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ABSTRACT 

 

Water is one of the most important natural resources and a key element in the socio-economic 

development of a State and Country. Water resources of the world in general and in India are 

under heavy stress due to increased demand and limitation of available quantity. Proper water 

management is the only option that ensures a squeezed gap between the demand and supply. 

Rainfall is the major component of the hydrologic cycle and this is the primary source of 

runoff. Worldwide many attempts have been made to model and predict rainfall behaviour 

using various empirical, statistical, numerical and deterministic techniques. They are still in 

research stage and needs more focussed empirical approaches to estimate and predict rainfall 

accurately. Various spatial interpolation techniques to obtain representative rainfall over the 

entire basin or sub-basins have also been used in the past. In the present work, estimation of 

mean rainfall over the Mahanadi basin lying in Odisha and its sub-basins has been done using 

different deterministic and geo-statistical methods including nearest neighbourhood, Spline, 

Inverse-distance weighting, and Kriging techniques. Different thematic maps for the study 

area have been developed for water resources assessment, planning and development 

analysis. 

Further, rainfall generated runoff is very important in various activities of water resources 

development and management. The method of transformation of rainfall to runoff is highly 

complex, dynamic, nonlinear, and exhibits temporal and spatial variability. It is further 

affected by many parameters and often inter-related physical factors. Determining a robust 

relationship between rainfall and runoff for a watershed has been one of the most important 

problems for hydrologists, engineers, and agriculturists. Many approaches are being used to 

estimate runoff, in which the soil conservation service curve number (SCS-CN) method (SCS 

1956) converts rainfall to surface runoff (or rainfall-excess) using a CN derived from 



6 

 

watershed characteristics and 5-days antecedent rainfall is one. In this study, simulation and 

critical evaluation of daily runoff has been done using various rainfall-runoff models based 

on (a) existing SCS-CN Model: NEH (1954) with remote sensing data as input, MS model 

(2002), Michel model (2005), and Sahu Model (2007), and (b) proposed FD-PE model 

(2014), MM-SCS model (2014), and ANN-MLP model (2014) techniques.  

It is understood that, the CN value for estimating runoff potential for planning purposes at 

watershed, sub-basin and basin level is often a policy decision. The available approaches 

utilize either daily, weekly, half-monthly or monthly data or average physical characteristics 

of watersheds. Derivation of Curve Numbers for 1-day, 2-day, 3-day, 4-day, 5-day, 6-day, 7-

day, 10-day, 15-day, 20-day, 25-day and 30-day runoff data has been done in the present 

work and equations are derived to obtain curve numbers and estimate runoff.  

Monthly data are very useful for the planning, development and management of available 

water resources. Development of SARIMA and MLP-ANN models for monthly rainfall 

forecasting for Mahanadi basin lying in Odisha and its sub-basins has been done. Further, 

application of forecasted model to predict monthly runoff and their performance evaluation 

using different error statistics and correlation coefficient is done. 
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1.1  BACKGROUND 

Water is one of the most important natural resources and a key element in the socio-economic 

development of a State and Country. Water influences every sphere of the environment 

supporting life on earth. Its varying availability in time and space is a matter of concern to the 

mankind since fresh water is not an ever-present resource. Water resources of the world in 

general and in India are under heavy stress due to increased demand and limitation of 

available quantity. Proper water management is the only option that ensures a squeezed gap 

between the demand and supply. Sustainable water management of a river basin is required to 

ensure a long-term stable and flexible water supply to meet crop water demands as well as 

growing municipal and industrial water demands. Water resources structures need 

appropriate planning to ensure the fulfilment of the goals of water management. Water 

resources management requires a systems approach that includes not only all of the 

hydrological components, but also the links, relations, interactions, consequences, and 

implications among these components. Human modifications of the environment, including 

land cover change, irrigation, and flow regulation, now occur on scales that significantly 

affect seasonal and yearly hydrologic variations. A thorough knowledge and understanding of 

the different hydrological phenomena and hydrological cycle as a whole is required in 

studying the implications of these changes. 

 

 

 

1.2   RAINFALL ANALYSIS  

Rainfall is the major component of the hydrologic cycle and is the primary source of runoff 

(Beven, 2001b). Rainfall is essentially required to fulfil various demands including 

agriculture, hydropower, industries, environment and ecology. It is implicit that the rainfall is 
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a natural phenomenon occurring due to atmospheric and oceanic circulation (local 

convection, frontal or orographic pattern) and has large variability at different spatial and 

temporal scales. However, this input is subjected to uncertainty and stochastic errors 

(Jakeman and Hornberger, 1993; Beven, 2001a). Worldwide many attempts have been made 

to model and predict rainfall behaviour using various empirical, statistical, numerical and 

deterministic techniques (Namias, 1968; Koteshwaram and Alvi, 1969; Ramamurthy et al. 

1987; Jha and Jaiswal, 1992; Chiew et al, 1993; Kuo and Sun, 1993; Langu, 1993; Meher and 

Jha, 2011(a); Meher and Jha, 2011(b)). They are still in research stage and needs more 

focussed empirical approaches to estimate and predict rainfall accurately.  

These data are usually collected using rain gauges, and therefore they are point precipitation 

data. However, the application of a single rain gauge as precipitation input carries lots of 

uncertainties regarding estimation of runoff (Faur`es et al., 1995 and Chaubey et al., 

1999).This creates a lot of problem for the discharge prediction, especially if the rain gauge is 

located outside the basin (Schuurmans and Bierkens, 2007).As a result, some utilities such as 

hydrological modelling (Syed et al., 2003; Kobold and Suˇselj, 2005; Gabellani et al., 2007; 

Cole and Moore, 2008; Collischonn, et al., 2008; Ruelland et al., 2008; Moulin et al., 2009) 

need rainfall data that are spatially continuous. The quality of such result is therefore 

estimated by the quality of the continuous spatial rainfall (Singh, 1997; Andr´eassian et al., 

2001; Kobold and Suˇselj, 2005; Leander et al., 2008; Moulin et al., 2009). Various spatial 

interpolation techniques to obtain representative rainfall over the entire basin or sub-basins 

have also been used in the past.  

