
July 1997 UILU-ENG-97-2218
CRHC-97-13

University of Illinois at Urbana-Champaign

Chameleon: A Software Infrastructure and Testbed
for Reliable High-Speed Networked Computing

R.K. Iyer, Z. Kalbarczyk, and S. Bagchi

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

I REPORT DOCUMENTATION PAGE
Form A p p ro ve d
O M B NO. 0704-0188

Puttie repotting Duraon for tnis collection of inform toon « MtmeteO to average 1 hour per reaponse. ¡nctuding the time for reviewing '****3°^'?“ '
gainenngandmantamaiç the data needed, and campieong and rewewmg the coUectlonof information. Send
ooöeeoon of Wormanon. «efuding suggeadona for reduang thia burden, to Waahngton Headquartera Senneea. Directorate for wdormauw O ^ ^ a i Jefferson
Oavu Highway. Suita 1204. £^00^22202-4302. and to the Office of Managamanf andBudget. Paparwcrtt Reduction Protect (0704-01M). Waahmgton. DC 20303.

’AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

|T1TLE AND SUBTITLE

Chameleon: A. Software Infrastructure and Testbed for
. Reliable High Speed Networked Computing
lAUTHOR(S)

1
R.K. Iyer, Z. Kalbarczyk, S. Bagchi

5. FUNDING NUMBERS

NASA NAG-1-613

■PERFORMING ORGANIZATION NAMES(S) AND ADORESS(ES)
C o o r d in a te d S c ie n c e L a b

I University of Illinois at Urbana-Champaign
1308 W. Main Street
Urbana, IL 61901

8. PERFORMING ORGANIZATION
REPORT NUMBER

(CRHC-97-13)
UILU-ENG-9 7-2218

1
I

SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES)

NASA Langley Research Center
Hampton, VA 23681

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

f l r

SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

DISTRIBUTION / AVAILABILITY STATEMENT

I Approved for public release; distribution unlimited.

12 b. DISTRIBUTION COOE

I
I
I
I

ABSTRACT (Maximum 200 words)

This report presents Chameleon, an adaptive infrastructure which allows different levels of availability requirements to be
simultaneously supported in a single clustered environment Fundamental components which constitute Chameleon are: (1)
Fault Tolerance Manager (FTM) acting as an independent and intelligent entity capable of identifying and establishing the
required fault tolerance strategy for executing the user application, (2) Reliable, Mobile and Intelligent Agents capable of
migrating through the network and operating autonomously on behalf of the FTM according to built-in specifications and
instructions, (3) Surrogate Manager operating as a pseudo-manager and capable of interacting with the user and supporting
proper communications with the agents which monitor the application execution on remote hosts, (4) Host Daemons residing
on each host and responsible for handshaking with the agents and monitoring the agents behavior, and (5) Software Libraries
providing basic building blocks to create or re-engineer agents. A prototype implementation of Chameleon on a small LAN of
heterogeneous machines connected to the high-speed Myrinet switch, is described.

I. SUBJECT TERMS

adaptive fault-tolerance, highly available networked computing, error detection and recovery.

17. SECURITY CLASSIFICATION
OR REPORT

I UNCLASSIFIED

18. SECURITY CLASSIFICATION
O F THIS PAGE____

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES
28

16. PRICE COOE

20. LIM ITATION O F ABSTRACT

UL
ISN 7540-01-280-5500 Standard Form 298 (Rav. 2-89)

PfMchbad by ANSI SUL 239-18

Chameleon: A Software Infrastructure and Testbed for

Reliable High-Speed Networked Computing

R.K.Iyer, Z.Kalbarczyk, S.Bagchi

Abstract

This paper presents Chameleon, an adaptive infrastructure which allows different levels of availability

requirements to be simultaneously supported in a single clustered environment. Fundamental

components which constitute Chameleon are: (1) Fault Tolerance Manager (FTM) acting as an

independent and intelligent entity capable of identifying and establishing the required fault tolerance

strategy for executing the user application, (2) Reliable, Mobile and Intelligent Agents capable of

migrating through the network and operating autonomously on behalf of the FTM according to built-

in specifications and instructions, (3) Surrogate Manager operating as a pseudo-manager and capable

of interacting with the user and supporting proper communications with the agents which monitor the

application execution on remote hosts, (4) Host Daemons residing on each host and responsible for

handshaking with the agents and monitoring the agents behavior, and (5) Software Libraries providing

basic building blocks to create or re-engineer agents. A prototype implementation of Chameleon on a

small LAN of heterogeneous machines connected to the high-speed Myrinet switch, is described.

Keywords: adaptive fault-tolerance, highly available networked computing, error detection and
recovery.

1 Introduction
In contemporary networked computing systems, a broad range of commercial and scientific

applications which need varying degrees of availability must coexist. It is not cost effective to

develop a reliable platform in each case. It is more efficient to build an infrastructure which

provides the required levels of dependability based on application needs. It is also essential that

the proposed alternatives be cost-effective. Hence, a primary issue to be addressed is how the

envisioned infrastructure can leverage off-the-shelf components. There have been exhaustive

studies on fault tolerance strategies (hardware and/or software implemented) capable of providing

1

efficient mechanisms to deal with system operational failures. Most of these works however

focused on specific application needs and thus provided piecemeal solutions. Little work has been

done in addressing how to build reliable networked computing system out of unreliable

computation nodes. As a result there is no comprehensive solution for providing a wide range of

fault-tolerant services in a single networked environment. The most feasible way of understanding

how such a software environment would fit on top of existing layers (like the operating system,

the network interfaces, etc.) is to implement the infrastructure for providing a range of reliable

services. So it has been attempted to integrate a wide variety of existing strategies into a single

environment on top of the hardware and software of heterogeneous workstations on a LAN. A

prototype implementation of the envisioned approach is expected to provide useful insights into

its feasibility.

