
November 2000

University of Illinois at Urbana-Champaign

A Smart Voting Subsystem for Distributed
Fault Tolerance

G. Rotondi and R. K. Iyer

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

UILU-ENG-00-2216
CRHC-00-05

SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPO RT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

Public caponing buroen for this collection of information is estimated to average 1 hour per response, including the time lor reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this
collection of information, «eluding suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3 . REPORT TYPE AND DATES COVERED

November 2000
4. TITLE AND SUBTITLE

A Smart V o t i n g S u b s y s t e m for D istributed
Fau l t T o l e r an ce ________________________________ _

5. FUNDING NUMBERS

6. AUTHOR(S)

G. Rotondi, R. K. Iyer

7. PERFORMING ORGANIZATION NAM ES (S) AND ADDRESS(ES)

C o o r d inated Sc i e n c e Laboratory
U n i v ersity of Illinois
1308 W. M a i n Street
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER
U I L U - E N G - 0 0 - 2 2 1 6

(CRHC-00-05)

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

A pproved for p u b lic release; d istribution unlim ited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Chameleon is an adaptive software infrastructure which allows different
levels of availability to be supported simultaneously in a networked
environment [KALB99]. In this paper, we present a smart voting architecture
designed to extend the Chameleon functionalities by a set of services aimed
at collecting and validating data across multiple replicas of the same
application. The voter topology presented here can be effectively employed
to provide an increased security to the environment itself, because it
supports the replicated execution of ARMOR objects. Our original approach
is in the introduction of an asymmetric signature generation to
efficiently validate data coming from the system periphery.

14. SUBJECT TERMS

s m a rt v o t i n g , d i s t r i b u t e d f a u l t t o le r a n c e

15. NUMBER IF PAGES

________ ________
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE OF ABSTRACT

U N C L A S S IF IE D U N C L A SSIF IE D U N C L A S S IF IE D U L
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. <39-18

TABLE OF CONTENTS

Abstract
Chameleon is an adaptive software infrastructure developed at the Center for
Reliable and High Performance Computing of University of Illinois, which
allows different levels of availability to be supported simultaneously in a
networked environment [KALB99]. In this paper we present a smart voting
architecture designed to extend the Chameleon functionalities by a set of
services aimed to collect and validate data across multiple replicas of the same
application. The voter topology presented here can be effectively employed to
provide an increased security to the enviroment itself, because it supports the
replicated execution of ARMOR objects. Our original approach stands in the
introduction of an asymmetric signature generation to efficiently validate data
coming from the system periphery.

Foreword

Introduction

• Application Interface

IO interface extension
Interface stubs and IO ARMOR topology

• Voting Design
Safety Block interface
Reliable ARMOR topology

• Message Dispatching System

Extension to the message pump for
dynamic messages

Conclusions

References

Chameleon is property of the Board of Trustees of the University of Illinois.
Any question about licesing should be directed to dennison@crhc.uiuc.edu

2

mailto:dennison@crhc.uiuc.edu

Foreword

The study of fault tolerant computing takes the origins from the past as a separate
assessed discipline from the aerospace industry: the first book on the subject dates
1965 [PIER65]; from these pionieristic age, the research has proposed various
models and techniques to validate and successfully design fault-tolerant systems
focusing on their behavior in presence of malfunctioning induced by hardware
components; in order to provide continuation of service or fail-safe operation such
techniques try to indentify the origin of faults and the palliative operation to
guarantee the design specifications [JOHN89].

As the research has progressed in defining new fault tolerant topologies, the
reliability of components has improved over the years leaving even less
responsibility to the hardware design, because most of the causes of a system
malfunctioning may arise from a software problem, which is of different orders of
magnitude more complex than hardware and thence very difficult to validate with
formal methods [RAND75]. The problem emerged as a consequence of a common
trend to replace hardware functionalities by firmware [0SB078] started in 1971 with
the introduction of the first general purpose microprocessor chip [ASPR97]: most of
nowadays control systems performing critical operations rely their functionality on
the massive usage of embedded software [BRIE93 ESCH97 LION96 VOAS97a
YEH97].

Although what is or is not a "critical system" is often debated, a critical software
system is simply a system, where failure, denial of service and so forth could have
expensive consequences, such as loss of life, a loss of business, lost property or
financial interests [VOAS98b].

The result is that the traditional definition of "fault-tolerance", typical of electrical
and computer engineering, which refers to building subsystems from redundant
components, is inappropriate when applied to systems performing most of their
functionalities in software. Many authoritative fonts have pointed out that software
errors are consequence of a lack in specifications [S IW I98]: indeed, considering
negligible the occorrence of errors in the "manufacturing" process, the software is
subject only to design errors, or to misunderstandings of such formal specifications;
consequently, more than 50 statistical models have been developed for the
estimation of software reliability over the past 20 years [PHAM 95], but
comparatively a very little contribution has been given in the techniques for
achieving software fault tolerance [LITT91].

The formalization of software fault tolerance is a matter of recent years [MARC94]: a
computer program is considered failure-tolerant, if and only if [VOAS97a]:

A Smart Voting Subsystem for Distributed Fault Tolerance 3

1. is able to compute an acceptable result, even if the program itself
suffers from incorrect logic;

2. whenever correct or incorrect, it is able to perform a safe computation,
even if the program itself receives corrupted or malicious data during
execution.

where the concept of safe computation reflects the incidental damages, which can
occur to the whole embedded system (hardware and software) as consequence of a
software failure.

The last frontier of the research on software dependability is to employ for design
commercial off-the-shelf components (COTS) in place of custom embedded systems,
with immediate benefits in terms of reduced developement times, availability and
maturity of many commercial tools and operating systems [Iyer, 1999 #238].

Although this last aspect of dependable software environments is still at an
embrional stage, we can distinguist three main guidelines followed over the years:

© Direct design of failure tolerant software [VOAS97c] running on the top of fault-
tolerant operating systems; such systems rely on specialized hardwares to provide a
dependable framework, which includes as native features replicated execution
[BORG89], reliable group communication, checkpointing and roll-back recovery.

© A separate fault tolerant engine, which implements in software the basic building
blocks to provide extra dependability to applications: the services are accessible in a
separate process or thread through an interface libray, which maps the calls a
proprietary API. These dependable libraries provide high-availability networking
services and supply algorithms to identify (and recover) from a dead node. Piranya is
a superset of the CORBA environment, which implements dependable
functionalities [MAFF97], while Wolfpack [MS97] is an extension of the Microsoft
NT Server cluster architecture. RAS is the clustering architecture proposed by Sun
Microsystems [SUN97].

(D A total networked environment, which provides fault tolerant services to the
application standing on the top, without mandatory request for running on
specialized hardware. In order to exibit a failure-tolerant behavior, some
environments require a slight modification of the application source code [CUKI98],
some others provide the fail-safe functionalities free of charge and at a price of less
flexibility, because they put strict requirements on the end-user application, they
implement a limited set of built-in redundant execution polices.

A Smart Voting Subsystem for Distributed Fault Tolerance 4

Chameleon [W HIS98] is a software infrastructure, that standing between the last
two solutions is aimed to integrate operating system features and to provide at
system level high prerequisites for failure tolerant execution. It is the research
response, like other experimental architectures [CUKI98], to commercial systems,
which still do not fit to networks with a large number of nodes.

A Smart Voting Subsystem for Distributed Fault Tolerance 5

Introduction

Chameleon is an adaptive software infrastructure, which allows different levels of
availability to be supported simultaneously in a networked environment; its
leitmotiv is to protect a distributed application running over a network by the
definition of additional fault tolerance polices, which cannot be covered by
conventional hardware fault tolerance techniques.

This paper describes our proposal for an adaptive voting system, which integrates
other recovery strategies still existing in Chameleon by providing a set of services
aimed to collect and to match data produced by the ARMOR architecture or available
externally from multiple replicas of a client application; our design involves three
main areas, which strictly depend one each other, as we will explain in this report:

1 - Application Program Interface (API)

2 - Smart voting system design & implementation

3 - Chameleon Messsage Dispatching

The Chameleon interface AP I has been extended with the intending to allow an easy
porting of existing applications written in ANSI C to assimilate the environment
fault tolerant layer with slight patches to the original source code; this objective
forced the creation of an interface following standard C library conventions and
using no special C++ features or inheritance, but function wrappers compliant to
ANSI C. These aspects are presented in the following section of this paper.

