
JOEL DAVID VALENTE GUERREIRO

VIRTUAL SENSOR NETWORKS:
COLLABORATION AND RESOURCE SHARING

2019

JOEL DAVID VALENTE GUERREIRO

VIRTUAL SENSOR NETWORKS:
COLLABORATION AND RESOURCE SHARING

PhD Thesis in Computer Science

Work done under the supervision of:
ProfaDraNoélia Correia

2019

Statement of Originality

Virtual Sensor Networks: Collaboration and Resource Sharing

Declaração de autoria de trabalho: Declaro ser o autor deste trabalho,
que é original e inédito. Autores e trabalhos consultados estão devidamente
citados no texto e constam da listagem de referências incluı́da.

Candidato:

——————————————
(Joel David Valente Guerreiro)

Copyright c©Joel David Valente Guerreiro. A Universidade do Algarve re-
serva para si o direito, em conformidade com o disposto no Código do Direito
de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra,
independentemente do meio utilizado, bem como de a divulgar através de re-
positórios cientı́ficos e de admitir a sua cópia e distribuição para fins mera-
mente educaciomais ou de investigação e não comerciais, conquando seja dado
o devido crédito ao autor e editor respetivos.

Work done at Research Center of Electronics Optoelectronics and
Telecommunications (CEOT)

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor ProfaDraNoélia
Correia for the continuous support of my PhD and related research, for her
patience, motivation, and immense knowledge. Her guidance helped me in all
the steps of my research and writing of this thesis. I could not have imagined
having a better advisor and mentor for my PhD study.

Secondly, a special thanks to my family, for their support and patience when I
was day after day, week after week working on this thesis and had no time left
for them, in particular to my two sons, André e Luı́s, for so many times that
I couldn’t join and support them in their activities and sports. To my beloved
wife, Cristina, for her love, care, patience, support and motivation. Without
her precious support it would not be possible to conduct this research.

Finally to my co-workers in the IT Department and University, for the motiv-
ation and support.

To all, a very big thanks.

v

Abstract

This thesis contributes to the advancement of the Sensing as a Service (Se-
aaS), based on cloud infrastructures, through the development of models and
algorithms that make an efficient use of both sensor and cloud resources while
reducing the delay associated with the data flow between cloud and client
sides, which results into a better quality of experience for users. The first mod-
els and algorithms developed are suitable for the case of mashups being man-
aged at the client side, and then models and algorithms considering mashups
managed at the cloud were developed. This requires solving multiple prob-
lems: i) clustering of compatible mashup elements; ii) allocation of devices
to clusters, meaning that a device will serve multiple applications/mashups;
iii) reduction of the amount of data flow between workplaces, and associated
delay, which depends on clustering, device allocation and placement of work-
places. The developed strategies can be adopted by cloud service providers
wishing to improve the performance of their clouds.

Several steps towards an efficient Se-aaS business model were performed.
A mathematical model was development to assess the impact (of resource
allocations) on scalability, QoE and elasticity. Regarding the clustering of
mashup elements, a first mathematical model was developed for the selection
of the best pre-calculated clusters of mashup elements (virtual Things), and
then a second model is proposed for the best virtual Things to be built (non
pre-calculated clusters). Its evaluation is done through heuristic algorithms
having such model as a basis. Such models and algorithms were first de-
veloped for the case of mashups managed at the client side, and after they
were extended for the case of mashups being managed at the cloud. For the
improvement of these last results, a mathematical programming optimiza-
tion model was developed that allows optimal clustering and resource alloc-
ation solutions to be obtained. Although this is a computationally difficult
approach, the added value of this process is that the problem is rigorously
outlined, and such knowledge is used as a guide in the development of better
a heuristic algorithm.

vii

viii

Keywords: Internet of Things, Web of Things, Sensing as-a-Service, Cloud.

viii

Resumo

Esta tese contribui para o avanço tecnológico do modelo de Sensing as a Ser-
vice (Se-aaS), baseado em infraestrutura cloud, através do desenvolvimento
de modelos e algoritmos que resolvem o problema da alocação eficiente de
recursos, melhorando os métodos e técnicas atuais e reduzindo os tempos as-
sociados à transferência dos dados entre a cloud e os clientes, com o objetivo
de melhorar a qualidade da experiência dos seus utilizadores. Os primeiros
modelos e algoritmos desenvolvidos são adequados para o caso em que as
mashups são geridas pela aplicação cliente, e posteriormente foram desen-
volvidos modelos e algoritmos para o caso em que as mashups são geridas
pela cloud. Isto implica ter de resolver múltiplos problemas: i) Construção
de clusters de elementos de mashup compatı́veis; ii) Atribuição de disposit-
ivos fı́sicos aos clusters, acabando um dispositivo fı́sico por servir múltiplas
aplicações/mashups; iii) Redução da quantidade de transferência de dados
entre os diversos locais da cloud, e consequentes atrasos, o que dependente
dos clusters construı́dos, dos dispositivos atribuı́dos aos clusters e dos locais
da cloud escolhidos para realizar o processamento necessário. As diferentes
estratégias podem ser adotadas por fornecedores de serviço cloud que queiram
melhorar o desempenho dos seus serviços.

Foram necessário vários passos com vista ao desenvolvimento de um mod-
elo de negócio de Se-aaS eficiente. Foi desenvolvido um modelo matemático
que permitisse analisar o impacto da alocação de recursos na escalabilid-
ade, qualidade de experiência e elasticidade. Foi desenvolvido um modelo
matemático inicial para selecionar os melhores clusters de elementos de mashups
(virtual Things - coisas virtuais), estando estes pré-calculados. Seguidamente
foi proposto um segundo modelo para a criação das melhores virtual Things
(clusters não estão pré-calculados). A avaliação realizada foi efetuada através
de heurı́sticas que têm como base estes modelos. Estes modelos e heurı́sticas
foram desenvolvidos primeiro para o caso em que as mashups são geridas pela
aplicação cliente, e posteriormente foram extendidos para ocaso em que as
mashups são geridas pela cloud. Com o objetivo de melhorar os resultados ob-
tidos, foi desenvolvido um modelo de programação matemática que determina

ix

x

os clusters (de elementos de mashup) e alocação de recursos ótimos. Embora
seja uma abordagem computacionalmente exigente, esta tem a vantagem de o
problema em particular ficar rigorosamente delineado, o que permitiu desen-
volver uma heurı́stica mais eficiente.

Termos chave: Internet das Coisas, Web das Coisas, Sensing as-a-Service,
Cloud.

x

Contents

Statement of Originality i

Acknowledgements v

Abstract vii

Resumo ix

Nomenclature xix

1 Introduction 1
1.1 Motivation and Scope . 1
1.2 Objectives . 4
1.3 Contributions . 5
1.4 Thesis Outline . 6

2 Sensing as-a-Service Paradigm 7
2.1 Everything as-a-Service . 7
2.2 Architecture . 10
2.3 System Functionalities . 13
2.4 Related Work . 14

2.4.1 Internet of Things . 14
2.4.2 Web of Things . 18
2.4.3 Wireless Sensor Networks 19
2.4.4 Sensing as-a-Service . 23
2.4.5 Multimedia Sensing as a Service 25
2.4.6 WSN and IoT Service Models 26

3 Resource Allocation Trade-offs in Sensing as-a-Service 33
3.1 Introduction . 33
3.2 Definitions and Assumptions . 35
3.3 Mathematical Model . 38
3.4 Analysis of Results . 41

xi

xii

3.4.1 Scenario Setup . 41
3.4.2 Discussion . 41
3.4.3 Conclusions . 43

4 Resource Allocation in Sensing as-a-Service: Clients Managing
Mashups 45
4.1 Introduction . 45
4.2 Pre-calculated Potential Clusters 47

4.2.1 Problem Formalization . 48
4.2.2 Analysis of Results . 49

4.3 Non Pre-calculated Clusters . 52
4.3.1 Definitions and Assumptions 52
4.3.2 Resource Allocation Mathematical Model 53
4.3.3 Resource Allocation Algorithm 55
4.3.4 Performance Analysis . 56
4.3.5 Conclusions . 59

5 Resource Allocation in Sensing as-a-Service: Clouds Managing
Mashups 61
5.1 Introduction . 61
5.2 Model for Sensor Clouds Managing Mashups 63

5.2.1 Definitions and Assumptions 63
5.2.2 Architecture with Embedded Mashups 65
5.2.3 Resource Allocation Mathematical Model 65
5.2.4 Resource Allocation Algorithm 69
5.2.5 Performance Analysis . 71
5.2.6 Conclusions . 79

5.3 Mathematical Programming Formalization 80
5.3.1 Definitions and Assumptions 80
5.3.2 Problem Formalization . 83
5.3.3 Hardness of the Problem 87

5.4 Algorithmic Approach . 88
5.4.1 Motivation . 88
5.4.2 Algorithm Details . 88
5.4.3 Performance Analysis . 89
5.4.4 Conclusions . 96

6 Conclusions and Future Work 99
6.1 Conclusions . 99
6.2 Future Work . 103

xii

References 105

xiii

List of Figures

2.1 SAaaS scenario from [12]. 8
2.2 Generic Se-aaS environment. 9
2.3 Se-aaS architecture. 11
2.4 Virtualization layers in Se-aaS. 13
2.5 IoT vertical markets and their horizontal integration [5]. 14
2.6 IoT architectures: (a) Three-layer architecture; (b) Middleware-

based architecture; (c) SOA-based architecture; (d) IoT business
model [5]. 15

2.7 WoT abstract architecture [3]. 18
2.8 Architecture of sensor clouds by S. Misra et al. [38]. 21
2.9 View of user organization by S. Misra et al. [38]. 22
2.10 Real view of complex processing by S. Misra et al. [38]. 22
2.11 Interactive model by T. Dinh et al. [11]. 27
2.12 Sensor cloud implemented by S. Distefano et al. [13]. 28
2.13 INTER-IoT abstract architecture by G. Fortino et al. [15]. . . . 29
2.14 Sensor cloud system architecture by M. Kim et al. [36]. 30

3.1 Thing mashup. 36
3.2 Impact of |ηi| (number of virtual Things). 42

4.1 Selecting pre-calculated potential clusters: Cumulative frequency
considering 90 available physical Things (mashups managed by
the client). 50

4.2 Selecting pre-calculated potential clusters: Cumulative frequency
considering 110 available physical Things (mashups managed
by the client). 50

4.3 Building clusters: total resource allocation cost obtained by CMC,
LCM and HCV (mashups managed by the client). 58

4.4 Building clusters: total number of materializations (virtual Things)
obtained by CMC, LCM and HCV (mashups managed by the cli-
ent). 58

xv

xvi

5.1 Virtualization layers in Se-aaS considering mashups embedded
into the cloud. 66

5.2 Number of virtual Things materialized into physical devices ob-
tained by CMC, LMC and HCV strategies (mashups managed
by the cloud). 73

5.3 Number of fulfilled mashup elements obtained by CMC, LMC
and HCV strategies (mashups managed by the cloud). 74

5.4 Average number of mashup elements per virtual Thing obtained
by CMC, LMC and HCV strategies (mashups managed by the
cloud). 75

5.5 Total materialization cost obtained by CMC, LMC and HCV
strategies (mashups managed by the cloud). 76

5.6 C1 component of materialization cost obtained by CMC, LMC
and HCV strategies (mashups managed by the cloud). 77

5.7 C2 component of materialization cost obtained by CMC, LMC
and HCV strategies (mashups managed by the cloud). 78

5.8 Number of flows obtained by CMC, LMC and HCV strategies
(mashups managed by the cloud). 80

5.9 Mathematical programming model and heuristics: Number of
fulfilled mashup elements (mashups managed by the cloud). . . 91

5.10 Mathematical programming model and heuristics: Number of
virtual Things materialized onto physical devices (mashups man-
aged by the cloud). 92

5.11 Mathematical programming model and heuristics: Average num-
ber of mashup elements per virtual Thing (mashups managed
by the cloud). 92

5.12 Mathematical programming model and heuristics: Total cost of
materializations (mashups managed by the cloud). 94

5.13 Mathematical programming model and heuristics: Average cost
per mashup element (mashups managed by the cloud). 94

5.14 Mathematical programming model and heuristics: Total num-
ber of flows (mashups managed by the cloud). 95

5.15 Mathematical programming model and heuristics: Average num-
ber of flows per mashup element (mashups managed by the
cloud). 96

6.1 Se-aaS virtualization with mashups managed in the cloud. . . . 101

xvi

List of Tables

3.1 Simulation setup to evaluate the impact in scalability, QoE and
elasticity. 42

4.1 Simulation setup to evaluate CMC, LMC and HCV strategies
(mashups managed by the client). 57

5.1 Simulation setup to evaluate CMC, LMC and HCV strategies
(mashups managed by the cloud). 72

5.2 Simulation setup to evaluate the mathematical programming
model and heuristics (mashups managed by the cloud). 91

xvii

Nomenclature

Abbreviations
5G : 5th Generation of Wireless Technology
aaS : as-a-Service
API : Application Programming Interface
CC : Cloud Computing
CMC : Cheapest Materialization Cost
CoAP : Constrained Application Protocol
CoT : Cloud of Things
CSP : Cloud Service Provider
HCV : Highest Cost Variance
HTTP : HyperText Transfer Protocol
IaaS : Infrastructure as-a-Service
ICT : Information and Communication Technology
IoT : Internet of Things
LMC : Less Materialization Choices
MSaaS : Multimedia Sensing as-a-Service
PaaS : Platform as a Service
QoE : Quality of Experience
QoS : Quality of Service
SaaS : Software as-a-Service
SAaaS : Sensing and Actuation as a Service
Se-aaS : Sensing as-a-Service
SN : Sensor Networks
SP : Service Provider
XaaS : Everything as-a-Service
VM : Virtual Machine
VSM : Virtual Sensor Manager
WSN : Wireless Sensor Networks
WoT : Web of Things
WWW : World Wide Web

xix

xx

Sets
P : All properties.
F : All functionalities.
T P : Physical Things registered at the cloud.
T P(n) : Physical devices that can be used for the materialization of

mashup element n.
Pi : Properties of Thing (physical or virtual) i.
Fi : Functionalities of Thing (physical or virtual) i.
N : All mashup elements.
P̄n : Properties defined for mashup element n.
T V : Virtual Things built by the cloud.
Mj : Materialization of virtual Thing j (one or more physical

Things).
M(f) : Possible materializations for functionality f .
S : Distributed computing resources of CSP.
A : All applications.
C(Ai) : Independent components of application Ai.
succ(n) : Successors of mashup element n at the mashup workflow.
τ i : Partition of T P.
ηi : Partition of N .
χ(k) : Virtual Things requiring data flow from virtual Thing k.
Φ(Ai) : Virtual Things consumed by application Ai.
Ψ(k) : Physical Things materializing virtual Thing k.
G(N ,L) : Compatibility graph.
L : Links in compatibility graph.
R : Set of all Thing requests.
D(r, i) : Set of Thing requests able to join request r ∈ R in materializ-

ation at device i ∈ T P(r).

xx

Known Values
fi : Functionality of Thing (physical or virtual) i.
f̄n : Functionality defined for mashup element n.
spo(p) : Semantic description of property p in the form of subject-

predicate-object.
Φn,n′ : One if n, n′ ∈ N are incompatible for materialization; zero oth-

erwise.
Ωn,n′ : One if there is a mashup flow n→ n′, for n, n′ ∈ N ; zero other-

wise.
∆n,p
f,i : Highest gap value, from physical Things enrolled in material-

izationMf
i ∈M(f), for a particular property p of n ∈ N .

∆max : Highest possible property gap.
cir : Cost of materialization D(r, i).
δ : Probability of being compatible.
∆1,...,∆5 : Levels of property requirement to device property gaps.

xxi

xxii

Functions
g(T P,i

j) : Considering T P’s partition τ i, it gives the virtual Thing
associated with element j of τ i.

f(N i
j) : Considering N ’s partition ηi, it gives the virtual Thing

associated with element j of ηi.
spo(pi) : Subject-predicate-object description of property pi.
∆(spo(pn), spo(pk)) : Specifies whether pn is compatible with pk, or not.
(ηi, τ j)SCA : Most scalable resource allocation approach for ηi and τ j.
(ηi, τ j)ELA : Most elastic resource allocation approach for ηi and τ j.
(ηi, τ j)QoE : Resource allocation approach giving highest QoE for ηi

and τ j.
h(ηi, τ j) : Total transfer cost for ηi and τ j.
TFV2V(k, k′) : Transfer cost associated with flow between workspaces

of virtual Things k and k′.
TFV2A(k,Ai) : Transfer cost associated with flow between workspace of

virtual Thing k and application Ai.
TF P2V(k′, k) : Transfer cost associated with flow between the physical

Thing k′ and workspace of virtual Thing k.
prob(k,Ai) : Probability of virtual Thing k sending its data towards

application Ai.
prob(k, k′) : Probability of virtual Thing k having flow towards virtual

Thing k′.
prob(k′, k) : Probability of physical Thing k′ having flow towards vir-

tual Thing k.

xxii

Variables
cr : Materialization cost vector.
vr : Vector of sets, each set including all requests joining request r

in a specific materialization (with cost cr).
λmax : Highest clique materialization cost (upper bound).
δir : One if device i ∈ T P was selected for the materialization of

r ∈ R, zero otherwise.
αfi : One if the ith possible materialization for functionality f ,Mf

i ,
is being used; zero otherwise.

κtf,i : One if physical Thing t ∈ T P is enrolled in the materialization
of virtual ThingMf

i ; zero otherwise.
βnf,i : One if mashup element n ∈ N is mapped to virtual ThingMf

i ;
zero otherwise.

ζpf,i : Highest gap associated with property p, from all n ∈ N , at
virtual ThingMf

i .
ρf,if ′,i′ : One if there is flow from virtual Thing Mf

i to virtual Thing
Mf ′

i′ ; zero otherwise.
Υ : Total gap cost.
Ψ : Total number of flows.

xxiii

C H A P T E R 1

Introduction

1.1 Motivation and Scope

The Internet of Things (IoT) allows devices/Things to connect and exchange
data over the internet. More recently, a move towards the Web of Things
(WoT) started to emerge for real world objects to become part of the World
Wide Web (WWW) and for resources to be easily discovered, accessed and
managed, making Things accessible to web developers around the world [16,
22]. In fact, WoT is envisaged as the key for an efficient resource discovery,
access and management of Things. A vital component in such new ecosystem
will be the 5th generation wireless technology. 5G offers an optimal telecom-
munication platform for IoT/WoT to work on, and for this reason the 5G IoT
is already called the Internet of Everyone and Everything [52]. 5G technolo-
gies meet the requirements of mobile communications and needs for Thing’s
data to be transmitted, facilitating the emergence of applications integrating
multiple physical Things (devices) and virtual resources available at the in-
ternet/web.

As more Things become discoverable and accessible in the IoT world, the
more it makes sense to rely on cloud infrastructures for storage and pro-
cessing. Many cloud-based “as-a-Service” (aaS) models have emerged over the
last years. The Everything as-a-Service (XaaS) is the term used for this set
of service models that aim to concentrate software and hardware resources,
offering them as services to a large number of users and, therefore, leveraging
utility and consumption of computer resources [14]. The most relevant are:

• Infrastructure as-a-Service (IaaS) - provide computer resources (e.g.,
virtual machines);

• Platform as-a-Service (PaaS) - provide computing platforms that may
include operating system, database, web server, and others;

1

2

• Software as-a-Service (SaaS) - where the cloud takes over the infra-
structure and platform while scaling automatically.

All these models promote the “pay only for what you use”, where clients
can subscribe services provided by Cloud Service Providers (CSP) and pay for
the resources/services they use.

The Sensing as-a-Service (Se-aaS) model, also relying on cloud infrastruc-
tures, emerges from the previously mentioned WoT and expected increase
in the number and type of devices participating in the IoT [28, 41]. Large
amounts of data with processing needs will emerge, and new challenges will
arise in terms of storage and processing. The Se-aaS, being a cloud-based ser-
vice model for sensors/data to be shared, allows for a multi-client access to
sensor resources, and a multi-supplier deployment of sensors [41]. This way,
everyone can benefit from the IoT ecosystem, while benefiting from cloud’s
storage and processing capabilities.

Besides allowing everyone to benefit from the IoT ecosystem, the Se-aaS
model allows highly-available, or resilient, applications to be developed. Ba-
sically, resilient applications require planning at both software development
and application architecture levels, and Se-aaS platforms can serve as a basis
for the last. Besides ensuring robust storage and scalability, such service
model allows physical Things to be dynamically allocated to clients/applications
because users remain unaware of physical Things involved in the process.
That is, the client ends up having no deployment and maintenance costs,
while having an on-demand fault tolerant service because clients/applications
can always use other available physical Things.