This paper introduces and describes Chameleon, a software infrastructure capable of providing

configurable (i.e., according to user specification) levels of fault tolerance in a networked

computing environment. Methods and techniques supported by Chameleon are embodied in a set

of specialized, reliable and intelligent Agents supported by a Fault Tolerance Manager (FTM) and

its Surrogates to ensure that applications execute with the required levels of reliability. The

components have been so designed that none of them is a single point of failure. Each of the

components is active for a certain period e.g., during setting up the system configuration. In the

case of a component failure during its active phase there is a provision for recovery, either by

switching to backup or by regenerating the component. The broad goals of Chameleon are stated

below:

• Dynamic handling of changing failure criticality requirements: certain segments of the

application may be deemed more critical than others. The FTM is capable of recognizing such

demarcations and executing different segments using different configurations tuned to provide

required reliability levels.

• Adaptability to user-directed availability levels: the FTM, through the Agents and the available

libraries of fault detection and recovery mechanisms, determines the user availability

requirements and executes the application in the user-directed mode. Thus, unlike most

2

existing implementations, it can adapt to user availability requirements with just the amount of

overhead required for supporting the particular level.

• Rapid error detection and recovery: Chameleon supports failure detection at three different

levels:

Application or process monitoring. The application executing at a remote host is

monitored locally by the agents residing at the remote host. A misbehaving application

raises an offending signal which is captured by the corresponding agent. Thus the

detection is not tied up with the FTM.

Agent monitoring. The agents are also monitored locally, by the Host Daemons residing

on every host. The monitoring is through exceptions as well as i_am_alive messages.

Node monitoring. Whether a particular computation node is up or down is monitored by

the FTM through periodic heartbeat messages. The heartbeat scheme could be extended to

include nodes sending out signatures containing information about the status of the

various components, which would then be tallied at the FTM.

• Providing reliability with unreliable hardware and software components : Chameleon does not

pre-suppose any special reliable platforms for execution or any specialized software. The

computation nodes are mainly regular workstations or personal computers. All nodes are

expected to have pre-installed C++ compiler and interpreter for a scripting language such as

TCL. The Fault Tolerance Manager needs to run with a high degree of reliability (e.g., in a

primary/backup mode). This would make the cost of maintaining the FTM high, but it would

be distributed among all the end-users. This approach seems to be much cheaper and more

efficient than to provide a separate fault-tolerant machine to individual user. The point to be

stressed is that Chameleon uses components off the shelf. Thus there is no specialized

hardware requirements for the user machines, nor any thick pre-installed software layer. This

makes for cost effective services.

• Scaleable services : Chameleon provides a unified framework for allowing the system to scale

in two major dimensions:

3

Physical scalability - the system structure is based on a high-speed network such as

Myrinet or ServerNet. In this environment adding new computation nodes will improve

the system performance (because of high bandwidth of the underlying network) while

communication overheads will grow slowly with system size.

Fault tolerance scalability - Chameleon provides a general procedure for creating agents

and extending functions of already existing agents. The FTM utilizes this procedure to

generate agents for supporting the application dependent fault tolerance strategy. To

support this approach, two basic libraries are provided: (1) library o f building blocks and

(2) library o f agents. The building blocks are used in agent creation. The user is also

allowed to develop his own basic building blocks which can be incorporated in an agent

created by FTM.

2 Related Research

There are examples of highly fault-tolerant, distributed systems which have demonstrated that

there are efficient solutions for providing highly reliable computations. For example, Tandem

architecture groups servers (processing nodes) into failure masking server pair group, in Stratus

architecture all components (e.g., CPU, I/O, communication controller) are implemented by

paired microprocessors that execute identical instmction streams and continuously compare the

results. These are, however, dedicated fault-tolerant architectures oriented to specific applications

and offering static level of fault tolerance. In the common networked systems, the computation

nodes are usually not fault-tolerant machines or have very little to support highly reliable services.

The question to be asked is how to achieve high reliability with unreliable components?

To be cost effective and operationally efficient, a promising solution is to use a specialized

software layer for organizing the system components into a reliable computation environment. By

adding a dedicated software layer capable of providing predictable, fault-tolerant behavior,

reliability of the overall system can be significantly improved. Current approaches to reliable

distributed computing are mainly based on exploiting distributed groups of cooperating processes.

There is a number of studies that address various aspects of this paradigm e.g., process

synchronization, jobs distribution, fault tolerance strategies, e.g., [1], [3]. These studies result in a

4

number of tools to support the construction of reliable services, e.g., Isis [2], Totem [5], Delta-4

[7], Horns [8].

Most of these approaches require specialized and complex software layer which must be installed

in each computation node. For example, they heavily rely on underlying protocols for supporting

group membership and atomic broadcast. As a primary objective of developing these systems is to

provide a software environment for constructing distributed applications, the service availability

issue is not often of a primary concern. Consequently, there is no dedicated mechanism for error

detection and the fault tolerance is somewhat of “a side effect” of the use of the group

communication approach. The system usually relies on the error detection based on capturing the

time-out in a response from one of the processes in the group. When the time-out is encountered,

the group must reach a consensus as to which process failed and should be excluded from the

group. Then, the process next in the hierarchy takes over.

Recently, the Piranha system presented in [4] is an attempt to address the issue of service

availability in the execution of a distributed application. Piranha is a CORBA-based tool for

attaining high availability in distributed systems. CORBA, a Common Object Request Broker

Architecture is widely used distributed standard which provides interoperability between

applications on different machines in heterogeneous distributed environments and interconnects

multiple object systems [6]. CORBA does not address issues of availability and reliability and

cannot consistently detect partial failures in distributed applications. Piranha exploits the dynamic

replication of objects for achieving high availability. However, the necessary software layer is

thick as Piranha runs on Electra, a CORBA Object Request Broker supporting the object group

abstraction, reliable multicast, state transfer, and virtual synchrony. In addition Electra is built on

the top of group communication subsystems such as Isis and Horus.