We observe that because this extension impacts only the interface API, it w ill not
prevent at a same future to expand the Chameleon ARM OR architecture with a C++
interface library from which safety requirements could be inherited as multiple
properties of basic building blocks; however, we feel that this is a long time goal,
which will be worth as applications will be designed having Chameleon as target
environment, i.e. making the application a resilient ARMOR of the environment.
Actually, our main concern is to set a flexible design philosophy for porting existing
sofware under Chameleon.

The central part of this paper covers the design issues of the smart voting system,
which is composed by a set of ARM OR elements, whose responsibility is to assemble
data from the periphery through the Fault Tolerance Manager (FTM) node, where
stands the centralized voter ARMOR. The communication among the various
objects, which make the voting subsystem is hierarchical and makes use of an
asymmetric signature generation to minimize the exchanged data-flow, which is
handled asynchronously with the outputs rising the application front-end.

A Smart Voting Subsystem for Distributed Fault Tolerance 6

Another important aspect described in the last section is related to Chameleon
message dispatching system: we introduced the concept of dynamic messages leaving
an addressing space available for their registration; such messages will exist for the
duration of specific services and will allow a very fast and reliable reconfiguration of
the environment releasing the overhead on some centralized managers.

A Smart Voting Subsystem for Distributed Fault Tolerance 7

1 - Chameleon Application Interface (API) In developing the program interface, we
posed from the end-user developer perspective, who wants to modify a complex
application designed with no reliability requirements to run it under Chameleon, in
order to benefit of the safety services provided by the fault tolerance layer. Believing
that the effectiveness of an Application Program Interface for such external
environment, as Chameleon is intended to be at this early stage, stands in its
simplicity, we put a great effort in designing an interface that fits transparently on
the top of the original application concentrating all the extra information required by
the fault tolerance layer in some global properties, which must appear at the very
beginning of the application source code and could be declared in a global header file.

Our point to support this design philosophy is that, if a developer has to introduce
so many patches to his or her own application, which may impact the consistency of
the activation tree, a full re-design could be less error prone, than an aggressive
reshaping.

For the sake of clarity, as we refer to "the application", we intend the whole set of
processes and threads, which compose a distributed application specifically assuming
that different fault tolerance strategies may be associated to distinct processing sets.
The above assumption allows the dynamic reconfiguration of a distributed
application by swamping down and restarting parts that cannot be removed at the
same time. The latter requirement is typical in enviroments performing safety-
critical tasks, where a remote unit, which usually drives a shuttle system, collects
data to be subsequently validated at a control site [VOAS98a].

Under the above consideration, we designed a hierarchical voting architecture, that
matches the relation process-thread and allows the dynamic reconfiguration by a
distributed topology of centralized voting collectors, which perform group-voting
operations [AGRA911.

In this section we present our extension to Chameleon interface API, which is
composed of an external pre-compiled library linked to the target application and of
some ARM OR elements, which act as front-end to the environment.

In the following figure 1.1 we introduce the objects that concur to realize, inside
Chameleon, the client application front-end: we use the convention to represent
element objects by square boxes and A R M O R objects by rectangles. An element is an
object resilient in its ARMOR (Adaptive Reconfigurable and Mobible Objects for
Reliability), which provides the execution thread, the message dispatching service
and manages all the elements allocated in its name space. An istance is represented
by a single line sketch, where a double line indicates a class object, which admits
multiple instances of the same type. With the above conventions, the elements of
figure 1.1 are dynamically allocated in the armor_exec_t name space, which is a class
ARMOR, whose instance statically lives in the environment initialization code; the

A Smart Voting Subsystem for Distributed Fault Tolerance 8

dotted objects have been specifically developed to design the voting subsystem. The
elements at the top realize the application front-end by subscribing to a set of
messages dedicated to manage die data flow coming or going through the
application interface: each stub implements a peer-to-peer connection with the
corresponding function API designed for handling the specific flow; the stubs are
instantiated under request of the managements units (_ m g m t), which supervise the
estabilished links and hand over the control to the specific stub under request of the
application interface. Each element will be described in more detail at the end of this
section.

np_stub
std_in

voter Jstub

voter._|stub
voter_stub

diagnostic_socket

app_voter_mgmt

fan_out socket_stub
std_out

voter_coordinator
app_io_mgmt app_progress_detect

armor_exec_t

aPP-Progress_mgmt

app_param

app_spawn
app_np_detect

app_np_mgmt

Figure 1.1: armor_exec_t population

We originally introduced the concept of signed flow to manage the data exchanged
at various levels of the above interface.

If we look at the end-user application as a black box, we can identify a certain number
of data flows coming from the external world inside the application by mean of
standard pipes, operating system messages, etc. and a certain number of data crossing
the application boundaries to reach the operating system.

A Smart Voting Subsystem for Distributed Fault Tolerance 9

A conventional operating system with no fault tolerant polices would treat all the
incoming and outgoing flows as raw data, because there is no knowledge at that
level of any internal representation and thus each request of service merely
dispatches the information to the parties devices; this situation is depicted in figure
1.2 with the black arrows crossing the os boundaries.

Figure 1.2: concept of flow; unsigned and signed flows.

On the other hand, when a fault tolerance layer intercepts the delivered
information, to match it against different replicas of a voting topology, in order to
assure the correcteness of the "driving" results, it could be very useful to select
different types of data, which rise up from the application front-end: this is the
purpose of the multiple stub elements introduced in figure 1.1.

Some flows may be subject to different voting polices, some other of exclusive
pertinence of the operating system layer, some inter-process communication, some
diagnostic flows, which we like to be forwarded to the fault tolerance layer to keep it
informed of the "application health", the remaining ones just for stilistic purposes
and carring no critical information: all this information is sometimes packed in a
single transmission unit, expecially when the original application has been designed
with no fault tolerance strategies in mind.

To properly dispatch the information supplied from the client application, our
interface provides an adaptation layer and the mechanism of signed flows to deliver
typified information across the fault tolerant layer boundaries; it is responsibility of
the application developer to instruct the environment of the different kind of data
to be exchanged with the external world: the association is performed via a

A Smart Voting Subsystem for Distributed Fault Tolerance 10

declaration block, which has to be called at the very beginning of the application and
is compliant to ANSI C (figure 1.3).

// This handler initializes the io interface and has to be called at the very beginning
// of the application

chm_define_interface(chmio, stdin, stdout, stdoutC'VOTE'), socketC'vot2’), \
vgrepC ’ s tilt’ , ”(. * X \ t \ t * X . , " \2", ’vot2’)) ;

Figure 1.3: an example of interface definition

The above statement initializes the mandatory fault tolerance control flow (chm io)
and defines three types of exchanged data: a standard stream pipe, a socket stream
and a virtual flow ; each flow is "signed" to identify it from other flows of the same
type.

The introduced syntaxt resembles the standard C files descriptors with the semantic
extension to mark each flow by a four char signature; example: stdout('S iGN ').

Note that, while this syntaxt is actually resembling the C files conventions, a flow
descriptor is valid only in the context of the Chameleon API and is not replaceable
outside these bounds, because it uses a fully different mechanism to expand the
namespace [K.OEN89].

The ability to split uniquely defined flows in different signed types is accomplished
by the way of virtual flows, barely a set of filter functions, which perform a re
routing to a list of pre-defined ending points on the basis of unix regular expressions.
While different kind of virtual flows may be supplied as part of standard Chameleon
API, the application developer has still the ability to write his/her own interface
wrappers and to link them to the interface library.

The abstraction of virtual flows has been introduced to allow an easily port under
Chameleon of existing applications, that may require various voting topologies:
avirtual flow abstracts critical information, even if originally delivered over a single
channel and splits it to different receiving parties (namely stubs), which can be
dynamically configurated.

The folloving listing (figure 1.4) is an example of how an application can benefit of
such interface layer.

