion of application.

19

CHAPTER 4

SIMULATION OF CHAMELEON

4.1 Overview

A simulation has been constructed to model the Chameleon system. The simulation models

the behavior of the FTM, host daemons, surrogate managers, and agents and their interac-

tions. The goal of the simulation is to obtain information about the effect of fault tolerance

detection and recovery strategies in terms of fault coverage and performance degradation. This

information can in turn be used to guide the implementation of Chameleon. The simulation

was written in DEPEND [7], a functional, process-based simulation tool. DEPEND was chosen

particularly for its emphasis on modeling fault tolerant systems.

4.2 DEPEND

DEPEND is a simulation-based CAD environment built on top of CSIM [15] that helps

computer systems designers study the behavior of a system in detail. DEPEND is designed to

be a joint performability and dependability analysis tool. DEPEND provides an object-oriented

C÷÷-based framework which allows for the evaluation of dependable computer systems. The

tool provides facilities to model components often found in fault tolerant systems and allows for

automated fault injection. By an acceleration technique, DEPEND allows its users to obtain a

detailed and statistically valid dependability analysis of a given system.

2O

w

W

z
l,
__i

-qW

W

m

w

w

e_

L_

=z

m

E--

w

The methodology of DEPEND is a three-level hierarchy. Simulation objects axe used to de-

scribe models. Process entities in each of these simulation objects represent schedulable units.

Finally, simulation constructs in each of the processes provide for communication, synchroniza-

tion, and resource allocation.

DEPEND is a hybrid simulation engine, taking advantage of the flexibility of process-based

simulation and the speed of event-based simulation. Compiler-based techniques are used to

translate from a process-based model to a hybrid process-based/event--driven model to increase

simulation speed. Pr0cess-based techniques are used because process interaction is generally a

better model of system behavior.

DEPEND supplies a library of C++ objects that simulate the functional behavior of com-

ponents often found in fault tolerant systems. These objects also inject faults, initiate repairs,

compile statistics, and generate reports. To use DEPEND, a user writes a control program in

C+÷ With the objects provided by DEPEND. The program is then compiled and linked with

DEPEND objects and the run-time environment. The model can then be executed in a simu-

lated parallel environment. In this environment, all objects execute simultaneously to simulate

the functional behavior of the architecture.

4.3 Simulated System Description

The system being modeled by this simulation consists of eleven hosts (one host dedicated to

the FTM). Each host is simulated as having a single processor with a round-robin scheduling

policy with a specified time slice. The hosts are attached to a Myrinet switch [3] through which

all communication takes place.

21

I
Manager

Agent

AgentExecute

I
SMExec]

I
I SurrogateManager

AgentVoter

SMQuad

I
AgentHB

Daemon

V

m

W

U

W

4.4

+ _ +

Figure 4.1 Class hierarchy of simulated Chameleon components.

Data Structures

The major data structures used in the simulation are C++ classes modeling the main

components of Chameleon. All major Chameleon components except as the host data structure

are derived from the Agent base class. The class hierarchy is depicted in Figure 4.1. The

host class, not shown, is derived from the FT_server class in the DEPEND class library. This

hierarchical design of the simulation allows for new types of agents or other simulated Chameleon

constructs to be integrated into the simulation code relatively easily.

22

w

V

lw

v

m =
w

R_

m

w

4.4.1 Agent Classes

The Agent base class includes methods common to nearly all the system components, such

as a message sending method, a message processing method, an execute method, and fault

injection methods.

Three types of agents are modeled in the simulation: the execution agent, the heartbeat

agent, and the voter agent. Neither the heartbeat agent nor the voter agent have any additional

methods; the methods from the Agent base class are simply specialized for the behavior of

the agents. The execution agent has One additional method, which allows it to monitor its

application. Each of the inherited methods is also specialized for the execution agent.

4.4.2 Manager Classes

The Manager class is derived from the Agent class. Additional functionality of the Manager

class includes the ability to maintain lists of hosts and agents associated with the manager and

the ability to install and uninstall agents. Additional message-processing capabilities are also

included.

The host daemon and FTM classes are both derived from the Manager base class. Additional

methods used by the daemon class include those to monitor for incoming messages, to dispatch

messages to the appropriate agents, and to monitor the agents residing on the daemon's host.

The FTM's class has an additional method to process incoming user requests, as well as methods
. 7 7" i

to execute the requests using the proper fault tolerance strategy.

23

4.4.3 Surrogate Manager Classes

The SurrogateManagerclassis derivedfrom the Managerclass. Additional functionality

includesthe ability to processmoretypesof messagesthan the Managerbaseclass.Both the

replicatedsurrogate"managerclass(usedfor executingapplications in duplicatedmodeand

TMR mode)and the quadsurrogatemanagerclass(usedfor executingapplicationsin quad

mode)are derived from the base SurrogateManager class. Each one has its inherited methods

specialized to perform its designated tasks.