When incorporating Se-aaS platforms in the application architecture, soft-
ware components end up having bindings to virtual sensors managed at the
cloud. Any workflow, wiring together virtual sensors, actuators and services
from various web sources, is currently managed at the client side. Such work-
flows are called mashups and define how the just mentioned elements are
wired together. For resources to be used efficiently, multiple mashup elements
(from different client applications) should be materialized onto the same phys-
ical Thing, if the requested functionality is the same and their property re-
quirements/constraints are not competing. However, managing mashups at
the client side will bring significant delays because there are multiple travel-
lings of data to the client side. To avoid this, mashups must be managed at

2

1.1 Motivation and Scope

the cloud and bindings to such mashups must be built.

When software components have bindings to mashups managed at the
cloud, approaches for an adequate allocation of resources can be developed.
The goal is to use Things/data and cloud resources efficiently, while redu-
cing delays associated with the multiple travellings of data. This is achieved
by building optimization models that describe the problem in a compact and
non-ambiguous way, ensuring that the optimal solution is obtained for each
instance of the problem. Due to the problem’s hardness, and consequent diffi-
culty in obtaining solutions for large instances, heuristic algorithms also need
to be developed.

3

4

1.2 Objectives

The objectives of this thesis are the following:

• To explore clusters/groups of mashup elements, for materialization onto
devices. A good clustering and materialization policy is critical for device
and cloud resource optimization, but before moving to any specific ap-
proach a first step will be performed to unveil the trade-off between
scalability, elasticity and Quality of Experience (QoE) when making re-
source allocation at sensor clouds under the Se-aaS paradigm.

• Clusters/groups of mashup elements can be quite asymmetric in terms
of cost (gap between what is requested by mashup elements and physical
devices supplied by the cloud). For this reason, a second step is to eval-
uate the impact of minimizing the highest materialization cost (among
all materializations), which can be seen as a fairness approach. Such
fairness criteria must be compared against the unfair one (minimizing
the sum of all materialization costs, which can lead to asymmetries).
This step will assume that groups/clusters of mashup elements are pre-
defined and their materialization is to be decided.

• The next natural step will be to develop specific resource allocation mod-
els, for sensor clouds under the Se-aaS paradigm, that build the best
clusters of mashup elements and optimize resource usage, while minim-
izing delays. Resource allocation models will be developed considering
both mashups managed at the client side and mashups managed at the
cloud.

• Heuristic approaches, for good solutions to be obtained fast, will be ex-
plored.

4

1.3 Contributions

1.3 Contributions

This work has several contributions:

• Evaluation of the impact of resource allocation in scalability, QoE and
elasticity, for CSPs to be aware and choose for the best approach accord-
ing to their specific case.

• A mathematical model is developed to select the best pre-calculated clusters
of requests, for them to become virtual Things. The model tries to se-
lect devices with properties more close to application requests, leaving
devices with higher capabilities idle for future requests.

• A mathematical model is developed for the best clusters to be built (non
pre-calculated clusters). Three heuristic approaches, having the men-
tioned model as a basis, are proposed and evaluated.

• Extension of the mathematical model previously developed, which finds
the best clusters considering mashups managed at the client side, for the
case of mashups managed in the cloud. The three heuristic approaches
are also extended for this purpose.

• A mathematical programming optimization model is developed that is
able to obtain the optimal solution in resource allocation.

• Based on the knowledge gained with the development of the mathem-
atical programming optimization model, a new heuristic is proposed.
This is able to improve the results obtained by the previous heuristic
approaches.

5

6

1.4 Thesis Outline

Chapter 1 introduces the Se-aaS paradigm, a cloud based service model that
allows a multi-client access to sensor data and multi-supplier deployment of
sensors. The objectives of the thesis are also detailed, which mainly focus
on the development of resource allocation approaches, based on mathemat-
ical models and heuristics, for a good use of resources when responding to
client/application mashup requests.

In Chapter 2, the Se-aaS paradigm and the relevance of its use are dis-
cussed in more detail. The impact of cloud infrastructure’s processing and
storage capabilities when responding to data requests, and given a set of re-
gistered sensors, is analysed. The related work on IoT, wireless sensor net-
works, Se-aaS models, architectures and system functionalities is also presen-
ted.

Chapter 3 details the model developed to assess the trade-off on scalabil-
ity, QoE and elasticity, when developing resource allocation models for Se-aaS.
This is adequate for scenarios where there are multiple client/application re-
quests and mashups being built.

Resource allocation approaches, defined through mathematical models,
are discussed in Chapter 4. Such approaches select (pre-calculated clusters)
or build the clusters and virtual Thing materializations based on costs, so
that efficient clustering and materialization assignment is performed. These
assume mashups being managed by client applications.

A more complete resource allocation approach for Se-aaS clouds embed-
ding mashups into the cloud is detailed in Chapter 5. The models and al-
gorithms from Chapter 4 are extended for this purpose. The idea is that
mashups, or parts of it, can be consumed by multiple applications or clients.
Besides efficient resource allocation, delays associated with data transfer is
minimized. A mathematical programming optimization model and a cluster
expansion based heuristic are developed that improve the previously obtained
results.

Chapter 6 concludes the thesis report, summarizing the steps and strategies
done to improve the resource allocation in the Se-aaS model. This chapter also
presents future work.

6

C H A P T E R 2

Sensing as-a-Service Paradigm

2.1 Everything as-a-Service

To understand the as-a-Service models, it is important to see the big picture
of Cloud Computing (CC). The CC is a paradigm that aims to provide on-
demand computing and storage resources to users, relying on virtualization
technologies, while providing Quality of Service (QoS) guaranties. Different
aaS models have been presented throughout the years by several authors.

CSPs have already implemented and offer nowadays different services
based on CC. These include Infrastructure as-a-Service, providing comput-
ing resource services, like processing servers, virtual machines, storage, net-
works, load balancers, etc.; Platform as-a-Service that delivers complete plat-
forms with operating systems, databases, web services, development envir-
onments; and Software as-a-Service, where on-demand software is available
at the cloud. A new term was, therefore, introduced that specifies a set of
service-oriented architectures and models aiming to concentrate software and
hardware resources, to offer services to a large number of users, leveraging
utility and consumption of computer resources. Such term is the Everything
as-a-Service [14]. All these models promote the “pay only for what you use”
while allowing companies to focus on their core competencies, instead of In-
formation and Communication Technologies (ICT) [41] [40].

Sensor based cloud computing emerged more recently and also has CC as
a basis. The objective is to make sensor resources/data from Sensor Networks
(SN) or Wireless Sensor Networks (WSNs) available to multiple users/clients
[33]. A sensor is a device that can measure, detect or sense some phenomenon,
like measuring the temperature or light in a room. In [12], the authors de-
scribe Sensing and Actuation as-a-Service (SAaaS), where they identify three
main actors: Node Owner, CSP and Application Service Providers. The Node

7

8

Figure 2.1: SAaaS scenario from [12].

Owner provides the devices into the cloud. The CSP abstracts and virtualizes
the devices and provides them as-a-service through an application, used to
access data from the devices registered at the cloud. The Application Service
Provider is the consumer/client that uses the cloud services (see Figure 2.1).

Se-aaS was first introduced by [45] with the objective of providing sensing
services, through a cloud computing environment, using mobile phones. Such
work analyses the design of Se-aaS clouds, which should support different
applications and be energetically efficient, describes the basic functionalities
and tasks and also details the implementation challenges. The authors also
introduce several scheduling algorithms to solve energy efficiency problems,
and for sensors to become more proficient in loading the sensing data into dif-
ferent smartphone platforms. They also describe the design of an incentive
mechanism to attract users to participate with their mobile equipment. This
study is the first approach discussing a Se-aaS business model.

The Se-aaS model emerged to assist in the use of resource-constrained
Things (devices/sensors), as illustrated in Figure 2.2, and can be used for agri-
culture, healthcare, environmental purposes, and many other domains. This

8

2.1 Everything as-a-Service

Figure 2.2: Generic Se-aaS environment.

model is able to offer a large number of sensors that users can use without
having to own them. They simply subscribe the services from the CSP, and ac-
cess millions of data from millions of sensors that are registered at the cloud.

Se-aaS is a business model in a CC environment, where sensor owners can
register/de-register their devices, providing services to application users that
access data in real-time, with fault tolerance, scalability and security. There is
a multi-supplier deployment of sensors, and a multi-client access to sensor re-
sources, while the Se-aaS infrastructure provides storage, virtualization and
management facilities [38]. A closer look at the Se-aaS model architecture is
required to fully understand all details.

9

10

2.2 Architecture

The Se-aaS model works on a cloud and has the IoT infrastructure as a ser-
vice basis, for virtual sensors to become available to users (each virtual sensor
is operationalized via one ou more physical devices). This way many users
can access data generated from those devices. Similarly to other aaS mod-
els, resources should be provisioned and de-provisioned dynamically and on-
demand, resulting in a flexible operation. Since sensors (or data) are to be
accessed by multiple users/applications in real-time, through service subscrip-
tion, the costs associated with owing, programming and maintaining sensors
and/or sensor networks will scale down [33]. The challenges when planning
and designing such systems are the following:

• Underlying complexity should be hidden, so that services and applica-
tions can be launched without much overhead;

• Scalability, ensuring a low cost-of-service per consumer while avoiding
infrastructure upgrade;

• Dynamic service provisioning for pools of resources to be efficiently used
by consumers.

The Se-aaS model consists of three layers: i) Sensor Providers and Phys-
ical Sensors; ii) Cloud Infrastructure; iii) Consumers [41]. See Figure 2.3.

• Sensor Providers and Physical Sensors: This layer consists of SN,
WSN or simply sensors owned by sensor providers (private or public or-
ganizations) that publish/register those sensors in the Se-aaS cloud in-
frastructure and share sensor data. The sensor providers have to man-
age and control the sensors for them to work perfectly and be able to
share data [28].

• Cloud Infrastructure: The Cloud Infrastructure layer consists of four
types of servers: Portal Server, Data Storage, Monitoring and Manage-
ment Server (some authors separate these in two different servers), and
Provisioning Server.

– The Portal Server should be able to respond to user’s needs when
they log in (sensor provider or consumer), allowing sensor providers
to register or remove their sensors and consumers to place a re-
quest to monitor, manage or terminate virtual sensors and/or vir-
tual sensor groups. Sensor providers should be able to view the us-
age of their sensors and obtain detailed reports. Consumers should

10

2.2 Architecture

Figure 2.3: Se-aaS architecture.

be able to control and activate/de-activate their subscribed virtual
sensors, set how often they want to receive the data and check their
status. This server forwards the requests to the Provisioning Server
for creation, modification and removal of Virtual Machines (VMs),
virtual sensors and virtual sensor groups [28].

– The Data Storage Server ensures the storage of data into the data-
bases, which may relate to user’s information, virtual sensors, vir-
tual sensors groups or sensing data [28].

– Monitoring and Management Server is responsible for providing a
multi-tenant solution over the cloud to the registered sensor pro-
viders and consumers, performing scaling and location-aware load
balancing for selected VMs to be closer to the requesting zone. This
server is also responsible for retrieving the data and for the health
status of the virtual sensors, which is to be stored in the Data Stor-
age Server for virtual sensor information to be available to con-
sumers. This server is extremely important because live data pro-
visioning is based on live physical sensors, and if a physical sensor
is offline the Monitoring and Management Server should mark the
sensor for this not to be used by the Provisioning Server. This pro-

11

12

visioning server should choose another sensor, with the same char-
acteristics and properties, to be binded to the virtual sensor and
respond to the consumer requests [28].

– Provisioning Server is responsible for the creation of virtual sensor
groups, and virtual sensors on-demand, according to consumer re-
quests that were registered through the Portal Server. The Pro-
visioning Server can create and reserve VMs when it receives a re-
quest from the Portal Server. After the VM is ready, a virtual sensor
group can be automatically provisioned and stored in the Storage
Server, for the Portal Server to know the virtual sensors that were
assigned for that particular request and start receiving the data
[28].

• Consumers: Consumers will place their requests through the Portal
Server, after register themselves, and will receive the real-time analytics
they have requested. Consumers may also download archived data and
use Application Programming Interfaces (APIs) to connect to their own
applications [28].

For a clear understanding of the Se-aaS model, the workflow within this
model must be explained. The workflow is initiated with the registration of
sensors by the Sensor Providers, through the Portal Server, and information
is stored in the Data Storage Server after a status and location checking per-
formed by the Monitoring and Management Server. The consumer registers
and inserts its sensing data requests using the Portal Server that will cre-
ate the virtual sensors, or virtual sensors groups, that can better respond to
such requests. This requires using the information stored in the Data Storage
Server, which includes the location information determined by the Monitor-
ing and Management server. The Monitoring and Management Server starts
then to retrieve the data in real-time and stores it in the Data Storage Server.
The results can be visualized by the consumers when using the Portal Server.

12

2.3 System Functionalities

Figure 2.4: Virtualization layers in Se-aaS.

2.3 System Functionalities

Besides registration capabilities for consumers and providers, Se-aaS plat-
forms end up having one or more of the following functionalities [28]:

• Virtualization: Sensor virtualization is used to enable the manage-
ment and customization of devices by clients/applications/consumers, al-
lowing a single device to be linked to one or multiple consumers. Groups
of virtual sensors can be made available for specific purposes. Virtualiz-
ation is illustrated in Figure 2.4.

• Dynamic Provisioning: This allows consumers to leverage the vast
pool of resources on demand. A virtual workspace (e.g., virtual machine)
is usually created for the provisioning of virtual sensors, which can be
under the control of one or more consumers. Virtual workspace instances
are provisioned on demand, and should be as close as possible to the
consumer’s zone.

• Multi-Tenancy: A high degree of multi-tenancy in architectures allows
sharing of sensors and data by consumers, and dedicated instances for
each sensor provider. Issues like scaling according to policies, load bal-
ancing and security need to be considered.

13

14

Figure 2.5: IoT vertical markets and their horizontal integration [5].

2.4 Related Work

2.4.1 Internet of Things

IoT was introduced in 1998 by Kevin Ashton who stated: “The Internet of
Things has the potential to change the world, just as the internet did” [7].
Then, in 2005, the International Telecommunications Union formally intro-
duced IoT saying: “from anytime, anyplace connectivity for anyone, we will
have connectivity for anything” [46]. From then on, several projects were
launched to provide solutions for implementing IoT on different application
domains, like e-Health, smart agriculture, smart water, smart metering, smart
environment, security and emergencies, logistics, and so on. Over the last
years, cities also emerged as an application domain on which IoT infrastruc-
tures are used to implement innovative solutions and services. Thus, data is
used for cities to become smart cities.

In Ala Al-Fuqaha et. al., [5], the IoT architecture, main technologies and
protocols used, IoT challenges, and the relationship between IoT and other

14

2.4 Related Work

Figure 2.6: IoT architectures: (a) Three-layer architecture; (b) Middleware-based
architecture; (c) SOA-based architecture; (d) IoT business model [5].

emerging technologies is discussed. The authors also discuss service use-cases
to interconnect different protocols, so that IoT services can be delivered. Their
definition of IoT highlights several characteristics: “The IoT enables physical
objects to see, hear, think and perform jobs by having them “talk” together, to
share information and to coordinate decisions. The IoT transforms these ob-
jects from being traditional to smart by exploiting its underlying technologies
such as ubiquitous and pervasive computing, embedded devices, communica-
tion technologies, sensor networks, internet protocols and applications. Smart
objects along with their supposed tasks constitute domain specific applications
(vertical markets) while ubiquitous computing and analytical services form
application domain independent services (horizontal markets)”. Figure 2.5 il-
lustrates the interaction between the various application domains, together
with the horizontal integration of independent services.

Several IoT architectures have been proposed in the literature, but still no
convergence into a single model exists [29]. The authors in [5] summarize IoT
architecture proposals discussed in [27, 48, 50] (see Figure 2.6) as follows:

(a) The three-layer architecture of IoT, where the perception, network and
application layers are defined;

(b) A middleware-based architecture, where more virtualization is intro-
duced to the model as well as a middleware layer;

(c) SOA-based architecture, which introduces two service layers, for man-
agement and composition, to the model as well as an object abstraction
layer;

15

16

(d) Five layer architecture for an IoT business model.

Miao Wu et al, [48], proposes an additional architecture including the fol-
lowing layers:

• The Perception Layer - This layer is aware of the object properties (tem-
perature, location, etc.) and enables the transmission of such informa-
tion throughout the networks by converting it into digital signals. There
are several techniques used in this layer, such as RFID, 2-D barcodes,
GPS, etc. Thus, the main function of the perception layer is to collect
and transform information into digital signals for these to be transmit-
ted.

• The Transport Layer - Also called network layer, is responsible for the
transmission of the data received by the perception layer throughout
the different connected networks. The technologies used in this layer
are cellular, Wifi, bluetooth, infrared, etc, and IPv6 is used to address
billions of devices. Thus, the main function of the transport layer is to
transport information through the various connected networks.

• The Processing Layer - The information received by the transport layer
is to be analysed, processed and stored within the processing layer. The
main technologies utilized in this layer are: intelligent processing, cloud
computing, databases, ubiquitous computing, etc. The large amount of
data received from billions of devices makes this layer crucial, and both
cloud and ubiquitous computing will have a growing preponderance in
the processing and storage of all such data.

• The Application Layer - IoT application development (e.g., intelligent
transportation, identity authentication or logistics management) can be
achieved using the output data from the processing layer. Thus, the
main function of the application layer is to provide applications that
can respond to all industries that require such output data, this way
promoting the development of the IoT in a larger scale.

• The Business Layer - The main role of this layer is to manage the de-
veloped applications, which respond to several industries, and to create
a business model that allows profit (using shared data) by several cli-
ents.

Rafiullah Khan et all [27], identify the following key challenges in IoT:

16

2.4 Related Work

• Naming and Identity Management - Each device connected to IoT infra-
structures must have a unique identification over the internet, so a nam-
ing and identity management system is required to dynamically assign
and manage unique identifications in a large scale of objects/devices.

• Interoperability and Standardization - The manufactures provide differ-
ent technologies and services, creating an ecosystem which is not inter-
operable and yet not a standard. Standardization is required for the
interoperability of all devices/objects.

• Information Privacy - Different technologies are used in devices, like
RFID, 2D-barcodes, etc, and it is necessary to ensure privacy and avoid
unauthorized access.

• Safety and Security of Objects- Physical damage and intruder’s access to
devices must be prevented throughout all the geographic areas, avoiding
losses of data and objects.

• Data Confidentiality and Encryption - The data transmitted by devices
should be encrypted to assure data integrity.

• Network Security - The network should be able to perform data trans-
mission with no data loss due to congestion or security issues, preventing
external monitoring or external interference.

• Spectrum - The wireless transmission requires a dedicated spectrum for
data to flow normally in the network. Therefore, an efficient cognitive
spectrum allocation mechanism is required that allows a large amount
of devices to communicate over wireless networks.

• Greening of IoT - Decreasing the energy consumption is the goal and
green technologies are required to make devices more efficient.

In [4] the authors present a framework for IoT infrastructures where data
is provided via a data cloud for service-based applications. The development of
online heuristics for public data delivery in smart cities and a pricing function
for data acquisition are presented by the authors. The developed multi-tier
framework, able to receive from heterogeneous data sources and to dynam-
ically collect data from peripheral network gateways, receives user requests
from access points on top of the architecture and delivers sensor data to con-
sumers. The authors also present a two-tier pricing model, where the first
monitors peripheral systems, delays, gateway capacity and system lifetime,

17

18

Figure 2.7: WoT abstract architecture [3].

while the second maximizes service quality, trust factor and the monetary
value of the data retrieval.

IoT can be defined as a collection of Things (sensors, cellphones, GPS loc-
ators, RFID systems or other smart objects) that are identifiable, trackable
and connected to the internet [54], providing a large scale access to informa-
tion. However, many different approaches, applications and ecosystems were
developed for IoT, which results in the inability for these to communicate
between themselves. Today’s reality is that we have a fragmented IoT. In
summary, the challenges arising from this fragmented environment are re-
lated to [42]:

• Interoperability of different technologies;

• The amount of data generated by IoT devices for processing and deploy-
ment;

• How to orchestrate resources from different ecosystems.

2.4.2 Web of Things

The fragmented environment created by IoT, where devices, applications and
services are not interoperable, required the emergence of WoT. Sujith S. Mathew

18

2.4 Related Work

et al., [34], refers to WoT as the application platform for IoT including ad-
vances in web services that abstract the underlying technology of Things, en-
hancing the global interoperability between systems. Soumya K. Data and
Cristian Bonnet, [26], presented the interoperability advances in IoT when
using WoT. To better understand WoT, the architecture must be presented
(See Figure 2.7). The architecture referred by the authors in [3] is composed
by three main components:

• The connected device level – where sensors and objects are connected;

• The gateway or edge level – to establish the connection between the con-
nected device level and the cloud level, for data retrieval from physical
Things.

• The cloud level – where CC with high levels of processing, storing and
services allows the consumers to request and retrieve data.

This architecture allows the connection of web technologies to devices or Things
in the internet [23].