A Smart Voting Subsystem for Distributed Fault Tolerance 11

// Example of a telecom application: we would like to select
// the destination field for delivering it to a voting flow

fprintf(stream, "DEST: %d SOURCE: %d PAYLOAD: %s CRC: %d ACCOUNTING: %d",\
dst,src,data,crc(data),acct);

// Could be rearranged in:
// At the very beginning:
chm_define_interface(chmio, stdin, stdout, stream('VOTE'), streamC PASS'), \

vgrepCstuf', "(.*)(\t\t*)(. *) " >"\1", 'VOTE', 'PASS'));

// End replacing each occorrence of the above fprintf with:

chm_fprintf(vgrep('stuff'),"DEST: %d SOURCE: %d PAYLOAD: %s" \
CRC: %d ACCOUNTING: %d",dst,src,data,crc(data),acct);

Figure 1.4: a telco interface

Please, note that where the example above refers to a simple stream flow realized by
the way of the library function print/, the concept of virtual flow may be used to
implement more complex substitutions: in a very complex protocol, the virtual
"wrapper" could be a filter written in the Abstract Syntax Notation (ASN .l) [CASN1]
to address the problem of extracting critical information from existing protocols.
Moreover, virtual flows may be used to act as software wrappers [VOAS98b], in
order to reduce the I/O sets to an external program.

While it can be a concern, if the filtering process has to run in the application thread
or as a separate process on the fault tolerant layer, actually we want to emphasize
that the signed flows give the ability to summarize in a unique point different
behaviors related to the information delivered or received at the application front
end.

Another leitmotiv, which has driven our approach, is the consideration that the
application interface is a way to provide extra synchronization points to the end-user
application, because all the communication to and from the fault tolerance layer
should be handled by blocking calls: a developer may submit the execution of the
application threads to the results of a certain voting policy; this aspect will be
discussed further in the following section 2.

As complement to the io interface file, we plan to use a preprocessor program to
automatize the port of existing code, as the supplied interface will be enough mature
and proofed to be effective: this tool w ill receive in input the existing unpatched
source code and a safety specifications file, which will address the requirements for

A Smart Voting Subsystem for Distributed Fault Tolerance 12

the fault tolerance layer and it will produce an ANSI C program suitable for
recompilation and for running under Chameleon. This scenario is sketched in
figure 1.5.

We strongly believe that this ending goal can be achieved effortlessly, because we
have designed the io interface as much simple, semantically speaking and close to
the standard C interface, so a one-pass lexical analyser shall fulfill the job.

A t the actual design stage the application delivers its flows by the way of proprietary
functions, which resemble the standard file operators, or the standard notation used
in other communication handlers: this behavior is realized via a set of macro
dispatchers, which maps standard C library functions to preassigned flows and hydes
at the same time any other flow not specifically declared in the initialization section.
The library interface will be provided with a public signature to assure the
compatibility by matching it with the environment core object code.

A Smart Voting Subsystem for Distributed Fault Tolerance 13

The listing below illustrates the replacement rules that act at preprocessing time:

1// Examples of std flow function replacements

|// ORIGINAL SOURCE

|printf("Hello World");
IsprintfCfileout, "SOME STUFF");

|// REPLACEMENT RULES

Ichar stuff[4] = 'STUF';
¡char vote[4] = 'mark';

Ichm.fprintfÇstdoutC'FLOW'), "Hello Flow");
| chm_fprintfCstdout(stuf), "Hello stuff SELECT marker");
|chm_fprintf(vgrepCstuf, "MARK EXPRESSION", vote);

Figure 1.6: example of function replacements

for every virtual flow we have defined in the above interface, there is a specific built-
in element in Chameleon, that is responsible for the delivery of information and
synchronization with other objects: each interface function uses a named pipe to
communicate w ith the ARMORs and from there the proprietary message pump.

The io elements are part of a dynamic load library, which is handled by a local
manager (app_io_m gm t), whose responsibility after the initial allocation is to
supervise the behavior of the io subsystem; it also de-allocates unused elements or
dynamically reconfigurâtes the system, if required by the selected fault tolerance
policy.

To efficiently perform the allocation and subsequent addressing of the interface
stubs, that are instantiated at run-time, we have extended the original message
pump allowing the registration of dynamic messages; this extension is explained
briefly in the ending section of the present paper.

The following list is a description of the various elements internal to the ARMOR
architecture, which compose the io interface: for each element is given a brief
description of the functionalities along with the message subscription list.

app_io_m gm t : this element instantiated in the arm or_exec_t name space is
responsible for the initialization and supervision of Chameleon-application io
subsystem. Because there is an interface stub for each registered application flow, the
purpose of this manager is to allocate and properly connect the various stubs to the
application interface; such "connection" is peformed via a dynamic message path: as
well as this object receives a MSG_REGISTER_FLOW_(TYPE) message, it allocates

A Smart Voting Subsystem for Distributed Fault Tolerance 14

the stub matching the request type, then it contracts a new dynamic message for the
instantiated element. The new message is registered as private dynamic and notified
to the interface function for subsequent delivery of the defined flow.

The app_io jm g m t element subscribes to the following message types:

MSG_APP_IO_INIT
MSG_APP_SIGNATURE
MSG_REGISTER_IO_GROUP
MSG_UNREGISTER_IO_GROUP
MSG_ENABLE_FLOW
MSG_DISABLE_FLOW
MSG_SUBMIT_FLOW
MSG_UN SUBMIT_FLOW
MSGJFORWARDJFLOW

MSG_CREATE_LOCK
MSG_REGISTER_FLOW_STDIN
MSG_REGISTER_FLOW_STDOUT
MS G_REGISTER_FLOW_PIPE
MSG_REGISTER_FLOW_SOCKET
MSG_REGISTER_FLOW_MPI
MSG_REGISTER_VIRTUAL_FLOW
MSG_REGISTER_USER_FLOW

Figure 1.7: app_io_m gm t message subscription list

std_in_stub : as allocated, this element registers a dynamic message
(D YN A _R EC EIVE_FLO W) to communicate with its end party, which handles the
chm_stdin flow; it subscribes also to the following messages:

• DYNAJRECEIVEJFLOW • (MSG_LOCK) I
* MSG_CREATE_LOCK_____________________ * MSG_SIGNAL_RECEIVE_______________|

Figure 1.8: std_in_stub message subscription list

note that the M SG _LO CK message is subscribed conditionally, if a
M SG_CREATE_LOCK is received.

std_out_stub : element responsible for delivering the standard output flow, which
is wrapped by the interface function chm_stdout{); it subscribes to messages:

• D YN A_TRAN SMIT_FLOW • (MSGJLOCK)----------------------------------
• MSG_CREATE_LOCK__________________ * MSGJSIGNALJRECEIVE

Figure 1.9: std_out_stub message subscription list

The dynamic message D Y N A _T R A N S M IT _F L O W is defined as the element is
allocated.

A Smart Voting Subsystem for Distributed Fault Tolerance 15

np_stub : creates a named pipe to communicate with the end-user application; the
named pipe flow is reached by the chm J p r in tf (chm_np (),. . .) wrapper. The
subscribed message list is:

• DYNA TRANSMIT FLOW
• MSG CONNECT FLOW
• MSG DISCONNECT FLOW

• MSG CREATE LOCK
• (MSG LOCK)
• MSG SIGNAL RECEIVE

Figure 1.10: np_stub message subscription list

where D YN A _X X X are dynamic messages contracted as the element is allocated.

socketjstub : intercepts a socket data flow and forwards it to the final destination;
the subscribed message list is:

• DYNA TRANSMIT FLOW
• DYNA RECEIVE FLOW
• MSG CONNECT FLOW
• MSG DISCONNECT FLOW

• MSG BIND FLOW
• MSG CREATE LOCK
• (MSG LOCK)
• MSG SIGNAL RECEIVE

Figure 1.11: socket_stub message subscription list

m pijs tub : intercepts any mpi call and delivers it to the appropriate group; the
subscribed message list is:

• DYNA TRANSMIT FLOW
• DYNA RECEIVE FLOW
• MSG CONNECT FLOW
• MSG DISCONNECT FLOW
TO BE COMPLETED

• MSG BIND FLOW
• MSG CREATE LOCK
• (MSG LOCK)
• MSG SIGNAL RECEIVE

Figure 1.12: m pijstub message subscription list

vgrep_stub : this is an example of virtual flow: actually it relies on the unix grep
command to perform the intended task; soon will be delivered a fully internal
version of the stub. Additional virtual flows w ill be implemented later.
The vgrep_stub subscribes to the following messages:

A Smart Voting Subsystem for Distributed Fault Tolerance 16

DYNA_TRANSMIT_FLOW
DYNA_RECEIVE_ELOW
MSG_CONNECT_FLOW

MSG_DEFINE_VFLOW
MSG_NEGATE_VFLOW
MSG_TEST_VFLOW

Figure 1.13: vgrep_stub message subscription list

A Smart Voting Subsystem for Distributed Fault Tolerance 17

2 - Smart Voting Topology In this section we present the smart voting system, which
poses on the previously described interface; we designed it having in mind three
main concerns [Xu, 1998 #236]:

• dynamic reconfigurability, i.e. the ability to change the voting topology during
the application life, for example switching from a TM R execution to a DUP mode;
such reconfigurability, also requires that different application processes can be
managed separately, i.e. a recovery of an application process does not necessary
involve the restart of the remaining parts, which appear to work properly.