The justification underlying spatial interpolation is the assumption that points closer together 

in space are more likely to have similar values than points that are more distant. This 

observation is known as Tobler’s First Law of Geography (Tobler, 1970). Spatial 

interpolation is a very important component of many geographical information systems 
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(GIS), frequently used as a tool to aid spatial decision making both in (1) physical and human 

geography and (2) related disciplines, such as hydrology and water resources planning and 

management. Many of the techniques of spatial interpolation are two-dimensional 

developments of the one-dimensional methods originally developed for time series analysis 

(Ripley, 1981). 

Once the spatial interpolation is done by different methods, the rainfall data may be used to 

predict rainfall by time series analysis. The main development of time series models is done 

by Box and Jenkins (1970) and further discussed in some other resources (Chatfild, 1996; 

Montgomery and Johnson, 1967). Many attempts have been made in the recent past to model 

and forecast rainfall using various techniques, with the use of time series techniques proving 

to be the most common (Gorman and Toman, 1966; Salas et al., 1980; Galeati, 1990; Lall and 

Bosworth, 1993; Hsu et al., 1995, Davidson, et.al., 2003). In time series analysis it is 

assumed that the data consists of a systematic pattern (usually a set of identifiable 

components) and random noise (error) which usually makes the pattern difficult to identify. 

Time series analysis techniques usually involve some method of filtering out noise in order to 

make the pattern more salient. The time series patterns can be described in terms of two basic 

classes of components: trend and seasonality. The trend represents a general systematic linear 

or (most often) nonlinear component that changes over time and does not repeat or at least 

does not repeat within the time range captured by the data. The seasonality may have a 

formally similar nature; however, it repeats itself in systematic intervals over time. Those two 

general classes of time series components may coexist in real-life data. The ARIMA model is 

an important forecasting tool, and is the basis of many fundamental ideas in time-series 

analysis. An autoregressive model of order p is conventionally classified as AR (p) and a 

moving average model with q terms is known as MA (q).  A combined model that contains p 
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autoregressive terms and q moving average terms is called ARMA (p,q) (Gujarati, 1995). If 

the object series is differenced d times to achieve stationarity, the model is classified as 

ARIMA (p, d, q), where the letter “I” signifies “integrated”. Thus, an ARIMA model is a 

combination of an autoregressive (AR) process and a moving average (MA) process applied 

to a non-stationary data series. ARIMA modeling has been successfully applied in various 

water and environmental management applications (Meher and Jha, 2013). 

Many applications of ANN can be found in water resource and environmental engineering 

literature. Some of these studies include groundwater simulation by Nourani et al. (2008 ), 

river flow modeling by Kisi (2004a, 2007) and Cigizoglu and Kisi (2005), water quality 

modeling by Onkal-Engin et al. (2005), hydrological time series modeling by Jayawardena et 

al. (2006)  and rainfall and runoff modeling by Tokar and Johnson (1999). There are many 

approaches to estimate rainfall and rainfall generated runoff. Among all, ANN has also been 

considered as one of the reliable methods to estimate rainfall and rainfall generated runoff at 

basin and sub-basin scales.  The application of the ANN in time series for forecasting is 

relatively new (Mirko & Christian 2000). It is primarily based on the ability of neural 

networks to approximate nonlinear functions. This technique corresponds to human 

neurological system, which consists of a series of basic computing elements, called as 

neurons, interconnected together to form a network (Rummelhart & McClelland 1996). The 

parallel-distributed processing architecture of ANN has proved to be a very powerful 

computational tool which is now being used in several fields to model the dynamic processes 

successfully (Mirko & Christian 2000; Mary 2002) including the rainfall (Singh & 

Chowdhury 1986; Cigizoglu 2002). This technique has the ability to learn and generalize 

from examples to produce meaningful solutions.  

1.3   RUNOFF ANALYSIS  
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Further, rainfall generated runoff is very important in various activities of water resources 

development and management, such as: flood control and its management, irrigation 

scheduling, design of irrigation and drainage works, design of hydraulic structures, hydro-

power generation, and so on. The method of transformation of rainfall to runoff is highly 

complex, dynamic, nonlinear, and exhibits temporal and spatial variability. It is further 

affected by many parameters and often inter-related physical factors. It is a common 

experience that for a given amount of rainfall on a watershed, the event produces a high or 

low runoff depending on (besides other parameters): the small or large time interval/duration, 

with the infiltration and evaporation losses depending significantly on how long the water 

remains in the watershed.  

Determining a robust relationship between rainfall and runoff for a watershed has been one of 

the most important problems for hydrologists, engineers, and agriculturists. Many approaches 

are being used to estimate runoff, in which the soil conservation service curve number (SCS-

CN) method (SCS 1956) converts rainfall to surface runoff (or rainfall-excess) using a CN 

derived from watershed characteristics and 5-days antecedent rainfall is one.  Being 

conceptual, the runoff curve number method is simple, and this is at the root of its popularity. 

On the other hand, the runoff curve number method has not fared well among the supporters 

of alternative models, which include the physically based models (Smith 1976). Ponce and 

Hawkins (1996) critically examined the curve number method and clarified its conceptual 

and empirical basis. The curve number method is an infiltration loss model; where infiltration 

is the most important loss for short term storm analysis, although it may also account for 

interception and surface storage losses through its initial abstraction feature, which are 

usually of secondary importance. As originally developed, the method is not intended to 

account for evaporation and evapo-transpiration, which are long term losses and are the most 

important for seasonal or annual yield evaluations (Ponce and Hawkins, 1996). 
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Many researchers have demonstrated that potential retention from rainfall and runoff data has 

variable components and is not a constant for a watershed (Hjelmfelt et al. 1982; McCuen 

2002), and varies with rainfall. As a result, CN value varies monthly, seasonally and 

annually. In a similar manner CN varies at daily, weekly and half-monthly basis too. Besides 

daily and monthly CN values, weekly, ten days and half-monthly CN are also required for 

various purposes such as agriculture, flood control, drought mitigation etc. Therefore, such 

studies are very important.  

Remote Sensing and GIS techniques are being increasingly used for planning, development 

and management of natural resources. GIS technology helps in integrating various data sets 

and spatial analysis for decision making. Data acquired through remote sensing satellite can 

help us in mapping land and other resources in spatial and temporal domain. These 

technologies presently being used for solving watershed related problems like watershed 

planning, development and management, aim to harness all natural resources for sustainable 

development. Thus Remote Sensing and GIS together provide information base for efficient 

management of water resources. Some researchers integrated the SCS-CN model into the 

GIS/RS system to extend the model applicability to complex watersheds with high temporal 

and spatial variability in soil and land use (Zhan and Huang, 2004; Geetha et al., 2007).  