WoT allows Things to communicate, collaborate and make decisions autonom-
ously, which can rely on cloud based services [35], resulting in the construction
of platforms and applications to collect and process data using web technolo-
gies like HTTP, RESTful web services or CoAP. This increases the number
of Things connected to the internet and the data retrieved as web resources
[9, 43].

Thus, WoT allows the connection of Things to the WWW, enabling their
discovery, access and management by users/developers using web protocols
[22]. This solves the problem of discovering and connecting Things, but still
it is not able to solve the problem of dealing with huge amounts of data, or
the problem of how to orchestrate different ecosystems. CC can be the an-
swer to these challenges. The following subsections discuss proposals from
the literature that try to address some of these issues.

2.4.3 Wireless Sensor Networks

WSNs are networks capable of connecting distributed autonomous sensors to
capture physical and environmental conditions (e.g., temperature, humidity,
vibration, motion, pressure, etc.), with the goal to retrieve and manage the

19

20

sensors data [53]. Zhu et al. describe in [53] the four main issues when
integrating WSNs:

• Location awareness and energy consumption of devices/equipment;

• Authentication and trust calculation;

• Network bandwidth usage to access data;

• QoS improvement.

These issues can be solved with the integration of WSNs into CC infra-
structures and by offering sensing services to clients that subscribe them.

Storing and processing the huge amount of data generated by WSNs and
IoT devices soon also became a problem. Another solution had to be im-
plemented that could solve these issues, and CC was the answer [53]. The
amount of data that can be processed, stored and managed in CC infrastruc-
tures is huge due to their capabilities, technology and virtualization tech-
niques. CC infrastructures provide several services for access, sharing and
resource utilization. As mentioned before, the most relevant services are now:
IaaS, PaaS and SaaS. In the context of WSNs, Deshwal et al. propose in [6]
an architecture that introduces IaaS and SaaS to implement an information
as a service solution for WSNs. That is, a flexible and reliable infrastructure
capable to process, store and secure services targeted to sensor data clients,
using virtualization technologies, is proposed.

Regarding virtualization of WSNs, several proposals have appeared in
the literature. When virtualizing WSNs, the general idea is that the cloud
should abstract different physical device platforms in order to give the im-
pression of a homogeneous network, enhancing user experience when config-
uring devices. In this context, data storage and/or device assignment to tasks
has been recently addressed. In [38] a shift from WSNs to sensor clouds is
discussed and a theoretical mathematical model that characterizes the vir-
tualization model is presented. The behaviour of WSN based applications in
the sensor cloud platform, using virtualization groups of physical sensors, is
studied. See Figure 2.8. The authors presented the previously mentioned
architecture from two points of view:

• User organization’s view or logical view - A user interface is presen-
ted as a web page (accessed with a browser) that is running at the site

20

2.4 Related Work

Figure 2.8: Architecture of sensor clouds by S. Misra et al. [38].

of the CSP. An organization (or user) requests virtual sensors through
specific templates that collect relevant information, like location or type
of sensors. The user is abstracted from all cloud’s underlying complexity
(processing, sensor node allocation, application aggregation and virtual-
ization) and retrieves the data from the CSP through APIs. Data is then
integrated into the application. See Figure 2.9.

• Algorithmic view or real view - Figure 2.10 shows the communica-
tion flow between users and the entities providing the on-demand alloc-
ation of virtual groups of sensors, binded to physical sensors, that can
respond to the requests.

Results presented by S. Misra et al. show that the mapping of applications
to physical resources, using virtualization of groups of sensors, leads to sensor
clouds that outperform traditional WSNs in most of the cases, which justifies
the shift to the cloud.

Another proposal regarding the assignment of tasks in WSNs is presen-
ted in [53]. Four still ignored research issues are described in the WSN-CC
integration:

21

22

Figure 2.9: View of user organization by S. Misra et al. [38].

Figure 2.10: Real view of complex processing by S. Misra et al. [38].

• Sensors usually utilize non-rechargeable batteries with limited
energy. That is, sensor nodes continuously transmit data to the cloud
and battery lifetime is short.

• Authentication of CSP. False authentications can impersonate users
and obtain services from the CSP. Trust and reputation were not yet
seriously prevented in CC for WSNs.

• Applications that require WSNs to reliably offer sensor data:
Useful sensor data should be reliably offered from WSNs to the CC, and

22

2.4 Related Work

not directly to the users, so that it can be offered to several people.

• Improving QoS: Another issue is QoS, where throughput or response
time has a vital role for users and should be explored.

The authors respond to these issues with their accomplished work, and for
each issue they propose solutions:

• First issue - The authors propose two collaborative location based sleep
scheduling schemes that consider the location of mobile users, and dy-
namically change the status of sensor nodes (between awake and asleep)
so that they send data only when scheduled, and their battery lifetime
increases.

• Second issue - The authors propose a novel authenticated trust and
reputation calculation considering the authenticity, the CSP and user
requirements, and the cost of trust and reputation service.

• Third issue - A time and priority based selective data transmission
is proposed where just some useful selected data is transmitted to the
cloud, considering time and priority features of the data.

• Fourth issue - The basic idea is to use trust and enhance WSN-CC
integration, where data to the cloud is prioritized over other data.

In [30], data filtering in WSNs, for storage at the cloud, is addressed. The
main concept is the use of gateways to link WSNs with the cloud. Gateways
collect data from the sensor nodes, perform compressing and then transmit it
to the cloud. Neural networks are used to detect anomalies in the gathered
data. The authors propose an architecture that reduces sensor energy con-
sumption due to the fact that the majority of data processing is done at the
gateways, and also by using scheduled updates to the data at the cloud. The
storage at the sensor devices is minimal.

The connection to the cloud solved the issue of storing and processing huge
amounts of data in WSNs. Se-aaS emerged from this scenario to provide ser-
vices to customers paying just for what they use. The next subsections intends
to explain Se-aaS evolution throughout the literature.

2.4.4 Sensing as-a-Service

The Se-aaS concept was initially introduced by [4, 45] where authors identify
the challenges: different sensing applications should be supported, solutions

23

24

should be energy-efficient and an incentive mechanism must exist to attract
users to share their sensing activities, using mobile phones (crowd sensing)
to fulfil some need or request. The authors in [45] describe the functionalities
that a Se-aaS cloud should support:

• Web Interface: A web interface to collect the requests from users;

• Generating Sensing Tasks: Sensing tasks, containing the request
information entered through the web interface, which should follow a
standard format;

• Tracking Mobile Phones: Information from all mobile phones should
be available so that data can be shared. Their location, which sensors
are available, energy status, and so on, should be made available. A way
to push tasks into mobile phones must exist too, for data to be collected;

• Recruiting Mobile Users: A way to recruit mobile phone users, for
them to share their mobile sensors, must exist. These should respond to
the requested tasks. The recruitment must have an incentive mechan-
ism;

• Scheduling of Sensing Activities: An algorithm or policy for the
scheduling of sensing activities, at previously recruited mobile phones,
must exist for shared data to be collected at the time that is needed;

• Managing Sensors: An application in each mobile phone must exist
for sensors to be managed, and for scheduled tasks to collect and store
data into the cloud;

• Processing and Storing Data: A database is required for useful in-
formation to be stored, and for data reports to be delivered to the users.

In the context of smart cities, Se-aaS is discussed in [41, 42]. The first ad-
dresses technological, economical and social perspectives, exploring the sens-
ing as-a-service concept and how it fits into IoT. The main goal of IoT is to
connect devices to the internet, and to allow them to communicate between
themselves, and for that to be achieved the devices should have embedded
sensing and communication capabilities. This will increase the cost of those
devices. Se-aaS is designed to provide incentives to users, so that they are
encouraged to participate, and share data, even if it increases the cost of their
devices. This is so because users will get a return on their investment. The
proposal is to use a Se-aaS model, instead of implementing traditional IoT

24

2.4 Related Work

smart cities, because a Se-aaS model can be sustainable, scalable and power-
ful, which allows to efficiently use the limited resources while allowing for a
large number of consumers, with a win-win solution for all parties involved.
The cities/users have the resources and data they need, and sensor providers
have their return according to the envisaged incentives.

The authors in [42] propose a global approach for semantic annotation of
sensors at the cloud, allowing different resources to be aggregated. That is,
their smart city vision relies on a Cloud of Things (CoT) paradigm. Their main
goal is to create a technological agnostic architecture for the integration and
deployment of several objects and devices, ignoring their underlying architec-
ture. This must meet all requirements of a smart city. The approach is based
on the creation of a platform that envisages the convergence of IoT platforms
and ecosystems. That is, CoT creates bridges between different platforms
and fragmented ecosystems that otherwise would not be able to communic-
ate. Vertical platforms are horizontally integrated, through a virtualization
level that guarantees the semantic interoperability of the different IoT plat-
forms and ecosystems.

In [24, 37], the semantic selection of sensors is addressed. The first pro-
poses a sensing service architecture that is context-aware and applies select
and search methods to discover: user preferences, accuracy, power consump-
tion, sensing range, etc. Searches are applied using semantics and para-
meters/requirements registered by consumers, for sensor selection, and this
method proved that lower power consumptions can be achieved, when com-
pared with traditional text based search schemes. The authors of the second
work have designed a framework for optimal gateway selection in sensor cloud
environments, using semantics, which is applied to remote health monitoring
of patients distributed over different geographically locations.

2.4.5 Multimedia Sensing as a Service

Multimedia Se-aaS has been explored in [31, 32, 47, 49]. The authors of the
first work have developed a real-time transcoding mechanism with HTTP live
streaming in a cloud, using hand-held devices such as mobile phones or tab-
lets. The authors in [49] discuss mobile cloud computing for rich media applic-
ations, and their primary goal is to discuss technical challenges like energy
consumption, offload computing tasks, limited bandwidth, QoE, privacy and
security, and the minimization of costs, using rich media applications in mo-

25

26

bile devices with a cloud computing context. They also review some solutions
proposed in the literature, like: i) considering energy consumption on the cli-
ent side, and not on the cloud side (from a green point of view, however, the en-
ergy consumption should be implemented on both sides and a solution is still
to be investigated); ii) adaptive QoE provisioning, which is an open problem
for scheduled sessions in wireless networks and in cloud environments; iii)
security and privacy, since video applications developed in the mobile cloud
were still not secure and privacy was not yet stabilized and fully implemen-
ted. The authors suggest that those solutions should be investigated.

In [32], a network and device QoS-aware approach for cloud based mo-
bile streaming is presented. Their main objective is to provide multimedia
data, suitable for terminal units using interactive mobile streaming services
provided by a cloud, while adjusting the interactive transmission frequency
and the dynamic multimedia transcoding, so that bandwidth and power waste
is avoided. A prototype of this architecture is implemented, together with an
efficient self-adaptive service for multimedia streaming depending on differ-
ent bandwidth environments.

Wang et al., in [47], explores the resource saving potential of cloud-edge
IoT and Fogs for Multimedia Sensing as a Service (MSaaS). In such article,
the MSaaS concept is introduced for the first time. Their contribution is the
development of a MSaaS resource allocation framework for cloud edges and
fogs. They analyse frequency, data dependencies, temporal domains and in-
teraction to optimize the resource allocation at cloud-edge IoT and Fogs.

2.4.6 WSN and IoT Service Models

Service-centric models in [12, 51] focus on the services provided by a WSN
acting as a service provider, and not on the WSN virtualization for an homo-
geneous network to be built. The authors in [51] explain how IoT and Big
Data connects with Se-aaS, due to the volume, variety and velocity of sensor
data that needs to be processed, extracted (useful information) and stored
with high performance. The authors explain that Big Data is not just the
size of data generated, but also the variety, different types of data, and how
frequently data is generated (occasionally, frequently or in real-time). Tech-
niques are essential for managing and storing sensor data, so that it can be
presented as-a-Service.

26

2.4 Related Work

Figure 2.11: Interactive model by T. Dinh et al. [11].

The authors in [12] focus on the implementation of an as-a-Service infra-
structure, through CC, where wireless sensor nodes in a WSN can be man-
aged and aggregated dynamically, so that new resources become available
as-a-Service.

Regarding IoT service models, the general idea is to virtualize sensing ser-
vices provided by devices. A virtual sensor ends up being responsible for
passing user’s specifications to device(s) and for processing the sensed data
before delivering it to users. In [11] an interactive model is presented where
the aggregation of multiple application requests, with the objective of min-
imizing workloads, control latency and save energy, is addressed (see Figure
2.11). The sensor cloud consists in virtualizing sensors in a cloud environ-
ment that is responsible for providing services to the applications, consid-
ering the user specifications to retrieve data (e.g., sensor types, locations or
QoS requirements). The model consists in top-down (application requests)
and bottom-up (sensing traffic) streams. The sensor cloud in this model is
considered a middleware between the physical sensors and the applications,

27

28

Figure 2.12: Sensor cloud implemented by S. Distefano et al. [13].

virtualizing physical into virtual sensors. Results show that this model ef-
fectively controls latency of sensor flows and applications at the same time,
providing high scalability.

The authors in [13], similarly to [11], design and develop sensing abstrac-
tion and virtualization functionalities in sensing CC. A sensing cloud is imple-
mented that aggregates sensing resources and personal mobile devices, which
were virtualized, and then provides as a service to end users (see Figure 2.12).
Tests were done with Android platform through a typical IoT application to
demonstrate the feasibility of the architecture. Results show that this ap-
proach is feasible [13]. In summary, [11, 13] present solutions for the physical
resources to be abstracted, virtualized and presented as a service to the end
users. This way, the access and interaction with physical Things becomes uni-
form and in compliance with IoT/WoT goals.

28

2.4 Related Work

Figure 2.13: INTER-IoT abstract architecture by G. Fortino et al. [15].

Specific platforms providing efficient sharing mechanisms for data (among
multiple applications) were proposed in [15, 25, 36]. [25] propose a new
concept for distributed sensor networks sharing , using a virtual federated
sensor network. In the absence of IoT standards, the INTER-IoT systemic
approach was presented in [15], which aimed to provide ways to overcome
interoperability issues between heterogeneous IoT systems in devices, net-
works, middleware, application services and data/semantics (see Figure 2.13).

The architecture describes three main solutions that allows interoperabil-
ity in a voluntary way:

• INTER-Layer - A set of tools and methods, to provide interoperability
between layers, using virtual gateways/devices to enable communication
between devices, networks and middleware’s. A broker for data and se-
mantics interoperability is also presented in this solution.

• INTER-FW - A framework for managing and programming IoT plat-
forms. An API to access and manage the ecosystem of IoT applications
and services is presented in this solution, which also is aimed to provide
security and privacy features, as the creation of a community of users

29

30

Figure 2.14: Sensor cloud system architecture by M. Kim et al. [36].

and developers too.

• INTER-Meth - Computer Aided Software Engineering (CASE) tool with
the objective of systematically drive the integration/interconnection of
heterogeneous non-interoperable IoT platforms.

The architecture presented by the authors enables the creation of an ecosys-
tem of different devices, networks and middleware to interoperate between
themselves and to provide data sharing.

A cloud based solution was developed by [36] with the goal to provide a
standardized access to different sensor networks, abstracting the underlying
complexity. SenseCloud implements a sensor virtualization mechanism for
the connection of several sensor networks, a multi-tenancy mechanism grant-
ing access to virtualized sensor networks, and a dynamic provisioning mech-
anism that allows on-demand user requests with a pay per user basis (see
Figure 2.14).

The SenseCloud architecture, [36], consists of three main components (En-
tity, Cloud Infrastructure and Sensor Network) and four entities (Sensor Con-
sumer, Sensor Provider, Network Admin and Cloud Admin). The roles of each
entity are the following:

• Sensor Consumer - Registers on the cloud and subscribes the interest-

30

2.4 Related Work

ing sensors or creates sensor groups for data retrieval.

• Sensor Provider - Registers himself and the sensors in the cloud. It is
possible to manage, control and check sensor status. Sensor Providers
can also access sensor usage.

• Network Admin - Monitors sensor health and manages the virtual
sensors and provider accounts.

• Cloud Admin - Manages and monitors VMs, cloud Infrastructure, con-
sumer accounts and services available.

The cloud infrastructure includes a set of servers, all having different
roles:

• Portal Server - It is the entity’s main access, each entity having dif-
ferent operations available. For example, Sensor Consumers may be
able to subscribe or create sensor groups or to retrieve data from those
sensors, or may be able to register or remove sensors and manage the
sensor status. Another example is the cloud admin that is able to create,
modify or remove VMs, virtual sensor and virtual sensor groups.

• Provisioning Server - The main purpose of this server is to create
virtual sensor groups, depending on the requests of Sensor Consumers
inserted through the Portal Server. It is also responsible for the work-
flow of the system, triggering VMs and virtual sensor groups that re-
spond to the specified needs, and updating records in data storage with
the virtual sensor groups created, so that Sensor Consumers can man-
age, activate/deactivate the subscribed virtual sensors or virtual sensor
groups, set the frequency of data retrieval and check sensor status.

• Sensor Monitoring Server - Receives the informational status data
from virtual sensors and stores it, to become available to Sensor Con-
sumers. It also receives the health status of physical sensors because
on-demand provisioning is done on live physical sensors.

• Management Server - Provides the location of the closest VM to the
request sender zone which has the shortest pending list and a multi-
tenant solution for the Sensor Consumers and Providers. It also provides
scaling depending on the network and system performance.

• Virtual Server - Creates virtual sensors when requested by the Provi-
sioning Server, on the VM. Virtual sensors are controlled by the Portal

31

32

Server. Also provides health status about the sensors to the Monitoring
Server and stores it in Data Storage.

• Data Storage - Consists in databases for users, virtual sensors groups
and sensing data.

The SenseCloud infrastructure enables connections of different networks, re-
solves connectivity concerns and efficiently provides Se-aaS (through cloud)
between Sensor Providers and Consumers.

32

C H A P T E R 3

Resource Allocation Trade-offs in
Sensing as-a-Service

3.1 Introduction

In this chapter, an initial mathematical model is developed to evaluate re-
source allocation tradeoffs in sensor clouds. One of the first sensor cloud mod-
els proposed in the literature is the one in [38]. However, their focus is on
WSNs and on how these can move to sensor clouds, not being adequate for
other IoT Se-aaS business models. More specifically, in [38] sensors are alloc-
ated to a single application and mashups are not addressed. Therefore, it can
be seen as a WSN virtualization.

Here, a model suitable for emerging IoT related Se-aaS business models,
including the one in [38] is proposed. This model considers sensors/data shar-
ing by multiple applications and mashups, allowing one to access the impact
of resource allocation approaches (both cloud and physical Things), and better
understanding of trade-offs, so that mechanisms can be orchestrated to face
future requests.

Contributions

• A mathematical model that is able to deal with multiple requests, from
multiple applications, while considering mashups.

• Evaluation of the impact of resource allocation in scalability, QoE and
elasticity, for CSPs to be aware and choose for the best approach accord-
ing to their specific case.

These contributions were published in:

• J. Guerreiro, L. Rodrigues and N. Correia, “Modelling of Sensor Clouds
Under the Sensing as a Service Paradigm”, Proceedings of Broadband

33

34

Communications, Networks and Systems (BroadNets), September 2018,
[20].

34

3.2 Definitions and Assumptions

3.2 Definitions and Assumptions

Definition 1 (Physical Thing). A sensor detecting events/changes, or an actu-
ator receiving commands for the control of a mechanism/system. The model of
a physical Thing i includes all properties necessary to describe it, denoted by
Pi, and all its functionalities, denoted by Fi. That is, Pi = {p : p ∈ P}, where
P is the overall set of properties (e.g., sensing range, communication facility,
location), and Fi = {f : f ∈ F}, where F is the overall set of functionalities
(e.g., image sensor), considering all devices registered at the cloud.

It is assumed that properties and functionalities, at P and F respectively,
result from a semantic description of physical Things registered at the cloud.
That is, specific vocabularies are used when naming properties and function-
alities (see [10], for example). Each property pi ∈ Pi has a “subject-predicate-
object” description1 denoted by spo(pi) (e.g., temperature hasValue 30◦C). The
set of all physical Things is denoted by T P, and sensor owners voluntarily re-
gister/deregister physical Things to/from the cloud.

Definition 2 (Mashup). Workflow built by wiring together Things and services
from various web sources, on which an application is based.

That is, applications (at the user side) should be able to access Things at
the cloud and, if necessary, blend them with other services and data sources
on the web, as shown in Figure 3.1. However, for resources to be used effi-
ciently, applications should not pick physical Things directly. Instead, a func-
tionality requirement and minimum/maximum property requirements should
be specified for each element n included in a mashup, denoted by f̄n and P̄n, al-
lowing later an optimized allocation of physical Things to mashup elements.
Each pn ∈ P̄n can have a “subject-predicate-object” description of the condi-
tion/requirement that is being defined (e.g., cameraResolution greaterThan
12.1MP; frequencySampling equalTo 10s), denoted by spo(pn). The overall
population of mashup elements (from all applications) at the cloud will be de-
noted by N .

For devices/data to be consumed by multiple applications, virtual Things
will be created at the cloud. Then, each mashup element is binded to a single

1A Resource Description Framework (RDF) triple.