4.5 Simulation Behavior

The simulation need not simulate all behavior of Chameleon. It is only useful to simulate

behavior related to the measurements the simulation will provide. Failure to abstract away

some system behavior could cause significant performance degradation in the simulation. The

initialization procedure (i.e., the handshaking procedure to install a daemon and register a host
. L

with the FTM) was not modeled in the simulation, as it only affects the system startup cost and

not the execution of user requests. Also, actual execution of code is not simulated. Only the

use of a host's processor is simulated. The simulation concentrates on system-level behavior

rather than modeling the program counter, caches, etc., on each host.

Only three modes of execution are simulated: duplicated, TMR, and quad mode. These are

the modes that require the most overhead and are the most interesting for the results obtained

T

in this thesis. All agents are assumed to exist in the agent library, no user-specified agents have

been simulated, and agents are never built from building blocks in the simulation.

_ I

m

m

W

M

W

W

w

u

w

T_

24

W

L--

z

V

Z

w

m

m

CHAPTER 5

FAULT HANDLING IN THE SIMULATION

5.1 Overview

To see how Chameleon handles failures it was necessary to simulate f_ilures to various

components during execution of the simulation. There are three main parts to the failure

process: fault injection, fault detection, and fault recovery. This chapter provides a detailed

description of the injection, detection, and recovery strategies used for each of the simulated

components.

Table 5.1 briefly summarizes the detection and recovery process required for each component

into which faults are. injected in the simulation. This is discussed in more detail below.

5.2 Fault Injection Strategy

Fault injection in the simulation is implemented using the DEPEND fault injector object.

The components that may fail are: Hosts, Execution Agents, Voter Agents, Heartbeat Agents,

Surrogate Managers, User Applications, and the FTM. Each instantiated object of these types

has an internal fault injector, which is started at the time the component begins executing. For

each component, faults are assumed to occur according to an exponential distribution.

The fault injection strategies for the different components are very similar. All faults injected

are permanent and fail-silent, with the exception of faults in the FTM, which are transient and

_ 25

Failure
AgentCrash

Surrogate
Manager
Crash

HostCrash

User

Application
Crash

I

FTM Crash

Consequence Detection By Recovery

Agent lost

Application running

without supervision

All agents on
host lost

Program fails to

complete normally;
no results

produced
Chameleon

environment

proceeds without

supervision

Resident

Host Daemon

Resident

Host Daemon

Heartbeat Agent

Execution Agent

(Transient failure)

1. Agent's manager notified.

2. Manager constructs new

agent.

3. Manager instils new agent.

1. FTM notified.

2. FTM constructs new

surrogate.

3. FTM installs new surrogate.
1. FTM notified.

2. FTM deregisters host.

3. FTM migrates affected agents

it manages to new host.
4. FTM: notifies immediate

managers of failed host; these

managers migrate their agents

and recursively notify all

subordinate managers.

1. Execution agent's

manager notified.

2. Restart apphcation.

N/A

N

w

w

_4

l

N

v

Iw

Table 5.1 Simulated fault injections, detections, and recoveries.
w

fail-silent. Permanent failures are failures that exist indefinitely until some corrective action is

taken. Transient failures exist only for short periods of time. A fail-silent fault is one in which

the failed compone_n t stops communicating with other components rather than continuing to

send possibly faulty communications.

A faultinjected into a host in this system will cause the host to become unreachable, and all

applications executing on that host will terminate and be lost. A fault injected into any agent

or manager will cause execution of that component to terminate, and it will be incapable of

26

receivingor sendinganysort of communication.A userapplicationthat failswill immediately

stopexecutingandwill produceno results.

Onecomponentintowhichfaultsarenot injectedis thehostdaemon.Thereasoningbehind

this is that hostdaemonfailureshavethe sameeffectasnodefailuresandarehandledin the

samefashionasnodefailures.A failedhostdaemonpreventsits hostfromreceivingor sending

Chameleon-relatedcommunications.

5.3 Fault Detection Strategies

Chameleon has several built-in failure-detection capabilities to cover the different compo-

nents that may fail. This section describes how each type of failure is detected in the simulation.

D

i

5.3.1 Agent

To detect agent failures for each type of agent, the daemon residing on that agent's host

periodically polls each agent to see whether it is still ahve. This is meant to simulate a process

table lookup or something similar. It is simulated by checking a field in the agent class indicating

whether the agent is alive. If the daemon determines the agent is no longer alive, it removes the

agent from its list of agents to monitor-and sends a message to the agent's manager (surrogate

manager or FTM) indicating the failure. This polling method is used rather than attempting to

capture signals because it can be used to simulate detection of failures hke livelock (by checking

the process's program counter) as well as abnonnal termination failures.

27

5.3.2 Surrogate Manager

Detectionof failuresin asurrogatemanagerismuchthesameasdetectionof agentfailures.