A lot of studies on application of ANN for stream flow prediction are also found in the 

literature. ANN is defined according to its model inputs and its architecture: the number of 

layers, the number of nodes in each layer, the activation function in each layer, and the 

manner in which the layers are interconnected. However, one of the most unresolved 

questions in modelling of the rainfall-runoff process when applying ANNs is what 

architecture should be used to map the process effectively. The selection requires choosing an 

appropriate input vector, besides the hidden units and weights. Unlike the physically based 

models, the sets of variables that influence the system are not known a priori. Therefore, the 
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selection of an appropriate input vector that will allow an ANN to map to the desired output 

vector successfully is not a trivial task. In most of the applications that are reported, this has 

been done by a trial- and error-procedure (Fernando and Jayawardena, 1998). Sudheer et al. 

(2002) outlined a procedure for selecting an appropriate input vector in ANN rainfall-runoff 

models, based on statistical pre-processing of the data set. The proposed methodology has 

been illustrated by presenting an application of the procedure to an Indian River basin. The 

results reported by some researchers have also been analyzed to check the effectiveness of the 

proposed algorithm and then they concluded that their proposed algorithm would easily lead 

to a more compact network, thus avoiding a long trial- and-error procedure.  

Keeping above in view, a comprehensive study on rainfall estimation and rainfall generated 

runoff estimation has been done in Mahanadi river system lying in Odisha and its five sub-

basins (Sundargarh, Kesinga, Kantamal, Salebhata, and Tikarpara) with the following 

objectives. 

1.4 OBJECTIVES  

1. Development of Thematic maps for Mahanadi Basin lying in Odisha and its sub-basins 

for water resources assessment, planning and development analysis. 

2. Estimation of mean rainfall over the Mahanadi basin lying in Odisha and its sub-basins 

using different deterministic and geo-statistical methods including nearest 

neighbourhood, Spline, Inverse-distance weighting, and Kriging techniques. 

3. Simulation and critical evaluation of daily runoff using various rainfall-runoff models 

based on (a) existing SCS-CN Model: NEH (1954) with remote sensing data as input, MS 

model (2002), Michel model (2005), and Sahu Model (2007), and (b) proposed FD-PE 

model (2014), MM-SCS model (2014), and ANN-MLP model (2014) techniques in 

Mahanadi basin lying in Odisha and its sub-basins.  
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4. Simulation and critical evaluation of monthly runoff using various rainfall-runoff models 

used above and applicable for monthly data set in Mahanadi basin lying in Odisha and its 

sub-basins.   

5. Performance evaluation of all the models using different error statistics and correlation 

coefficient for daily and monthly rainfall-runoff data. 

6.  Derivation of Curve Numbers for 1-day, 2-day, 3-day, 4-day, 5-day, 6-day, 7-day, 10-

day, 15-day, 20-day, 25-day and 30-day runoff data.  Moreover, equations are derived to 

obtain curve numbers and resulting runoff for any number of days ranging between 1 to 

30 days.  

7. Development of SARIMA and MLP-ANN models for monthly rainfall forecasting for 

Mahanadi basin lying in Odisha and its sub-basins. Application of forecasted model to 

predict monthly runoff and their pperformance evaluation using different error statistics 

and correlation coefficient. 

1.5 SKETCH OUT OF THE CHAPTERS  

In view of the above objectives the present work has been divided into different Chapters.  

Chapter 1 describes concise introduction of the topic, objectives and sketch out of the 

chapters.  

     Chapter 2 provides comprehensive literature review on rainfall interpolation methods, rainfall 

forecasting techniques and runoff estimation techniques.  

    Chapter 3 describes various salient features of Mahanadi river basin lying in Odisha and its 

sub basins (Sundargarh, Kesinga, Kantamal, Salebhata, Tikarpara and Naraj). Data collection 

part is also included in this chapter.  

Chapter 4 shows delineation of the thematic maps for the study area having different Themes 

and required to be used for analysis in next chapters as input theme and variable.  
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    Chapter 5 computes different deterministic and geo-statistical spatial rainfall interpolation 

techniques for calculation of rainfall over individual sub-basin of the study area.  

Chapter 6 evaluates daily runoff using various existing and proposed rainfall-runoff models. 

     This section thoroughly presents the methods applied for derivation of CN for runoff 

computation. A comparative study of the proposed methods with previously developed 

models has also been presented. Finally developmental procedure and validation of a CN 

equation with the best applied method has been described.  

Chapter 7 derives Curve Numbers for different rainfall and runoff durations varying from 1 

     day to 30-day period to obtain curve numbers and resulting runoff.  

Chapter 8 describes SARIMA and ANN models for rainfall forecasting. This section 

describes about application of these models for monthly forecasting of rainfall and utilization 

of the forecasted rainfall for monthly runoff computations. 

Chapter 9 is the Conclusions of all the findings.  

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

LITERATURE REVIEW 
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2.1  INTRODUCTION 

Assessment, simulation and prediction of rainfall and corresponding runoff are essential for 

stakeholders and policy makers to plan or adopt the required policies. There are various 

techniques available in the literature to assess, simulate and predict hydrological variables. 

However, the selection of these techniques normally depends on the objectives of the study, 

availability of required input data, the quality of available models and some pre- defined 

assumptions. According to Makridakis et al., (1998) each method is different in terms of 

accuracy, scope, time horizon and the cost. To facilitate an adequate level of accuracy, the 

developer has to be responsive to the characteristics of different methods, and determine if a 

particular method is appropriate for the undertaken situation before embarking its usage in 

real application. As a result, the choice of a model is one of the important factors that will 

influence the forecasting accuracy. In the following sections literature review on the 

application of various hydrological and ANN models for rainfall and runoff assessment, 

simulation and prediction has been summarized. 