• total reusability of the voting elements to provide a redundant execution of the
ARMORS objects inside Chameleon: each ARM OR may be instantiated as logical
redundant object; the logical ARMOR still resembles the behavior of the basic
building armor, but it provides extra reliability, because each output message is
the result of a matched voting agreement among different replicas of the same
base object (figure 2.1);

Figure 2.1: physical vs logical armor

• manageability at the application front-end: more than a requirement, this is an
assumption, which states the total responsibility for instructing Chameleon of a
requested voting policy at total charge of the end user developer. We strongly
believe that while the fault tolerance layer is the supplier of services, that could
make an application dependable over a computer network, the end-user
developer has to set the timing requirements and to choose the right policy
(among a library supplied by the environment), that best fits his/her own
application.

The configuration of the fault tolerant layer is accomplished via the io interface file
introduced in the previous section with a semantic extension, the safety block,
which allows the client application to contract the required fault tolerance policy: the
configuration statements take place at the very beginning of the application in a

A Smart Voting Subsystem for Distributed Fault Tolerance 18

mandatory sequence of ANSI C functions, we called Chameleon Interface Block and
Chameleon Safety Block. The introduction of such interface wrapper will be
performed automatically in some future: as we explained in figure 1.5, a one pass
compiler w ill parse the application source code and a specification header (consisting
of the above two blocks) and it w ill return a patched code, suitable for recompilation
under an ANSI compliant compiler.

To clarify how a general application written with no fault tolerance polices in mind
could be patched to run under Chameleon with a preassigned voting topology, we
will refer to a pseudo-code (figure 2.2) that performs some calculations and gives
some output results, which we w ill consider our driving results, i.e. the information
to be validated before delivering it to the intended destination.

For our example, we assume to request:

• a TM R validation on all driving results;

• an intermediate checking point (TMR) on internal state data;

• a synchronization point, where the application thread waits
for the delivery of some remotely validated information,
before performing any local voting operation on internal sets.

Please, note that the last requirement is a very handy way to lock the execution of a
thread waiting for delivery of remote data produced and validated by some other
actor, thing necessary, if no previous synchronization scheme was built in the
application; this is a common assumption, if the application has not been specifically
built for a redundant execution.

// Voting sample
// This pseudo code show the interaction points of a generic appl and how
// the patching is performed to run it under chameleon with a voting scheme.

main(int arc, char *argv[])
{

printf("Hello APPL starts here \n");

// Appl initialization stuff

// Read input parameters

for (i = 1; i < argc; i++)
{

______ // Get arq i________

A Smart Voting Subsystem for Distributed Fault Tolerance 19

char * x = argv[i];

// Perform calculations

//Output intermediate result

printf("Status of elaboration cycle %d reading %f\n", i, status);

//Contact another party

putc(msg, socket_file);

// Collect result from a remote party

getc(result, socket_in);

// Other processing

// Add local result to a file

fprintf(fileout, result);

} // END loop
}

Figure 2.2: a generic program eligible for voting

The diagram in figure 2.3 translates the above listing in terms of control flow among
the io interface points: from such activation graph, we can argument that a generic
application performs the io operations at scattered intervals, which are function of
hardware performance and input data; some io calls may result in a blocking thread,
some other not, depending on the nature of io operation and of the underlying
operating system software / hardware architectures.

A Smart Voting Subsystem for Distributed Fault Tolerance 20

— ► © prin tffHello APPL starts here \n");

— ► ©) char * x = argv[i];

— ► © prin tffS tatus of elaboration cycle %d reading %f\n", i, status);
— ► © putc(msg, socke tjile);

--------------------x_ \ — ► © 9etc(result, socketJn);

^ — ^ (§) fPrintf(fileout, result);

Figure 2.3: original source code control flow

Before the introduction of the voting layer, Chameleon was used to replicate the
program execution simply by issuing the same control flow multiple times: this
raw control scheme cannot be used in a voting redundant execution, because data
coming from different instances of the same execution thread need to reach the
voting periphery at the same time. In order to provide the extra synchronization
points required by a voting thread and to keep the interface simple, we have choosen
to implement the semaphores inside the interface wrappers: in this way, the
original user source code gains a certain number of synchronization placeholders
uniformely distributed and sematically joined to the voting flows.

In the safety block interface, the end-user developer instructs the environment of
which flows are critical and which ones require special handling attributes to
perform synchronization: Chameleon configures the interface stubs for a flow with
the critical qualifier to collect the data associated with that flow across different
replicas taking care of the necessary synchronization; an additional "submit"
attribute may lock the execution every time the flow is referenced waiting for the
synchronization flows specified in the submit list.

This methodology gives the ability to perform very complex synchronization
schemes, without strongly impacting the original application source code.

An example of the safety block interface is given in the following listing (figure 2.4),
which is the result of the above extensions to the previously presented pseudo-code.

// Voting sample
// This pseudo code show the interaction points of a generic appls and how
// the patching is performed to run it under chameleon
// HERE PATCHING IS DONE SUPPOSING WE REQUEST A TMR EXECUTION

A Smart Voting Subsystem for Distributed Fault Tolerance 21

main(int arc, char *argv[]
{

// BEGIN of Chameleon INTERFACE

chm_define_interfaceCchmio, stdin, sdtout, stdout('VOTE'), \
socket('rmin'), socket('rout'), file, voter);

// BEGIN of Chameleon SAFETY BLOCK

// Instruct the environment of which redundacy is required for
// each appl process; a missing specification will result in a
// single application run.

chm_run_processCmain, TMR);

// [optional]: one per each thread/process supervised:

chm_hearth_beat_rateC"15 sec", main);

// Specify which flows has to been marked as "critical", i.e.
// a voter stub is allocated for such critical flows

chm_define_criticalCchmio, stdoutC'VOTE'), socketC'rmin'),
socketC'rmout'), file, voter);

// Voting is performed on the basis of the source flow
// redundancy, if not otherwise specified; as a voting
// operation occurs, the flow will be cleared to reach
// the intending destination, if no submitions has been
// previously registered in the following section.
// A voter flow performs by default a voting operation
// with the above policy and synchronizes the execution
// as the voter has reached an agreement. The synchro-
// nization happens on a total agreement, if not other-
// wise specified. Partial agreement require a time-out
// parameter to specify when a partial agreement can be
// taken in account, if no total agreement is reached.
// Example:
//
//
//
//
//
//
//
//
//
//
//
//

chm_define_policy(voter, "2/3"); // Unlocks as soon as
// 2 flows agree.

chm_define_policyCvoter, "3/3"); // error if not matchs
// execution.

chm_define_policyCvoter, "5"); // 5/Cflow redundancy)

chm_define_policyCvoter, "2/3", "5 sec");
// The above statement means: 2/3 agreement unlocks
// as well as timeout is reached, or as soon as a
// a total agreement is reached. Timeout units may
// be expressed in terms of absolute time, or relative
// to samples times Ccollected from the voter).________

A Smart Voting Subsystem for Distributed Fault Tolerance 22

chm_submit_critical("2/2 BEFORE", socketCrout’), \
voter, stdout('VOTE’));

// Flow socketC’rout1) is submitted to the successful agreement
// (based on respective registered agreement policy) to flows
// voter and stdout(’VOTE’) . The flow locks BEFORE
// performing any operation on the "submitted" flow, until an
// agreement on both the flows "2/2" is reached.