Eachsurrogatemanagerispolledperiodicallyby theresidenthostdaemon.Whenthe daemon

detectsa failure,it sendsa notificationmessageto the FTM.

5.3.3 User Application

To detectfailures in.the userapplication,the applicationis periodicallymonitoredby its

executionagentin muchthe samewayagentsare monitoredby the residenthost daemons.

Whena userapplicationhasfailed,theexecutionagentsendsa messagealerting the surrogate

managerOfthe failure.

5.3.4 Host

To detecthost failures,a heartbeatagentresideson the samehostasthe FTM and peri-

odicallysendsheartbeatmessagesto all hostsregisteredwith the FTM. Eachhost is expected

to r_p0n d tQ_ heartbeatwithin the definedheartbeat timeout interval--Sincea failed:host

is incapableof communicating,it will not respondto heartbeatmessages.Oncea heartbeat

timeout is detected,the agentstopssendingheartbeatsto that host and notifiesthe FTM of

the failedhost.

5.3.5 FTM

Implementationof failuresin the FTM wasdonequite differentlyfrom the other failure

detection and recovery mechanisms. Several methods for detecting FTM failures have been

conceived, such as running the FTM in triple modular redundant mode, having a backup FTM

28

m

I

U

m

W

w

N

w

_m4

===

. i

--7

i--_m

w

which is alerted of updates to the primary FTM's data structures, and executing the FTM on a

dedicated, highly reliable computation node. None of these was implemented in the simulation.

Instead, when a failure occurs in the. FTM, detection is assumed to occur after a random

amount of time (based on an exponential distribution), and the FTM recovers after that time.

Essentially, FTM failures are modeled as transient failures.

This transient failure model is used for the FTM because, at the time the simulation results

were taken, the detection and recovery for the FTM in the Chameleon implementation had not

yet been established. The transient model should be sufficient to examine the effects to the

system when the FTM fails, however that failure may be handled.

5.4 Fault Recovery Strategies

z

m

w

Once a failure has been detected using the methods described above, the next step is to

recover from the failure. Chameleon has the capability to recover from each of the faults injected

in the simulation. These recovery techniques are described below. There is no subsection for

the Fault Tolerance Manager in this section because of the transient nature of its faults.

5.4.1 Execution Agent

When an execution agent fails, its surrogate manager is responsible for its recovery. Once

the surrogate manager receives a failure notification from the agent's resident daemon, it uses

information it has about the failed agent to reconstruct a new execution agent. The surrogate

manager must maintain information about the voter to the execution agent sends its results

and the application which the execution agent was monitoring. It then installs this new agent

z i l

on the same host and sends it the application to be restarted. Once the new execution agent is

29

installedand running, a message is sent to its voter notifying it of the new agent from which it

should expect results. m

5.4.2 Heartbeat Agent

The FTM is the entity responsible for recovering a failed heartbeat agent. Once the FTM

is notified about the failure, it reconstructs a new heartbeat agent. The FTM provides the new

heartbeat agent with its list of registered hosts. Once the agent has been reconstructed with

this information, it is installed and begins sending heartbeats to the hosts provided to it by the

FTM.

5.4.3 Voter Agent

When a voter agent fails, its surrogate manager is responsible for its recovery. Once the

surrogate manager receives a failure notification from the agent's resident daemon, it uses

information it has about the failed agent to reconstruct a new voter agent. The surrogate

manager must maintain information about the entity to which the voter agent was intended to

send its results (the surrogate manager itself, or possibly another voter agent) and the agents

from which the voter agent expected to receive results. It then installs this new agent on the

same host. The destination entity for the new voter's results (in the case that it is not the

surrogate manager itself) is then notified of the new source by the surrogate manager.

Once the voter agent has been installed, it sends a message to each of the agents on whose

results it is voting, instructing them of the new destination for their results. Upon receiving

this message, an agent will send its results, if they have already been computed, as well as

updating its destination agent. This allows the voter to recover any results sent during the

3O

W

B

I

_=

m

z

u

w

w

m

m

L__

m

r_

Y

m

period between when .the fault occurred and recovery completed, or to immediately receive any

results the failed voter had already received.

5.4.4 Surrogate Manager

In the case of a surrogate manager's failure, the FTM is responsible for its recovery. Once the

FTM has received a notification of the failure, it reconstructs the surrogate manager, providing

it with the list of agents the failed manager was overseeing and the expected communications

flow between the agents (which agent s expect results from which other agents). When the

reconstruction is complete, the surrogate manager is installed on the host on that the failed

one was running. After installation, the new manager sends a request to its primary voter (the

voter which sends its results to the surrogate manager) to send any results it has. As with voter

agent recovery, if the primary voter has not computed results yet, it ignores the request.

In the special case that the surrogate manager was in the process of overseeing the instal-

lation of its agents when it failed, a new surrogate manager is created from scratch. All agents

whose installation had completed under the failed surrogate manager are then uninstalled by

the FTM.