 

2.2  SPATIAL INTERPOLATION OF RAINFALL 

The application of point rain gauge as precipitation input carries lots of uncertainties 

regarding estimation of runoff (Faur`es et al., 1995 and Chaubey et al., 1999), which, in turn, 

creates problem for the discharge prediction, especially if the rain gauge is located outside the 

basin (Schuurmans and Bierkens, 2007). For such reasons, some utilities such as hydrological 

modeling (Syed et al., 2003; Kobold and Suˇselj, 2005; Gabellani et al., 2007; Cole and 

Moore, 2008; Collischonn, et al., 2008; Ruelland et al., 2008; Moulin et al., 2009) need 

rainfall data that are spatially continuous and the quality of results are by the quality of the 
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continuous spatial rainfall (Singh, 1997; Andr´eassian et al., 2001; Kobold and Suˇselj, 2005; 

Leander et al., 2008; Moulin et al., 2009). 

Many of the techniques of spatial interpolation are two-dimensional developments of the one-

dimensional methods originally developed for time series analysis (Ripley, 1981). 

Karnieli and Gurion (1990) applied kriging technique for mapping and evaluating 

precipitation data for the State of Arizona, as the classical methods for interpolating and 

spatial averaging of precipitation fields fail to quantify the accuracy of the estimate.  

Annual and monthly rainfall data from the Algarve region (Portugal) are interpolated by 

Hutchinson (1998) using 100 daily square root transformed rainfall values across the USA 

using two dimensional thin plate smoothing splines. The distribution of precipitation usually 

relates to orographic factors, and this makes the use of topographic data advantageous for 

spatial rainfall interpolation.  

Goovaerts (2000) and Lloyd (2005) applied elevation as secondary data to incorporate into 

multivariate geo-statistics for monthly and annual rainfall and compared these results with 

those of deterministic methods.  

Goovaerts (2000) used two types of techniques: (1) methods that use only rainfall data 

recorded at 36 stations (the Thiessen polygon, inverse square distance, and ordinary kriging); 

and (2) algorithms that combine rainfall data with a digital elevation model (linear regression, 

simple kriging with varying local means, kriging with an external drift, co-located ordinary 

cokriging), and concluded that for low-density networks of rain gages geostatistical 

interpolation outperforms deterministic techniques.  

Kastelec and Kosmelj (2002) found an appropriate method for the spatial interpolation of 

mean yearly precipitation (MYP) into a regular grid with 1 km resolution, for Slovenia, using 

the universal kriging method.  
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Naoum and Tsanis (2004) selected the appropriate interpolation technique used in studying 

rainfall spatial variability of the country of Switzerland by developing a GIS-based Decision 

Support System (DSS). They found that the ordinary Kriging with exponential model and 

Universal Kriging with linear drift model showed consistent performance and provided 

reliable estimates regardless of the number of gages or the cell size used in the interpolation.  

Lloyd (2005) did mapping monthly precipitation in Great Britain from sparse point data 

using techniques (i) moving window regression, (ii) inverse distance weighting, (iii) ordinary 

kriging, (iv) simple kriging with a locally varying mean and (v) kriging with an external drift 

(KED). MWR, SKlm and KED make use of elevation data.  

Kottek and Rubel (2008) applied ordinary areal kriging for interpolation to compile a global 

precipitation product by incorporation of daily ground rain gauge measurements so that an 

improvement of the global precipitation data accuracy would be possible.  

Hofstra et al. (2008) compared six interpolation methods e.g. global and local kriging, two 

versions of angular distance weighting, natural neighbor interpolation, regression, 2D and 3D 

thin plate splines, and conditional interpolation, for the interpolation of daily precipitation, 

mean, minimum and maximum temperature, and sea level pressure from station data over 

Europe from 1961 to 1990 and selected global kriging as the best performing method overall, 

for use in the development of a daily, high-resolution, long-term, European data set of 

climate variables. 

Taesombat and Sriwongsitanon (2009) introduced the thin plate spline (TPS) technique for 

daily areal rainfall approximation in the Upper Ping river basin and found that the spline 

technique proved to provide more accurate results of rainfall estimation than the two 

conventional techniques, the isohyetal and Thiessen polygon techniques. Global daily 

precipitation analyses are mainly based on satellite estimates, often calibrated with monthly 

ground analyses or merged with model predictions.  
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Tao et al. (2009) analyzed some rainfall series from 30 rain gauges located in the Great Lyon 

area, including annual, month, day and intensity of 6mins, aiming at improving the 

understanding of the major sources of variation and uncertainty in small scale rainfall 

interpolation in different input series and found that the model and the parameters of Kriging 

should be different for the different rainfall series, even if in the same study area. Again they 

found that to the small region with high density of rain gauges, the Kriging method 

superiority is not obvious, IDW and the Spline interpolation result can be better. Finally, they 

concluded that the different methods will be suitable for the different research series, and it 

must be determined by the data series distribution. 

Geostatistical interpolation of daily rainfall for 30-year daily rainfall data of 70 rain gages in 

the hilly landscape of the Ourthe and Ambleve catchments in Belgium was done by Ly et al. 

(2011). For geostatistical algorithms, seven semi-variogram models were fitted to daily 

sample semi-variogram on a daily basis and found that between the seven semi-variogram 

models used, the Gaussian model was the most frequently best fit.  

Luo et al. (2011) chose ordinary co-kriging (OCK) to integrate altitude into the estimation of 

monthly precipitation. On the other hand, another three commonly used methods, including 

Thiessen polygon, inverse distance weighted (IDW) and ordinary kriging (OK), were also 

adopted to compare the spatial monthly rainfall estimation performance of OCK with other 

methods especially for different correlation between rainfall and elevation.  

Mair and Fares (2011) used traditional and geostatistical interpolation methods such as 

Thiessen polygon, IDW, linear regression, ordinary kriging and simple kriging with varying 

local means to estimate wet and dry season rainfall and compared them in assessing rainfall 

spatial variability across the mountainous leeward portion of the island of O’ahu ,Hawai’i. 

From ordinary kriging interpolation map, they found that the areas of greatest rainfall deficit 

are confined to the mountainous region of west O’ahu.  
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Regarding the spatial interpolation of rainfall, Chen and Liu (2012) used the inverse distance 

weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. 

Besides, they evaluated the relationship between interpolation accuracy and two critical 

parameters of IDW: power value and radius of influence (search radius).  