35

36

Figure 3.1: Thing mashup.

virtual Thing, while a virtual Thing can be binded to multiple mashup ele-
ments (with same functionality and compatible property requirements). Ba-
sically, virtual Things represent multiple mashup elements, from multiple
applications, and these are the ones to be materialized onto physical Things.
Such an approach allows data generated by a virtual Thing to be consumed
by multiple applications, while reducing data collection/storage and increas-
ing data utility. Mashup elements are, however, application dependent.

Definition 3 (Virtual Thing). Thing at the cloud to which mashup elements
are binded to. A virtual Thing j is materialized through one or more concer-
ted physical Things, denoted by Mj, Mj ⊂ T P, able to provide the require-
ments associated with the virtual Thing (requirements from all mashup ele-
ments binded to it). Therefore, fj , ∪i∈Mj

Fi and Pj = ∪i∈Mj
Pi.

That is, a virtual Thing can have one or multiple physical Things in the
background working together. The set of all virtual Things is denoted by T V.

With virtualization users remain unaware of the physical devices used, al-
lowing these to be dynamically allocated to virtual Things. The client ends
up having no deployment and maintenance costs, while having an on-demand
fault tolerant service because virtual Things can always use other available
physical Things.

A CSP, denoted by S, includes a set of distributed computing resources,
each set serving a certain region or having a certain role. Therefore, S =

{S1, ...S|S|}. The set of applications (outside the cloud), requesting for sensors
with certain properties, is denoted byA = {A1, ...,A|A|}. An applicationAi can
have one or more independent components, denoted by C(Ai) = {Ci1, ...Ci|C(Ai)|},
and each component Cij is binded to a mashup (at the cloud) of δij steps, Cij ,
{1, ..., δij}. The following is also assumed:

36

3.2 Definitions and Assumptions

• Web templates are used to draw the mashup associated with each com-
ponent, where minimum/maximum property and functionality require-
ments are specified for each mashup element. Elements can be con-
nected, and succ(n) denotes the successors of element n at the mashup
workflow (elements to which n sends data to).

• Final mashups data is sent to the corresponding application components
through bindings.

• Virtual Things are created, and binded to mashup elements, by the
cloud.

37

38

3.3 Mathematical Model

One or more physical Things materialize one virtual Thing. Assuming τ i =

{T P,i
1 , T P,i

2 , ...} to be a partition of T P, function g : τ i → T V is defined for virtual
Thing materialization:

g(T P,i
j) = {∃!k ∈ T V : fk , ∪l∈T P,i

j
Fl}. (3.1)

This states that a virtual Thing k ∈ T V is mapped to T P,i
j if they are func-

tionally similar. Assuming now ηi = {N i
1,N i

2, ...} to be a partition of N (all
elements in N i

j with the same functionality requirement), function f : η → T V

is defined to bind N i
j to a virtual Thing:

f(N i
j) = {∃!k ∈ T V : f̄n = fk ∧ P̄n ⊆ Pk ∧∆(spo(pn), spo(pk)) = true,

,∀n ∈ N i
j , ∀pn ∈ P̄n,∀pk ∈ Pk}, (3.2)

where ∆ specifies whether pn is compatible with pk, or not. This states that a
virtual Thing k ∈ T V mapped to N i

j must: i) provide the functionality being
requested by elements in N i

j ; ii) fulfill the property requirements of all ele-
ments in N i

j .

Different resource allocation approaches (partitions and allocations done
by g and f) can be adopted by sensor clouds, each with an impact on scalabil-
ity, elasticity and QoE. Let us assume that ηU is the universe set of all feasible
partitions of mashup elements, ηU = {η1, η2, ..., η|η

U|} and ηi = {N i
1,N i

2, ...,N i
|T V|},

∀i ∈ {1, ..., |ηU|}. Also, τU is the universe set of all feasible partitions of phys-
ical Things, τU = {τ 1, τ 2, ..., τ |τ

U|} and τ i = {T P,i
1 , T P,i

2 , ..., T P,i
|T V|}, ∀i ∈ {1, ..., |τ

U|}.
Thus, each element in τU is a feasible materialization of virtual Things. For
such universe sets, the most scalable resource allocation approach (system
can accommodate more load/clients in the future) would select the following
solution:

(ηi, τ j)SCA = argminηi∈ηU{|ηi|}. (3.3)

That is, since each element of partition ηi will be associated with a virtual
Thing, fewer virtual Things not only means less virtual workspaces but also
more productive virtual Things, as data flowing from them serves more mashups/
applications.

Elasticity is the ability to adapt resources to loads. That is, resources

38

3.3 Mathematical Model

should become available when the load increases, but when the load decreases
then unneeded resources should be released. Thus, the most elastic resource
allocation approach would select the following solution:

(ηi, τ j)ELA = argminηi∈ηU{maxSl∈S{
∑
k∈T V

ξ(k,Sl)}}, (3.4)

where ξ(k,Sl) is the amount of computational resources allocated to virtual
Thing k at Sl. Therefore, virtual Things are evenly distributed by CSPs, which
means that any virtual Thing can still work even if its associated load in-
creases.

Regarding the resource allocation approach with a better impact on the
QoE perceived by users, this would be the one selecting the following solution:

(ηi, τ j)QoE = argminηi∈ηU,τ j∈τU{h(ηi, τ j)}, (3.5)

where h : ηU × τU → <+ is a cost function defined as:

h(ηi, τ j) =
∑
k∈T V

∑
k′∈χ(k)

TFV2V(k, k′) +
∑
Ai∈A

∑
k∈Φ(Ai)

TFV2A(k,Ai) +

+
∑
k∈T V

∑
k′∈Ψ(k)

TF P2V(k′, k). (3.6)

The TFV2V(k, k′) is a transfer cost associated with the data flow between the
workspaces of virtual Things k and k′ at the cloud (Virtual-to-Virtual cost), be-
cause mashup elements (mapped to virtual Things k and k′) can be connected.
The χ(k) must provide all virtual Things k′ requiring data flow from virtual
Thing k. That is,

χ(k) = {k′′ ∈ T V : k = f(N i
l), k

′′ = f(N i
m) ∧ n′ ∈ succ(n), n ∈ N i

l ,

, n′ ∈ N i
m,N i

l ,N i
m ∈ ηi}. (3.7)

The TFV2A(k,Ai) is a transfer cost associated with the data flow between the
workspace of virtual Thing k and the user application Ai. The Φ(Ai) provides
all virtual Things consumed by application Ai,

Φ(Ai) = {k′ ∈ T V : k′ = f(N i
l) ∧ succ(n) = ∅ ∧ n ∈ Cij,N i

l ∈ ηi, n ∈ N i
l ,

, Cij ∈ C(Ai)}. (3.8)

Finally, the TF P2V(k′, k) is a transfer cost associated with the data flow between

39

40

the physical Thing k′ (or its corresponding proxy/gateway) and the workspace
of virtual Thing k, which depends on the materialization of k. Therefore, Ψ(k)

will be

Ψ(k) = {k′′ ∈ T P : k = g(T P,i
j) ∧ k′′ ∈Mk, T P,i

j ∈ τ j}, (3.9)

which is basically the set of physical Things materializing virtual Thing k.
Regarding the transfer cost itself, this may include the number of hops, pro-
cessing required at the destination, etc, or any combination of these.

40

3.4 Analysis of Results

3.4 Analysis of Results

3.4.1 Scenario Setup

A set of random graphs, using the algorithm in [39], were used to apply the
model described. These graphs, each with 10 nodes, represent the location of
CSP’s resources, S1, ...S|S|. There are |A| = κ1 × |S| applications and |T P| =

κ2 × |S| physical Things registered at the sensor cloud, where κ1 and κ2 are
integers. Each Si ∈ S connects, on average, |A||S| applications and |T P|

|S| physical
Things to the cloud.

The virtual Things to be built depend on physical Things, application re-
quirements and aggregation level when allocating mashup elements to virtual
Things. Therefore, tests were done for different amounts of virtual Things,
|A|×κ3×κ4

10
≤ |T V| ≤ |A|×κ3×κ4

2
, where κ3 is the average number of components

per application and κ4 is the average number of elements at mashups. For
transfer costs in Eq. (3.6), the following is assumed:

• TFV2A: Since there will be κ3 bindings of data flow from the cloud to an
application, a virtual Thing k will send its data towards application Ai
with probability prob(k,Ai) = κ3

|T V| .

• TFV2V: Since each mashup has κ4− 1 flow links2, a virtual Thing k has a
data flow towards k′ with probability prob(k, k′) = (κ4−1)×κ3×|A|

|T V|×(|T V|−1)
×α, where

α is the virtual Thing sharing factor or ratio κ4×κ3×|A|
|T V| .

• TF P2V: A physical Thing k′ has a data flow towards virtual Thing k with
probability prob(k′, k) = κ5

|T P| , where κ5 is the average number of physical
Things in a virtual Thing materialization.

• The number of hops is assumed to be the transfer cost in TFV2A, TFV2V

and TF P2V.

Table 3.1 shows the parameter values assumed.

3.4.2 Discussion

Figure 3.2 shows3 the impact of |ηi| (or number of virtual Things), which is a
consequence of the aggregation level used by resource allocation approaches.
Less virtual Things means that solutions are more scalable.

2A flow tree is assumed.
3Average of results obtained for all generated graphs.

41

42

Table 3.1: Simulation setup to evaluate the impact in scalability, QoE and elasticity.
Parameter Value

Number of nodes at CSP graph (|S|) 10
Number of applications (|A|) 30

Number of physical Things (|T P|) 30
Avg number of components per app (κ3) 3

Avg number of elements at each mashup (κ4) 3
Virtual Thing materialization factor (κ5) 1

Lowest number of virtual Things |A|×κ3×κ4
10

Highest number of virtual Things |A|×κ3×κ4
2

0

200

400

600

800

1000

1200

1400

1600

1800

Eq. (5)

Eq. (4)

Number of Virtual Things

To
ta

l T
ra

n
sf

e
r

C
o

st

Figure 3.2: Impact of |ηi| (number of virtual Things).

A relevant observation regarding the impact of making more or less scal-
able choices (virtual Things serving more or less applications), is that in gen-
eral the QoE and elasticity improve as sensor clouds choose for less scalable
solutions. In this case, virtual Things are serving less applications and, there-
fore, less data transfers between virtual Things occurs and data takes less
hops to flow towards applications. Also, for each virtual Thing there will be
less load. However, this does not happen for a small number of virtual Things.
In this case, increasing the number of virtual Things leads to a higher trans-
fer cost, with a negative impact on QoE, and worse elasticity. This happens
because virtual Things are already highly dependent, and flow from physical
Things towards the cloud takes over the previously mentioned benefit of using
more virtual Things. Thus, scalability can have a positive or negative impact
on QoE and elasticity depending on the scenario (mashups, etc), which will

42

3.4 Analysis of Results

determine possible allocations of mashup elements to virtual Things, and the
best resource allocation approach to use.

3.4.3 Conclusions

A model for sensor clouds is presented allowing the impact of resource alloca-
tion to be assessed, and trade-off between scalability, QoE and elasticity to be
unveiled. Results show that the best resource allocation approach is highly
dependent on mashups, which will influence possible allocations of mashup
elements to virtual Things. This awareness allows sensor cloud providers to
choose the best approach according to their case.

The next chapter discusses strategies for mashup element clustering (build-
ing virtual Things) and materialization.

43

C H A P T E R 4

Resource Allocation in Sensing
as-a-Service: Clients Managing

Mashups

4.1 Introduction

The problem of choosing for the best clustering and materialization assign-
ment is addressed here in this chapter, having the associated cost as a basis
of decision. Two different variants of this problem are addressed: i) pre-
calculated potential clusters; ii) non pre-calculated clusters. Mathematical
models are developed for both these problems.

Regarding non pre-calculated clusters, different strategies to guide the
search of the best clustering were considered: i) Cheapest Materialization
Cost (CMC); ii) Less Materialization Choices (LMC); Highest Cost Variance
(HCV). A performance analysis of these different strategies is done. This
chapter addresses no mashup element dependencies, meaning that mashup
elements (of mashups managed at the client side) can be seen as a pool of indi-
vidual requests from the different users. That is, it is assumed that mashups
are being managed at the client side.

Contributions

• A mathematical model is developed to select the best pre-calculated clusters
of requests, for them to become virtual Things. The model tries to se-
lect devices with properties more close to application requests, leaving
devices with higher capabilities idle for future requests.

• A mathematical model is developed for the best clusters to be built (non
pre-calculated clusters). Three heuristic approaches, having the men-
tioned model as a basis, are proposed and evaluated.

45

46

These contributions were published in:

• J. Guerreiro, L. Rodrigues and N. Correia, “Fair Resource Assignment at
Sensor Clouds under the Sensing as a Service Paradigm”, Proceedings of
Technological Innovation for Resilient Systems (DOCEIS), January 2018
(Vol 521, Springer), [19].

• J. Guerreiro, L. Rodrigues and N. Correia, “On the Allocation of Re-
sources in Sensor Clouds under the Sensing as a Service Paradigm”,
submitted to HCI International Conference on Human-Computer Inter-
action 2020, [18].

46

4.2 Pre-calculated Potential Clusters

4.2 Pre-calculated Potential Clusters

In the following sections the overall set of physical devices is denoted by T P,
and each i ∈ T P is assumed to have a single functionality and one or more
properties (sensor owners voluntarily register/deregister physical Things to/from
the cloud). Client applications build their mashups, each with one or more
nodes/elements, at the client side. Each mashup element is a request to the
cloud and the overall set of requests is denoted by R, and each r ∈ R specifies
a functionality requirement and one or more property constraints. As devices
are registered, the cloud is able to:

– maintain a graph G(R,L), where R includes all requests and L denotes
a set of links. A link between ri and rj ∈ R exists if: i) requests have
similar functionality requirements; ii) property requirements are not in-
compatible.

– update, for each r ∈ R, a cost vector cr =
{
c1
r, c

2
r, ..., c

|T P|
r

}
where cir is the

cost of using device i for the materialization of the maximum clique, in
graph G(R,L), that includes r. Such clique is largest set of compatible
requests. This way, high clustering of requests is ensured.

Assuming that gaps, between a property requirement and device property
supply, are normalized using {∆1, ...,∆5}, where ∆1 is the lowest cost and ∆5

is the highest (moderate and extreme levels), a cost cin will be the sum of all
property requirement to device property gaps. If more than one request at the
clique has a requirement for a certain property, then the lowest one is chosen
(e.g., assuming requests for 12.1MP and 24.2MP camera resolutions, and a
physical Thing providing 48.4MP, then the 24.2 to 48.4MP gap is the one to
be considered; the other request is considered to be fulfilled).

Several materialization possibilities, with different costs, are being provided
as input information. The problem is which materializations to choose. Here
the minimization of the highest cluster-Thing assignment cost is analysed.
The goal is to see if (contrarily to an unfair approach where the overall cost
is minimized) this leads to assignments with lower property gaps, allowing
physical Things with features that are above what is requested to be left for
future requests and/or backup. This makes applications more resilient.

47

48

4.2.1 Problem Formalization

The following information is assumed to be known:

R Set of all requests.
T P Set of physical devices.
T P(r) Set of physical devices that can be used for the materialization

of request r ∈ R.
D(r, i) Set of requests (clique) able to join r ∈ R in materialization at

device i ∈ T P(r).
cir Cost of materialization D(r, i).

Since multiple components contribute to a single materialization cost (i.e.,
there are multiple properties and, therefore, gaps between physical proper-
ties and requirements), and to fairly compare the clusters, cir is divided by the
number of summed up property gaps. The variables will be:

λmax Highest clique materialization cost from selected materializa-
tions.

δir One if device i ∈ T P was selected for the materialization of r ∈ R,
zero otherwise.

- Objective function:

OF Fair : Minimize λmax +

∑
r∈R

∑
i∈T P cir × δir

|R| × |T P| ×∆max (4.1)

where ∆max is the highest cir. The first component is used for fairness, because
λmax will be an upper bound, while the second component is used to minimize
the overall cost when the upper bound can not become lower.

Subject to:

- Upper bound limitation:∑
i∈T P(r)

cir × δir ≤ λmax,∀r ∈ R (4.2)

- Single materialization for a request:∑
i∈T P(r)

δir = 1,∀r ∈ R (4.3)

48

4.2 Pre-calculated Potential Clusters

- Materialization of cliques:

δir′ ≥ δir,∀r ∈ R,∀i ∈ T P(r),∀r′ ∈ D(r, i) (4.4)

- Allocation of device to a single clique materialization:∑
r′∈R\D(r,i)

δir′ ≤ (1− δir)× |R|, ∀r ∈ R,∀i ∈ T P(r) (4.5)

- Non-negative variables

δir ∈ {0, 1};λmax ≥ 0. (4.6)

4.2.2 Analysis of Results

Scenario Setup

To evaluate the allocation of resources, a pool of 10 functionalities were gen-
erated for the cloud, each with its own pool of 10 properties. Based on these,
a population of physical Things and requests were generated as follows:

• Each physical Thing has a randomly selected functionality, each func-
tionality including 100% of the properties from the corresponding pool.

• The request functionality requirement is also randomly selected from
the pool of functionalities, together with 50% of its properties. Each pair
r, r′ ∈ R sharing the same functionality requirement is assumed to be
compatible with probability of δ = 0.5 or δ = 0.75 (creation of cliques).

• The gap between a property requirement and device property supply
is randomly selected from {∆1 = 1,∆2 = 2, ...,∆5 = 5} (moderate and
extreme levels).

The population of requests is 50 and tests were done for 80, 90, 100 and
110 physical Things. The CPLEX 1 optimizer was used to solve this problem.

Fair vs Unfair Approach

To evaluate the impact of the fair approach, a second objective function was
also implemented. This second objective function has no fairness into con-
sideration (no minimization of the upper bound is performed) and chooses to
reduce the overall cost only. It is defined as follows:

1IBM ILOG CPLEX Optimizer

49

50

Figure 4.1: Selecting pre-calculated potential clusters: Cumulative frequency con-
sidering 90 available physical Things (mashups managed by the client).

Figure 4.2: Selecting pre-calculated potential clusters: Cumulative frequency con-
sidering 110 available physical Things (mashups managed by the client).

OF unfair : Minimize
∑
r∈R

∑
i∈T P

cir × δir (4.7)

Discussion

Plots in Figures 4.1 and 4.2 show the cumulative frequency values obtained
for the fair and unfair objective functions for 90 and 110 physical Things
respectively. The results obtained for 100 physical Things were similar (no

50

4.2 Pre-calculated Potential Clusters

difference between fair and unfair approaches exists), and therefore are not
shown. From plot at Figure 4.1, it is possible to observe that the fair approach
reaches a cumulative frequency of 50 at clique materialization cost of 12. That
is, the fair approach avoids 11 and 12 costs. Since these cost reflect the gap
between the requirements of requests and physical Things, lower gaps allow
physical Things with features that are above what is requested to be left for
future requests and/or backup. This makes applications more resilient. Re-
garding plot at Figure 4.2, a similar behaviour, although not so foreshadowed,
can be observed.

Both fair and unfair approaches have as a basis the cost vectors cn, which
give the materialization cost based on maximum cliques. This reduces the
search space (and, therefore, execution time) but eliminates potential solu-
tions including cliques of smaller size. When increasing the population of
cliques, better results can be obtained.

To conclude, a fair resource assignment when compared with the unfair
one, minimizes the highest gap/cost. This allows physical Things with fea-
tures that are above what is requested to be left for future requests and/or
backup, meaning that applications have a lower probability of no finding
available devices (devices fulfilling the requested property requirements). Al-
gorithms to find populations of cliques with more potential and, therefore,
better resource allocation are detailed in the next section.

51

52

4.3 Non Pre-calculated Clusters

4.3.1 Definitions and Assumptions

Definition 4 (Physical Thing). A sensor detecting events/changes, or an ac-
tuator receiving commands for the control of a mechanism. The model of a
physical Thing i includes all properties necessary to describe it, denoted by
Pi, and all its functionalities, denoted by Fi. That is, Pi = {p : p ∈ P} and
Fi = {f : f ∈ F}, where P is the overall set of properties (e.g., sensing range,
communication facility, location), and F the overall set of functionalities (e.g.,
image sensor), from all devices registered at the cloud.

Properties and functionalities, at P and F , are assumed to be semantic-
based. Thus, specific vocabularies are used when naming properties and
functionalities (see [10]). It is also assumed that each property pi ∈ Pi has a
“subject-predicate-object” (or RDF triple) description associated with it (e.g.,
cameraResolution hasValue 12.1MP), which is denoted by spo(pi). The set of
all registered physical Things is denoted by T P, and it is assumed that pro-
viders voluntarily register/unregister physical Things to/from the cloud.

Definition 5 (Virtual Thing). Entity used for the mapping of multiple con-
sumers into physical Things, having a virtual workspace associated it. A
virtual Thing j can be materialized through one or more concerted physical
Things, denoted byMj,Mj ⊂ T P. Therefore2, fj , ∪i∈Mj

Fi and Pj = ∪i∈Mj
Pi.