5.4.5 User Application

In the case of a user application's failure, the execution agent is in charge of recovery.

Once the failure is detected by the execution agentl it sends a message to notify the surrogate

manager and restarts the application from the beginning (or from the most recent checkpoint, if

one exists). The surrogat e manager's notification allows the manager to notify the voter agent

in case the voter agent has a specified timeout period, or if the application has failed multiple
/

times, the surrogate manager may decide to migrate it to a different host.

31

u

5.4.6 Host

The FTM is the entity responsible for recovery from a host failure. When the FTM is

notified of the failure by the heartbeat agent, the failed host is deregistered from the FTM's

table of participating nodes, After deregistering the host, a message is sent to each surrogate

manager notifying it of the host failure. When a surrogate manager receives such a message, if it

determines an agent it is managing was executing on the failed host, the agent is reconstructed

and reinstalled on a new host. This reinstallation procedure is similar to the one described

above for either an execution agent or a voter agent.

The FTM may recognize that a surrogate manager was residing on the failed host. In that

case, it restores the surrogate manager on a different host using much the same method as

described above for recovery from surrogate manager failures.

5.5 An Example Failure Scenario

This section outlines an example of a failure in duplicated execution mode and the steps

taken to detect and recover from the failure. The failure shown here is a node failure that affects

the voter agent. The steps from detection of the failed host to completion of the application

are detailed below and in Figures 5.1 through 5.3.

Figure 5.1 shows the detection of the host failure by the heartbeat agent. After not receiving

a heartbeat from the host within the specified timeout period, the heartbeat agent assumes the

unresponsive node has failed. The FTM is promptly notified of the failure and removes the

host from its system configuration file.

In Figure 5.2, restarting of the agent on the failed node is portrayed. First, the FTM searches

its list of surrogate managers to determine whether the failed host was home to a surrogate

32

w

U

W

IB"

w

HOST B

NETWORK

HOST C

Heartbeat

\
MANAGER

ii I i i

Figure 5.1 Host failure detected by heartbeat agent.

manager. After that, the FTM notifies all of its surrogate managers of the host failure. When

a surrogate manager receives a host failure notification, it determines whether any of its agents

were located on that host. In this case, the surrogate manager notices the voter agent was

executing on the failed host. A new voter agent is created using the information the surrogate

manager maintained about the unreachable voter agent• Once the voter is ready to be deployed,

the surrogate manager requests, a new host from the FTM. After receiving information about

the host, it installs the regenerated voter agent on this new host•

Figure 5.3 shows the final step in the'recovery process. The voter agent notifies the execution

agents on whose results it will vote of its new location. Upon receiving this notification, the

execution agents modify their results destination accordingly. If the application being monitored

33

The USER New host: Host A

MANAGER

HOST C

Figure 5.2 Voter agent regeneration.

by the execution agent has already successfully terminated, the results are immediately sent to

the new voter agent.

5.6 Summary

Chameleon supports a number of mechanisms to detect and recover from failures of vari-

ous components. The injection, detection, and recovery strategies described above are those

that have been implemented in the simulation. All simulation results described in this thesis

incorporate the strategies outlined in this chapter.

34

L

L

. 1

r--

v

u

NE2_ORK

HOST B

The USER

Figure 5.3 Execution agents notified of new voter agent.

35

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Overview

Using the simulation described in the previous two chapters, several simulated scenarios were

run and analyzed. The main focus of the results is on Chameleon's fault-handling capabilities.

In this chapter, the evaluated scenarios and the results obtained are discussed.

6.2 Simulation Parameters

To obtain results from the simulation, it was necessary to choose values for certain critical

parameters (Table 6.1). The link bandwidth value was measured from preliminary implementa-_

tion results using TCP/IP, not the Myrinet API. Other parameters necessary in the simulation

v

included CPU times required for various tasks, such as the time it takes a voter to compare

results, the time it takes a daemon to process a message and send it to the appropriate agent,

etc. Many of these times were taken from preliminary implementation measurements, others

were estimated.

mm

g

m

w

U

6.3 Scenarios Evaluated and Measurements Taken

A primary goal of these measurements was to determine the performance degradation caused

by running an application in Chameleon. Another goal was to measure the time to recover from

36

w

L

Parameter Value

Heartbeat interval 5 s

Heartbeat timeout 20 s

Daemon monitor interval 20 s

Agent monitor interval 20 s

Link bandwidth 25KBytes/s

:=

Table 6.1 Parameters used in the simulation.

I--

=z

L _

E_

r_

single points of failure in various system components. A third goal was to analyze Chameleon's

capability to handle multiple simultaneous failures.

To find the performance degradation with no failures, single user requests were simulated

running in duplicated mode, TMR mode, and quad mode. Each of these scenarios was simulated

with background workloads of 0, 1.5 (two background jobs on half of the hosts, and one on the

other half), and 3.0 (three jobs on each host).