 

2.3   RAINFALL PREDICTION MODELS 

2.3.1 Based on ARIMA Modeling 

Time series analysis is one of the most popular forms of data-driven modeling in rainfall and 

stream flow forecasting.  Most “time series” models belong to the class of linear time series 

forecasting, because they postulate a linear dependency of the future value on the past values. 

The most popular univariate models are the autoregressive moving average (ARMA) model 

and its derivatives, which include the autoregressive (AR), autoregressive integrated moving 

average (ARIMA), seasonal ARIMA, periodic ARMA, threshold AR, and fractionally 

integrated ARMA models (Adamowski and Karapataki,2010). These univariate time series 

models including autoregressive integrated moving average (ARIMA) models and derivatives 

have long been applied in rainfall and stream flow forecasting, particularly in the modeling of 

monthly rainfall and streamflow (Noakes et al. 1985; Salas 1992; Abrahart and See 2000; 

Wang et al. 2009). 

 

 

 

Delleur and Kavvas(1978) developed a non-seasonal ARIMA model suitable for both 

generation of monthly rainfall series and forecasting and a seasonal ARIMA model suitable 

only for forecasting of one or two months ahead  basin average rainfall series, which was 

obtained by Thiessen polygon method.  
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Chang et al. (1984) used a binary discrete autoregressive moving average (B-DARMA) 

process to model the sequences of wet and dry days which are obtained from daily 

precipitation time series.  

Mateos et al. (2002) compared ARMA and discrete linear transfer function noise (DLTFN) 

model to fit monthly accumulated rainfall series and found that performance of the DLTFN 

model is better than that of ARMA model.  

Weesakul and Lowanichchai (2005) developed ARIMA models most appropriate to forecast 

annual rainfall in all regions of Thailand with acceptable accuracy, which are able to fulfill 

the requirement for agricultural water allocation planning.  

Singhrattna et al. (2005) adopted the traditional parametric linear regression approach 

ARIMA and a nonparametric regression technique to forecast of Thailand summer monsoon 

rainfall at 2–5 months’ lead time and found that the nonparametric method showed improved 

skill in the extreme years.  

Nail and Momani (2009) forecasted the monthly rainfall time series of Amman, Jordan using 

seasonal ARIMA which was not found appropriate to forecast peak values of monthly rainfall 

data.  

Otok and Suhartono (2009) developed Adaptive Splines Threshold Autoregressive (ASTAR) 

which is a nonlinear time series model and Single Input Transfer Function model which is a 

linear multi-variate time series model to forecast monthly rainfall series of Indonesia, and 

they found the two methods better than ARIMA model while comparing both methods to 

ARIMA model.  

Rabenja et al. (2009) used ARMA, ARIMA and SARIMA models to foresee the evolution of 

the monthly rainfall and found that the SARIMA model is the more adapted for the 

forecasting of monthly rainfall.  
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Tularam and Ilahee (2010) studied the relationship between temperature and rainfall 

variations in eastern Queensland with the use of time series (ARIMA) and spectral method 

and concluded that the daily temperature and daily rainfall were not related directly, while 

daily temperature range and rainfall were.  

Magar and Jothiprakash (2011) developed and compared MLR models and ARIMA models 

using time-series lumped rainfall data derived from the Koyna watershed in Maharashtra, 

India to predict the inflow. Lumped rainfall data was derived using each station time series 

and Thiessen polygon method. They concluded that both the MLR and ARIMA models 

performed equally well for sufficiently longer rainfall data.  

Sovoe (2011) forecasted the Volta river basin’s long term rainfall event using Integrated 

Geographic Information System (GIS) and Autoregressive Integrated Moving Average 

(ARIMA) model. Historical spatial variation of the rainfall was modeled using Geographic 

Information System (GIS), through which monthly rainfall total for each sub-catchment was 

generated from a Thiessen polygon map. 

Martins et al. (2011) modeled the daily flow sequence of the Benue River, Nigeria using 

Autoregressive Integrated Moving Average (ARIMA) and its two derivatives, the ARMA and 

the Periodic Autoregressive (PAR) models and it was found that ARMA model was unable to 

robustly simulate high flow regimes unlike the periodic AR (PAR).  

Ashri et al. (2011) simulated the synthetic runoff data using the stochastic ARMA model by 

applying catchment average rainfall calculated using station based synthetic daily rainfall 

data and Thiessen polygons method. Synthetic daily rainfall data was generated using the 

stochastic Lag-one Markov Chain model. 

Few hybrid models by combining ARIMA model with other models have been developed to 

improve performance of the ARIMA model. A hybrid model consisting of Singular Spectrum 
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Analysis (SSA) and ARIMA is proposed by Zhang et al. (2011) for medium and long-term 

hydrological runoff forecasting. 

 

2.3.2 Based on ANN Modeling 

Simple regression and multiple linear regression (MLR) are frequently used as rainfall and 

river flow forecasting methods. They have the advantage that they are comparatively simple 

and can easily be implemented. However, they are somewhat limited in their ability to 

forecast in certain situations, especially in the presence of nonlinear relationships and high 

levels of noisy data (Adamowski and Karapataki, 2010).  

In recent years, the applications of artificial neural network (ANN) techniques in 

hydrological modeling have received increasing attention. The ANN has the capability to 

identify complex nonlinear relationships between input and output data sets without the 

necessity of understanding the nature of the phenomena and without making any underlying 

assumptions regarding linearity or normality (Abudu et al., 2011). ANN also has the 

capability to handle noisy data. 

ANN was used by Sahai et al. (2000) to predict the seasonal and monthly mean summer 

monsoon rainfall over the whole of India, using only rainfall time series as inputs.  

Toth et al. (2000) developed ARMA model, ANN and KNN method to forecast rainfall, 

using which the average areal rainfall over the watershed was computed with the Thiessen 

polygons method and was routed through a rainfall-runoff model. They compared 

performance of the three methods based on both forecasted rainfall and flow and concluded 

that the ARMA model provided best accuracy in flow forecasting.  

Kihoro et al.(2004) comparatively evaluated performance of ANN to the univariate time 

series forecasting model ARIMA in forecasting various monthly time series data and showed 

that the ANN are relatively better than ARIMA models in forecasting ability but the nature of 
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the data may influence the results. Somvanshi et al. (2006) made a comparative study of 

complexity of the nature and behavior of annual rainfall record as obtained by ARIMA and 

ANN techniques and revealed that ANN model outperformed ARIMA model.    