3 Chameleon Infrastructure - Overview

Chameleon (see Figure 1) provides an adaptive infrastructure which allows different levels of

availability requirements to be simultaneously supported in a single, heterogeneous clustered

environment. Fundamental components which constitute the Chameleon include: (1) Fault

Tolerance Manager (FTM) acting as an independent and intelligent entity capable of identifying

5

and establishing the required fault tolerance strategy for executing the user application, (2)

Reliable, Mobile and Intelligent Agents capable of migrating through the network and operating

autonomously on behalf of the FTM according to built-in specifications and instructions, (3)

Surrogate Manager operating as a pseudo-manager for one particular application and capable of

interacting with the user and supporting proper communications with the agents which monitor

the application execution on remote hosts, (4) Host Daemons residing on each host and

responsible for handshaking with the agents and monitoring the agents’ behavior, and (5)

Software Libraries providing basic building blocks to create or re-engineer agents. The idea is

that a failure of none of these individual entities shpuld compromise the whole system.

In the initialization phase, the FTM collects information about the system configuration and

characteristics of individual nodes. Initialization agents are sent to hosts to obtain this data and to

install the host daemons on participating machines. After successful initialization, Chameleon is

ready for accepting the user requests. When a request arrives, the FTM designates a query agent

to acquire the necessary information on the application specifics such as the required availability

level, needed system resources, types of results etc. Based on the collected information on the

application, the FTM can identify the necessary fault tolerance strategy and can designate set of

agents to initiate and monitor the application. Creation of agents is performed according to a

predefined procedure which utilizes two software libraries: (1) library of building blocks and (2)

library of agents. The FTM may create new agents from the basic building blocks or may re

engineer already existing agents to extend their functions.

Agents designated to support the application execution migrate through the network to the

selected nodes, install themselves on the machines and initiate the application execution. In

addition, a Surrogate Manager is spawned by the FTM and associated with each application. The

Surrogate Manager can be allocated on any machine in the network (including the node running

the FTM). It maintains copy of the system information supported by the FTM, provides reliable

communications with the user and supervises the agents which monitor the application execution

on the remote hosts.

To ensure a rapid reaction to the application failures, the application is watched by the agent

which installed the application at the remote host and started execution. The agent communicates

6

to the appropriate Surrogate Manager detectable application misbehavior. As the agent itself may

fail, it is watched by the host daemon which is capable of notifying the Surrogate Manager about

agent failures. The Surrogate Manager can re-generate a new agent either to complete or to

restart the application. Agents and Surrogate Managers once generated can act autonomously and

the FTM is free to serve other user requests. As the Surrogate Managers are capable of

performing the basic functions of the FTM, the application may complete even in presence of

FTM failure. Errors and failures of the Surrogate Manager are directly reported to the FTM by

the local Host Daemon monitoring the Surrogate Manager. The FTM, then re-initializes the

application execution just as it would handle a new request. In order to detect node failures the

FTM uses heartbeat messages which are sent with a predefined frequency. In the case of a node

failure the application(s) executed on the node are migrated to other available nodes. To operate

reliably, the FTM must be resilient to errors. The possible solution is to support a passive backup

FTM which supports the system information and is updated each time the system state changes

(typically when a new application is admitted to the environment or when an application exits

from the environment).

The Chameleon implementation does not use a specialized language framework. Rather it is based

on widely available scripting languages, such as TCL and high level programming languages such

as C++. The aim is to provide a relatively thin software layer which must be present in each

machine in the environment. The implementation of Chameleon is not based around CORBA, the

Object Management Group's standard for building distributed systems with the design goals of

heterogeneity, interoperability and extensibility. The motivations behind this design choice were

multiple. To build Chameleon around CORBA would necessitate a full CORBA implementation

around all the nodes in the system. The CORBA software would include an ORB with its name

registry, support of IDL (Interface Definition Language) stubbers, etc. While increasingly vendors

are providing applications conforming to CORBA specifications, still the vast majority of the

existing applications were not built around CORBA objects. For instance, Piranha [4] requires a

highly sophisticated CORBA ORB implementation capable of supporting object groups and

failure detection. Hence in an environment like Chameleon which addresses availability needs in a

general system of networked workstations (as opposed to specialized systems built with CORBA

objects, for example), it was not considered desirable to impose the overhead of CORBA object

4

T

handling. The cost of CORBA standardization is paid in the form of performance degradation

because of intermediate layers of interfaces that an application must go through. This conflicts

with our other design goal of high speed error detection and recovery. The important point

however is that we do not preclude the use of CORBA in future versions (or alternate versions

whose goal may be slightly different eg. to support CORBA applications only). We can port some

of the CORBA layer along with the Host Daemons and the nodes would then be able to support

CORBA applications. The ORB can be a centralized one residing on the dedicated FTM machine.

The operative word is to support user-defined levels of availability without the burden of

specialized software for prior installation at the user nodes. However we do not rule out CORBA

extensions to the project in the future.

The key features of Chameleon can be stated as follows:

• Chameleon is the first infrastructure which explicitly addresses the dynamic adaptation to the

user required availability level in a heterogeneous, multi-node system

• Chameleon, by employing Reliable Agents and Surrogate Managers, maximizes the chances of

the application to complete even if an entity of the infrastructure fails

• Chameleon does not require thick software layer to be maintained by each computation node

Figure 1: Reliable, Networked Computing Environment

8

4 Components of the System

This section presents a detailed description of components of the Chameleon. Basic functions,
t

operational modes and component interactions are identified and characterized.

4.1 Fault Tolerance Manager (FTM)

The Fault Tolerance Manager is an intelligent, independent, active entity which operates in the

networked environment with the task of providing continuous execution of the user request

despite errors. The FTM is built as a reliable unit operating on a dedicated server. The decision

mechanism at the FTM is responsible for identifying the configuration to execute the user

application (e.g. single machine with recovery), determining machines to be used for the chosen

configuration and finally setting up the environment for the particular mode of execution. The

primary functions of the FTM can be summarized as follows:

• mapping the network, i.e., identification of the network configuration and collecting

information about the nodes in the system. The data about the nodes are collected in the

designated data structure which is updated when the nodes join or depart the network.