No background network traffic was simulated. In several runs of the simulation with sig-

nificant network traffic, only minimal performance degradation was noticed. The number of

background jobs running on the nodes had a much more profound effect on the time required

to execute user requests.

To measure the performance under single failures, the same three execution modes and

the same' three background workloads were used as for the measurements with no failures. In

addition, a single fault was injected during each execution of a user request. The faults were

injected into six different components: execution agents, heartbeat agents, surrogate managers,

hosts, user-applications, and voter agents. The times required to complete these user requests

were compared with the times to completion without failures. All user requests were assumed

to require 50 seconds of CPU time. The faults were injected into each component according to

37

anexponentialdistributionwith a meanof 20seconds.Eachscenariowasrunwith 10different

seedsto the fault injector,and theresultswereaveraged.

To seehowwell Chameleonhandlesmultiplesimultaneousfailures,the simulationwasrun

with faultsbeinginjectedinto all components(eachinstanceof thesix componentsinjectedin

the singlefailureruns andthe FTM). Alongwith this, the simulationwasrun with two fault

injectionsdeliberatelycoincidingwith severaldifferentpairsof faults.

6.4 Analysis of Results m

This section contains the results obtained from running various simulated scenarios. The

results obtained are discussed and analyzed. Both single- and multiple-failure scenarios are

presented, as well as the performance degradation in a fault-free environment.

Table 6.2 shows the overhead required for running an application under three different fault

tolerance strategies when no faults occur. The times are compared to the actual execution

time of the application, taking the system load into consideration. The Chameleon overhead

ranges from 6.5% to 11:.8%, certainly reasonable to ensure that a critical application completes

with the correct results. Since the amount of overhead changes only slightly with the execution

time of the application, the percentage overhead should be smaller for applications requiring

more CPU time than 50 seconds. Under the same conditions with 1000-second applications,

the Chameleon overheads ranged from 2.1% to 2.8%.

:: Tabies 6. 3-t-hr0-u-gh 6:5 show the times requ-ired to recover from six d_ffereht °tyi_es of faiiure§:

for three different fault tolerance strategies. FTM failures were not considered because no

recovery mechanism for them has been modeled.

38

B

u

U

u

m

v

Execution Strategy]1 Average Load .T!me Chameleon Time II Increase

Duplicated 0 50.00s 54.06s 8.1%

Duplicated 1.5 100.00s 107138s 7.4%

Duplicated 3.0 200.00s 6.5%
TMR

TMR

TMR

Quad

Quad

Quad

0

1.5

3.0

0

1.5

3.0

50.00s

lO0.OOs

200.OOs

50.00s

100.00s

200.00s

213.00s

54.74s

108.76s

215.44s

55.89s

111.72s

218.74s

9.5%

8.8%

7.7%

11.8%

11.7%

9.4%

2:C

; 2:2_

Table 6.2 Overhead incurred by Chameleon under various loads and fault tolerance strategies.

Failed Component Average Time to Increase over [Percent

Load Complete Fault-Free Execution [Change

Execution Agent 0.0 81.87s 27.81s 51.4%

Execution Agent 1.5 134.09s 26.71s 24.9%

Execution Agent 3.0 237.36s 24.36s 11.4%

Surrogate Manager 0.0 54.06s 0.0s 0.0%

Surrogate Manager 1.5 109.12s 1.74s 1.6%

Surrogate Manager 3.0 219.37s 6.37s 3.0%

Voter Agent 0.0 54.22s 0.16s 0.0%

Voter Agent 1.5 107.53s 0.15s 0.0%

Voter Agent 3.0 213.16s 0.16s 0.0%

Host 0.0 76.33s 22.27s 41.2%

Host 1.5 162.82s 55.44s 51.6%

Host 3.0 232.21s 19.21s 9.0%

Heartbeat Agent 0.0 53.8-9S -0.17s 0.0%

Heartbeat Agent 1.5 107.11s -0.27s 0.0%

Heartbeat Agent 3.0 212.76s -0.24s 0.0%

Application 0.0 29.22s 54.1%

Application 1.5

Application 3.0

83.28s

136:b0s

240.66s

28.63s 26.7%

27.66s 13.0%

Table 6.3 Performance degradation caused by single failures in duplicated execution mode.

39

m

For execution agent and application failures, the performance degradation includes the time

required to detect and recover from failure, as well as the time lost due to the fact that, the

application is restarted from the beginning. The results show that in the case of an execution

agent failure or an application failure, Chameleon may require approximately 50% or more extra

time to complete the application. Most of this time is due to the fact that the application must

be restarted from the beginning. If a failure occurred when an application was 99% complete,

it would take about twice as long by Chameleon to process the user request. The average time

taken for Chameleon to detect and recover from an application failure is 10.0 seconds; from an

execution agent failure, the time required is 10.8 seconds. These times were measured with no

load on the system and are constant with respect to the running time of the application. This

implies that most of the overhead is being caused by the application catching up to the point

of the failure.