A virtual Thing materialization must fulfill the requirements of all its con-
sumers.

In other words, a virtual Thing has in background one or more physical
Things working together to provide the requested functionality, producing
data that reaches the cloud using standard communication. The set of vir-
tual Things created by the cloud is denoted by T V.

Clients/applications specify Thing requests (to the cloud) using web tem-
plates. Each request r has a functionality requirement and a set of min-
imum/maximum property requirements, denoted by f̄r and P̄r, respectively.
The functionality and minimum/maximum property requirements are also
semantic-based, each pr ∈ P̄r having a “subject-predicate-object” description of

2The symbol , means equal by definition, in our case logically/semantically equivalent.

52

4.3 Non Pre-calculated Clusters

the condition/requirement that is being defined (e.g., cameraResolution great-
erThan 12.1MP; frequencySampling equalTo 10s), denoted by spo(pr). The
overall population of requests (from all clients/applications) is denoted by R.

Virtual Things, to be created at the cloud, are the ones to be materialized
into physical Things. Then, each r ∈ R (element of mashup being managed
at the client side) must be binded to a single virtual Thing, while a virtual
Thing can be binded to multiple elements (with same functionality and com-
patible property requirements). With such approach, data generated by a
virtual Thing can be consumed by multiple applications, reducing data col-
lection/storage and increasing the usefulness of data. The right set of virtual
Things to be created at the cloud, their bindings to requests and their mater-
ialization into physical Things should be determined while using resources
efficiently, which is discussed next.

The goal of cloud virtualization is for users to remain unaware of physical
devices involved in the process. This way, physical Things can be dynamically
allocated to virtual Things used by applications. The client ends up having
no deployment and maintenance costs, while having an on-demand fault tol-
erant service because virtual Things can always use other available physical
Things. Clients would not be aware of such change due to virtualization.

4.3.2 Resource Allocation Mathematical Model

Let us assume a particular partition of R (population of requests), denoted
by ηi = {Ri

1,Ri
2, ...}, where all elements in a Ri

j have the same functionality
requirement. A virtual Thing k ∈ T V binded toRi

j must provide the requested
functionality, which is the same for all requests inRi

j. The following allocation
function f : ηi → T V can be defined:

f(Ri
j) = {∃!k ∈ T V : f̄k = fr,∀r ∈ Ri

j}. (4.8)

One or more physical Things materialize one virtual Thing. Assuming
τ i = {T P,i

1 , T P,i
2 , ...} to be a specific partition of T P, each T P,i

j making sense
from a functional point of view, the function g : τ i → T V is defined for virtual
Thing materialization:

53

54

g(T P,i
j) = {∃!k ∈ T V : fk , ∪l∈T P,i

j
Fl}. (4.9)

This states that a virtual Thing k ∈ T V is materialized by T P,i
j , including one

or more physical Things, if they are functionally similar.

Different partitions, and allocations done by f and g, have different im-
pacts on the use of resources (cloud and physical Things) and provide dif-
ferent accomplishment levels for property requirements (more or less tight).
Therefore, the best partitions should be determined. Let us assumed that ηU

is the universe set including all feasible partitions of requests, R. That is,
ηU = {η1, η2, ..., η|η

U|} and ηi = {Ri
1,Ri

2, ...,Ri
|T V|}, ∀i ∈ {1, ..., |η

U|}. Assume also
τU to be the universe set including all feasible partitions of physical Things,
T P. That is, τU = {τ 1, τ 2, ..., τ |τ

U|} and τ i = {T P,i
1 , T P,i

2 , ..., T P,i
|T V|}, ∀i ∈ {1, ..., |τ

U|}.
The impact of f and g allocations, regarding to the gap between requirements
and properties of physical Things, can be described by the following cost func-
tion h : ηU × τU → <+:

h(ηi, τ j) =
∑
{Ri

k∈ηi}

∑
{p∈χ}

minr∈Ri
k
{∆GAP

r,p (f(Ri
k), τ

j)}, (4.10)

where χ = ∪r∈Ri
k
P̄r includes all minimum/maximum property requirements

from requests in Ri
k. For each property p ∈ χ, the min is used to capture the

lowest gap between requirements and physical Things regarding property p

(e.g., if two requests inRi
k request for 12.1MP and 24.2MP camera resolutions,

respectively, and the materialization of Ri
k’s virtual Thing is a physical Thing

providing 48.4MP, then the 24.2 to 48.4MP gap is the request-supply gap to
be considered; the other request is considered to be fulfilled). Note that, f(Ri

k)

returns the virtual Thing assigned to Ri
k. Since multiple physical Things can

be associated with a virtual Thing materialization, the ∆GAP
r,p at expression

(4.10) must be defined by:

∆GAP
r,p (l, τ j) =

max

t∈T P,j
k :∃pt=p,pt∈Pt

{∆GAP(spo(p), spo(pt))},
, if ∃T P,j

k ∈ τ j : g(T P,j
k) = l

∞, otherwise

(4.11)

54

4.3 Non Pre-calculated Clusters

where ∆GAP provides the gap between the property requirement and property
value at one of the physical Things enrolled in materialization. Since there
might be more than one physical Thing, from all physical Things enrolled in
a specific materialization, including a certain property then max is used to
capture the highest gap value, avoiding virtual Thing materialization from
having physical Things with property values far above the requirements. The
best resource allocation will be:

(ηi, τ j)∗ = argminηi∈ηU,τ j∈τU{h(ηi, τ j)}. (4.12)

The previously mentioned gaps can be determined using SPARQL which is
a language designed to query data across diverse data sources, whether the
data is stored natively as RDF or viewed as RDF via middleware. A variety of
SPARQL processors are available for running queries against both local and
remote data [2].

4.3.3 Resource Allocation Algorithm

Based on the previous model, a resource allocation algorithm is proposed in
Algorithm 1. This is based on the following assumptions:

• As physical Things are registered at the cloud, possible materializations
are computed using SPARQL. Therefore, there is a pool of materializ-
ations for a functionality f , denoted by M(f), each materialization in-
volving one or more physical Things. A physical Thing may be at mul-
tiple pools.

• As consumer/application requests are inserted at the cloud, an auxiliary
graph G(R,L) is updated. The R includes all requests, while L denotes
a set of links. A link between ri and rj ∈ R exists if: i) requests have the
same functionality requirement; ii) property requirements are compat-
ible. SPARQL is used to determine compatibility.

The first step initializes cost vectors, one per resource request r, denoted
by cr. Since different materializations may exist, resulting into different ma-
terializations costs, these vectors have size |M(fr)|. The set of other requests
joining r in a specific materialization (partition), to which a specific cost is
associated with, will be stored in vr. When searching for feasible solutions,
clique subgraphs are extracted from G(R,L) and their possibility of material-
ization is analysed. Regarding the last step, where virtual Things are built

55

56

based on materialization cost vectors, different selection criteria have been
considered:

• Cheapest materialization cost (CMC) first;

• Cheapest materialization, of request with less materialization choices
(LMC), first;

• Cheapest materialization, of request with highest cost variance (HCV),
first.

The reasoning behind LMC is that more materializations might be possible if
critical requests are processed first. Regarding HCV, the reasoning is that a
late selection of requests with highest cost variance might result in materi-
alizations with higher cost. The impact of these choices have been analysed
and compared in the following section.

4.3.4 Performance Analysis

Scenario Setup

To carry out evaluation a pool of functionalities was created, each with its
own pool of properties. Based on these, physical Things and requests were
generated as follows:

• Physical Things have a randomly generated functionality with 50% of
its properties (extrated from corresponding pool).

• The functionality required by each request is randomly selected from the
pool of functionalities, together with 50% of its properties. Each (ri, rj)

pair, ri, rj ∈ R, sharing the same functionality requirement is assumed
to be compatible with probability δ (see Section 4.3.3).

• The cost gap between a property requirement and a supplied device
property is randomly selected from {∆1, ...,∆5}, where ∆1 is the lowest
cost and ∆5 is the highest (moderate and extreme cost levels).

Table 4.1 shows the parameter values adopted for the performance eval-
uation of CMC, LMC and HCV strategies. The following section discusses
results on the total resource allocation cost and on the total number of mater-
ializations (virtual Things).

56

4.3 Non Pre-calculated Clusters

Algorithm 1: Resource allocation heuristic (mashups managed by
client).
1 /* Initialization step */;
2 for each r ∈ R do
3 Create cost vector cr of size |M(fr)|;
4 Create aggregation vector vr of size |M(fr)|;
5 for each m ∈M(fr) do
6 /* Initialize cost of possible materialization */;
7 cr(m) =∞;
8 /* Requests joining r in possible materialization*/;
9 vr(m) = ∅;

10 end
11 end
12 /* Searching for feasible solutions */;
13 for each ri ∈ R do
14 /* pick clique subgraphs including ri*/;
15 R̄ = {Z ⊆ R : ri ∈ Z ∧ (rj , rk) ∈ L, ∀rj , rk ∈ Z};
16 /* pick maximum clique for which there is at least one feasible

materialization */;
17 R̄MAX = argmaxZ∈R̄:∃feasible m∈M(fni)

{ω(Z)};
18 for each rj ∈ R̄MAX do
19 /* for each possible materialization of fri */;
20 for each m ∈M(fri) do
21 /* see best materialization cost for rj*/;
22 cost =internal sum of Eq. (5.3), using Rik = R̄MAX;
23 if crj (m) > cost then
24 crj (m) = cost;
25 vrj (m) = R̄MAX;
26 end
27 end
28 end
29 end
30 /* choose best resource allocations */;
31 Build virtual Things based on materialization cost vectors until all requests

are fulfilled or no more devices exist;

Table 4.1: Simulation setup to evaluate CMC, LMC and HCV strategies (mashups
managed by the client).

Functionality pool size 10
Avg size of property pools 10
Total number of devices 80

Device’s properties (from pool) 50%
Requests’s properties (from pool) 50%

δ 0.5
{∆1, ...,∆5} {1, ..., 5}

Analysis of Results

The plot in Figure 4.3 shows the total resource allocation cost for CMC, LMC
and HCV strategies. Results show that CMC and LCM strategies present

57

58

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 150 200 250 300 350 400 450 500

To
ta

l
R

e
so

u
rc

e
 A

llo
ca

ti
o
n
 C

o
st

Total Number of Requests

CMC
LMC
HCV

Figure 4.3: Building clusters: total resource allocation cost obtained by CMC, LCM
and HCV (mashups managed by the client).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 150 200 250 300 350 400 450 500

To
ta

l
N

u
m

b
e
r

o
f

M
a
te

ri
a
liz

a
ti

o
n
s

Total Number of Requests

CMC
LMC
HCV

Figure 4.4: Building clusters: total number of materializations (virtual Things) ob-
tained by CMC, LCM and HCV (mashups managed by the client).

the lowest overall resource allocation costs, meaning that the request-supply
gap is lower than in HCV. That is, devices with properties closer to requests
are being used for materialization, releasing devices with capabilities above

58

4.3 Non Pre-calculated Clusters

what is required for future requests. The relatively high resource allocation
costs presented by strategy HCV means that choosing first the requests with
highest cost variance leads to an increase in the overall materialization cost.
Relatively high costs may end up being selected.

The plot in Figure 4.4 shows the total number of materializations for CMC,
LMC and HCV strategies. This corresponds to the number of virtual Things
or devices under utilization. From CMC and LMC strategies, the one requir-
ing less devices is LMC. That is, the LMC is the most effective strategy since it
requires less devices and assigns devices more adequate to the requirements
of requests. Strategy HCV presents a relatively higher number of material-
izations, meaning that more virtual spaces (virtual Things) and devices are
being used for a specific set of requests.

In summary, choosing first the requests with highest cost variance, which
means that materialization cost could increase more if not treated first, does
not improve by itself the overall materialization cost because relatively high
costs may end up being selected. This approach also leads to the use of more
devices, avoiding their availability for future requests. Therefore, this criteria
should not be considered alone when searching for high quality allocation
solutions, and must integrate with other parameters. Among the strategies
under analysis, the LMC seems to be the most effective since it requires less
devices and assigns devices more adequate to the requirements of requests.

4.3.5 Conclusions

In this chapter a resource allocation model for Se-aaS business models is ad-
dressed. The model fits multiple emerging IoT Se-aaS business models, like
the ones supporting multi-sensing applications and/or integrating data from
multiple domains, allowing for the orchestration of both sensor and cloud re-
sources to face client requests. Results show that the model allows the im-
plementation of multiple strategies, among which LMC seems to be the best
choice. This strategy leads to the allocation of less devices, while the most
adequate devices for consumer/application needs are also selected. This ad-
equacy is measured through a semantics-based resource allocation cost.

Multiple strategies to select and build virtual Things were presented in
this chapter. These assume that mashups are being managed at the client
side. The next chapter assumes mashups being managed at the cloud, and the

59

60

previous mathematical model and algorithms are adapted for this purpose.
That is, bindings between mashups (at the cloud) and client applications are
assumed. A new mathematical optimization model and an extra heuristic
are proposed to improve the results obtained by the just mentioned extended
model.

60

C H A P T E R 5

Resource Allocation in Sensing
as-a-Service: Clouds Managing

Mashups

5.1 Introduction

The cloud based Se-aaS model, for data and sensors from multiple suppliers
to be shared by multiple clients, can bring benefits to all players in the IoT
ecosystem [41]. Usually, software components (at the client) have bindings
to virtual sensors managed in the cloud. The workflow generated by wiring
together virtual sensors (mashups), actuators and services from different web
sources, is traditionally managed at the client side. Mashup management at
the client side results, however, into significant delays because of the perman-
ent flow of data between clients and cloud.

When software components are able to bind to mashups managed at the
cloud, the previously mentioned delays can be avoided. Events are processed
and actuations can be triggered, according to the predefined workflow of the
mashup, by the cloud which delivers just the final data to the consumer/client
application. Thus, the whole mashup, or just parts of it, may be consumed by
multiple applications/clients. This chapter proposes models and algorithms
considering mashups managed at the cloud.

Contributions

The contributions presented on this chapter are:

• Extension of the mathematical model developed at the previous chapter,
which finds the best clusters when mashups are managed at the client
side, for the case of mashups managed in the cloud. The three heuristic
approaches are also extended for this purpose.

61

62

• A new mathematical programming optimization model is developed that
is able to obtain the optimal solution in resource allocation.

• Based on the knowledge gained with the development of the mathem-
atical programming optimization model, a new heuristic is proposed.
This is able to improve the results obtained by the previous heuristic
approaches.

These contributions were published in:

• J. Guerreiro, L. Rodrigues and N. Correia, “Resource Allocation Model
for Sensor Clouds under the Sensing as a Service Paradigm”, Computers
Vol. 8, No. 1 (2019), [21].

• J. Guerreiro, L. Rodrigues and N. Correia, “Allocation of Resources in Se-
aaS Clouds Managing Virtual Sensor Mashups”, revisions of reviewers
being done to IEEE Transactions on Network and Service Management,
[17].

62

5.2 Model for Sensor Clouds Managing Mashups

5.2 Model for Sensor Clouds Managing Mashups

The model proposed next is adequate for many emerging IoT Se-aaS busi-
ness models, like the ones supporting multi-sensing applications, mashups of
Things managed at the cloud, and/or integration of data from multiple do-
mains, allowing for a more efficient orchestration of both sensor and cloud
resources to face client requests.

5.2.1 Definitions and Assumptions

Definition 6 (Physical Thing). A sensor detecting events/changes, or an ac-
tuator receiving commands for the control of a mechanism. The model of a
physical Thing i includes all properties necessary to describe it, denoted by
Pi, and all its functionalities, denoted by Fi. That is, Pi = {p : p ∈ P} and
Fi = {f : f ∈ F}, where P is the overall set of properties (e.g., sensing range,
communication facility, energy consumption, location), and F is the overall set
of functionalities (e.g., image sensor), from all devices registered in the cloud.

It is assumed that properties and functionalities, at P andF , are semantic-
based. That is, specific vocabularies are used when naming properties and
functionalities (see [10]). In addition, each property pi ∈ Pi will have a
“subject-predicate-object” description associated with it denoted by spo(pi).
The set of all registered physical Things is denoted by T P, and it is assumed
that providers voluntarily register/deregister physical Things to/from the cloud.

Definition 7 (Virtual Thing). Entity used for the mapping of multiple mashup
elements (consumers) to physical Things, having a virtual workspace associ-
ated it. A virtual Thing j can be materialized through one or more concer-
ted physical Things, denoted by Mj, Mj ⊂ T P. Therefore, fj , ∪i∈Mj

Fi and
Pj = ∪i∈Mj

Pi. A virtual Thing materialization must fulfil the requirements of
all its consumers.

Thus, a virtual Thing can have in background one or multiple physical
Things working together to provide the requested functionality, producing
data that reaches the cloud using standard communication. The set of vir-
tual Things created by the cloud is denoted by T V.

63

64

The set of all consumer applications is denoted by A = {A1, ...,A|A|}, and
these are assumed to be outside the cloud. An application Ai can have one or
more independent components, denoted by C(Ai) = {Ci1, ..., Ci|C(Ai)|}, and each
component Cij has a binding to a mashup in the cloud.

Definition 8 (Mashup). Workflow wiring together a set of elements/nodes.
Each element n included in a mashup has a functionality requirement and a
set of property conditions, denoted by f̄n and P̄n, respectively.

That is, it is assumed that user application components have bindings to
mashups stored in the cloud, each mashup including elements connected by
a workflow (web templates can be used to draw mashups). The output of a
mashup element can be input to another, while final mashup output data is
sent to the corresponding application component. The functionality requested
by a mashup element, and property conditions, are also semantic-based and
each pn ∈ P̄n has a “subject/predicate/object” description of the condition that
is being defined, denoted by spo(pn). Thus, mashup elements are not physical
Things, but, instead, nodes that specify requirements. The overall population
of mashup elements (from all applications) is denoted by N .

Virtual Things, to be created in the cloud, are the ones to be materialized
into physical Things. Then, each mashup element n ∈ N must be mapped to a
single virtual Thing, while a virtual Thing can be mapped to multiple mashup
elements (with same functionality and compatible property requirements).
With such approach, data generated by a virtual Thing can be consumed by
multiple application mashup elements, reducing data collection/storage and
increasing the usefulness of data. The right set of virtual Things to be created
in the cloud, their mapping to mashup elements and their materialization
onto physical Things should be determined while using resources efficiently,
which is discussed in the following section.

64

5.2 Model for Sensor Clouds Managing Mashups

5.2.2 Architecture with Embedded Mashups

The virtualization approach shown in Figure 2.4 allows sensors/data to be ac-
cessed and mashups to be built at the client side. As an example, an applica-
tion may use data from VS1 and VS3 to decide on some actuation. However, if
such workflows (wiring together VSs, actuators and services from various Web
sources) were implemented in the cloud, some of the data would not have to
travel to the client side. The cloud would ensure that events are processed and
actuations are triggered, according to the predefined workflow of mashups,
delivering just the final data of interest to the consumer/client application.
The whole mashup, or parts of it, may also be consumed by multiple applic-
ations. This additional system functionality results in an additional mashup
virtualization layer, as illustrated in Figure 5.1.

Managing mashups in the cloud brings new challenges when assigning
resources (devices and cloud) to consumer needs. More specifically, mashups
end up defining flow dependencies (see Figure 5.1), which will influence:

• Mapping between one or more mashup elements (defined by consumers)
and a virtual Thing, for resource optimization.

• Mapping between virtual Things and physical Things (materialization
onto devices).

• Placement of virtual Thing workspaces in the cloud.

Thus, after mapping a virtual Thing to one or more mashup elements,
such virtual Thing ends up participating in multiple mashups. The just men-
tioned mappings should be done having some criteria in mind, like an effi-
cient use of physical Things and cloud resources, a reduction of flows or delay
between virtual Thing workspaces (imposed by mashups), which improves
user’s quality of experience and scalability. This approach fits many emerging
IoT Se-aaS business models, like the ones supporting multi-sensing applica-
tions, mashups of Things, and/or integration of data from multiple domains.
Note that the approach in Figure 2.4 will be a particular case of Figure 5.1
where mashups have a single element.

5.2.3 Resource Allocation Mathematical Model

Let us assume a particular partition of N (population of mashup elements),
denoted by ηi = {N i

1,N i
2, ...}, where all elements in a N i

j have the same func-
tionality requirement. A virtual Thing k ∈ T V mapped to N i

j must provide

65

66

Figure 5.1: Virtualization layers in Se-aaS considering mashups embedded into the
cloud.

the requested functionality, which is the same for all mashup elements in N i
j .