Iseri et al. (2005) computed the partial mutual information between August rainfall in 

Fukuoka, Japan and hydro-climatic variables in order to identify the predictors and forecasted 

August rainfall with the identified predictors using ANN.  

Kumar et al. (2007) adopted ANN for individual months and for seasonal rainfall prediction 

using climate indices as predictor variables.  

Hung et al. (2009) developed a rainfall forecast model using ANN technique and the ANN 

model was found to be efficient in fast computation and capable of handling the noisy and 

unstable data.  

Karamouz et al. (2009) compared ANN with Statistical Down-Scaling Model (SDSM) for 

rainfall prediction and concluded that the SDSM performance is better than the ANN model, 

even though, in comparison, it is a more data intensive model than ANN.  

Dastorani et al. (2010) applied ANN as well as ANFIS models to predict future precipitation 

in the hyper arid region of Yazd in Iran and found comparable prediction performance of 

these tools.  

Khalili et al. (2011) used ANNs to obtain a forecasting model for the daily rainfall of 

Mashhad, Iran using only the past information of system and got satisfactory prediction 

performance. But Geetha and Selvaraj (2011) used ANN to predict monthly rainfall in 

Chennai and concluded that ANN could not predict the sharp peak values. 

Sumi et al. (2011) proposed a hybrid multi-model approach for daily rainfall forecasting 

where other models such as step-wise linear regression, partial least square regression, 

multivariate adaptive regression spline and radial basis kernel gaussian process were used 

along with multi layer perceptron(MLP) ANN with quasi Newton optimization techniques.  
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2.4  RUNOFF SIMULATION MODELS 

2.4.1 Based on SCS-CN Method 

Long-term observations on stream flow are generally not available at desired locations, and 

these records often contain data missing attributable to variety of reasons. Therefore, many 

hydrological models have been developed in the past (Singh 1989; Singh and Frevert 2006) 

for transformations of rainfall into stream flow because of easy availability of rainfall data for 

longer time periods at different locations. In many of these models, soil conservation service 

curve number (SCS-CN) model has been widely used for surface runoff computations.  

Yu (1998) provided a theoretical framework in which the SCS method can be tested. They 

showed that the proportionality between retention and runoff and the SCS equation would 

follow if the temporal distribution of rainfall intensity and the spatial distribution of the 

maximum rate of infiltration are independent and described by exponential probability 

distributions. In particular, they showed that the maximum retention S could be seen as the 

product of the spatially averaged maximum rate of infiltration and the effective storm 

duration.  

Mishra and Singh (1999) modified the existing SCS-CN method by taking 0.5(P - Ia) in place 

of (P - Ia) .The existing SCS-CN method and the proposed modification are compared and 

the modified version is found to be more accurate than the current version.  

Akhondi (2001) used curve number method in estimating flood utilizing geographical 

information system in north Karoon River field.  

Mishra et al. (2004) modified the existing SCS-CN method, which is based on the Soil 

Conservation Service Curve Number (SCS-CN) methodology but incorporates the antecedent 

moisture in direct surface runoff computations and named it as MS model. They evaluated 

the modified version and by comparing with the existing SCS-CN method they found that the 

modified MS model performs far better than the existing SCS-CN model. In 2005, they 
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applied the MS model with its eight variants at field using a large set of rainfall-runoff events 

and revealed that the performance of the existing version of the SCS-CN method was 

significantly poorer than that of all the model variants.  

Some researchers integrated the SCS-CN model into the GIS/RS system to extend the model 

applicability to complex watersheds with high temporal and spatial variability in soil and land 

use (Zhan and Huang, 2004; Geetha et al., 2007). Moreover, a great number of researchers 

carried our researches using GIS technique in order to determine curve number and runoff 

quantity in different regions in the world.  

Tekeli et al. (2006) determined the digits of curve number for the study area using the 

instruments of GIS and RS. Yaghoobzadeh (2008) provided curve number map by merging 

the land usability, soil texture and slope maps in GIS and by the help of SCS table.  

Mishra et al. (2006) employed a large dataset from 84 small watersheds (0.17– 71.99 ha in 

area) in the USA to investigate a number of Ia-S relationships that incorporated antecedent 

moisture as a function of antecedent precipitation.  

Jain et al. (2006) reviewed the Ia-S relationship and proposed a new non-linear relationship 

that incorporated storm rainfall and Ponce and Hawkins (1996) suggested that the fixed initial 

abstraction ratio 0.20 may not be the most appropriate number and that it should be 

interpreted as a regional parameter.  

Geetha et al. (2007) proposed two new modified models based on the existing SCS-CN 

concept, to carry out long-term hydrologic simulation. In Model I, CN is varied with respect 

to the AMC, whereas Model II computes CN variation by considering the antecedent 

moisture amount, by which pore space available for water retention S can be computed.  They 

found that these models are capable of simulating stream flow. Better and satisfactory 

performance of Model II is attributed to the CN variation that varies with AMA and 
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advantageously obviates the sudden jumps in the curve number values with antecedent 

moisture conditions.  

Mishra et al. (2008) presented a rain duration-dependent procedure based on the popular Soil 

Conservation Service Curve Number (SCS-CN) methodology for computation of direct 

surface runoff from long duration rains. Curve numbers were derived from long-term daily 

rainfall-runoff data, and antecedent moisture condition (AMC) related with antecedent 

duration. The derived runoff curve numbers exhibited a strong dependency on the storm 

duration and the reasonable match of the observed runoff with those due to the proposed 

approach was better than those from the original SCS-CN method.  

Soulis et al. (2009) analyzed the fundamental mechanism for the generation of surface runoff, 

as well as to investigate the SCS-CN method applicability in a watershed presenting forested 

land covers with very permeable soils. The interpretation of the analysis results supports the 

hypothesis that in watersheds covered with permeable soils, the impervious part of the 

watershed is dominant in the direct runoff generation process. In such watersheds, the linear 

runoff response provides better results than the SCS-CN method.  

Soulis et al. (2009) further analyzed the runoff generation mechanism and has shown that for 

some extreme rainfall intensity storm events, the permeable part of the watershed may partly 

participate in the runoff production. In this case, the linear formula significantly 

underestimates the total runoff. 