• invoking a daemon process on each node in the network for supporting node’s communication

with FTM

• collecting application specifications from the user

• determining fault tolerance strategies for providing the application required availability level.

The decision procedure is based on the application requirements and a data on prior history of

failures and uses software libraries on error/failure detection and recovery techniques to

compose final fault tolerance strategy.

9

• generating a set of Agents and an associated Surrogate Manager for supporting the

application execution according to earlier determined fault tolerance strategy

Figure 2: Data Structures for Maintaining System Information

In order to support these functions, the FTM utilizes and maintains information about the system.

Three tables are used to support system specific information: (1) system configuration table

which contains information regarding the various hosts which are participating in the environment

and (2) runtime application table which contains information related to the various applications

which are currently active in the environment, and (3) application specification table which

contains information on the user application. The basic data structures used to keep the

information are given in Figure 2.

Network mapping and host daemons initialization

The network mapping and the host daemons initialization is accomplished using initialization

agents - init_agent(). Figure 3 presents the general structure of the initialization agent. It is

assumed that functions in the agent body, e.g., get_sys_inf o () are already implemented and

exist in one of the software libraries supported by the FTM (software libraries are presented in the

further sections).

10

init_agent (destination_host) {
config_info systemTable;
get_sys_info(systemTable);
init_sys_daemon();
go_back_to_FTM();
put_info(systera_config_table);
}

get_sys_inf o (systemTable) {
systemO; // obtaining the system
specific info
systemTable->machine_name = name;
systemTable->net_address = addr;
systemTable->architecture = arch;
systemTable->0S = SUN
systemTable-»memory = mem_size;
}

init_watchdog() {
if (monitor_notification) {

watch_agent(agent_id);
if (agent_terminated) {
not i fy_FTM(agent, OK);

}
else if (agent_failure) {
notify_FTM(agent, failure)

}

}

Figure 3: Basic Structure of the Initialization Agent

The initialization agent is responsible for setting up the system with the participating hosts.

Whenever a host is plugged into the network, this agent is invoked and it executes steps necessary

for the host to be recognizable by the FTM. The agent also sets up the Host Daemon

(init_sys_daemon ()), to handle communication with the FTM. A host on being plugged into

the network needs to have an interface (e.g., a TCP configured port) capable of accepting the

initialization agent from the FTM. The initialization agent queries for system parameters from the

hosts (get_sys_inf o ()) such as the memory availability, the native operating system, and fills up

the information in the system configuration table at the FTM

(put_info (system_conf ig_table)). This data structure is later used by the FTM for issuing

system specific commands at the remote host as well as determining the availability of required

resources for running a particular application at the machine.

11

Communication with the user
The input to the system are the user’s requirements gather by the specialized query agent -

user_query_agent () (see Figure 4). The information is specified in a predefined format given by

the app.spec data structure (see Figure 2). The meaning of fields available in the format is

discussed below.

user_query_agent (usar_host) {
appl_info appllnfo;
appl_spec applSpec;

get_appl_info(appllnfo);
get_user_spec(applSpec);
go_back_to_FTM();
put_info(runtime_table);
put_info(applSpec_table);

}

Figure 4: Basic Structure of the User Query Agent

Scope o f the specifications(spec Scope) - determines parts of the application which must be

executed with different availability levels. This parameter can take two values: entire_appl and

partial_appl. In the latter case, the user must provide explicit demarkation to identify individual

segments of the application corresponding to the specified level(s) of reliability.

Required reliability level(reliability) - specified as an integer starting from 1 (for the lowest

reliability level) up to n. The predefined fault tolerance strategies are described in Section 4.2.

Results o f interest (results)- specified as variables of interest at the end of the execution of the

application or as the output file into which the results of the application are saved.

System resources required (resources) - specified as an amount of runtime memory required.

Other applications required resources might include ghostscript, gnuplot for example.

Number o f machines (#machines) - determined as a number of machines on which copies of the

application are to be executed.

Voting strategy (vote) - specified as n_of_m, i.e., n among m machines must agree for application

to succeed (this also includes “no_voting” strategy).

12

Agreement criterion (agree) - specified as an exact match or match in a range of values defined in

terms of absolute value or percentage variation from mean.

Application time-out (timeOut) - an upper bound on the execution time of the application

provided by the user. If the application does not terminate within this period, it is taken to have

failed.

Identification of Fault Tolerance Strategy

The FTM determines the required fault tolerance strategy based on the data collected during

communication with the user. In order to facilitate this decision, the FTM utilizes the three system

tables (systemjconfig_table[], runtimeJable[], applSpec_table[]). The general procedure in

selecting/identifying a required fault tolerance strategy is presented in Figure 5.

First, the FTM calls FT_strategy to identify whether the fixed level of availability is specified for

the whole application. If so, the FTM calls FTjconfig to find which fault tolerance strategy to

use. If the user specifies application regions with varying availability levels, the FTM calls

instrument_appl() to identify the criticality levels, collects the data in a table and calls FT_config

for determining appropriate fault tolerance strategies. The FTjconfig allows to distinguish among

predefined strategies as well as the user might define his own approach(es). Functions

single_machine_nr(), single jmachine_r(), dual_exec(), tmr_exec() are used (by FTjconfig) to set

up default fault tolerance strategies, single machine execution without recovery, single machine

execution with recovery, duplicated execution, triple modular redundancy, respectively. The latter

option in the FTjconfig is for supporting user specified strategy which can be incorporated into

an agent. Each of these functions support a procedure for creating the necessary set of agents and

surrogate manager capable of supporting the application execution.

13

Examples of agent creations and characterizations of different fault tolerance strategies are given

in the next section.

