16 research outputs found

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Probabilistic and artificial intelligence modelling of drought and agricultural crop yield in Pakistan

    Get PDF
    Pakistan is a drought-prone, agricultural nation with hydro-meteorological imbalances that increase the scarcity of water resources, thus, constraining water availability and leading major risks to the agricultural productivity sector and food security. Rainfall and drought are imperative matters of consideration, both for hydrological and agricultural applications. The aim of this doctoral thesis is to advance new knowledge in designing hybridized probabilistic and artificial intelligence forecasts models for rainfall, drought and crop yield within the agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to focus on precision agriculture given the importance of rainfall and drought events on agricultural crops in socioeconomic activities of Pakistan. The outcomes of this PhD contribute to efficient modelling of seasonal rainfall, drought and crop yield to assist farmers and other stakeholders to promote more strategic decisions for better management of climate risk for agriculturalreliant nations

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Application of machine learning in operational flood forecasting and mapping

    Get PDF
    Considering the computational effort and expertise required to simulate 2D hydrodynamic models, it is widely understood that it is practically impossible to run these types of models during a real-time flood event. To allow for real-time flood forecasting and mapping, an automated, computationally efficient and robust data driven modelling engine - as an alternative to the traditional 2D hydraulic models - has been proposed. The concept of computationally efficient model relies heavily on replacing time consuming 2D hydrodynamic software packages with a simplified model structure that is fast, reliable and can robustly retains sufficient accuracy for applications in real-time flood forecasting, mapping and sequential updating. This thesis presents a novel data-driven modelling framework that uses rainfall data from meteorological stations to forecast flood inundation maps. The proposed framework takes advantage of the highly efficient machine learning (ML) algorithms and also utilities the state-of-the-art hydraulic models as a system component. The aim of this research has been to develop an integrated system, where a data-driven rainfall-streamflow forecasting model sets up the upstream boundary conditions for the machine learning based classifiers, which then maps out multi-step ahead flood extents during an extreme flood event. To achieve the aim and objectives of this research, firstly, a comprehensive investigation was undertaken to search for a robust ML-based multi-step ahead rainfall-streamflow forecasting model. Three potential models were tested (Support Vector Regression (SVR), Deep Belief Network (DBN) and Wavelet decomposed Artificial Neural Network (WANN)). The analysis revealed that SVR-based models perform most efficiently in forecasting streamflow for shorter lead time. This study also tested the portability of model parameters and performance deterioration rates. Secondly, multiple ML-based models (SVR, Random Forest (RF) and Multi-layer Perceptron (MLP)) were deployed to simulate flood inundation extents. These models were trained and tested for two geomorphologically distinct case study areas. In the first case of study, of the models trained using the outputs from LISFLOOD-FP hydraulic model and upstream flow data for a large rural catchment (Niger Inland Delta, Mali). For the second case of study similar approach was adopted, though 2D Flood Modeller software package was used to generate target data for the machine learning algorithms and to model inundation extent for a semi-urban floodplain (Upton-Upon-Severn, UK). In both cases, machine learning algorithms performed comparatively in simulating seasonal and event based fluvial flooding. Finally, a framework was developed to generate flood extent maps from rainfall data using the knowledge learned from the case studies. The research activity focused on the town of Upton-Upon-Severn and the analysis time frame covers the flooding event of October-November 2000. RF-based models were trained to forecast the upstream boundary conditions, which were systematically fed into MLP-based classifiers. The classifiers detected states (wet/dry) of the randomly selected locations within a floodplain at every time step (e.g. one hour in this study). The forecasted states of the sampled locations were then spatially interpolated using regression kriging method to produce high resolution probabilistic inundation (9m) maps. Results show that the proposed data centric modelling engine can efficiently emulate the outcomes of the hydraulic model with considerably high accuracy, measured in terms of flood arrival time error, and classification accuracy during flood growing, peak, and receding periods. The key feature of the proposed modelling framework is that, it can substantially reduce computational time, i.e. ~14 seconds for generating flood maps for a flood plain of ~4 km2 at 9m spatial resolution (which is significantly low compared to a fully 2D hydrodynamic model run time)

    Geospatial Artificial Intelligence (GeoAI) in the Integrated Hydrological and Fluvial Systems Modeling: Review of Current Applications and Trends

    Get PDF
    This paper reviews the current GeoAI and machine learning applications in hydrological and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial and non-spatial data collected with the new automatic technologies. The fast development of GeoAI provides multiple methods and techniques, although it also makes comparisons between different methods challenging. Overall, selecting a particular GeoAI method depends on the application's objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling, computational efficiency, integration of multiple data sources, high accurate prediction capability, and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI models is the adequate model setting and low physical interpretability, explainability, and model generalization. The most recent research on hydrological GeoAI has focused on integrating the physical-based models' principles with the GeoAI methods and on the progress towards autonomous prediction and forecasting systems

    Developing a hybrid hidden MARKOV model using fusion of ARMA model and artificial neural network for crude oil price forecasting