In practice, overhead when there is an application or execution agent failure will average

approximately 50% of execution time. For applications requiring a large amount of CPU time,

these overheads become very large. To prevent restarting the application from the beginning,

application checkpointing could be implemented. In the event of a failure in the application or

its monitoring agent, the application could be restarted from the most recent checkpoint. As

long as_ the checkpointing interval is not too large, this would solve the problem of the recovery

time increasing With the execution time of an application.

Each set of results shows extremely minimal overhead for recovering from voter agent fail-

ures. In general, a voter agent failure should cause very little overhead. However, a failed voter

agent can cause more delay when the time between its failure and regeneration overlaps with

the completion of the application. All execution agents must stall until the voter is regener-

W

w

w

u

'i
g

w

4O

=--

H

Failed Component

Execution Agent

Execution Agent

Execution Agent

Surrogate Manager

Surrogate Manager

Surrogate Manager

Voter Agent

Voter Agent

Voter Agent

Average
Load

0.0

1.5

Time to

Complete

81.87s

134.09s

Increase over

Fault-Free Execution

27.13s

25.33s

Percent

Change

49.6%

3.0 237.36s 21.92s

23.3%

10.2%

0.0 54.74s O.Os 0.0%

1.5 124.26s 15.50s 14.3%

3.0 223.24s 7.80s 3.6%
54.90s

108.92s

215.60s

0.0 0.16s 0.0%

0.16s 0.0%

0.16s 0.0%

25.49s 45.6%

56.26s 50.4%

' 18.85s 8.6%

-0.I7s 0.0%

-0.27s 0.0%
-0.24s

1.5

0.0%

3.0

Host 0.0 81.38s

Host 1.5 167.98s

3.0 237.59S

0.0 53.89s

1.5 107.11s

3.0 212.76s

Host

Heartbeat Agent

Heartbeat Agent

Heartbeat Agent

Application

Application

Application

0.0 83.31s 28.57s 52.2%

1.5 136.06s 27.30s 25.1%

3.0 240.72s 25.28s 11.7%

Table 6.4 Performance degradation caused by single failures in TMR mode.

ated before sending the application results. This is a relatively uncommon occurrence, and the

overhead is fixed with respect to the application's running time.

Surrogate manager failures are similar to voter agent failures in that the overhead is minimal

except when the failure overlaps with the completion of the managed application. There is

one other exception for surrogate managers. A surrogate manager may fail during the agent

installation process. In this case, the new surrogate manager must restart the entire installation

process, since no record is kept of which agents have been installed. This could be the cause

of significant overhead, especially in applications being executed with fault tolerance strategies

requiring a large number of agents.

41

FailedComponent Average
Load L_J

Host

Increase over)t PercentFault-Free Execution Change

Execution Agent 0.0 27.13s 49.6%

Execution Agent 1.5 25.33s 23.3%

Execution Agent 3.0 21.92s 10'.2%

Surrogate Manager 0.0 3.78s 6.8%

Surrogate Manager 1.5 34.28s 30.7%

Surrogate Manager 3.0 8.39s 3.8%

Voter Agent 0.0 0.02s 0.0%

Voter Agent 1.5 0.01s 0.0%

Voter Agent 3.0 0.01s 0.0%
46.6%

Host

Host

Heartbeat Agent

Heartbeat Agent

Heartbeat Agent

0.0

1.5

3.0

0:0
1.5

3.0

0.0Application

Time to

Complete

83.78s

137.38s

241.96s

59.67s

146.00s

227.13s

55.91s

111.73s

218.75s

8(.91s

158.21s

243.44s

55.71s

111.48s

218.62s

83.78s

137.38s
.... i

241.96s

26.02s

46.49s

24.70s

-0.18s

-0.24s

:0.12s
27.89s

25.66sApplication 1.5

Application 3.0 23.22s

41.6%

11.3%

0.0%

0.0%

0.0%

49.9%

23.0%

10.6%

Table 6.5 Performance degradation caused by single failures in quad mode.

It is interesting to note that in the case of a heartbeat agent failure Chameleon applications

require slightly less time to complete. This is because the host daemons do not need to process

heartbeat messages while the heartbeat agent is not alive. This decreases the number of jobs

vying for each processor slightly and allows the applications to finish a little bit more quickly.

Problems may occur when a host failure overlaps with a heartbeat agent failure. In this case the

time required to detect a host failure will markedly increase, potentially causing applications

to be stalled. This may not be realistic in the actual implementation, as the application may

be required to stall until the heartbeat agent can be recovered.