FT_strategy(*applSpec_table) {
if (specScope == entire_appl) {

FT_config();
}
else {

instruraent_appl (appl_name) ;
FT_config();

}
}

FT_coafig (*applSpec_table, userid){
switch (reliability) {
case(1) {
single_machine_nr();

}
case(2) {

single_machine_r();
}
case (3) {

dual_exec();
}
case (4) {

tmr_exec();
}
default {

user_define();
}

user_define(*applSpec_table) {
if (#machines == n) {
if (voting == kOFn) {

if (agree == EXACT) {
voter(k, n, EXACT);

}
else if (agree == INEXACT) {

voter(k, n, agreeRange);
}
else {

userVoteFunc();
}

else {
userVoteStrategy(ml, m2,..., mn) ;

}
}
else {

error(unidentified_strategy);
}

Figure 5: Procedure for Identifying the Fault Tolerance Strategy

4.2 Reliable Agents

The Agents are seen as a failure resilient carriers of information/stimulus to/from the Fault

Tolerance Manager. They are designated by the FTM to perform the actions/operations needed

for successful completion of the application in the designated mode. An agent is expected to be

sufficiently intelligent to execute specified functions in an autonomous fashion. This is to prevent

overload the FTM with too many tasks, which could reduce the FTM performance and thus

decrease the utility of the environment. The primary characteristics of agents are: (1) mobility, (2)

reliability, and (3) scalability (see Figure 6).

14

Figure 6: Primary Characteristics of Agents

Mobility. Agents migrate through a computer network in order to accomplish actions specified

by the FTM. Well-known communication protocols like TCP/IP may be used to support the

mobility.

Reliability. Agents are resilient to the network or node failures. To achieve this, the agent code in

the already existing libraries is tested rigorously against erroneous execution. It is also important

to ensure that failure in the agent does not cause a crash of the application which it was in charge

of executing or that the agent crash does not propagate out of the node. To meet this

requirement, agents are watched by host daemons (the host daemon is notified which agent it will

have to monitor for possible crash by the micro-operation monitorQ) and if an agent fails, the

daemon notifies the Surrogate Manager or the FTM (in the case of the Surrogate Manager

failure). The agent is protected from the network corruption by guarding it with check sum.

Scalability. Agents are easy to create or re-engineer using elementary blocks or already existing

agents. The Chameleon provides a unified, general framework for creating new agents or

extending functions of already existing agents. Consequently, the user can actively participate in

developing agents, e.g., the user might provide an application specific detection mechanism to be

incorporated into an agent. Two basic software libraries support this approach: (1) library of

building primitives, and (2) library of agents.

• Library o f building blocks contains micro- and macro-operations for supporting application

execution in the distributed environment. Agents can be created, modified, re-engineered

15

using these bubbles. An example bubble is notify (target_machine, execution_mode,

list_participating_machines). Section 3.4 provides more details on this library.

• Library o f agents contains hierarchically arranged already available agents which have the

flexibility of extension: (1) basic agents, (2) agents extended from basic agents using primitive

building blocks, (3) complex agents derived from the combination of existing agents, (4) user

defined agents from existing or user-defined building blocks.

Primary functions of Agents are characterized below.

Configuring the system according to the selected fault tolerance strategy. Once the FTM

decides to run an application in a particular mode, the set of agents and an associated surrogate

manager are invoked to set up the environment to support the selected execution mode e.g., triple

modular redundant execution. The agents and the surrogate manager take over from there. The

agents have the tasks of porting the application code or executable to the three machines,

executing them there, monitoring their status during execution (for example trap any

segmentation violation signals, etc.) and finally returning the results to the surrogate manager.

Predefined example configurations include:

Single machine with no recovery : in this most unreliable mode of execution, the user application

is run on a single machine with no recovery information being maintained.

Single machine with recovery, in this mode the application is run on a single machine but

provision is made for recovery if the application terminates abnormally. For example,

checkpointing information is kept and in case of crash, if a homogeneous machine is available the

code is re-executed from the checkpoint. If a homogeneous machine is not available, then the

application is ported to another machine, recompiled and restarted.

Dual execution: the application is executed concurrently on two machines, (a primary and a

secondary). An agent resides at each machine and monitors the application. In a simple

operational mode, if the primary terminates normally, its result is taken and the secondary process

and agent are killed. If the primary fails, the result from the secondary is accepted. In the case of

double failure the application is taken as having failed. In another possible operational mode the

16

results from the two executions are compared to produce final output from the application

execution. In the case of any discrepancy between the two outputs, a failure is signaled.

Triple modular redundancy (TMR): This mode corresponds to the highest reliability

requirements. The application is run on three machines and their results are voted on based on the

simple majority principle. The voting is performed by the Surrogate Manager.

Monitoring the system. Chameleon supports three levels of system monitoring: (1) application

monitoring, (2) agent monitoring and (3) node monitoring. The agents are responsible for

monitoring the application execution and notifying the associated Surrogate Manager on a

detected error. The software library available with the FTM provides series of detection

mechanisms implemented as a macro-operations and used for building agents. Example detection

mechanisms include:

Heartbeat: The FTM sends out heartbeats at regular intervals to ascertain whether a particular

node is up or down. The heartbeat interval should be carefully chosen as too high a frequency can

flood the system and too low a frequency can lead to imprecise monitoring. On receiving a

heartbeat query from the FTM, the host responds to let it know its status. An alternative to this

simple heartbeat scheme would be for the host to send out a signature message which is tallied at

the FTM.

Application time out: The user can specify an upper bound on the time to completion of his

application when he submits it. When the Surrogate Manager does not get notification of

completion of the application from the agent in charge of monitoring it, it concludes that the

application has failed.

System panic: The agent monitoring an application at a remote site can detect a system panic or a

signal indicating a misbehaving application, trap the signal and notify the FTM or Surrogate

Manager.

Voter: When an application is executed in the TMR mode, then a conflict in the voting results can

point to an error in the application.

Restoring the application. In the case of an error in application execution or a node failure,

Chameleon is capable of restoring the application on the same machine or other available

17

machines. The software library with FTM provides set of recovery mechanisms implemented as

macro-operations for restoring the application. Example recovery mechanisms include:

Process Migration: In the case of node failure the application must be migrated to another node.