// This function introduced here, just for example, is very
// useful to synchronize different application processes or threads.

// One or more per critical flow:
// format string syntaxt: "check-rate UNIT [time-out(min, MAX) UNIT]"
// suffix "ALL" marks every-flow with the same timing specs; any
// further declaration will produce a run-time error.

chm_check_rate("15 sec", ALL);

// END of Chameleon SAFETY BLOCK

if !Cchm_app_signature('TEST’))
{
// END of Chameleon INTERFACE

chm_printf("Hello APPL starts here \n");

// Appl initialization stuff

// Read input parameters
for (i = 1; i < chm_argc; i++)
{

// Get arg i
char * x = chm_argv[i];

/ / A bare voting flow: if an agreement is reached it goes on

chm_fprintf(voter, x);

// Perform calculations

//Output intermediate result
chrrufprintfCtdoutCVOTE'), \

"Status of elaboration cycle % d reading %f\n", i, status);

// The programs waits on the above statement until all the replicas
// have reached an agreement, beacuse stdout('VOTE’) has been
// marked as "critical flow".

A Smart Voting Subsystem for Distributed Fault Tolerance 23

//Contact another party
chm_putc(msg, socket_file);

// if socket_file is a critical flow, it waits until agreement

// Collect result from end party

chm_getc(result, socket_in);

// Waits before calling chm_getc until both the submitted flow
// have reached an agreement. Actually they are part of the same
// execution thread, so agreement is achieved, if the control
// flow reaches this point. The function performs the same
// voting operation, if the flow has been registered as critical.

// Other processing

// Add local result to a file

chm_fprintfCfileout, result);

} // END loop

} // Chamemeon Safe Execution block if !(chm_app_signatureO)

Figure 2.4: the example pseudocode patched to run under Chameleon

In the beginning of the main application process all the io flow are declared, even if
not dealing with the voting subsystem; the safety block, which follows the interface
configuration section, contains hadlers to instruct the environment of the fault
tolerance requirements for the reliable execution of end-user code.

The first call specifies how many replicas to run for each application process: the
function chm_run_process() accepts a function pointer and a policy label; in this
way the application developer may request different redundancies for different
application processes or threads. The execution redundancy also affects the default
voting redundacy, if no other behavior is specified.

The hearthJo eat _r at e() takes a format parameter, which can have different tags for
specifing an hearth beat rate, i.e. a timed check performed on the function code
given as second parameter.

A Smart Voting Subsystem for Distributed Fault Tolerance 24

All the flows intended for voting, must be marked as critical: for this purpose, the
function chm _define_critical() uses the same syntax of chm _define_interface(); in
order to be marked as "critical" a flow has to be previously registered via the
chm_define_interface() with the only exception of a voter flow, which by default
ends into a voting device.

The chm_subm.it_critica l() wrapper connects a critical flow to any previously
defined flow, in a way that stops the thread execution until the submitted flows
become available; a critical flow becomes "available" as well as a voter has reached
an agreement (partial or total) upon it. The first parameter of chmjsubmit _ c r itica l()
interface is a format string, which gives the ability to specify the synchronization
policy, i.e. if a flow is preposted or deferred to the submitted list; another optional
parameter is the number of flows, which unlock the semaphore, as they result
available: a total agreement is the default. Using this function a developer may
realize very complex voting and synchronization polices just slightly modifing an
existing application.

If no chm _check_rate() is called on the registered flows, the default check-rate w ill
be automatically defined at run-time by Chameleon, with a safety margin to prevent
a too fitted grid; the first parameter is a format string, other acceptable parameters are
the registered flows, or the label ALL, which applies the issued timings to all the
previously registered flows. The check-rate parameter is explained in detail later: it
represents the amout of time that occurs between two subsequent inquiries from the
central voting collector.

In our example, function chm_app_signature() closes the interface block: this
function will delivery a signature to the voting subsystem; the central voting
collector employs such signature to validate data samples delivered from the voting
periphery. To generate the signatures we can define a one-way function, for example
a polinomial used in Cyclic Redundancy Check (CRC), which can be effortlessly
inplemented in hardware and w ill be subject of a further report.

A ll the interface functions have strict requirements upon the accetable parameter list
and previous mandatory calls: each time an interface function is called, it checks for
the consistency of the whole interface context and if something is missing, or wrong
it returns a non null value. This diagnostic feature gives the ability to perform a
check on the last interface call to prevent the execution of the application, if
something went wrong in the interface definition sequence.

Table 2.5 summarizes the requirements for every interface function.

A Smart Voting Subsystem for Distributed Fault Tolerance 25

Interface function Mandatory Defaults Parameters Requirements
chm _define_interface yes chm io m andatory ,

then v.a.
no n e

chm _run_process n o if s ing le
execution

thread ptr, po licy p rev defined
function thread

chm _hearth_beat_rate fo rm at string , th read
p tr

p rev defined
function thread

chm _defm e_critical fo r v o ting chm io m andatory ,
then v.a.

can reference ony
p rev reg istered flow s
an d vo te r flow s.

chm _define_policy flow , fo rm at string,
opt fo rm at string

on ly prev reg istered
critical flow s

chm _subm it_critical fo rm at s tring , flow ,
v .a .

firs t flow critica l,
o ther reg istered
flow s

chm _check_rate fo rm at s tring , flow ,
ALL

reg is te red flow s

chm _app_signature yes
fo r v o ting

signature string

Table 2.5: Chameleon Interface requirements

To synchronize all the independent voting threads with the user-application under
the specified fault tolerance policy, we have chosen to collect the application io flows
at specific time intervals; such sample interval is passed to Chameleon in the safety
block interface, via the chm _check_ratef) function call.

Figure 2.6 shows the interaction path between the end-user application and the fault
tolerance environment: the control flow on the end-user side is subject to some
synchronization points, which match the io interface placeholders for the registered
voting flows.

A Smart Voting Subsystem for Distributed Fault Tolerance 26

Figure 2.6: IO and control flow

The abstraction layer supplies a continous flow to the interface stubs, as well as the
voter stubs: as a voting operation is performed, the output drives the
synchronization lock and goes through the output channel (if any has been
registered as end party of that flow). The real synchronization is performed at specific
sample intervals on the Chameleon io interface layer, which is the central collector
of all the incoming flows (synchronization and dispatching). The synchronization
intervals are under control of the user application, which instructs the environment
of the bounds and of slacks in which each window can grow or stretch.

Such synchronization scheme came us in mind to prevent a deadlock condition and
by argumenting that if some data cannot be collected upon a certain time for
subsequent voting, we would like to reach a partial agreement or a disagreament, if
there are no enough data for voting, which would trigger some recovery operation;
this aspects is peculiar of software fault tolerance, which in case of an exception need
to perform some recovery tasks asynchroneously, where an hardware solution
usually would raise an error signal to bring the system in a fail-safe condition.

W ith the above intending, the fault tolerance environment is under total control of
the application interface and it is developer’s responsability to issue the
dependability requirements to the platform: he or she really knows, which are the
critical timings and when is best to give-up, then wait indefinitively.

A Smart Voting Subsystem for Distributed Fault Tolerance 27

In the following figure 2.7 we introduce the smart voting topology outlining the
exchanged data flow between the client application and the Chamelon architecture:
the example refers to a choosen TMR topology, where three replicas of the same
application process are matched to produce a voted driving output at the
environment front-end; although the diagram refers to a specific fault tolerance
setting, it can be easily extended to different voting polices, mixted as well. Each
arrow represents a vector data flow produced at a certain end and delivered to the
corresponding party; in figure we distinguish the following kind of objects:

Physical elements, appearing as square boxes represent a single object instance and
make integrant part of the voting system.

Logical elements are single functional units, however their functionalities result
from a collection of objects, which handle separately different messages, upon a
shared architecture; logical elements are marked as a continuos circle.

A group is a compount of many elements (logical and physical) intended to fulfill a
specific job; as groups, we have the io subsystem, which has been explained in the
first section of this report and the voter subsystem, whose composition will be given
later.