Host failures are another significant source of overhead. The average host failure takes

about the same time to detect as an agent failure because the heartbeat timeout interval is the

w

_W

L _

w

U

m
W

U

42

v

i

" Z

same as the agent monitoring interval. Recovery time is slightly more because the surrogate

manager needs to request a new host from the FTM. The reason the results show such significant

overheads is that when a host with an execution agent on it fails, it requires more time to recover

from than an execution agent failure or a simple application failure. Again, this could be helped

by using a checkpointing scheme, as long the scheme is architecture-independent or there is

another host with the same architecture available for migrating the application.

It is not guaranteed that Chameleon is capable of recovering from multiple overlapping

failures. To test how well Chameleon fares with overlapping failures, the simulation was run

in a scenario in which all components could fail as described in the previous section. Running

100 user requests in this scenario yielded 93 completed requests. The remaining seven requests

did not complete because not enough hosts were available. No overlapping failures caused an

application to be lost.

Because the coverage of the scenario above may not have been complete, a few scenarios

were run where two failures were explicitly injected at about the same time. This resulted in

an FTM failure overlapping with a surrogate manager failure, which in turn caused the user

request to be lost. A few more runs showed that a user request will not complete in Chameleon

if an entity and its managing component fail at the same time.

Figure 6.4 shows the chain of events when an agent and its surrogate manager fail simul-

taneously. The double failure shown results in a race condition between the notification of the

execution agent failure and the regeneration of the failed surrogate manager. If the surrogate

manager is successfully restarted before the notification of the failed execution agent, the recov-

ery will be successful. If the notification of the execution agent failure arrives to the surrogate

43

NETWORK

I0 HOSTA
The USER 1

Failure

notification

O HOST C

MANAGER

m

m

m

zz

lie

D

I

m

Figure 6.1 Simultaneous failures in an execution agent and its surrogate manager.

manager's node while the surrogate manager is down, the message is dropped and there is no

acknowledgement of the execution agent's failure.

There are a few ways of correcting this problem, but they are not ironclad, and any attempt

to design mechanisms to recover from double failures will only add to the detection and recovery

overhead. It is hoped that simultaneous failures are sufficiently rare that they need not be

considered when devising fault recovery schemes. Agents, managers, and daemons in Chameleon

are designed to be compact and simple so they can be thoroughly tested. This will help in

maintaining fault resilience and preventing such overlapping failures from occurring.

44

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Lm
r_

L_

In this thesis, the simulation of fault injection and recovery in Chameleon, a framework

for supporting cost-effective fault tolerant computing services, was described in detail. The

simulation results have shown that Chameleon is an efficient environment for executing both

critical and noncritical applications, especially applications requiring large amounts of CPU

time.

The simulation showed that there is some room for improvement in some areas. A check-

pointing scheme could be implemented to more efficiently recover from execution agent failures

and user application failures. With such a scheme in place, the recovery overhead would no

longer be dependent on the application's running time. Chameleon is capable of recovering

from some kinds of overlapping failures. However, some overlapping failures may cause user

requests to be lost. As long as these failures are relatively rare (i.e., recovery time is very short

compared to mean time between failures for each component), it is not necessary to develop

specialrecovery mechanisms. It is believed that Chameleon components are resilient enough

for this to be unnecessary. In summary, the simulation shows that Chameleon is capable of

providing a cost--effective, reliable, networked environment.

Future simulation work may include simulating additional failure modes, such as faults in

the communications medium, transient faults in components besides the FTM, and modes other

than fail-silent. Each of these modes will provide more insight into Chameleon's fault-handling

45

v

capabilities. In addition, various methods for detecting and recovering from failures in the FTM

(e.g., the FTM running in TMR mode) should be modeled. The FTM is the most critical piece

of Chameleon, and it should be modeled very accurately to show that a single failure to the

FTM will not be catastrophic. The effectiveness of checkpointing should be analyzed through

simulation. Checkpointing will certainly help make recovery more efficient, but it is not known

how much of an effect it will have on normal system behavior and performance. Finally, methods

for handling parallel and distributed applications submitted by a user should be analyzed.

Since it is increasingly common for user applications to be of a parallel or distributed nature,

Chameleon should be able to handle these types of requests from users as well as it handles

single-threaded applications.

I

U

i

I

m

U

46
I

Dm
J

REFERENCES

- z

v

[1] K. P. Birman, Building Secure and Reliable Network Applications. Greenwich, CT: Man-

ning Publications Co., 1996.

[2] K. P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit.

New York, NY: IEEE Computer Society Press, 1994.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and

W.-K. Su, "Myrinet: A Gigabit-Per-Second Local-Area Network," IEEE Micro, vol. 15,

pp. 29-36, February 1995.

[4] F. Cristian, "Understanding Fault-Tolerant Distributed Systems," Communications of the

ACM, vol. 34, pp. 57-78, February 1991.

[5] H. M. Deitel, and P. J. Deitel, C++ How to Program. Englewood Cliffs, NJ: Prentice Hall,

1994.

[6] D. Dolev, and D. Malki, "The Transis Approach to High Availability Cluster Communi-

cation, '_ Communications of the ACM, vol. 39, pp. 64-70, April 1996.