    Get PDF
    Crude oil price forecasting is an important component of sustainable development of many countries as crude oil is an unavoidable product that exist on earth. Crude oil price forecasting plays a very vital role in economic development of many countries in the world today. Any fluctuation in crude oil price tremendously affects many economies in terms of budget and expenditure. In view of this, it is of great concern by economists and financial analysts to forecast such a vital commodity. However, Hidden Markov Model, ARMA Model and Artificial Neural Network has many drawbacks in forecasting such as linear limitations of ARMA model which is in contrast to the financial time series which are often nonlinear, ANN is very weak in terms of out-sample forecast and it has very tedious process of implementation, HMM is very weak in an in-sample forecast and has issue of a large number of unstructured parameters. In view of this drawbacks of these three models (ANN, ARMA and HMM), we developed an efficient Hybrid Hidden Markov Model using fusion of ARMA Model and Artificial Neural Network for crude oil price forecasting, MATLAB was employed to develop the four models (Hybrid HMM, HMM, ARMA and ANN). The models were evaluated using three different evaluation techniques which are Mean Absolute Percentage Error (MAPE), Absolute Error (AE) and Root Mean Square Error (RMSE). The findings showed that Hybrid Hidden Markov Model was found to provide more accurate crude oil price forecast than the other three models in which. The results of this study indicate that Hybrid Hidden Markov Model using fusion of ARMA and ANN is a potentially promising model for crude oil price forecasting

    Predicting complex system behavior using hybrid modeling and computational intelligence

    Get PDF
    “Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to predict water level rise from river gauge height. Combined with existing infrastructure models, these techniques provide a 15-minute interval for making closure decisions rather than the current 6-hour interval. The second system explored is fetal monitoring, which is essential to diagnose severe fetal conditions such as acidosis. Support Vector Machine and Random Forest were compared to identify the best model for classification of fetal state. This model provided a more accurate classification than existing research on the CTG. A deep learning forecasting model was developed to predict the future values for fetal heart rate and uterine contractions. The forecasting and classification algorithms are then integrated to evaluate the future condition of the fetus. The final model can predict the fetal state 4 minutes ahead to help the obstetricians to plan necessary interventions for preventing acidosis and asphyxiation. In both cases, time series predictions using hybrid modeling provided superior results to existing methods to predict complex behaviors”--Abstract, page iv

    Rainfall and runoff estimation using hydrological models and Ann techniques

    Get PDF
    Water is one of the most important natural resources and a key element in the socio-economic development of a State and Country. Water resources of the world in general and in India are under heavy stress due to increased demand and limitation of available quantity. Proper water management is the only option that ensures a squeezed gap between the demand and supply. Rainfall is the major component of the hydrologic cycle and this is the primary source of runoff. Worldwide many attempts have been made to model and predict rainfall behaviour using various empirical, statistical, numerical and deterministic techniques. They are still in research stage and needs more focussed empirical approaches to estimate and predict rainfall accurately. Various spatial interpolation techniques to obtain representative rainfall over the entire basin or sub-basins have also been used in the past. In the present work, estimation of mean rainfall over the Mahanadi basin lying in Odisha and its sub-basins has been done using different deterministic and geo-statistical methods including nearest neighbourhood, Spline, Inverse-distance weighting, and Kriging techniques. Different thematic maps for the study area have been developed for water resources assessment, planning and development analysis

    African Handbook of Climate Change Adaptation

    Get PDF
    This open access book discusses current thinking and presents the main issues and challenges associated with climate change in Africa. It introduces evidences from studies and projects which show how climate change adaptation is being - and may continue to be successfully implemented in African countries. Thanks to its scope and wide range of themes surrounding climate change, the ambition is that this book will be a lead publication on the topic, which may be regularly updated and hence capture further works. Climate change is a major global challenge. However, some geographical regions are more severly affected than others. One of these regions is the African continent. Due to a combination of unfavourable socio-economic and meteorological conditions, African countries are particularly vulnerable to climate change and its impacts. The recently released IPCC special report "Global Warming of 1.5º C" outlines the fact that keeping global warming by the level of 1.5º C is possible, but also suggested that an increase by 2º C could lead to crises with crops (agriculture fed by rain could drop by 50% in some African countries by 2020) and livestock production, could damage water supplies and pose an additonal threat to coastal areas. The 5th Assessment Report produced by IPCC predicts that wheat may disappear from Africa by 2080, and that maize— a staple—will fall significantly in southern Africa. Also, arid and semi-arid lands are likely to increase by up to 8%, with severe ramifications for livelihoods, poverty eradication and meeting the SDGs. Pursuing appropriate adaptation strategies is thus vital, in order to address the current and future challenges posed by a changing climate. It is against this background that the "African Handbook of Climate Change Adaptation" is being published. It contains papers prepared by scholars, representatives from social movements, practitioners and members of governmental agencies, undertaking research and/or executing climate change projects in Africa, and working with communities across the African continent. Encompassing over 100 contribtions from across Africa, it is the most comprehensive publication on climate change adaptation in Africa ever produced

    Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    Full text link
    corecore