The same conventions introduced for the elements apply to the groups: a physical
group , marked as a continous line, lives on a sigle node of the chameleon
architecture.

A virtual group collects similar functionalities and gives the abstraction of the
globally exchanged flows.

A Smart Voting Subsystem for Distributed Fault Tolerance 28

- FRONT-END
driving

flow

input 10 subsystem

_ , [U Physical element
(g) Semaphore

O Logical element O Physical Group (logical & physical elements) x-— -v
standing over a same hardware node V__s Logical group

Figure 2.7 Chameleon voter control flows

To understand the role of the various objects, which concur to realize the voting
topology presented here, we can follow the data flow of figure 2.7 from the top left to
the top right.

As the input data originating at the client application reaches the Chameleon front-
end, it encounters first the 10 subsystem; where it is dispatched to the object fan_out,
whose responsibility is to provide the different application replicas with the same
driving input; the fan_out element is equipped with a blocking mechanism, which
prevents the delivery of further data, if the subsequent blocks of the voting chain
have not performed the evaluation of previous data chunck.

The io_switch appearing in the 10 subsystem group has the purpose to adapt the
driving flow to the required voting parallelism, according to the commands received

A Smart Voting Subsystem for Distributed Fault Tolerance 29

from the central voter ARMOR (right). We introduced this closed control loop,
because the number of voting parties may change during the application life, due to
a specific request to switch the redundancy level, or as conseguence of a permanent
failure in the voting chain. Such failure may result from an hardware problem at
the application node, where the program is actually running, if no spare nodes are
available for resuming the execution of the missing replica; alternatively, a
permanent failure may occur, when different versions of the same application
running in multiple mode bring to mismatching results, because of an error in the
control flow of one of them.

The output of the application replicas passes through the 10 subsystem (centre),
which acts, as explained in the first section of this paper, as intermediate collector of
voting data: the flows markedcritical are separated from other registered data flow
and redirected to the voting subsystem. There are to distinct data paths, one for the
external output, namely drive data , one for thevoting data.; both use semaphores to
assure the proper timing to the end parties.

As the application replicas do not drive straightly the operating system devices, but
the output goes through the io_subsystem, which acts as intermediate collector of
voting data, and voting data are delivered through different channels by the
io_subsystem.
The paths

Voting data are delivered to the voter ARMOR, as well as it has fullfilled the
previous voting cycle and as the incoming channels are marked "active" (an
incoming flow may become "unavailable", if the associated replica has signaled
REPLICA_MAX_FAILURES times a voting mismatch under a TMR or more
redundant topology); this parameter prevents the rejection of a voting flow, due to
temporany jamming on its associated channel.

The driving output is selected on the basis of the voting agreement polices and in
any case after the voting cycle has been completed reaching an agreement, although
partial; a partial agreement does not affect the driving output, but the abnormal
situation is signaled to the fault tolerance manager (FTM). It is the io_switch in the
(central) IO subsystem, that controls the delivery of driving outputs to the external
environment.

The voter subsystem collects data asynchronously from the application replicas and
synchronizes the entire environment: as a new voting cycle is fulfilled at the voter
end, a message unlocks the io switches and the subsequent data chunk is delivered;
after that, a signal notifies to the sentinel element the successful completion of the
voting cycle. The sentinel element acts as a monitoring process of the voter health
and implements some recovery polices: if an internal watchdog reaches zero, an
inquiry to the FTM checks for a possible deadkock condition; upon a certain time

A Smart Voting Subsystem for Distributed Fault Tolerance 30

from the first signal another watchdog resets the voting system under the
assumption that it hung for some reason.

In the above discussion we analyzed the data-flow of the voting subsystem; in. the
remaining part we will focus on the interaction among the different elements,
which compose the voting subsystem, as shown in figure 2.8:

The figure 2.8 refers to an application running over Chameleon composed of two
processes, the first process shares two application threads and the second one three;

A Smart Voting Subsystem for Distributed Fault Tolerance

moreover, the first process has required a duplicated mode execution, while the
second group uses a triple module redundancy (TMR). Please, observe that the
creation of two separate voting groups is the conseguence of two different voting
topologies requested for the application processes: whenever both processes should
be subject to the same voting topology, they can coexist in the same voting group.

As the io interface stubs are responsible for capturing the application data flow and
delivering it across Chameleon, the voter_stub elements collect the information
marked as critical for subsequent dispatching: the flows are transferred to a voter
coordinator, which is a local collector of the information coming asynchronously
from the application interface; the coordinator acts as rate adapter between the
incoming flow and the samples delivered at a fixed check-rate upon request from the
central manager.

There is a coordinator per replica and different application threads may share the
same voter coordinator. To provide the ability of handling separately different part
of the application, we have introduced the concept of voting group : a voting group is
a set of monitored user application threads, which can be subject to the same voting
and recovery policy!

The example presented in figure 2.8 shows two process of the same user application:
the first process owns two threads, which produce two voting flows registered to a
coordinator as "group 1"; there are two coordinators associated to voting "group 1",
because the first process instance is replicated in duplicated mode. The second
process, which executes in TMR, has three threads and produces three voting flows
(one per thread) registered as "group 2" to the local cordinator.

Please, note that the concept of voting flow is independent from the location of the
source data: more execution threads of the same process may register different flows,
just because the requirements in terms of redundacy are different.

The voter coordinators deliver the collected information to a central element, which
periodically triggers this end parties for a new data sample.

Before delivering the voting information, the coordinator objects perform one
important operation intended to keep small the voting overhead: they assemble the
data collected from the voter_stubs, assign them an unique sequence number and
generate on the whole data chunk a digital signature, which is delivered to the
central voter in place of original data (figure 2.9). In this way, the voter element has
to compare small signatures, instead of the complete data set from which come
from. Different flows share the same signature, if belonging to the same voting
group, because the delivered information triggers the same recovery operation, in
case of a continous disagreement at the voter end.

A Smart Voting Subsystem for Distributed Fault Tolerance 32

voter_stub

Replica One

unii
voting g roup

signatu res

voter_stub

voter_stub

Replica Tino

mili
voting g roup

signatu res

\
C o n tro l m essages

to o th er
C ham eleon objects

Figure 2.9: voting flow and signatures

Figure 2.9 explains the mechanism, of signature generation referring to the first
process of figure 2.8, which is replicated two times.

The voter executes its voting thread cycle, performs the required semaphore update
depending on the voting policy, notifies the fault tolerance manager of partial
agreements and requests the next voting sample from the periphery.

As for the io subsystem, we give the list of the voting elements and their message
subscription list:

voter_stub : is the sofware probe, which collects data sent from the application and
forwards it to the voter co o rd in a to r object. Actually a stub simply aliases the
messages supplied from an io subsystem stub and performs the job subscribing to the
following messages:

A Smart Voting Subsystem for Distributed Fault Tolerance 33

• MSG_ADD_VOTER_ELEMENT • DYNAJTRANSMITJFLOW
« MSG__REMO VE_V OTER_ELEMENT * DYNA_RECEIVE_FLOW

Figure 2.10: voter_stub message subscription list

fa n_ou t : this element simply forwards a single input flow to multiple application
io_stubs, in order to drive the various replicas of a redundant execution with the
same input source; the element is coordinated by the central voter element, which
sets and resets an internal semaphore to provide synchronization with the matched
execution step. It subscribes to the following messages:

~ MSG_REGISTER_V OTER_GROUP ~ DYNA_TRANSMIT_FLOW
• MSG_UNREGISTER_V OTER_GROUP • DYNA_RECEIVE_FLOW
• MS G_N OTIFY_AGREE • (MSGJLOCK)
• MSG_NOTIFY_PARTIAL_AGREE * MSG_SIGNAL_RECEIVE_______________

Figure 2.11: fan_out message subscription list

a p p _vo te r_m gm t. : is the interface element, which receives the configuration
messages from the interface API at the very beginning of user application; this
element builds up the overall voting subsystem allocating the objects to perform the
requested fault tolerance policy.