Reshma et al.(2010) developed a hydrological model to simulate runoff from sub-watersheds 

using SCS curve number based unit hydrograph methods and another hydrological model to 

route the runoff from sub-watersheds to outlet of watersheds by Muskingum-Cunge method. 

Remote sensing and GIS techniques have been used to estimate the spatial variation of the 

hydrological parameters and it was found that the developed model has reasonably simulated 

the hydrographs of runoff at the outlet of watershed. 
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The applicability of the SCS-CN model to a small watershed on the Loess Plateau of China 

with high spatial heterogeneity was studied by Bo et al. (2011). They quantified the most 

appropriate Ia/S value by the inverse method. The value of Ia/S, which is traditionally set 

equal to 0.2, was modified until the model yielded the best performance. Finally, this value of 

the initial abstraction ratio was assumed for the runoff estimation. They found that the 

relative error rapidly decreased with increasing Ia/S when it was less than 0.15, while it was 

almost stable when the Ia/S value was between 0.15 and 0.30. 

To overcome the slope limitation of the SCS-CN method, Gupta et al. (2012) modified the 

SCS-CN method to correct it for steep slopes. They incorporated antecedent moisture using 

Mishra et al. (2005a) approach. Furthermore, a hydrological model for runoff modeling 

should have two essential components such as generation of runoff and routing of runoff. The 

SCS-CN method is a static model and does not take into account routing phase of the runoff.  

A hybrid technique was used by Gupta et al.(2012) ,combining a modified SCS-CN method 

with a physically distributed two-dimensional (2D) overland flow model  to extend the SCS-

CN method for accounting for the routing phase of the runoff.  

Soulis and Valiantzas (2012) proposed a two-CN system considering the theoretical analysis 

of SCS-CN method, the systematic analysis using synthetic data and the detailed case studies. 

They concluded that the observed correlation between the calculated CN value and the 

rainfall depth in a watershed can be attributed to the soils and land cover spatial variability of 

the watershed and that the proposed two-CN system can sufficiently describe the CN-rainfall 

variation observed in natural watersheds. 

Yu (2012) tested the assumption of proportionality, hence, the runoff equation for the SCS 

method, and aims to validate the foundation of the method. They further showed that the 

product of the effective storm duration and the maximum infiltration rate is a good predictor 

of the maximum retention parameter in the SCS method, and this interpretation of the 



36 

 

maximum retention provides an effective method to estimate storm runoff amount and peak 

runoff rate, which is an alternative approach to prediction of runoff amount and peak runoff 

rate. 

Tedela et al. (2012) compared SCS-CN tabulated curve numbers with watershed curve 

numbers determined by five procedures using gauged rainfall and runoff for forested 

watersheds of the mountainous eastern United States. These procedures include the median, 

geometric mean, arithmetic mean, nonlinear, least squares fit, and standard asymptotic fit. 

They found substantial uncertainties in using the curve number method for estimating runoff 

from un-gauged watersheds. They concluded that runoff estimates using tabulated curve 

numbers are unreliable and that curve number selection requires independent calibration to 

watersheds representative of regional landscape and hydrologic characteristics. In un-gauged 

watersheds presenting forested land covers with very permeable soils, the runoff coefficient 

can be accurately estimated using land cover and soil survey using remote sensing and GIS, 

as well as a numerical soil water flow model (Soulis et al., 2009). 

Again, the original conceptualization of the curve number method did not account for the 

influence of forest management practices. Tedela et al. (2012) calculated curve numbers for 

forested watersheds in the Appalachian Mountains of the eastern United States, by comparing 

curve numbers calculated for the growing and dormant seasons, as well as by investigating 

curve numbers change between the precutting and post-forest-cutting hydrologic effect 

periods. They concluded that curve number analysis does not consider major processes that 

regulate forest hydrologic responses; thus, the method is not reliable in the development of 

policies and standards for managing eastern United States hardwood forest runoff. 

Many researchers have applied SCS-CN model for basin-scale water resources planning and 

management. With the help of GIS technique, Kumar and Rajput (2013) assessed the surface 

hydro-environmental loss as surface runoff of water which is received in the Pahuj river basin 
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area, and passes out within a short time period. Pahuj River is a tributary of Sind River in 

Datia district of Madhya Pradesh.  

Kabiri et al. (2013) compared the parameters of some storm events of Klang watershed, 

Malaysia using SCS Curve Number and Green-Ampt methods for estimation of runoff losses 

in Unit hydrograph method developed by HEC-HMS software for runoff and flood modeling 

and showed that there was no significant difference between the SCS-CN and Green-Ampt 

loss method.  

Chauhan et al. (2013) studied the availability and demand of water in Mula reservoir project , 

a major irrigation project on the river of Mula, a sub-tributary of Godavari, generating geo-

database using Remote Sensing and GIS, to develop SCS-CN based long term hydrological 

simulation model for computation of inflow to reservoir.  

Even one study was found for rooftop rainwater harvesting using SCS-CN method. Singh et 

al. (2013) explored the suitability of SCS-CN model and its variants, i.e., Hawkins SCS-CN 

model (for la=0.05), Michel SCS-CN model (Michel et al. 2005) and their comparison with 

SWMM-ASRC model (Heany et al. 1976), and CGWB approach for rooftop storm water 

yields developed (annual storm runoff coefficients) ASRCs using these models, in the 

selection of roofs in order to maximize their rain water harvesting (RWH) potential. 

Zlatanovic and Gavric(2013) calculated  morphometric characteristics for each catchment, 

first manually using topographic maps and then automatically using the pre-processed DEM 

based on SRTM data and scripting capabilities of GIS. The transformation of excess rainfall 

into direct runoff was simulated using a modified SCS dimensionless unit hydrograph and 

flow rates obtained by automated methods proved to be slightly higher than those manually 

obtained. The results showed that the estimation of actual runoff is much more sensitive to 

the quality of input data (i.e. soil, land use, rainfall etc.) and showed minor differences that 

are insignificant compared to the time and resources saved with the automated techniques.  
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Panahi (2013) conducted a scientific analysis and evaluation in order to quantitatively study 

and predict the runoff resulting from precipitation, and proposed a model for estimating 

runoff and determining potential sites of runoff production of the study area by using 

experimental methods. SCS-CN experimental method was utilized, due to its precision and 

efficiency. By preparing CN, runoff production potential of the region was determined.  