FTM or Surrogate Manager designate a new machine to run the application and restart (via an

agent) the execution. The process migration between homogeneous nodes utilizes checkpointing

and rollback and process migration between heterogeneous nodes is based on restarting the

application after recompilation.

Checkpointing: Homogeneous checkpointing is supported in the system. This allows a rapid

process recovery by not necessitating recompilation and re-execution from the beginning of the

process. Heterogeneous checkpointing is considered as a valuable option, however, support of

checkpoints on different platforms characterize large complexity, particularly when a checkpoint

requires storing the entire system state which has different representations on different platforms.

4.3 Surrogate Manager

A Surrogate Manager is spawned by the FTM after the required fault tolerance configuration has

been determined. It is created using procedure similar to the one employed for creating agents.

Each Surrogate Manager is associated with an application (or for simple applications, several of

them can also share the same Surrogate Manager). The Surrogate Manager can be seen as a

“super agent” or “pseudo-manager”. It is capable of acting as a regular agent e.g., it can travel

through the network to the designated nodes, it is recognized and monitored by the host daemon.

At the same time, it is capable of operating as a manager i.e., it supervises agents which are

designated to control the application, it can re-generate agents which failed during the operation.

To facilitate autonomous and independent operation of the Surrogate Manager, a portion of the

system information maintained by the FTM is also kept with the Surrogate Manager is located. By

this means, the application can survive even in the case of FTM failure. The system information

which must be available to the Surrogate Manager include: full specification of the application and

access to the software libraries used to create or re-engineer the agents. It is worth noting that

Surrogate Manager can be allocated on the same machine as the one on which the FTM is

running. An example of the Surrogate Manager and its role in the application execution scenario

is presented in section 5.

18

4.4 Software Library

The Software Library contains basic building blocks/objects for implementing a variety of agents.

Two basic classes of objects are distinguished: (1) micro-objects which represent elementary

actions and (2) macro-objects which provide a full implementation of more complex mechanisms.

An example of the first category is the notifyO function which provides a mechanism used by

agents for notifying about various events that happen in the system. Macro-operations basically

provide implementations of various detection and recovery techniques. The predefined

mechanisms for error detection and recovery are implemented and collected in the library as

macro-operations e.g., different voting algorithms. The library is an open entity and can be

extended with new components. The user is allowed to actively participate in developing new

strategies which can then be included to the library and used for creating agents (however the

scope is restricted to that user’s applications only). An example is a customized acceptance test

suited for checking the correctness of computation results.

4.5 Host Daemon

The host daemons are entities at each of the hosts that are responsible for handling

communication with the FTM or the Surrogate Manager via the agents. The daemon processes

accept the agents and interact with them to accomplish their task. The daemon processes have

intelligence to recognize the type of agent being sent over and have a well-defined handshaking

protocol for communicating with each of the agents. The daemon process is also capable of

monitoring Agents and Surrogate Managers behavior. When the host daemon detects a

malfunctioning of the agent it notifies the Surrogate Manager. An error encountered in the

Surrogate Manager is communicated directly to the FTM. The FTM then sends over clones of the

Agents and/or the Surrogate Manager to the particular host which complete the execution of the

application in the desired mode.

5 Creation of Agents & Surrogate Managers- example scenarios
The FTM utilizes software libraries to compose Agents and Surrogate Manager for satisfying

application requirements. The FTM gathers the user requirements (through the user query agent)

and then checks in the agent library to see if an agent or surrogate manager with the required

functions is available. If it is, the FTM invokes the appropriate component otherwise it creates the

19

agent or the surrogate manager either from scratch or by specializing an already existing

component. Examples of both methods are presented below. Example 1 presents a method of

constructing agents and the surrogate monitor from scratch and Example 2 demonstrates creation

of the surrogate monitor by specializing an already existing component.

Example 1.

Lets assume that the user wants to execute the application my_app.c in the centralized duplicated

mode with the fail-safe failure semantic. By centralized we mean that the results from the two

machines will be gathered and voted upon at the Surrogate Manager. Fail-safe failure semantic

implies that if the results of the primary and the secondary are in conflict the application is taken

to have failed. The user specifies that the results of the application are stored in a file called

output. The FTM after taking the user specs decides on two machines, say x and y, to run the

application and generates the following two agents and a single Surrogate Manager from the

building blocks. In this case all the basic building blocks are already existing in library.

Surrogate Manager#!

The Surrogate Manager can reside in any node in the network including the node which is running

the FTM. This entity does the work of setting up two hosts to take part in the duplicated

execution mode, notify the two host daemons to monitor the relevant agents, sends the

application code to the two machines, then waits for the results to be brought back from the two

hosts and finally compares the two results for passing back the final result of the application (or

error status) to the user. The pseudo-code of the Surrogate Manager is shown in Figure 7.

20

notify(me x,dup,me y); (1)notify(me y,dup,me x); (2)install(me x,agent#l); (3)install(me y ,agent#2); (4)monitor(me x,agent#l); (5)monitor(me y ,agent#2); (6)wait(agent#l,request_to_send_code) (7)wait(agent#2,request_to_send_code) (8)sand(my_app.c,me x,src); (9)sand(my_app.c,me y,src); (10)wait(response_from_agent#l); (11)wait(response_from_agent#2); (12)if (raad_failura(agent#l,errnol) II raad_failura(agent#2,errno2))
notify_FTM_failura(surrogateti,errnol||errno2) (13)alsa
{ // Both hosts executed application correctly
a = gat_rasult(agenttl); (14)b = gat_result(agent#2); (15)final_result = vota(a,b,2,2,EXACT);
if (final_result == NULL) (16)

notify_FTM_failura{surrogate #1,NO_AGREEMENT); (17)alsa
notify_USER(surrogate #1,final result);

} (18)