[7] K. K. Goswami and R. K. Iyer, "DEPEND: A Simulation-Based Environment for Sys-

tern Level Dependability Analysis," fEEE Transactions on Computers, vol. 46, pp. 60-74,

January 1997.

[8] R. W. Horst, "TNet: A Reliable System Area Network," IEEE Micro, vol. 15, pp. 37-45,

February 1995.

47

[9] R. K. Iyer, Z. Kalbarczyk,and S. Bagchi,"Chameleon:A SoftwareInfrastructureand

Testbedfor ReliableHigh-SpeedNetworkedComputing,"Centerfor ReliableandHigh-

PerformanceComputingTech.Rep.13,Universityof Illinois, Urbana,IL, 1997.

[10] S. Maffeis, "Piranha: A CORBA Tool for High Availability," IEEE Computer, vol. 30,

pp. 59-66, April 1997.

[11] Microsoft Clustering Architecture "Wolfpack," White Paper, May 1997.

http :///www. microsoft, com/ntserverenterpr_se/guide/wolfpack, asp

[12] Object Management Group. The Common Object Request Broker: Architecture and Spec-

ification (CORBA), Inc. Publications, Revision 2.0, 1995.

[13] D. Powell, "Lessons Learned from Delta-4," IEEE Micro, vol. 14, pp. 36-47, August 1994.

[14] D. K. Pradhan ed., Fault-Tolerant Computer System Design. Upper Saddle River, N J:

Prentice Hall, 1996.

[15] H. D. Schwetman, "Introduction to Process-Oriented Simulation and CSIM," in Winter

Simulation Conference, pp. 154-157, 1990.

[16] Sun RAS Solutions for Mission-Critical Computing, White Paper, October 1997.

http://www.s n. com/elusters/wp-ras/

[17] A. S. Tanenbaum, Computer Networks. Upper Saddle River, N J: Prentice Hall, i996.

[18] R. van Renesse, K. P. Birman, and S. Maffeis, "Horus: A Flexible Group Communication

System," Communications of the ACM, vol. 39, pp. 76-83, April 1996.

I

W

g

48

REPORT DOCUMENTATION PAGE Fo,',.Approved
OMB NO. 0704-0188

,T.;i-'."__"__LT=._--'._"_'_T..=__'=__._"__=T=._ _ m a _M_eL _ ¢0m2__,_ _ == _ =_u== oftonyDew_ Ot

• -,w r_m, ay. aule T_. Acm_0n, VA ZZ;Ct_-4,._(_2. =r<t Io me t,_r¢@ ol ,Pa_lgQmefl¢ _ Bu¢l_ P_ Fledua_ I_ (0704-01M). Wludl_m. OC

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1/3o/98

4. rifLE AN0 SUB/ilLE

An Analysis of Failure Handling

Supporting Cost-Effective Fault

, ,,

6. AUTHOR(S)

Erik Haakensen

in Chameleon, a Framework for

Tolerant Services

7. PERFORMING ORGANIZATION NAMES(S)AND ADDRESSES)
Coordinated Science Laboratory

University of lllinois

1308 W. Main St.

Urbana, IL 61801

9. SPONSORING/MONITORING AGENCY NAME(S)ANDADORESS(ES)
DARPA/ITO
3701N. Fairfax Dr. NASA Langley Research Center

Arlington, VA 22203-1714 Hampton, VA 23681

5. FUNDING NUMBERS

DABT63-94-0045

NASA NAG 1-613

8. PERFORMING ORG2_IZATtON -
REPORT NUMBER

......... _.._.--.. :-__(C_IC- 98- 0 1)

UILU-ENG-98-2204

10. SPONSORING'/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other docurnenmdon.

12a. DISTRIBUTION / AVAII.ABIUTY STATEMENT

Approved for public release; dist.,-Jbution unHmked.

13. ABSTRACT (Maximum 200 words)

12 b. DISTRIBUTION COOE

The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very

flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce,

and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical

applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the

University of Illinois, is a software framework for supporting cost-effective adaptable networked fault tolerant
service. This thesis details a simulation of fauit injection, detection, and recovery in Chameleon. The simulation

was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the

amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition,

information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation

showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly
small amount of overhead. No single point of failure from which Chameleon could not recover was found.

Chameleon was also found to be capable of recovering from several multiple failure scenarios.

...

14. SUB,_ECTTERMS"

adaptive fault tolerance, highly available

error detection and recovery

17. SE(3URITY CLASSIFICATION 18. SECURITY CLASSIRCATION
OR REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIT'IED

NSN 7540-01-280-5500

networked computing

19. SECURITY CLASSlRCATION
- OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES
48

16. PRICE CODE

20. UMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 24g) ...]._Pr_c_b_ byAN._$_d.23948
n,_ .__

= II

i

i

I

I

m_R

iiw

x