The following allocation function f : ηi → T V can be defined:

f(N i
j) = {∃!k ∈ T V : f̄k = fn,∀n ∈ N i

j}. (5.1)

One or more physical Things materialize one virtual Thing. Assuming
τ i = {T P,i

1 , T P,i
2 , ...} to be a specific partition of T P, each T P,i

j making sense
from a functional point of view, the function g : τ i → T V is defined for virtual
Thing materialization:

g(T P,i
j) = {∃!k ∈ T V : fk , ∪l∈T P,i

j
Fl}. (5.2)

This states that a virtual Thing k ∈ T V is materialized by T P,i
j , including one

or more physical Things, if they are functionally similar.

66

5.2 Model for Sensor Clouds Managing Mashups

Different partitions, and allocations done by f and g, have different im-
pacts on the use of resources (cloud and physical Things) and provide dif-
ferent accomplishment levels for property requirements (more or less tight).
Therefore, the best partitions should be determined. Let us assumed that ηU

is the universe set including all feasible partitions of mashup elements, N .
That is, ηU = {η1, η2, ..., η|η

U|} and ηi = {N i
1,N i

2, ...,N i
|T V|}, ∀i ∈ {1, ..., |η

U|}. Also
assume that τU is the universe set including all feasible partitions of phys-
ical Things, T P. That is, τU = {τ 1, τ 2, ..., τ |τ

U|} and τ i = {T P,i
1 , T P,i

2 , ..., T P,i
|T V|},

∀i ∈ {1, ..., |τU|}. The impact of f and g allocations, regarding the gap between
requirements and properties of physical Things, can be described by the fol-
lowing cost function h : ηU × τU → <+:

h(ηi, τ j) =
∑
{N i

k∈ηi}

∑
{p∈χ}

minn∈N i
k
{∆GAP

n,p (f(N i
k), τ

j)}, (5.3)

where χ = ∪n∈N i
k
P̄n includes all properties, having conditions, from mashup

elements in N i
k. For each property p ∈ χ, the min is used to capture the lowest

gap between requirements and physical Things regarding property p (e.g., if
two elements in N i

k request for 12.1 MP and 24.2 MP camera resolutions,
respectively, and the materialization of N i

k ’s virtual Thing is a physical Thing
providing 48.4 MP, then the 24.2 to 48.4 MP gap is the request-supply gap to
be considered; the other request is considered to be fulfilled). Note that f(N i

k)

returns the virtual Thing assigned to N i
k. Since multiple physical Things can

be associated with a virtual Thing materialization, the ∆GAP
n,p at Equation (5.3)

must be defined by:

∆GAP
n,p (l, τ j) =

max

t∈T P,j
k :∃pt=p,pt∈Pt

{∆GAP(spo(p), spo(pt))},
, if ∃T P,j

k ∈ τ j : g(T P,j
k) = l,

∞, otherwise,

(5.4)

where ∆GAP provides the gap between the property requirement and prop-
erty value at one of the physical Things enrolled in materialization. Multiple
physical Things may include a property and, therefore, max is used to capture
the highest gap value, in order to avoid virtual Thing materializations from
having physical Things with property values far above the requirements. All
the just mentioned gaps can be determined using SPARQL semantic query
language [8, 9].

67

68

Having the previous definitions in mind, the best partitioning for N and
T P, determining which virtual Things should be built and their materializa-
tion, could be given by argminηi∈ηU,τ j∈τU{h(ηi, τ j)}. This would provide scalable
solutions because the number of required virtual Things (and virtual work-
spaces) ends up being minimized (see Equation (5.3)). However, mashups
define flows between their elements. This means that, after mapping parti-
tions of N (mashup elements) into virtual Things, there will be flows between
virtual workspaces of virtual Things. These flows must be taken into account
so that scalability and QoE are not jeopardized due to overhead and delay
in the cloud. Therefore, an additional cost function h′ : ηU × τU → <+ is
defined as:

h′(ηi, τ j) =
∑
{N i

k∈ηi}

∑
{T P,j

l ∈τ j}

TF P2V(T P,j
l ,N i

k) +
∑
{N i

k∈ηi}

∑
{N i

k′∈η
i}

TFV2V(N i
k′ ,N i

k) +

+
∑
{N i

k∈ηi}

∑
{Ai∈A}

TFV2A(N i
k,Ai),(5.5)

where:

• TF P2V is a physical-to-virtual (P2V) transfer cost associated with the
flow of data from physical Things to virtual Thing’s workspace in the
cloud. This is zero if f(N i

k) 6= g(T P,j
l), meaning that T P,j

l is not used in
the materialization of N i

k ’s virtual Thing;

• TFV2V is a virtual-to-virtual (V2V) transfer cost associated with the flow
of data between virtual Thing’s workspaces of partitions N i

k′ and N i
k.

This is zero if no flow between workspaces is required;

• TFV2A is a virtual-to-application (V2A) transfer cost associated with flow
of data from virtual Things’ workspaces to user applications. This is zero
if the application is supposed to consume such data.

Transfer costs may reflect the number of hops and/or processing needs at
these hops, meaning that it is dependent on the placement of virtual work-
spaces in the cloud. A CSP, which will be denoted by S, often includes a set of
distributed networks, that interconnect to provide services, and are usually
organized in order to better serve certain regions. Therefore, a CSP is defined
by S = {S1, ...S|S|}, where Si includes a set of computing resources that can
host virtual workspaces.

68

5.2 Model for Sensor Clouds Managing Mashups

Finally, the best resource allocation, or partitioning forN and T P, is defined
by:

(ηi, τ j)∗ = argminηi∈ηU,τ j∈τU{α× ĥ(ηi, τ j) + β × ĥ′(ηi, τ j)}, (5.6)

where α and β are weights, α + β = 1, defining the relative importance of
normalized (Normalization formula: x−xmin

xmax−xmin) costs, ĥ and ĥ′.

5.2.4 Resource Allocation Algorithm

Based on the previous model, a resource allocation algorithm is proposed next.
It is assumed that:

• As physical Things are registered in the cloud, a pool of possible mater-
ializations is computed for each functionality, denoted by M(f), using
SPARQL. A materialization may involve one or more registered phys-
ical Things, and a physical Thing may be at multiple pools.

• As application mashups are inserted in the cloud, an auxiliary graph
G(N ,L,L′) is updated. The N includes all mashup elements, L are the
links denoting a flow between two elements of a mashup, and L′ are
compatibility links between two elements from any mashup. That is,
a link between ni and nj ∈ N exists in L′ if: (i) nodes have the same
functionality requirement; and (ii) property requirements are compat-
ible (SPARQL is used to determine compatibility).

The resource allocation algorithm is described in Algorithm 2. The initial-
ization step builds a partition for each mashup element, generates random
places in CSP resources for them, and assigns an infinite cost. This has to be
done in a per materialization basis because different materializations involve
different physical Things, generating different costs, and some materializa-
tions may not even be feasible due to mashup element property conditions.
For random placement of partition’s virtual Thing workspace, a uniform dis-
tribution is used for load balancing to be obtained in the long term. The
second step improves this initial solution by analysing cliques in auxiliary
graph G(N ,L′), and materialization possibilities.

For the last step, different selection criteria have been compared: i) cheapest
materialization cost (CMC) first; ii) cheapest materialization, of mashup ele-
ment (node in graph in N) with fewer materialization choices (LMC), first;

69

70

Algorithm 2: Resource allocation heuristic (mashups managed by
the cloud).
1 Input: N , L, L′,M(f) ∀f ∈ F , S, α, β
2 /* Initialization step */
3 for each n ∈ N do
4 Create vector of partitions vn of size |M(fn)|
5 Create vector of places pn of size |M(fn)|
6 Create vector of costs cn of size |M(fn)|
7 for each m ∈M(fn) do
8 /* Nodes joining n in partition, materialized by m */
9 vn(m) = ∅

10 /* Place for partition’s virtual Thing workspace */
11 pn(m) = RANDOMSELECTION(S)
12 /* Materialization costs, initially set to infinity */
13 c1

n(m) =∞
14 c2

n(m) =∞
15 end
16 end
17 /* Improving feasible solution */
18 for each ni ∈ N do
19 /* Clique subgraphs in G(N ,L′) that include ni*/
20 N̄ = {Z ⊆ N : ni ∈ Z ∧ (nj , nk) ∈ L′,∀nj , nk ∈ Z}
21 /* Maximum clique for which there is at least one feasible materialization

*/
22 N̄max = argmaxZ∈N̄ :∃feasible m∈M(fni)

{ω(Z)}
23 /* Random place for N̄max’s workspace */
24 pl = RANDOMSELECTION(S)
25 for each nj ∈ N̄max do
26 /* for each possible materialization of fni */
27 for each m ∈M(fni) do
28 /* determine best materialization cost for nj*/
29 c1 = Equation (5.3) considering N i

k = N̄max

30 c2 = Equation (5.5) considering nj ’s in/out flow
31 if α× ĉ1

nj
(m) + β × ĉ2

nj
(m) > α× ĉ1 + β × ĉ2 then

32 pn(m) = pl
33 vnj (m) = N̄max

34 c1
nj

(m) = c1

35 c2
nj

(m) = c2

36 end
37 end
38 end
39 end
40 /* choose best resource allocations */
41 Build virtual Things based on materialization cost vectors until all requests

are fulfilled or no more devices exist

iii) cheapest materialization, of mashup element with highest cost variance
(HCV), first.

70

5.2 Model for Sensor Clouds Managing Mashups

5.2.5 Performance Analysis

Scenario Setup

To carry out evaluation, a pool of functionalities was created together with a
pool of properties for each functionality. Based on these, physical Things and
mashup elements were created as follows:

• Mashups were randomly generated using the algorithm in [39], which
is suitable for the generation of sparse sensor-actuator networks. An
average of 10 elements per mashup is defined.

• The functionality required by each mashup element is randomly selected
from the pool of functionalities, together with 50% of its properties. Each
pair ni, nj ∈ N sharing the same functionality requirement is assumed
to be compatible with probability δ.

• A physical Thing has a functionality assigned to it, together with 50% of
its properties (randomly extracted from corresponding pool).

• The gap between a property condition and device property is randomly
selected from {∆1, ...,∆5}, where ∆1 is the lowest cost and ∆5 is the
highest (moderate and extreme levels).

This information is used to generate random scenarios, from which results
are extracted. Regarding the CSP network graph, this was randomly gener-
ated assuming |S| = 10 (number of places with computing resources that can
host virtual workspaces) and a network density (Network density is meas-
ured using L

N×(N−1)
, where L is the number of links and N is the number of

nodes) of 0.25. Tests include α and β values equal to 0.25 or 0.75, α+β = 1, so
that the impact of component costs in Label (5.6) can be evaluated. Table 5.1
summarizes the adopted parameter values. All simulations were performed
using C++ programming language.

Materializations and Fulfilled Mashup Elements

The plots in Figures 5.2–5.4 show how CMC, LMC and HCV strategies per-
form regarding the number of materializations (number of virtual Things
materialized into physical devices), number of elements from mashups that
have been fulfilled (mapped to a virtual Thing and, therefore, materialized
into a physical device) and the average number of mashup elements per vir-
tual Thing (average size of clique N̄max at Algorithm 2). From such plots, it
is possible to observe that the worst strategy is LMC that reaches the total

71

72

Table 5.1: Simulation setup to evaluate CMC, LMC and HCV strategies (mashups
managed by the cloud).

Parameter Value

Functionality pool size 10
Avg size of property pools 10
Total number of devices 100

Device’s properties (from pool) 50%
Avg number of elements per mashup 10

Mashup element’s properties (from pool) 50%
δ 0.5

{∆1, ...,∆5} {1, ..., 5}
α, β 0.25 or 0.75; α + β = 1
|S| 10

CSP density 0.25

number of available devices more quickly while fulfilling fewer mashup ele-
ments than the other strategies. This is confirmed by the relatively low aver-
age number of mashup elements mapped to virtual Things (low aggregation
level). The approach of LMC is to choose the cheapest materialization from
mashup elements with fewer materialization choices, based on the assump-
tion that more materializations would be possible if critical mashup elements
were processed first. However, such mashup elements end up being the ones
with more incompatible requirements (reason behind having fewer material-
ization choices), leading to a less efficient use of physical devices. That is, for
a specific number of mashups, more devices are used for materialization of
virtual Things having a low level of aggregation.

The best strategy is HCV that presents a higher average number of mashup
elements mapped to virtual Things, when compared with the other strategies,
and more fulfilled mashup elements. Such highest aggregation level leads to
a more controlled use of available devices, which are not wasted with mater-
ialization of virtual Things having a low level of aggregation. The approach
of HCV is to pick the cheapest materialization from mashup elements with
highest cost variance. This is based on the assumption that their late se-
lection could result in a materialization with high cost. It happens that a
mashup element having high cost variance also means that such mashup ele-
ment has more requirements that are compatible with others, leading to a
higher level of aggregation. For this reason, HCV presents better results.

Note that, for a relatively low number of mashups, the difference between
strategies, regarding the number of virtual Things materialized into devices

72

5.2 Model for Sensor Clouds Managing Mashups

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

M
a
te

ri
a
liz

a
ti

o
n
s

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

M
a
te

ri
a
liz

a
ti

o
n
s

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 5.2: Number of virtual Things materialized into physical devices obtained by
CMC, LMC and HCV strategies (mashups managed by the cloud).

and fulfilled mashup elements, is very low. This is because the population of
mashup elements is small, not allowing a high level of aggregation. That is,
it is more difficult to find mashup elements with compatible requirements, for
these to be linked to the same virtual Thing.

Regarding the impact of changing α, which is the importance given to the
cost associated with the gaps between the mashup element’s properties and
physical Thing’s properties, it looks like this does not influence the number of

73

74

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fu
lfi

lle
d

 M
a
sh

u
p

 E
le

m
e
n
ts

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fu
lfi

lle
d

 M
a
sh

u
p

 E
le

m
e
n
ts

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 5.3: Number of fulfilled mashup elements obtained by CMC, LMC and HCV
strategies (mashups managed by the cloud).

virtual Things materialized into devices and fulfilled mashup elements.

Cost

The plots in Figures 5.5, 5.6, 5.7 show the overall materialization cost res-
ulting from CMC, LMC and HCV strategies, together with the two cost com-
ponents associated with Equations (5.3) and (5.5), c1 and c2 in Algorithm 2,
respectively. Plots show that, when the number of devices in use is not close

74

5.2 Model for Sensor Clouds Managing Mashups

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

C
liq

u
e
 S

iz
e

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

C
liq

u
e
 S

iz
e

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 5.4: Average number of mashup elements per virtual Thing obtained by
CMC, LMC and HCV strategies (mashups managed by the cloud).

to the limit, the highest cost is the one given by LMC because of its low ag-
gregation level (low average number of mashup elements mapped to virtual
Things). HCV ends up providing the best cost values because it makes more
aggregations. More specifically, the min in Equation (5.3) captures the low-
est gap between requirements of mashup elements (linked to a virtual Thing)
and physical Things, reducing the overall cost.

After all the devices are in use; however, CMC is the one able to reduce
the overall cost because it has the freedom to search for the cheapest cost,

75

76

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

To
ta

l
C

o
st

Number of Mashups

CMC
LMC
HCV

(a) Total cost using α = 0.25

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

To
ta

l
C

o
st

Number of Mashups

CMC
LMC
HCV

(b) Total cost using α = 0.75

Figure 5.5: Total materialization cost obtained by CMC, LMC and HCV strategies
(mashups managed by the cloud).

while the other strategies are conditioned in the search. LMC must pick
the cheapest cost from mashup elements with fewer materialization choices,
while HCV must pick the cheapest cost from mashup elements with highest
cost variance. Although the population of mashup elements is greater, CMC
does not improve its overall cost thanks to c1 component (related with gaps
between the mashup element’s properties and physical Thing’s properties)
because this strategy has a low aggregation level. Instead, the reduction is
achieved thanks to c2 component, meaning that better placements for vir-

76

5.2 Model for Sensor Clouds Managing Mashups

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

C
1

 C
o
st

Number of Mashups

CMC
LMC
HCV

(a) c1 using α = 0.25

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

C
1

 C
o
st

Number of Mashups

CMC
LMC
HCV

(b) c1 using α = 0.75

Figure 5.6: C1 component of materialization cost obtained by CMC, LMC and HCV
strategies (mashups managed by the cloud).

tual Things, reducing the number of hops between workspaces, were found.
LMC and HCV strategies were not able to reduce c2 because these strategies
are conditioned in their search for the cheapest materialization, as just men-
tioned.

Regarding the impact of α, it is possible to conclude that strategies present
more similar costs when c1 has more importance than c2 (α = 0.75) because
of the just mentioned improvement of c2 by CMC. Note that HCV presents

77

78

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

C
2

 C
o
st

Number of Mashups

CMC
LMC
HCV

(a) c2 using α = 0.25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

C
2

 C
o
st

Number of Mashups

CMC
LMC
HCV

(b) c2 using α = 0.75.

Figure 5.7: C2 component of materialization cost obtained by CMC, LMC and HCV
strategies (mashups managed by the cloud).

the best results on c1, when compared with the other strategies, being able
to make more aggregations without increasing the materialization cost. This
strategy may, however, be improved in the future for better virtual Thing
placements to be found, as its c2 does not reduce as in CMC.

78

5.2 Model for Sensor Clouds Managing Mashups

Number of Flows

From the number of flows between virtual Thing workspaces, plotted in Fig-
ure 5.8, it is possible to conclude that the strategies with higher aggregation
level are able to bind additional mashup elements to virtual Things, after all
the devices are in use, without much impact on the number of flows. Although
more mashup elements are being fulfilled, the aggregations do not increase
the number of flows because virtual Things are the ones exchanging flows,
and not individual mashup elements.

5.2.6 Conclusions

A resource allocation model for Se-aaS business models was here addressed.
The model fits multiple emerging IoT Se-aaS business models, including the
ones where client applications have bindings to mashups in the cloud, each
mashup combining one or more devices. This way, applications can share
devices registered in the cloud, for their mashups to operate, using cloud and
device resources more effectively. The advantage of managing mashups in
the cloud, instead of managing them at the client side, is that delays asso-
ciated with multiple travelling sessions of data to the client are avoided. A
heuristic was also proposed, having the resource allocation model as a basis
that allows for the implementation of strategies leading to an efficient alloc-
ation of resources. The strategy with the best performance is HCV because
devices are used for the materialization of virtual Things with more mashup
elements mapped to it, while fulfilling more mashup elements. HCV picks the
cheapest materialization from mashup elements with highest cost variance,
based on the assumption that their late selection could significantly increase
the overall cost. However, mashup elements having high cost variance end up
being the ones with more compatible requirements, leading to a higher level
of aggregation.

79

80

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fl
o
w

s

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fl
o
w

s

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 5.8: Number of flows obtained by CMC, LMC and HCV strategies (mashups
managed by the cloud).

5.3 Mathematical Programming Formalization

5.3.1 Definitions and Assumptions

A CSP, denoted by S, includes a set of distributed networks that interconnect
to provide services, and these can be organized according to a common role or
in order to better serve certain regions. Therefore, S = {S1, ...S|S|}, where Si
includes a set of computing resources. The set of all applications, requesting

80

5.3 Mathematical Programming Formalization

for registered physical Things, is denoted by A = {A1, ...,A|A|}, and these are
assumed to be outside the cloud. An applicationAi can have one or more inde-
pendent components, denoted by C(Ai) = {Ci1, ..., Ci|C(Ai)|}, and each component
Cij is binded to a mashup in the cloud.

Definition 9 (Mashup). Workflow wiring together a set of elements/nodes. A
mashup element n has a functionality requirement and a set of property condi-
tions, denoted by f̄n and P̄n, respectively. The output of a mashup element can
be input to another, while final mashup output data is sent to the client.

It is assumed that clients use specific templates, at the CSP, to draw
the mashup associated with each application component. Thus, mashup ele-
ments are not physical Things but, instead, elements that specify require-
ments/conditions using vocabularies (see [10]). That is, functionality require-
ment and property conditions are semantic-based. Each pn ∈ P̄n has a “subject-
predicate-object” description1 of the condition/requirement that is being defined
(e.g., cameraResolution greaterThan 12.1MP; frequencySampling equalTo 10s).
The overall population of mashup elements (from all applications) is denoted
by N .

A set of physical Things, denoted by T P, is assumed to be registered at the
cloud. The owners voluntarily register/deregister physical Things to/from the
cloud, meaning that CSPs must compensate the device owners for their con-
tribution, or find some incentive mechanism for them to participate [44, 45].

Definition 10 (Physical Thing). A sensor detecting events/changes, or an ac-
tuator receiving commands for the control of a mechanism. The model of a
physical Thing i includes all properties necessary to describe it, denoted by Pi,
and a functionality, denoted by fi. That is, Pi = {p : p ∈ P} and fi ∈ F , where
P is the overall set of properties (e.g., sensing range, communication facility,
energy consumption, location), and F the overall set of functionalities (e.g., im-
age sensor).

Each property pi ∈ Pi has a “subject-predicate-object” description associ-
ated with it (e.g., cameraResolution hasValue 12.1MP).

1A Resource Description Framework (RDF) triple. See [1].