• MSG_REGISTER_V OTER_GROUP • MSG_APP_SIGNATURE
• MSG_UNREGISTER_V OTER_GROUP • MSG_CONNECT_VOTER_ELEMENT
• MSG_ADD_VOTER_ELEMENT • MSG_DISCONNECr_VaiER ELEMENTT
• MSG_REMOVE_VOTER_ELEMENT

Figure 2.12: app_voter_m gm t message subscription list

arm or_voter_cfgt : this element is under developement and acts as counterpart of
the app_voter_m gm t for any voting policy internal to the armor structure. It
configures the elements required in a voting system internal to the ARMOR and
instructs each element of the different behavior required in such context.

voter c o o rd in a to r : a coordinator acts as mediator between the interface stubs and
the centralized voter; it adapts the application flow rate to the voting check-rate and

A Smart Voting Subsystem for Distributed Fault Tolerance 34

performs the important operation to assemble all the voting data delivered from the
application stubs in a whole chunk of data, upon which a digital signature is
generated. The coordinator delivers only the digital signature to the central voter,
because it reflects the actual output of the whole voting group. Before sending the
signature the coordinator inserts the time-stamp, which marks the sample in the
continous flow supplied from the application front-end. This element subscribes to
the follow ing messages:

• MSG_REGISTER_VOTER_GROUP
• MSG_UNREGISTER_VOTER_GROUP
• MSG_ADD_VOTER_ELEMENT
• MSG_REMOVE_VOTER_ELEMENT
• MSG_CONNECT_VOTER_ELEMENT
• MSGJ^ISCCNNBCTJVQIERJELEMENr

MSG_ENABLE_VOTER_GROUP
MSG_DISABLE_VOTER_GROUP
MSG_LOCK_V OTER_GROUP
MSG_UNLOCK_VOTER_GROUP
MSG_GET_SAMPLE
MSG_GET_NEXT_SAMPLE

Figure 2.13 : voter co o rd in a to r message subscription list

a rm orjvo te r : is the central object, where actually voting is performed. This
element handles the voting, coordinates the incoming message queues coming from
the voting coordinators and broadcasts messages to inform the party elements of the
result upon complention of voting operation. Here is its message subscription list:

MSG_ENABLE_VOTER
MSG_DISABLE_VOTER
MSG_ARMOR_VOTER
MSG_VOTER_CONNECT
MSG_VOTER_DISCONNECT

MSG_NOTIFY_AGREE
MS G_N OTIFY_PARTIAL_AGREE
MSG_NOTIFY_MANAGER
MS G_V OTER_FAILURE
MSG_VOTER_CHANGE MODE

Figure 2.14 : arm orjvo te r message subscription list

voter_topology : this element is not yet implemented and w ill allow in future the
creation of finite state voting automata, which converge to the bounded result. The
configuration and theory that supports this element w ill be part of a separate paper.

/

/

A Smart Voting Subsystem for Distributed Fault Tolerance

3 - Chameleon Messsage Dispatching As in previous sections, we have extended the
message addressing space alloving the registration of dynamic messages, i.e. of
messages that are defined at run time in the normal environment operation and
may be revocated, upon completion of the intended service. Chameleon messages
are defined as unsigned integer: we have restricted the addressing space to integers
having the first bit set for dynamic messages.

Adynam ic message, gives the ability to address specific elements, without increasing
the overhead as the number of subscribing elements grows. This characteristic has
been felt necessary to implement the io subsytem interface stubs and the voter stubs.

Moreover, the ability to register dynamic messages moves the responsibility of
addressing from the receiving ends to the sources securing the delivered
information against errors, which could arise from the same fault tolerance
environment due to the coupling of elements sharing the same messages.

A very strong encapsulation of receiving parties is performed by the way of private
messages, which are delivered only to a restricted group of end parties.

The above functionality is performed in differed ways: marking a message exclusive
delivers it only to those elements, who previously registered the message; a reserved
message is intended for the elements of a certain group, while a private message
specifies in advance the list o f receiving parties.

If an element attempts to subscribe to a message, which is not allowed, it gets an
error reply.

The functions for handling dynamic messages are Register MessageQ,
InvalidateMessageQ, ReservedMessage{), MessageExclusive{\ DefineGroupQ, whose
calls are translated in the following list of statically defined messages:

MSG_REGISTER_MESSAGE
MSG_INVALIDATE_MESSAGE
MSG_RESERVED_MESSAGE
MSG_MESSAGE_EXCLUSIVE
MSG_DEFINE_GROUP

to access the functionality from the Chameleon application interface.

The dynamic message dispatching is currently under developement.

A Smart Voting Subsystem for Distributed Fault Tolerance 36

Conclusions

Chameleon framework aim is not to replace conventional fault-tolerance
techniques, which can be still employed and are sometimes mandatory to assure
hardware availability [VOAS98b]; the main goal of Chameleon and other similar
dependable software architectures [CUKI98] is to increase the availability of services
provided via untrusted networked systems, or using components-off-the-shelf
(COTS), which most of the times cannot supply the same reliability of custom
designed mission-critical softwares [IYER99], but are globally available at reasonable
prices.

With the above intention, we designed some components, which can be easily
integrated in existing software architectures to increase the reliability o f the whole
system; such components have been thought to guarantee at a time the availability
of the basic "dependable" framework, which provides the fault-tolerance services,
such as the smart voting subsystem.

The introduction of "virtual flows" provides a way to easily collect source data flow
from existing applications, not specifically designed to be failure-tolerant, in order to
submit it to the smart-voting system.

A Smart Voting Subsystem for Distributed Fault Tolerance 37

References

J. H. W ensley, "S IF T Softw are Im plem ented Fault T olerance," presented at FJCC, 1972.
J. H. Wensley, Langley Research Center., United States. National Aeronautics and
Space Administration. Scientific and Technical Information Office., and SRI
International., Design study of software-implemented fault-tolerance (SIFT)
computer.Washington, D.C.
[Springfield, Va.: National Aeronautics and Space Administration Scientific and
Technical Information Office ;
For sale by the National Technical Information Service], 1982.
J. P. S. Eifert J.B., Processor m onitoring using asynchronous signatured instruction stream s,"
presented at FTCS-14, 1984.
D. F. Green, D. L. Palumbo, D. W. Baltrus, and Langley Research Center., Software
implemented fault-tolerant (SIFT) user's guide. Hampton, Va.: National
Aeronautics and Space Administration Langley Research Center, 1984.
Y.-K. P. Thambidurai P., "Interactive Consistency with M ultiple Failure M odes," p r e s e n t e d a t
SRDS-7, 1988.

D. F. McAllister, M. A. Vouk, and United States. National Aeronautics and Space
Administration., Experiments in fault tolerant software reliability. Raleigh, NC:
North Carolina State University, 1989.
M. Malek, M. Pandya, K. Yau, and United States. National Aeronautics and Space
Administration., Redundancy management for efficient fault recovery in NASA's
distributed computing system
report for NASA grant NAG9-351. Austin, Tex.: Department of Electrical and
Computer Engineering University of Texas, 1991.

P* Birman and United States. National Aeronautics and Space Administration,
"The process group approach to reliable distributed computing," . Ithaca, N-Y.
Springfield, Va.: Dept, of Computer Science Cornell University ;
National Technical Information Service distributor, 1991.
D. D. Amir Y., S.Kramer, D. M alki, "Transis: A Communication Sub-System for High Availability,"
presented at FTCS-22, 1992.
P. S. Miner and Langley Research Center., An extension to Schneider's general
paradigm fo r fault-tolerant synchronization. Hampton, Va.
[Springfield, Va.: National Aeronautics and Space Administration Langley Research
Center; v
For sale by the National Technical Information Service, 1992.
J. G. S. M adeira H., "O n-line Signature Learning and Checking," i n D ependable Com puting fo r
C ritical A pplica tions, DCCA-2, Ed.: Springer-V erlag, 1992, 1992.
M. K. Reiter, "D istributing T rust w ith the R am part Toolkit," Comm, o f the A C M , vol 36 p p 71-74
1993.

A Smart Voting Subsystem for Distributed Fault Tolerance

P. S. Miner and United States. National Aeronautics and Space Administration.
Scientific and Technical Information Program., Verification of fault-tolerant clock
synchronization systems. [Washington, DC]
[Springfield, Va.: National Aeronautics and Space Administration Office of
Management Scientific and Technical Information Program ;
National Technical Information Service distributor], 1993.
C. K. Huang Y., Software Implemented Fault Tolerance: Technologies and E xperience/7
presented at FT C S-23, 1993.