Figure 7: A Surrogate Manager#! - pseudo-code

Lines (1) & (2) notify the hosts x and y that they will be participating in duplicated execution

with each other. (3) & (4) install the agents #1 and #2 in hosts x andy. (5) & (6) instruct the host

daemons at machines x and y to monitor the agents #1 & #2. (7) & (8) wait for the agents #1 and

#2 to request to send the application code from x and y, respectively. (9) & (10) send the

application code my_app.c to the two hosts. The src in the parameter tells the daemons that it is

a source file that is being sent over that needs to be compiled and then executed. (11) & (12) wait

for responses from agents #1 and #2 from x and y, respectively, either about correct termination

or an error flag detected during execution. If either of the agents flags an error, in (13) FTM is

notified of the failed execution along with the error code. If both hosts ran the application

succesfiilly, in (14) & (15) the result is collected from the two machines. In (16) the voter is

invoked with the two results and specifying that a 2 out of 2 exact agreement is required for the

voter to succeed. If the voter fails, NULL value is returned. In that case (17) i.e., the two

executions returned different values, the FTM is notified of the failure. Otherwise, (18), the final

result agreed upon by both machines is communicated to the user.

21

Agent#1

The agent#l is sent over to the host daemon on machine jc where it will monitor the running of

the application that will be sent over there by Surrogate Manager. This agent will detect faults if

any during the running of the application and will notify the Surrogate Manager. If the application

terminates normally, the agent sends the result back to Surrogate Manager. The pseudo-code of

the agent# 1 is shown in Figure 8.

s«nd(surrogate#l/request_to_send_code,my_app.c) ; (1)instali(my_app. c) ; (2)
monitor(my_app.c); (3)
if (detect_error (my_app. c, e r m o) ! = 0)
notify_fsilura(surrogateti, ermo); (4)alsa
{ Il The application executed correctly
a = collact_rasult(output); (5)
ratura_result(surrogateti, a); (6)
terminate(monitor,agent#l); (7)

Figure 8: Agent#l - pseudo-code

Line (1) sends the request to the Surrogate Manager# 1 to send the source my_app.c. (2) installs

myjapp.c i.e., compiles the source and starts execution. (3) starts the monitoring function of the

agent. If an error is detected during execution of the application, the error number is returned in

e r r n o and Surrogate Manager#1 is notified about the failure. If the application terminated

normally, then the result is collected from file output, (5), returned to the Surrogate Manager#1,

(6), the watchdog process of the host daemon that was monitoring this agent is terminated, (7),

and finally the agent itself is terminated, (8).

Agent#2

The agent#2 agent is sent over to machine y. This agent does exactly the same functions as

agent# 1 but at machine y.

Example 2.

Let assume that the user specifies the application to be run on 3 machines and the voting strategy

to be followed is simple majority. The agents and the Surrogate Manager for this mode are built

by modifying already existing components.

22

Surrogate Manager#2

The pseudo-code Surrogate Manager#2 is shown in Figure 9. A S u r r o g a te M anager#2 is

created by including new primitives to the S u r r o g a te M anager# 1 (introduce changes are

marked as a bold text)

noti£y(xnc x,trip,me y,mc z); (1)notify(mc y,trip,me x,mc z); (2)notify(mc z,trip,me x,mc y); (3)install(me x,agent#l); (4)install(me y,agent#2); (5)install(me z,agent#3); (6)monitor(mc x,agent#l); (7)monitor(me y,agent#2); (8)monitor(me z,agent#3); (9)wait(agent#l,request_to_send_code); (10)wait(agent#2,request_to_send_code); (11)wait(agent#3,request_to_send_code)j (12)send(my_app.c,me x ,sre); (13)send(my_app.c,me y ,src); (14)send(my_app.c,me z,sre); (15)wait(response_from_agent#l); (16)wait(response_from_agent#2); (17)
wait(response_£rom_agent#3); (18)
if((read_failure(agent#l,errnol) && read_£ailure(agent#2,errno2))

(read_failure(agent#2,errao2) && read_failure(agent#3,errno3))
(read_failure(agent#3,errno3) && read_£ailure(agent#1,erraol)))/* all this implying that at least two of the 3 have failed */notify_FTM_failure(surrogate#2, errnol | ermo2 || errno3); (19)else

{ // The application terminates
a = get_result(agent#l);

normally
(20)b = get_result(agent#2); (21)c = get_result(agent#3); (22)final_result » vote(a,b,c,2,3,EXACT); (23)if (final_result == NULL)

notify_FTM_failure(surrogate#2,NO_AGREEMENT); (24)
else

notify_USER(surrogate#2,final result); (25)
}

Figure 9: A Surrogate M anager#2 - pseudo-code
Agents#l-3

The agents# 1-3 will execute the code in each of the three machines (in the current configuration,

x, y and z). The code for each of these agents is the same as that of the agent#1.

6 Prototype System Implementation

To demonstrate the capabilities of Chameleon, the prototype of the environment with the

envisaged structure and a subset of the agent library has been implemented around four machines

connected to the high-speed Myrinet LAN. The small network used consists of two Sun

23

workstations running Solaris OS and two Intel PCs running Linux and connected via a Myrinet

switch. One of the machines in the network has been dedicated for running FTM.

Figure 10 and Figure 11 illustrate a complete execution scenario of the user application in the

Chameleon environment. Figure 10 gives the existing testbed configuration. Once the

environment is activated, the system initialization agent is invoked by the FTM which creates the

configuration table. The FTM also invokes the heartbeat agent with a default granularity of a

fixed time interval and installs the host daemons on the 3 hosts in the network. This setup is

shown in Figure 1 l(ii).

Figure ll(iii) shows the user communication with the FTM when he submits an application for

execution. The application source is brought to the FTM which decides on the application

execution mode. The Figure ll(iv) shows the decisions taken by the FTM and the generation of

the requisite agents for setting-up the desired execution mode. In the example, the FTM decides

on a duplicated execution mode in the fail-safe (ie. both primary and secondary must agree for

success) and centralized (ie. voting done at the FTM, contrary to agent at primary collecting the

results and deciding) mode. Two agents (agent# 1-2) and the Surrogate Monitor are invoked. In

this implementation, the Surrogate Manager is located on the same node as FTM (Sun

Workstation - “dusek”). Since all the agents are already existing in the library, the FTM does not

need to build up or reengineer any existing agent. The agents are installed at the appropriate

machines (Intel PC - “intel2” and Sun Workstation - “mahler” on Figure 11 (iv)), the application

code is taken over to the two machines participating in the duplicated execution mode and

execution is started.