81

82

Instead of directly matching mashup elements to devices, virtual Things
are used. More specifically, each mashup element n ∈ N will be mapped
to a single virtual Thing, while a virtual Thing can be mapped to multiple
mashup elements (with same functionality and compatible property require-
ments), and virtual Things are the ones to be “materialized” onto physical
Things.

Definition 11 (Virtual Thing). Thing built at the cloud that acts on behalf of
a set of mashup elements. The materialization of a virtual Thing j must fulfil
the requirements of all its mashup elements.

The use of virtual Things, each requiring some virtual workspace, allows
data to be consumed by multiple application mashup elements while reducing
data collection/storage and increasing the usefulness of data. In other words,
resources can be better utilized. Different matchings of mashup elements to
virtual Things will have different impacts on resource usage, cloud scalability
and Quality of Experience (QoE). The set of virtual Things created inside the
cloud is denoted by T V.

The use of semantic tools allows the cloud to find different ways of achiev-
ing a functionality. That is, a functionality f ∈ F can be achieved by join-
ing functionalities at multiple devices. Thus, there will be multiple ways of
achieving a functionality, and each one of them can be materialized in one
or more devices. The set of possible materializations for functionality f is
denoted by M(f), and Mf

i ∈ M(f) denotes the ith possible materialization,
which may include one or more devices. That is2, ∪t∈Mf

i
ft , f , ∀Mf

i ∈ M(f).
A virtual Thing will be materialized using one of these materialization pos-
sibilities. The Se-aaS materialization problem is defined as follows.

Definition 12 (Se-aaS Materialization (SSM) Problem). Given a set of applic-
ations, each with a set of components binded to mashups, assign mashup ele-
ments to virtual Things, and materialize virtual Things onto physical Things,
so that the overall cost is minimized while meeting the functionality and prop-
erty needs of mashup elements.

Regarding the just mentioned cost, let us assume that η = {N1,N2, ...,N|T V|}
is a feasible partition of mashup elements (all elements in aNj have the same

2The symbol , means equal by definition, in our case logically/semantically equivalent.

82

5.3 Mathematical Programming Formalization

functionality requirement and compatible property requirements). That is,
each Nj will give rise to a virtual Thing. The cost of assigning materialization
Mf

i to Nj,Mf
i ∈M(f), will be

Cost(Mf
i ,Nj) =

∑
{p∈χ}

minn∈Nj
{∆n,p

f,i }, (5.7)

where χ = ∪n′∈Nj
P̄n′ and ∆n,p

f,i is the highest gap between the property require-
ment p at mashup element n, and the value of property p offered by every
physical Thing in Mf

i . This is so because more than one physical Thing in
Mf

i can have a given property. Then, for each property p ∈ χ the min is used
to capture the lowest gap between requirements and physical Thing’s toler-
ance/acceptance for the property in question.

5.3.2 Problem Formalization

The following client related information is assumed to be known:

A Set of applications, where Ai ∈ A refers to a specific application.
C(Ai) Set of independent application components at Ai ∈ A, where

Cij ∈ C(Ai) refers to a specific component. A component is
binded to a mashup in the cloud, each mashup having a set of
nodes/elements.

N Set of all mashup elements, from all application components.
That is, N = ∪Ai∈AC(Ai).

f̄n Functionality required by mashup element n ∈ N , f̄n ∈ F .
P̄n Set of all property conditions of mashup element n ∈ N .
Φn,n′ One if n, n′ ∈ N have different functionalities or some property

that makes then incompatible for materialization onto the same
physical Thing; zero otherwise.

Ωn,n′ One if there is a mashup flow n→ n′, n, n′ ∈ N ; zero otherwise.

That is, each n ∈ N requires a functionality and imposes several prop-
erty constraints, which imposes limitations on the set of mashup elements
to be assigned to a virtual Thing and, consequently, its materialization onto
a physical Thing. Some n’s may have no functionality and property require-
ments if used for aggregation of flows with web services. Regarding physical
Things, the known related information is the following:

83

84

T P Set of all physical Things registered at the cloud, where t ∈ T P

is used to refer to a specific physical Thing.
Pt Set of properties of physical Thing t ∈ T P.
ft Functionality of physical Thing t ∈ T P.
M(f) Set of possible materializations for functionality f , whereMf

i ∈
M(f) denotes the ith possible materialization, which may include
one or more devices.

∆n,p
f,i Highest gap value, from all physical Things enrolled in materi-

alizationMf
i , for a particular p of n ∈ N .

∆max Highest possible property gap.

Note that Φn,n′ and ∆n,p
f,i can be extracted using SPARQL because both prop-

erty/functionality requirements and physical Thing acceptance are semantic-
based.

The variables required to formulate the SSM problem will be:

αfi One if the ith possible materialization for functionality f , Mf
i ∈

M(f), is being used; zero otherwise. A virtual Thing is allocated
toMf

i , and active, if materializationMf
i is being used.

κtf,i One if physical Thing t ∈ T P is enrolled in the materialization of
virtual ThingMf

i ; zero otherwise.
βnf,i One if mashup element n ∈ N is mapped to virtual Thing Mf

i ;
zero otherwise.

ζpf,i Highest gap associated with property p, from all n ∈ N , at virtual
ThingMf

i .
ρf,if ′,i′ One if there is flow from virtual ThingMf

i to virtual ThingMf ′

i′ ,
zero otherwise.

Υ Total gap cost.
Ψ Total number of flows.

The SSM problem is mathematically formulated as follows.

– Objective function:

Maximize
∑
{f∈F}

∑
{Mf

i ∈M(f)}

∑
{n∈N}

βnf,i −
Υ

P ×∆max ×N
−

− Ψ

P ×∆max ×N3
(5.8)

84

5.3 Mathematical Programming Formalization

where P =
∑

n∈N |P̄n|, N = |N | and ∆max is the highest possible property
gap. With this goal the number of fulfilled mashup elements is first maxim-
ized and then, as a secondary goal, the total gap cost and total number of
flows (between virtual Things inside the cloud) is minimized, as these have
are components with negative sign. This goal is subject to:

– Physical Thing assignment:

κtf,i ≥ αfi ,∀f ∈ F ,∀M
f
i ∈M(f), ∀t ∈Mf

i (5.9)

∑
{f∈F}

∑
{Mf

i ∈M(f)}

κtf,i ≤ 1, ∀t ∈ T P (5.10)

Constraints (5.9) state that all physical Things enrolled in a materializa-
tion (of a virtual Thing) must be in use if the virtual Thing is active. Con-
straints (5.10) force a physical Thing not to be assigned to more than one
virtual Thing.

∑
{f∈F}

∑
{Mf

i ∈M(f)}

∑
{t/∈Mf

i }

κtf,i ≤ 0 (5.11)

Constraints (5.11) state that a physical Thing can not be assigned to a
virtual Thing if it is not participating in the materialization (device orches-
tration) of such virtual Thing.

– Ensuring functionality of mashup elements:∑
{Mf

i ∈M(f)}

βnf,i ≤ 1,∀n ∈ N , f = f̄n (5.12)

αfi ≥ βnf,i,∀n ∈ N , f = f̄n, ∀Mf
i ∈M(f) (5.13)

Constraints (5.12) ensure that the functionality required by n is fulfilled
by no more than one virtual Thing. In constraints (5.13), virtual Things be-
come active if at least one mashup element is mapped to it.

– Ensuring property conditions of mashup elements:

βnf,i + βn
′

f,i ≤ 2− Φn,n′
,∀n, n′ ∈ N , f = f̄n,

,∀Mf
i ∈M(f), (5.14)

85

86

These are used to ensure that no two mashup elements with incompatible
properties are materialized onto the same physical Thing.

– Mashup element requirements to physical property gaps:

ζpf,i ≥ βnf,i ×∆n,p
f,i − (1− βnf,i)×∆max,∀n ∈ N , f = f̄n,

,∀Mf
i ∈M(f),∀p ∈ P̄n (5.15)

where ∆n,p
f,i is the highest gap value, from all physical Things in a Mf

i , for a
particular p of n (more than one physical Thing used inMf

i can have property
p), and ∆max is the highest possible gap value. Thus, for a set of mashup
elements mapped to a virtual Thing, to be materialized, ζpf,i will be an upper
bound for such highest gap values.

Υ =
∑
{f∈F}

∑
{Mf

i ∈M(f)}

∑
{p∈P}

ζpf,i (5.16)

where Υ is included in the objective function, for gap cost minimization.

– Flows between virtual things:

ρf,if ′,i′ ≥ (βnf,i + βn
′

f ′,i′)× Ωn,n′ − 1,∀n, n′ ∈ N ,

, f = f̄n, f
′ = f̄n′ ,∀Mf

i ∈M(f),∀Mf ′

i′ ∈M(f ′) (5.17)

where Ωn,n′ is given information stating if there is a mashup flow n → n′.
These constraints find if there is any flow between any two virtual Things,
which depends on the mashup element to virtual Thing mapping. The overall
number of flows between virtual Things is given by:

Ψ =
∑
{f∈F}

∑
{Mf

i ∈M(f)}

∑
{f ′∈F}

∑
{Mf ′

i′ ∈M(f ′)}

ρf,if ′,i′ (5.18)

which is included in the objetive function, for minimization.

– Non-negativity assignment to variables:

86

5.3 Mathematical Programming Formalization

αfi , κ
t
f,i, β

n
f,i, ρ

f,i
f ′,i′ ∈ {0, 1}; ζ

p
f,i,Υ,Ψ ∈ <

+. (5.19)

The CPLEX3 optimizer is used to solve instances of this problem. The solu-
tion found will be the optimal solution for the SSM problem instance under
consideration.

5.3.3 Hardness of the Problem

Theorem 1. The SSM problem is NP-hard.

Proof. Considering a compatibility graph G = (N , E) such that (n, n′) ∈ E
iff Φn,n′

= 0, constraints (5.14) state that all mashup elements assigned to a
virtual Thing (to be materialized onto a device) must be compatible, which
corresponds to a clique subgraph in G. When adding constraints (5.15)-(5.18),
and inserting Υ and Ψ into the objective function, the clique size is to be
maximized as this leads to lower Υ and Ψ values. This comes down to the
maximum clique problem, which happens to be NP-hard [55]. Since mul-
tiple virtual Things are being built, the SSM problem can be seen as a multi-
dimensional maximum clique problem. The SSM problem is, therefore, NP-
hard.

3IBM ILOG CPLEX Optimizer.

87

88

5.4 Algorithmic Approach

5.4.1 Motivation

Although optimal solutions can be obtained using the mathematical model
previously presented, the hardness of the SSM problem makes it difficult to
obtain solutions for larger instances of the problem. This is why a heuristic
is proposed in [21]. Such research work is relevant because, to the best of our
knowledge, it is the first addressing mashups managed in the cloud. However,
the heuristic proposed in [21] has the following drawbacks:

• Maximum cliques are extracted from the compatibility graph (see The-
orem 1), one for each mashup element n ∈ N . However, picking max-
imum cliques is only feasible through heuristic techniques [55]. Among
existing heuristic techniques, the greedy-based ones present great sim-
plicity and high speed but have difficulty in finding good solutions given
its myopic nature.

• Only virtual Things (and corresponding materialization) for maximum
cliques are considered. The approach is to process all costs for all pos-
sible maximum clique materializations first, and then some criteria is
used to select the cheapest materializations. However, the impact of se-
lecting a certain materialization, at each step, is not evaluated. That
is, selecting a certain materialization first can make one or more future
materializations infeasible because they compete for devices. Also, no
other mashup element groupings (subgraphs of maximum cliques) are
explored, meaning that mashup elements may not be fulfilled although
other mashup element groupings could be viable.

Due to the just mentioned drawbacks, a heuristic is proposed here that
tries to increase the size of cliques around each mashup element, in paral-
lel, while performing productive swap operations. This way different mashup
element groupings are evaluated while avoiding building a myopic greedy ap-
proach.

5.4.2 Algorithm Details

Let us assume the previously mentioned compatibility graph G = (N , E) such
that {n, n′} ∈ E iff Φn,n′

= 0, and let Nn denote the neighbours of node n ∈ N ,
Nn = {n′ ∈ N : (n, n′) ∈ E}. Let us define X (C) as the set of nodes that may ex-
pand a given clique either through direct inclusion or after a swap operation.

88

5.4 Algorithmic Approach

That is, considering a given clique C ⊂ G, X (C) = {n ∈ N : |C\Nn| ∈ {0, 1}}.
When |C\Nn| = 0 the clique can expand by the direct inclusion of node n, and
when |C\Nn| = 1 the clique can swap one of its nodes (the one not connected
to n) with n in order to diversify the attempts to expand.

As previously stated, the heuristic tries to increase the size of cliques
around each mashup element, in parallel. Thus, every node will be included
in a clique, although with a single node at the beginning. When attempting to
expand cliques, nodes may move from one clique to another and a clique can
be absorbed by another.

Claim 1. The direct inclusion of n ∈ X (C1) into clique C1, and consequent re-
moval from its current clique C2, should only be performed if ∃Mf

i ,M
f
j ∈M(f)

such that Cost(Mf
i , C1∪{n})+Cost(Mf

j , C2\{n}) < Cost(Mf
i , C1)+Cost(Mf

j , C2)},
where f is the functionality required by all nodes in C1 and C2. That is, there
is an overall cost reduction.

Claim 2. The swap between n ∈ X (C1) and n′ ∈ C1, where (n, n′) /∈ E , should
only be performed if ∃Mf

i ,M
f
j ∈M(f) such that applying Claim 1 to C1\{n′}∪

{n} compensate the cost increase associated with such swap.

That is, the idea in Claim 2 is that there will be a cost increase when swap-
ping n with n′ (current cliques were built having the best cost into account,
and at the time all neighbours were evaluated), but then a direct inclusion
compensates it.

5.4.3 Performance Analysis

Scenario Setup

For the evaluation of results, random scenarios were generated based on a
pool of functionalities and a pool of properties, for each functionality. The
physical Things and mashup elements were created as follows:

• Mashups are randomly generated using the algorithm in [39], consider-
ing an average number of elements per mashup.

• A mashup element will have its functionality requirement randomly se-
lected from the pool of functionalities, together with a percentage of its
properties.

89

90

Algorithm 3: Clique expansion based resource allocation heuristic
(mashups managed by cloud).
1 /* STEP: Initialization */
2 C = {C1, C2, ..., C|N |}
3 i = 1
4 for each n ∈ N do
5 Ci ← n; i+ +.
6 end
7 /* STEP: Clique expansion */
8 repeat
9 L = ∅

10 for each Ci ∈ C : Ci 6= ∅ do
11 Determine X (Ci)
12 for each n ∈ X (Ci) do
13 if |Ci\Nn| = 0 then
14 L ← cost redution scenario using Claim 1
15 end
16 if |Ci\Nn| = 1 then
17 L ← cost redution scenario using Claim 2
18 end
19 end
20 end
21 l∗ = BestScenario(L)
22 Realize l∗

23 until l∗ = ∅;

• Any pair ni, nj ∈ N with the same functionality requirement, at at least
with a property in common, is compatible with probability δ (incompat-
ibility may exist due to their property conditions).

• A physical Thing has a functionality assigned to it, randomly selected
from the pool of functionalities, together with all the properties associ-
ated with the selected functionality.

• The gap between a property condition and device property is randomly
selected from {∆1, ...,∆5}, where ∆1 is the lowest cost and ∆5 is the
highest.

Table 5.2 summarizes the adopted parameter values.
Note that, if mashups were outside the cloud, then more flows, between

application components and the cloud in this case, would exist. The number
of flows would be No. of fulfilled mashup elements× 2 (see Figure 5.9). These
values are not shown in order not to disturb the visualization of results from
strategies. Flows would also have higher transfer delays, as these are not
confined to internal transfers inside the cloud.

90

5.4 Algorithmic Approach

Table 5.2: Simulation setup to evaluate the mathematical programming model and
heuristics (mashups managed by the cloud).

Parameter Value
Functionality pool size 10

Avg size of property pools 10
Total number of devices 100

Avg number of elements per mashup 10
Mashup element’s properties (from pool) 50%

δ 0.5
{∆1, ...,∆5} {1, ..., 5}

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20 22 24

N
o
.
o
f

Fu
lfi

lle
d
 M

a
sh

u
p
 E

le
m

e
n
ts

Number of Mashups

CMC
LMC
HCV

Heuristic
MathOptim

Figure 5.9: Mathematical programming model and heuristics: Number of fulfilled
mashup elements (mashups managed by the cloud).

Fulfilled Mashup Elements and Virtual Things

Here, the number of mashup elements that have been fulfilled (mapped to a
virtual Thing), the total number of generated virtual Things (successfully ma-
terialized onto devices), and the average number of mashup elements per vir-
tual Thing (average size of cliques in compatibility sub-graph G), are analysed.
These results are shown in plots of Figures 5.9, 5.10 and 5.11, respectively, for
an increasing number of mashups. Regarding the mathematical model, and
after CPLEX obtain the solution for instances, the values for the first plot are
the result of counting non-zero β variables, the values for the second plot are
the result of counting non-zero α variables, while for the last plot the values
are the result of dividing the first counting by the second.

91

92

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20 22 24

N
o
.
o
f

M
a
te

ri
a
liz

a
ti

o
n
s

Number of Mashups

CMC
LMC
HCV

Heuristic
MathOptim

Figure 5.10: Mathematical programming model and heuristics: Number of virtual
Things materialized onto physical devices (mashups managed by the cloud).

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16 18 20 22 24

A
v
g
 C

liq
u
e
 S

iz
e

Number of Mashups

CMC
LMC
HCV

New Heuristic
Math Model

Figure 5.11: Mathematical programming model and heuristics: Average number of
mashup elements per virtual Thing (mashups managed by the cloud).

From these plots it is possible to observe that the new heuristic is able to
fulfill more mashup elements (see plot 5.9) than all variants of the heuristic
approach proposed in [21], closely approaching the mathematical optimiza-
tion model. This is more pronounced when there are less than 16 mashups,

92

5.4 Algorithmic Approach

which is when the number of devices under utilization (materializations) is
below 60% of the total number of available devices (see plot 5.10). When the
number of materializations (virtual Things) gets closer to the number of avail-
able devices, the proposed heuristic slows down its performance, although it
still outperforms the heuristic variants from [21]. Please note that the pro-
posed heuristic could increase the number of fulfilled elements, for such scen-
arios, if swap operations explore more distant neighbourhoods. However, this
will increase the complexity of the heuristic.

Regarding the number of virtual Things (materializations), the proposed
heuristic outperforms all approaches, mathematical model included. The heur-
istic is able to use less virtual Things (materializations), meaning that more
mashup elements are mapped to a virtual Thing (cliques of larger size), mak-
ing materializations more effective and releasing more devices for future ma-
terializations (see plot 5.11). Note that the heuristic can have better results
than the mathematical optimization model because the primary goal of the
mathematical model is to maximize the number of fulfilled mashup elements,
and not the clique size. To maximize the clique size the mathematical model
would become non-linear, making the model untreatable. However, since the
materialization cost is also at the objective function (secondary component),
the mathematical model has also interest in larger clique sizes. This becomes
noticeable when the population of mashup elements to be fulfilled increases.
In this case multiple solutions exist for the same number of fulfilled mashup
elements, and then the second component can play its role. For this reason,
the mathematical model keeps increasing the clique size as the number of
mashups increases, being able to manage materializations more efficiently
than the other approaches in such scenarios: high number of fulfilled mashup
elements and large clique size.

Materialization Cost

Here, the total cost associated with the chosen materializations, calculated
using Eq. 5.7, and average cost per mashup element, are analysed. These
results are shown in plots of Figures 5.12 and 5.13, respectively, for an in-
creasing number of mashups. Regarding the mathematical model, and after
CPLEX obtain the solution for instances, the value of Υ is used at the first
plot, while at the last plot the value is the result of dividing the Υ value by
the number of fulfilled mashup elements, from Figure 5.9.

93

94

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24

To
ta

l
C

o
st

Number of Mashups

CMC
LMC
HCV

Heuristic
MathOptim

Figure 5.12: Mathematical programming model and heuristics: Total cost of mater-
ializations (mashups managed by the cloud).

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16 18 20 22 24

A
v
g
 C

o
st

 p
e
r

M
a
sh

u
p
 E

le
m

e
n
t

Number of Mashups

CMC
LMC
HCV

Heuristic
MathOptim

Figure 5.13: Mathematical programming model and heuristics: Average cost per
mashup element (mashups managed by the cloud).

From the results it is possible to observe that the mathematical optimiza-
tion model is the one finding devices more close to the needs of mashup ele-
ments, resulting into lower materialization costs, releasing the other devices
for future demands. This is so because the cost is included in the objective

94

5.4 Algorithmic Approach

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20 22 24

N
o
.
o
f

Fl
o
w

s

Total Number of Mashups

CMC
LMC
HCV

Heuristic
MathOptim

Figure 5.14: Mathematical programming model and heuristics: Total number of
flows (mashups managed by the cloud).

function, although as a secondary goal. Its effect becomes more clear when
the population of mashup elements increases. That is, since more solutions
exist for the same value of the first component (number of fulfilled mashup
elements), the optimizer then retrieves the solution having lower cost.