C. A. liceaga, D. P. Siewiorek, and United States. National Aeronautics and Space
Administration. Scientific and Technical Information Program., Autom atic
specification o f reliability models for fault-tolerant computers. [Washington, DC]
[Springfield, Va.: National Aeronautics and Space Administration Office of
Management Scientific and Technical Information Program ;
National Technical Information Service distributor], 1993.
K. P. Birman and R. Van Renesse, Reliable distributed computing with the Isis
toolkit. Los Alamitos, Calif.: IEEE Computer Society Press, 1994.
M. R. Ohlsson J ., " Im p lic it S ignature C heck ing /' p r e s e n t e d a t FTCS-25, 1995.
D. M. Dolev D., "T he Transis Approach to High Availability Cluster Com m unication,"
Communications of the ACM, vol. 39, p p . 64-70, 1996.
K. Pi Birman, Building secure and reliable network applications. Greenwich:
Manning, 1996.
R. v. Renesse, K. P. Birman, and S. Maffeis, "H om s: A Flexible Group Comm unication System ,"
Communications of the ACM, vol. 39, p p . 76-83, 1996.
V. H. Chandra T.D ., S. Toueg, B. Charron-Bost, "O n the Impossibility of Group M em bership,"
presented at A C M Sym posium on Principles o f D istributed Com puting, 1996.
D. Powell and e. al., "GUARDS: A Generic Upgradable Architecture for Real-Time
Dependable Systems," IEEE Transactions on Parallel and Distributed Systems, 1998.,
[AGRA91] a. A.J.B. AgrawalD., "A Nonblocking Quorum Consensus Protocol for
Replicated Data," IEEE Transactions on Parallel and Distributed Systems, vol. 2, pp
171-179,1991.
[ASPR97] W . Aspray, "The Intel 4004 Microprocessor: What Constituted
Invention?," IEEE Annals o f the History of Computing, vol. 19, pp. 4-15,1997.
[AVIZ77] A . Avizienis and L. Chen, "On the implementation of N-version
programming for software fault-tolerance during execution," presented at IEEE
COMPSAC 77,1977.
[BIRM87] K. P. Birman, T. A. Joseph, and United States. National Aeronautics and
Space Administration, "Reliable communication in the presence of failures,"
Washington, DC
Springfield, Va.: National Aeronautics and Space Administration ;
National Technical Information Service distributor, 1987.
[B IR M 87] K. P . B irm an and T. A. Joseph, "R eliab le Com m unication in the Presence o f Failures,"
ACM Transactions on Computer Systems, p p . 4 7 -7 6 /1 9 8 7 .

A Smart Voting Subsystem for Distributed Fault Tolerance 39

[BORG89] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault-
Tolerance under UNIX," ACM Transactions on Computer Systems, vol. 7, pp 1-24
1989. . •
[BRIE93] D. Briere and P. Traverse, "AIRBUS A320/A330/A340 electrical flight
controls - a family of fault tolerant systems.," presented at FTCS-23, Toulouse, 1993.-
[CASN1] G. Neufeld and Y. Yang, "An ASN.l to C Compiler," IEEE Transactions
on Software Engineering, vol. 16, pp. 1209-1220,1990.
[CRIS91] F. Cristian, "Understanding Fault-Tolerant Distributed Systems,"
Communications o f the ACM , vol. 34, pp. 56-78,1991.
[CUK398] M. Cukier and e. al., "AQUA: An Adaptive Architecture that Provides
Dependable Distributed Objects," presented at SRDS-17, 1998.
[FSCH97] B. Eschermann, P. Terwiesch, A. M. AG, K. Scherrer, and A. N. P. AG,
"Dependable High-Voltage Substation Protection," in Dependable Computing fo r
Critical Applications 5, vol. 10, Dependable Computing and Fault-Tolerant Systems,
M. M. Ravishankar K. Iyer, W. Kent Fuchs, Virgil Gligor, Ed. Los Alamitos, CA: IEEE
Computer Society, 1997, pp. 19-34.
[IYER99] R. K. Iyer and A. Avizienis, "COTS Hardware and Software in High-
Availability Systems," presented at FTCS99, 1999.
[JOHN89] B. W. Johnson) Design and analysis of fault-tolerant digital systems.
Reading, Mass.: Addison-Wesley Pub. Co., 1989.
[KALB99] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant, "Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance," Transactions On Parallel and
Distributed Systems, vol. 10, pp. 560-579,1999.
[KOEN89] A. Koenig and A. T. B. Laboratories, C Traps and Pitfalls, 1989.
[LESL84] L. Leslie, "U sing Time Instead of Timeout for Fault-Tolerant D istributed System s,"
A C M T ransactions on Program m ing Languages an d System s, p p . 254-280 , 1984.
[LION96] J. L. Lions, "Anane 5 flight 501 failure: Report of the inquiry board," ,
Paris July 19,1996 1996.
[LITT91] B. Littlewood and D. Miller, "Software reliability and safety," . New
York: Elsevier Applied Science, 1991, pp. x, 216.
[MAFF97] S. M affeis, "Piranha: A CORBA Tool for High A vailability," IEEE Com puter, vol.
30, p p . 59 -66 , 1997.
[1VL\RC94] J. J. Marciniak, Encyclopedia of Software Engineering: Wiley, New York,

[MICHE91] T. M ichel, R. Leveugle, and G. Saucier, " A New Approach to Control Flow Checking
w ithout P rogram M odification," presented at FTCS-21, 1991.
[M S97] M icrosoft, "M icrosoft C lustering A rchitecture “W olfpack”," , W hite Paper M ay 1997
1997.

[0SB078] A. Osborne, Z80 programming fo r logic design. Berkeley, Calif.: Osborne,
1978.
[PHAM95] H. Pham, Software reliability and testing. Los Alamitos, Calif.: IEEE
Computer Society Press, 1995.
[PIER65] W. H. Pierce, Failure-tolerant computer design. New York,: Academic
Press, 1965.

A Smart Voting Subsystem for Distributed Fault Tolerance 40

[RAND75] B. Randell, "System structure for software fault-tolerarice," IEEE
Transactions on Software Engineering, vol. SE-1, pp. 220-232,1975.
[SIWI98] D. P. Sieworek and R. S. Swarz, "Faults and Their Manifestations/' in
Reliable Computer Systems: Design and Evaluation, 3rd ed: A K Peters, Natick,
Massachusetts, 1998.
[S U N 97] Sun, "Sun RAS solutions for M ission-critical Computing," Sun, W hite Paper O ctober
1997 1997. ,

[VOAS97a] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman, "Predicting
How Badly 'Good' Software Can Behave," IEEE Software, pp. 73-83,1997.
[VOAS97c] J. Voas, "Software fault injection: growing 'safer* systems," presented at
EEEE Aerospace Confence, 1997.
[VOAS98a] J. M. Voas and G. McGraw, "Applied Safety Assessment," in Software
Fault Injection, M. Spencer, Ed.: John W iley & Sons, 1998, pp. 205-225.
[VOAS98b] J. M. Voas and G. McGraw, "Software Safety (Hyding Fault with EPA),"
in Software Fault Injection, M. Spencer, Ed.: John Wiley & Sons, 1998, pp. 159-203.
[WHIS98] K. Whisnant, S. Bagchi, B. Srinivasan, Z. Kalbarczyk, and R. K. Iyer,
"Incorporating Reconfigurability, Error Detection and Recovery into the Chameleon
ARMOR Architecture, Center for Reliable and High Perforance Computing,
University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, Technical
Report CRHC-98-13 UILU-ENG-98-2227, December 1998 1998.
[YEH97] Y. C. B. Yeh, B. C. A. Group, and F. S. Electronics, "Dependability of the
777 Primary Flight Control System," in Dependable Computing for Critical
Applications 5, vol. 10, Dependable . Computing and Fault-Tolerant Systems, M. M.
Ravishankar K. Iyer, W. Kent Fuchs, Virgil Gligor, Ed. Los Alamitos, CA: IEEE
Computer Society, 1997, pp. 3-17.

A Smart Voting Subsystem for Distributed Fault Tolerance 41