The agents monitor the application while the host daemons monitor the agents. This scenario is

shown in Figure ll(v). Figure 11 (vi) shows the case when the application terminates normally.

The results are brought back to the Surrogate Monitor, where it is voted upon and the finally

output is communicated to the user. Figure 1 l(vii) demonstrates the case when the program has

an abnormal termination on one of the machines (intel2) and returns an error code. Since the

decided mode was fail-safe the application is deemed to have failed and user is notified

accordingly. The described scenario demonstrates already implemented features of Chameleon.

24

Not all details are included (e.g., nodes communicate via TCP/IP protocol). The intention is to

demonstrate the overall concept and to show the feasibility of the proposed approach.

(i) T estbed configuration

Figure 10: The A pplication Execution in Chameleon Environm ent - The Environm ent

25

SvaanCmfiraraiim Tattle
Name - Address - Anil ¡lecture - OS - Physical Mem- VM
Intel! 1V2.I7J.30 586 Limn 48 MB 240 MB
!mel2 192.17.5.147 586 Limn 32 MB 240 MB
Mahler 19117.5.126 Sparc SunOS5.5 64 MB 263 MB

Runtime Application Tahta
User Application Surrogate Agents
bagchi my_app.c #1 #1, #2

Ana. rate comnkd
& cxeui ted by hail
dee mm

(ii) After initialization & heartbeat agent activation
(v) Program Execution and Monitoring
via Agents

3) Appi aide J

Myrinet
switch

SunUllifS-
(mahkx)

r .
586

(Intel 1) H«wt
|;*:n -.»

Hart
Dsetnor 586
||||||| (intel2)

User login: bagchi
Appl: “my_app.c"
Reliability level: 3
Result file: “my_app.

out”

(iii) User Communication & Query Agent

res, = rcs2
send(user,res,)

im -----------------
FTM

(dusek)

J Surrogate |
(Manager# l|

User
586

(inteU)C

(vi) Noimal Program Termination

(iv) Decision at FTM & Creation and Deployment of Agents
(for Duplicated Execution)

Figure 11: An Example Application Execution Scenario in Chameleon

26

7 Summary and Scope for Future Work

In the paper we have presented Chameleon, a flexible fabric for providing configurable fault-

tolerance levels for user applications in a heterogeneous networked environment. Chameleon

employs an unique master entity for coordinating application execution at the desired quality of

service (QoS) called the Fault Tolerance Manager (FTM). The FTM identifies the configuration

to execute the user application and designates reliable Agents and Surrogate Manager which

migrate through the network with the task to set up the environment for the particular execution

mode and to monitor the application execution. The environment is dynamic and adaptive to

varying criticality requirements from one application to another as well as within the same

application. It offers flexibility in employing detection and recovery techniques by allowing the

provided software libraries of elementary building blocks and agents to be incrementally upgraded

by both the Fault Tolerance Manager and the user.

As existing machine and network configurations need to support a broad range of applications

with different reliability requirements, environments like Chameleon would be powerful in

embedding such support in already existing systems. The environment has the added attraction of

being able to support a wide spectrum of heterogeneous platforms and networks. We believe that

the mobile agents provide a useful abstraction for migration of execution to remote platforms for

supporting the user's needs. At the same time the environment code is “thin” enough to be

integrated as a layer on top of existing operating systems.

The work on Chameleon is still in an initial phase. We have a prototype implementation with the

FTM, a limited set of agents and host daemons. Further work needs to be done on the process of

re-engineering of available agents to create new agents which will meet different user demands.

Substantial future work will be directed towards setting up the general agent framework to make

it more flexible to the application requirements. A graphical interface needs to be incorporated

into the environment which will enable the user to monitor his application as well as interact with

the FTM. The possibility of migrating the environment to different network protocols with

varying reliability levels depending on the application needs opens up a broad scope of future

work. Simultaneously with the actual implementation, work is also going on in simulating the

environment using the process based simulation environment, DEPEND.

27

ACKNOW LEDGM ENT

This research was supported by NASA under grant NAG 1-613, in cooperation with the Illinois

Computer Laboratory for Aerospace Systems and Software (ICLASS).

REFERENCES

[1] Birman K.P., ‘The Process Group Approach to Reliable Distributed Computing,”

Communications of the ACM, Vol.36, No. 12, 1993.

[2] Birman K.P., R. van Renesse, “Reliable Distributed Computing with the Isis Toolkit,” IEEE

Computer Society Press, Los Alamitos, California, 1994.

[3] Dolev D., D. Malki, ‘The Transis Approach to High Availability Cluster Communication,”

Communications of the ACM, Voi. 39, No. 4,1996.

[4] Maffeis S., “Piranha: A CORBA Tool for High Availability,” IEEE Computer, April 1997.

[5] Moser L.E., P.M.Melliar-Smith, D.A.Agarwal, R.K.Budhia, C.A.Lingley-Papadopoulos.

“Totem: A Fault-Tolerant Multicast Group Communication System,” Communications of

the ACM, Voi. 39, No. 4, 1996.

[6] Object Management Group. The Common Object Request Broker: Architecture and

Specification (CORBA), Inc. Publications, 1995. Revision 2.0.

[7] Powell D., ed., “Delta-4: A Generic Architecture for Dependable Distributed Cluster

Communication,” Springer-Verlag, Berlin and New York, 1991.

[8] van Renesse R., K.P. Birman, S. Maffeis, “Horns: A Flexible Group Communication

System,” Communications of the ACM, Voi. 39, No. 4, 1996.

28