The proposed heuristic presents better results (lower materialization costs)
than the variants of the approach proposed in [21], meaning that materializ-
ations are choosing devices closer to the needs of the mashup elements.

Flows at the Cloud

Here, the total number of flows between virtual Things stored at the cloud,
and average number of flows per mashup element, are analysed. These res-
ults are shown in plots of Figures 5.14 and 5.15, respectively, for an increasing
number of mashups. Regarding the mathematical model, and after CPLEX
obtain the solution for the instances, the value of Ψ is used in the first plot,
while at the last plot the value is the result of dividing Ψ by the number of
fulfilled mashup elements, from Figure 5.9.

Results show that the proposed mathematical optimization model and heur-
istic do not reduce flows as the number of fulfilled mashup elements per
virtual Thing (materialization) increases. This means that cliques are built

95

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20 22 24

A
v
g
 N

o
.
Fl

o
w

s
p
e
r

M
a
sh

u
p
 E

le
m

e
n
t

Number of Mashups

CMC
LMC
HCV

Heuristic
MathOptim

Figure 5.15: Mathematical programming model and heuristics: Average number of
flows per mashup element (mashups managed by the cloud).

mainly having as goal the increase of fulfilled mashup elements, and taking
into account the materialization cost, and no attempt exists to build cliques
with mashup elements having common predecessor/successors. Therefore, the
third component at the objective function of the mathematical optimization
model ends up having no impact, and turns out to be neglected. Contrariety
to the heuristic approach proposed in [21], the heuristic proposed here does
take into account flow dependency, otherwise all predecessors/successors of
mashup elements, and reallocation of mashup elements at cliques, would have
to be evaluated by the heuristic, which significantly increases its complexity.
Two kinds of connectivity (can be seen as layers) would have to be considered:
compatibility graph and flow dependency among mashup elements. The heur-
istic can, however, be easily extended to incorporate this, if it brings benefits
for a particular cloud architecture.

5.4.4 Conclusions

The development of an adequate mathematical optimization model for this
problem and another heuristic is proposed to optimize the size of cliques
around each mashup element producing different mashup elements groups
building a myopic greedy approach. The heuristic outperforms the known
state-of-art method, fulfilling more mashup elements (requests from clients)
and using less physical Things for materialization of virtual Things. This

96

5.4 Algorithmic Approach

means that virtual Things are acting on behalf of more mashup elements,
making them more productive. The heuristic also shows lower materializ-
ation costs, which means that allocated physical Things are near to what
is requested by clients, leaving physical Things with better features for fu-
ture requests. The heuristic can be easily extended to take into account flow
dependencies (predecessor/successors of its mashup elements) when building
virtual Things, although this will increase its complexity.

97

C H A P T E R 6

Conclusions and Future Work

6.1 Conclusions

The IoT is now attracting the attention from both academia and industry, and
this interest is expected to grow [16, 41]. In IoT, physical objects can be ac-
cessed and controlled using electronic devices that are able to communicate
using networking interfaces. However, the research in IoT is primarily driven
by technological advances and not by applications or user needs. On the other
hand, research on smart cities, smart transportation, and others, address spe-
cific problems and needs. An effective bridge between these two relies on an
efficient resource discovery, access and management, which can be provided
by what is now called the Web of Things, or WoT.

A move towards the WoT will prevent IoT from becoming just a collection
of Things, unable to be discovered for interaction with others. The idea of
WoT is to reuse and leverage readily available and widely popular web pro-
tocols, standards and blueprints to make data and services offered by objects
accessible to a larger pool of web developers [22]. Also, device mashups can
be more easily created, combining services/data from one or multiple physical
Things with services/data from virtual web resources (e.g., multiple sensor
data sources can be combined with virtual web resources to decide for an ac-
tuation at some device).

All developments mentioned above bring a chance for new business mod-
els to be created. The number and type of devices connected to the IoT will be
huge, allowing large amounts of data to be collected and analysed.

As more and more physical Things become available, managed and ac-
cessed in the IoT world, and mashups are built, more data with processing
needs will emerge, meaning that new challenges arise in terms of storage and

99

100

processing. A move towards to sensing in cloud infrastructure is needed to
use processing and storage capabilities.

The Sensing as-a-Service (Se-aaS) model, relying on cloud infrastructures,
emerges from this reality. Se-aaS is a business model built on cloud infra-
structures, where sensor owners can register and de-register their devices,
providing services and sensor data to application users (clients) in real time,
with all the security and capabilities that cloud computing environments provide.
The Se-aaS model has IoT infrastructure as a basis, and provides virtual
sensors that are binded to one or more physical sensors, for multiple user
applications to access data generated from multiple physical sensors.

In order to achieve these goals, the Se-aaS architecture relies on an in-
frastructure capable of responding to application/client requests, allowing the
provisioning and managing of on-demand virtual sensors. The processing,
monitoring and managing of all the system is ensured, together with the stor-
ing/retrieval of all sensing data. The Se-aaS platform should include the fol-
lowing functionalities:

• Virtualization - Virtual sensors binded to one or more physical Things
so that they can be linked to multiple consumers;

• Dynamic provisioning - A virtual workspace/virtual machine provi-
sioned on-demand that allows the creation of virtual sensors for con-
sumers/clients/applications to use, control and retrieve data;

• Multi-tenancy - The Se-aaS platform should allow the sharing of data
and sensors by consumers, while ensuring scalability, security and QoE.

Applications using Se-aaS platforms will have software components with
bindings to virtual Things at the cloud, which creates a multi-user environ-
ment assisting in the use of resource-constrained physical wireless sensors.

In this thesis, several still not sufficiently addressed research topics of Se-
aaS models were investigated. Namely: i) the allocation of sensors to respond
to multiple applications and mashups; ii) the efficient assignment of mashup
element clusters to physical Things; iii) scalability, elasticity and QoE of mod-
els; iv) delay of flows between workspaces and devices. In order to address
these issues, various steps were done. These steps end up ensuring models
and algorithms that respond to the just mentioned challenges. The steps were
the following:

100

6.1 Conclusions

Figure 6.1: Se-aaS virtualization with mashups managed in the cloud.

• Development of a Se-aaS resource assignment model to evaluate the im-
pact of resource allocation in scalability, elasticity and QoE;

• A mathematical formalization for the problem of selecting the best clusters
os mashup elements (virtual Things) and their materialization, having
costs as the basis of the decision;

• Mathematical models and heuristic algorithms to build the best clusters,
considering two cases: mashups managed at the client and mashups
managed at the cloud.

• A mathematical programming optimization model able to determine the
optimal solution in resource allocation, which allowed the development
of a new heuristic that outperforms the results obtained by the previous
heuristic approaches.

The developments presented above are able to respond the open research
issues in Se-aaS. In general, as shown in Figure 6.1, the first main object-
ive was to improve the cloud’s sensor virtualization layer by allocating the
sensors with the adequate characteristics and properties to consumer applic-
ation requests, while responding to multiple applications and mashups, leav-
ing other sensors (with extra features) idle for future use. The second main
objective was to incorporate in the model a mashup virtualization layer to
decrease delays between cloud and data consumers, resulting in a faster and
better experience to clients. The third and last main objective was to improve
the overall resource allocation of the model by finding optimal solutions and

101

102

heuristics, for CSPs to be able to choose the adequate strategies for their spe-
cific cases, enhancing the services they provide.

In summary, all developments presented in this thesis had the goal of im-
proving the resource allocation in the Se-aaS business model.

102

6.2 Future Work

6.2 Future Work

The last developed heuristic algorithm, based on clique expansion, showed
much lower materialization costs than the previously developed ones. This
means that the allocated physical Things are nearer to client requests, leaving
other physical Things (with extra features) idle for future use, which makes
the model more resilient and able to fill more client requests.

As future work, this heuristic can be extended to take into account flow
dependencies (predecessor/successors of its mashup elements) when building
virtual Things, which will bring significant benefits not only to cloud architec-
tures but also to users, which end up having a better quality of experience.

103

Bibliography

[1] W3C: ”Semantic Web W3C” - https://www.w3.org/standards/semanticweb/.
Visualized in October 2019.

[2] W3C: ”SPARQL Query Language for RDF”-
https://www.w3.org/TR/rdf-sparql-query/. Visualized in October
2019.

[3] web of things (WoT) architecture (editorial draft), 2018.

[4] AL-FAGIH, A. E., AL-TURJMAN, F. M., ALSALIH, W. M., AND HAS-
SANEIN, H. S. Priced Public Sensing Framework for Heterogenous IoT
Architectures. IEEE Transactions on Emerging Topics in Computing 1,
1 (2013), 133–147.

[5] AL-FUQAHA, A., GUIZANI, M., MOHAMMADI, M., ALEDHARI, M., AND

AYYASH, M. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Communication Surveys & Tutorials
17, 4 (2015), 2347–2376.

[6] ANKUR, D., SOMA, K., AND K.P.CHETAN. Information as a Service
Based Architectural Solution for WSN. In First IEEE Internation Con-
ference on Communications in Chine: Advanced Internet and Cloud (AIC)
(2012).

[7] ASHTON, K. That ”Internet of Things” thing. RFID Journal (2009).

[8] BARNAGHI, P., HENSON, C. A., AND WANG, W. Semantics for the In-
ternet of Things: Early Progress and Back to the Future. Internation
Journal on Semantic Web and Information Systems (2012).

[9] BLACKSTOCK, M., AND LEA, R. IoT Mashups with WoTKit. In IEEE
International Conference on the Internet of Things (IoT) (Wuxi-China,
Oct. 2012).

[10] COMPTON, M., BARNAGHI, P., BERMUDEZ, L., GARCÍA-CASTRO, R.,
CORCHO, O., COX, S., JOHN GRAYBEAL, HAUSWIRTH, M., HENSON,

105

106

C., HERZOG, A., HUANG, V., JANOWICZ, K., KELSEY, W. D., PHUOC,
D. L., LEFORT, L., LEGGIERI, M., NEUHAUS, H., NIKOLOV, A., PAGE,
K., PASSANT, A., SHETH, A., AND TAYLOR, K. The SSN ontology of the
W3C semantic sensor network incubator group. Web Semantics: Sicence,
Services and Agents on the World Wide Web, 17 (2012), 25–32.

[11] DINH, T., AND KIM, Y. An Efficient Sensor-cloud Interactive Model for
On-demand Latency Requirement Garantee. In IEEE Internation Con-
ference on Communications (ICC), Paris, France (May 2017).

[12] DISTEFANO, S., MERLINO, G., AND PULIAFITO, A. Sensing and Actu-
ation as a Service: a new development for Clouds. In 11th International
Symposium on Network Computing and Applications (2012).

[13] DISTEFANO, S., MERLINO, G., AND PULIAFITO, A. A utility paradigm
for IoT: The sensing Cloud. Pervasive and Mobile Computing, 20 (2014),
127–144.

[14] DUAN, Y., FU, G., ZHOU, N., SUN, X., NARENDRA, N. C., AND HU, B.
Everything as a Service (XaaS) on the Cloud: Origins, Current and Fu-
ture Trends. In 8th IEEE International Conference on Cloud Computing
(2015).

[15] FORTINO, G., AND ET AL, C. S. Towards Multi-layer Interoperability
of Heterogeneous IoT Platforms: The INTER-IoT Approach. Springer
International Publishing, 2018, ch. Integration, Interconnection and In-
teroperability of IoT Systems, Internet of Things, pp. 199–232.

[16] FORTINO, G., RUSSO, W., SVAGLIO, C., VIROLI, M., AND ZHOU, M.
Modelling Opportunistic IoT Services in Open IoT Ecosystems. In 18Th
Workshop ”From Objects to Agents” (Calbria, Italy, June 2017), pp. 90–95.

[17] GUERREIRO, J., RODRIGUES, L., AND CORREIA, N. Allocation of Re-
sources in Se-aaS Clouds Managing Virtual Sensor Mashups. To be Pub-
lished.

[18] GUERREIRO, J., RODRIGUES, L., AND CORREIA, N. On the Allocation
of Resources in Sensor Clouds Under the Sensing as a Service Paradigm.
To be Published.

[19] GUERREIRO, J., RODRIGUES, L., AND CORREIA, N. Fair Resource As-
signment at Sensor Clouds Under the Sensing as a Service Paradigm.
In Technological Innovation for Resilient Systems (Jan. 2018), vol. 521,
DOCEIS, Springer, pp. 167–174.

106

Bibliography

[20] GUERREIRO, J., RODRIGUES, L., AND CORREIA, N. Modelling of Sensor
Clouds Under the Sensing as a Service Paradigm. In Broadband Com-
munications, Networks and Systems (Sept. 2018), Broadnets 2018.

[21] GUERREIRO, J., RODRIGUES, L., AND CORREIA, N. Resource Alloca-
tion Model for Sensor Clouds under the Sensing as a Service Paradigm.
Computers 8, 1 (2019).

[22] GUINARD, D., AND TRIFA, V. Building The Web of Things. Manning
Publications, 2016.

[23] GUINARD, D., TRIFA, V., PHAM, T., AND LIECHTI., O. Towards physical
mashups in the web of things. In IEEE Sixth International Conference
on Networked Sensing Systems (INSS) (2009).

[24] HSU, Y.-C., LIN, C.-H., AND CHEN, W.-T. Design of a Sensing Service
Architecture for Internet of Things with Semantic Sensor Selection. In
In proceedings of the International Conference UTC-ATC-ScalCom, Bali,
Indonesia (2014).

[25] ISHI, Y., KAWAKAMI, T., YOSHIHISA, T., TERANISHI, Y., NAKAUCHI,
K., AND NISHINAGA, N. Design and Implementation of Sensor Data
Sharing Platform for Virtualized Wide Area sensor Networks. In Inter-
nation Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
Victoria, BC, Canada (Nov. 2012), pp. 333–338.

[26] KANTI, S., AND BONNET, C. From the Internet of Thing to the Web of
Things enabling Sensing as a Service. In IEEE International Conference
on Consumer Electronics – Taiwan (ICCE-TW) (2018).

[27] KHAN, R., KHAN, S. U., ZAHEER, R., AND KHAN, S. Future Inter-
net: The Internet of Things Architecture, Possible Applications and Key
Challenges. In 10th International Conference on Frontiers of Information
Technology (2012), pp. 257–260.

[28] KIM, M., ASTHANA, M., BHARGAVA, S., IYYER, K. K., TANGADPALLI-
WAR, R., AND GAO, J. Developing an On-Demand Cloud-Based Sensing-
as-a-Service System for Internet of Things. Journal of Computer Net-
works and Communications (June 2016), 1–17.

[29] KRČO, S., POKRIĆ, B., AND CARREZ, F. Designing IoT architecture(s):
A European perspective. In IEEE World Forum on Internet of Things
(WF-IoT) (2014), pp. 79–84.

107

108

[30] KUMAR, L. D., GRACE, S. S., KRISHNAN, A., MANIKANDAN, V., CHIN-
RAJ, R., AND SUMALATHA, M. Data Filtering in Wireless Sensor Net-
works using Neural Networks for Storage in Cloud. In International
Conference ICRTIT, Chennai, Tamil Nadu, India (2012), pp. 202–205.

[31] LAI, C.-F., CHAO, H.-C., LAI, Y.-X., AND WAN, J. Cloud-Assisted Real-
Time Transrating for HTTP Live Streaming. IEEE Wireless Communic-
ations 20 (June 2013), 62–70.

[32] LAI, C.-F., WANG, H., CHAO, H.-C., AND HAN, G. A Network and
Device Aware QoS Approach for Cloud-Based Mobile Streaming. IEEE
Transactions on Multimedia 15, 4 (June 2013), 747–750.

[33] MADRIA, S. Sensor Cloud: Sensing-as-a-Service Paradigm. In 19th
IEEE International Conference on Mobile Data Management (2018).

[34] MATHEW, S. S., ATIF, Y., AND EL-BARACHI, M. From the Internet of
Things to The Web of Things - Enabling by Sensing as-a Service. In 12th
International Conference on Innovations in Information Technology (IIT)
(2016).

[35] MATHEW, S. S., ATIF, Y., SHENG, Q. Z., AND MAAMAR, Z. Web of
Things: Description, Discovery and Integration. In International Con-
ference on Internet of Things and Cyber, Physical and Social Computing
(iThings/CPSCom) (2011).

[36] MIHUI KIM, M. A. E. A. Developing an On-Demand Cloud-Based
Sensing-as-a-Service System for Internet of Things. Journal of Computer
Networks and Communications (2016).

[37] MISRA, S., BERA, S., MONDAL, A., TIRKEY, R., CHAO, H.-C., AND

CHATTOPADHYAY, S. Optimal gateway selection in sensor-cloud frame-
work for heath monitoring. IET Wireless Sensor Systems. 4, 2 (2014),
61–68.

[38] MISRA, S., CHATTERJEE, S., AND OBAIDAT, M. S. On Theoretical Mod-
eling of Sensor Cloud: A Paradigm Shift from Wireless Sensor Network.
IEEE Systems Journal 11, 2 (June 2017), 1084–1093.

[39] ONAT, F. A., AND STOJMENOVIC, I. Generating Random Graphs for
Wireless Actuator Networks. In IEEE International Symposioum World
of Wireless, Mobile and Multimedia Networks (Espoo, Finland, June
2007).

108

Bibliography

[40] PATIDAR, S., RANE, D., AND JAIN, P. Survey Paper on Cloud Comput-
ing. In 2nd IEEE International Conference on Advanced Computing &
Communication Technologies (2012).

[41] PERERA, C., ZASLAVSKY, A., CHISTEN, P., AND GEORGAKOPOULOS,
D. Sensing as a Service model for Smart Cities supported by Internet
of Things. Transactions on Emerging Telecommunications Technologies,
John Wiley and Sons, Inc. NY, USA 25, 1 (September 2014), 81–93.

[42] PETROLO, R., LOSCRI, V., AND MITTON, N. Towards a smart city based
on cloud of things, a survey on the smart city vision and paradigms.
Transactions on Emerging Telecommunications Technologies, John Wiley
and Sons, Ltd. 28, e2931 (2017).

[43] PIYARE, R., PARK, S., MAENG, S. Y., AND PARK, S. H. Integrating
wireless sensor network into cloud services for real-time data collection.
In International Conference on ICT Convergence (ICTC) (2013).

[44] POURYAZDAN, M., KANTARCI, B., SOYATA, T., FOSCHINI, L., AND

SONG, H. Quantifying User Reputation Scores, Data Trustworthiness,
and User Incentives in Mobile Crowd-Sensing. IEEE Access 5 (2017).

[45] SHENG, X., JIAN TANG, X. X., AND XUE, G. Sensing as a Service:
Challenges, Solutions and Future Directions. IEEE Sensors Journal 13,
10 (October 2013), 3733–3739.

[46] UNION, I. T. The Internet of Things. ITU Internet Reports, 2005.

[47] WANG, W., WANG, Q., AND SOHRABY, K. Multimedia Sensing as a Ser-
vice (MSaaS): Exploring Resource Saving Potentials of a Cloud-Edge IoT
and Fogs. IEEE Internet of Things Journal 4, 2 (April 2017), 487–495.

[48] WU, M., LU, T.-J., LING, F.-Y., AND SUN, J. Research on the Architec-
ture of Internet of Things. In Advanced Computer Theory and Engineer-
ing (ICACTE) (2010), vol. 5.

[49] XU, Y., AND MAO, S. A Survey of Mobile Cloud Computing for Rich
Media Applications. IEEE Wireless Communications 20 (June 2013), 46–
53.

[50] YANG, Z., YUE, Y., YANG, Y., PENG, Y., WANG, X., AND LIU, W. Study
and application on the architecture and key technologies for IOT. In
International Conference on Multimedia Technology (2011).

109

110

[51] ZASLAVSKY, A., PERERA, C., AND GEORGAKOPOULOS, D. Sensing as a
Service and Big Data. In International Conference on Advances in Cloud
Computing, Bengalore, India (2012).

[52] ZHANG, D., ZHOU, Z., MUMTAZ, S., RODRIGUEZ, J., AND SATO, T.
One Integrated Energy Efficiency Proposal for 5G IoT Communications.
IEEE Internet of Things Journal 3, 6 (2016).

[53] ZHU, C., LI, X., JI, H., AND LEUNG, V. C. M. Towards Integration of
Wireless Sensor Networks and Cloud Computing. In IEEE 7th Interna-
tion Conference on Cloud Computing Technology and Science (2015).

[54] ZORZI, M., GLUHAK, A., LANGE, S., AND BASSI, A. From today’s
INTRAnet of things to a future INTERnet of things: a wireless- and
mobility-related view. IEEE Wireless Communications 17, 6 (2010), 44–
51.

[55] ZUGE, A. P., AND CARMO, R. On comparing algorithms for the max-
imum clique problem. Discrete Applied Mathematics 247 (2018).

110

