602,886 research outputs found

    Virtual sensor networks: collaboration and resource sharing

    Get PDF
    This thesis contributes to the advancement of the Sensing as a Service (SeaaS), based on cloud infrastructures, through the development of models and algorithms that make an efficient use of both sensor and cloud resources while reducing the delay associated with the data flow between cloud and client sides, which results into a better quality of experience for users. The first models and algorithms developed are suitable for the case of mashups being managed at the client side, and then models and algorithms considering mashups managed at the cloud were developed. This requires solving multiple problems: i) clustering of compatible mashup elements; ii) allocation of devices to clusters, meaning that a device will serve multiple applications/mashups; iii) reduction of the amount of data flow between workplaces, and associated delay, which depends on clustering, device allocation and placement of workplaces. The developed strategies can be adopted by cloud service providers wishing to improve the performance of their clouds. Several steps towards an efficient Se-aaS business model were performed. A mathematical model was development to assess the impact (of resource allocations) on scalability, QoE and elasticity. Regarding the clustering of mashup elements, a first mathematical model was developed for the selection of the best pre-calculated clusters of mashup elements (virtual Things), and then a second model is proposed for the best virtual Things to be built (non pre-calculated clusters). Its evaluation is done through heuristic algorithms having such model as a basis. Such models and algorithms were first developed for the case of mashups managed at the client side, and after they were extended for the case of mashups being managed at the cloud. For the improvement of these last results, a mathematical programming optimization model was developed that allows optimal clustering and resource allocation solutions to be obtained. Although this is a computationally difficult approach, the added value of this process is that the problem is rigorously outlined, and such knowledge is used as a guide in the development of better a heuristic algorithm.Esta tese contribui para o avanço tecnológico do modelo de Sensing as a Service (Se-aaS), baseado em infraestrutura cloud, através do desenvolvimento de modelos e algoritmos que resolvem o problema da alocação eficiente de recursos, melhorando os métodos e técnicas atuais e reduzindo os tempos associados `a transferência dos dados entre a cloud e os clientes, com o objetivo de melhorar a qualidade da experiência dos seus utilizadores. Os primeiros modelos e algoritmos desenvolvidos são adequados para o caso em que as mashups são geridas pela aplicação cliente, e posteriormente foram desenvolvidos modelos e algoritmos para o caso em que as mashups são geridas pela cloud. Isto implica ter de resolver múltiplos problemas: i) Construção de clusters de elementos de mashup compatíveis; ii) Atribuição de dispositivos físicos aos clusters, acabando um dispositivo físico por servir m´ múltiplas aplicações/mashups; iii) Redução da quantidade de transferência de dados entre os diversos locais da cloud, e consequentes atrasos, o que dependente dos clusters construídos, dos dispositivos atribuídos aos clusters e dos locais da cloud escolhidos para realizar o processamento necessário. As diferentes estratégias podem ser adotadas por fornecedores de serviço cloud que queiram melhorar o desempenho dos seus serviços.(…

    Seamless mobility with personal servers

    Get PDF
    We describe the concept and the taxonomy of personal servers, and their implications in seamless mobility. Personal servers could offer electronic services independently of network availability or quality, provide a greater flexibility in the choice of user access device, and support the key concept of continuous user experience. We describe the organization of mobile and remote personal servers, define three relevant communication modes, and discuss means for users to exploit seamless services on the personal server

    Implementing an event-driven service-oriented architecture in TIP

    Get PDF
    Many mobile devices have a density of services, many of which are context or location-aware. To function, many of these services have to collaborate with other services, which may be located in many different places and networks. There is often more then on service suitable for the task at hand. To decide which service to use, quality of service measurements like the accuracy or reliability of a service need to be known. Users do not want third parties to have statistics on how and where they used services. Therefore the collaboration needs to be anonymous. This project implements a model of event-based context-aware service collaboration on a publish/subscribe basis. We compare different implementation designs, with focus on anonymity and quality of service of the services

    Efficient memory management in VOD disk array servers usingPer-Storage-Device buffering

    Get PDF
    We present a buffering technique that reduces video-on-demand server memory requirements in more than one order of magnitude. This technique, Per-Storage-Device Buffering (PSDB), is based on the allocation of a fixed number of buffers per storage device, as opposed to existing solutions based on per-stream buffering allocation. The combination of this technique with disk array servers is studied in detail, as well as the influence of Variable Bit Streams. We also present an interleaved data placement strategy, Constant Time Length Declustering, that results in optimal performance in the service of VBR streams. PSDB is evaluated by extensive simulation of a disk array server model that incorporates a simulation based admission test.This research was supported in part by the National R&D Program of Spain, Project Number TIC97-0438.Publicad

    ETS (Efficient, Transparent, and Secured) Self-healing Service for Pervasive Computing Applications

    Get PDF
    To ensure smooth functioning of numerous handheld devices anywhere anytime, the importance of self-healing mechanism cannot be overlooked. Incorporation of efficient fault detection and recovery in device itself is the quest for long but there is no existing self-healing scheme for devices running in pervasive computing environments that can be claimed as the ultimate solution. Moreover, the highest degree of transparency, security and privacy attainability should also be maintained. ETS Self-healing service, an integral part of our developing middleware named MARKS (Middleware Adaptability for Resource discovery, Knowledge usability, and Self-healing), holds promise for offering all of those functionalities

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Migrating medical communications software to a multi-tenant cloud environment

    Get PDF
    The rise of cloud computing has paved the way for many new applications. Many of these new cloud applications are also multi-tenant, ensuring multiple end users can make use of the same application instance. While these technologies make it possible to create many new applications, many legacy applications can also benefit from the added flexibility and cost-savings of cloud computing and multi-tenancy. In this paper, we describe the steps required to migrate a. NET-based medical communications application to the Windows Azure public cloud environment, and the steps required to add multi-tenancy to the application. We then discuss the advantages and disadvantages of our migration approach. We found that the migration to the cloud itself requires only a limited amount of changes to the application, but that this also limited the benefits, as individual instances would only be partially used. Adding multi-tenancy requires more changes, but when this is done, it has the potential to greatly reduce the cost of running the application
    corecore