 

2.4.2 Based on Artificial Neural Network  

Fernando and Jayawardena (1998) developed an ANN rainfall-runoff model using hourly 

data of rainfall and runoff for an experimental catchment in Kamhonsa in Japan. They 

presented a qualitative examination of the cross-correlation curves between the rainfall and 

runoff to decide on the input vector.   

Tokar and Johnson (1999) used ANN for flow modeling, and presented a qualitative 

examination of the cross-correlation matrix between the rainfall and runoff to decide on the 

input vector.   

Multilayered perceptrons (MLPs) are the simplest and most commonly used neural network 

architectures. MLPs can be trained using many different learning algorithms. Tokar and 

Markus (2000) used MLP for Fraser River in Colorado, US for flow forecast of 1 month 

ahead.  

Zealand et al. (1999) used MLP Winnipeg River system in Canada for Flow forecast of 1–4 

weeks ahead.  

Imrie et al. (2000) suggested that activation functions with higher limiting amplitude produce 

better results.  

Sudheer et al. (2002) proposed a methodology for selecting an appropriate input vector in 

ANN rainfall runoff models. The method utilizes the statistical properties such as cross-

correlation, auto-correlation and partial-auto-correlation of the data series in identifying a 
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unique input vector that best represents the process for the basin, and a standard algorithm for 

training. The methodology presented by Sudheer et al. (2002), therefore is more 

comprehensive, and the decision is based on clearly defined rules and can be applied for any 

ANN rainfall-runoff model development. 

A lot of hybrid models by combining ANN model with other models have been found in 

literature, which has been developed to improve performance of the ANN model. Brath et al. 

(2002) coupled a deterministic rainfall-runoff model with univariate time-series analysis 

techniques used both for forecasting the future rainfall values to be provided as input to the 

hydrological model and for updating the discharges issued by the hydrological model. 

Improvement in discharge forecasts was assessed and it was found that for rainfall 

forecasting except ANNs other techniques allowed significant improvements in flood 

forecasting accuracy.  

Tseng et al. (2002) combined the seasonal ARIMA model and the neural network back 

propagation (BP) model to forecast seasonal time series data with seasonality and found that 

the SARIMABP model outperforms the SARIMA model and the BP model.  

Hsieh et al. (2003) applied MLR (multiple linear regression) and feed-forward artificial 

neural network (ANN) models using principal components of large-scale climatic indices to 

predict the seasonal volume of the Columbia River; ANN and MLR predictions were 

essentially identical, implying that the detectable relationships in the short sample size were 

linear.  

Many people have compared performance of ANN with other models for stream flow 

prediction. Jain and Indurthy (2003) modeled an event-based rainfall-runoff process using the 

statistical unit hydrograph (UH) theory, statistical regression, and the ANN. A comparative 

analysis of all of the modeling techniques revealed that the ANN is the most suitable 
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technique and can be very efficient in modeling an event-based rainfall-runoff process for 

determining peak discharge and time to the peak discharge very accurately.  

Jain and Srinivasalu (2004) presented a new class of model called gray box model that 

integrate deterministic and ANN techniques, which was found to perform better than the 

purely black box type ANN rainfall runoff model.  

Anctil and Lauzon (2004) used MLP with Kohonen network for 6 different basins in US, 

Canada, and France for 1day ahead flow forecast.   

Huang et al. (2004) developed an ANN model for daily, monthly, quarterly and yearly flow 

forecasting, using long-term observations of rainfall and river flow in the Apalachicola River, 

USA.  

Anctil and Rat (2005) used MLP with Levenberg-Marquardt (LM) algorithm for 47 

watersheds of France and United States for 1day ahead flow forecast.  

Wu et al. (2005) used MLP for North Buffalo Creek watershed in North Carolina, US for 

Flow forecast of 1 and 3 h ahead.  

Risley et al. (2005) found that PCR (principal components regression) outperformed ANN 

methods under almost all circumstances of forecasting Klamath River seasonal runoff.  

Some people have compared performance of ANN with ARIMA also for stream flow 

prediction. Mohammadi et al. (2005) developed an ANN model to predict the spring season 

inflow to the Karaj reservoir, Iran and by comparing the ANN model with ARIMA model 

and regression analysis method they found the ANN model best among all.   

An integrated modeling framework is proposed by Jain and Srinivasalu (2006) using 

conceptual techniques and ANN technique to develop the rainfall-runoff relationship and to 

model the different segment of the decomposed flow hydrograph.  

Srivastava et al. (2006) also used MLP and SWAT for West Fork Brandywine Basin in PA, 

US for 1 month ahead flow and base-flow forecast.  
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Solomatine et al. (2007) used MLP for Bagmati catchment in Nepal and Sieve catchment in 

Italy for 1hour, 3 hour and 1 day ahead flow forecast.  

Sallehuddin et al.(2007) proposed a approach called GRANN ARIMA., hybridizing linear 

ARIMA and nonlinear GRANN(Gray Relational ANN) models and concluded that GRANN 

ARIMA can be used as an alternative tool for forecasting time series data for better 

forecasting accuracy.  

Nayak et al. (2007) explored the potential of integrating neural network and fuzzy logic, 

effectively to model the rainfall-runoff process from rainfall and runoff information. The 

integration is achieved through representing fuzzy system computations in a genetic artificial 

neural network (ANN) architecture, which is functionally equivalent to a fuzzy inference 

system. The performance of the proposed model is found to be comparable to that of an 

adaptive neural based fuzzy inference system (ANFIS).  

Bustami et al. (2007) used ANN model to predict water level from precipitation with its 

missing data simulated using ANN and this ANN model was found better compared to the 

ANN model used to predict water level from precipitation with its missing data calculated 

using normal ratio formula or from precipitation with missing data.  

The study of long-term discharge prediction using ANN and other data-driven models were 

presented by Cheng et al. (2008), Lin et al. (2006), Wang et al. (2009), and Wu et al. (2009). 

Data-driven models, such as artificial neural networks (ANNs), have been often used instead 

of physically based models because of their simplicity and promising capability to simulate 

input-output relations (Wu et al. 2005).  

Akhtar et al. (2009) used ANN as flow forecasting models using hydrologically pre-

processed spatial precipitation data. The applied pre-processing includes GIS-based different 

methods of spatial and time integration of the remotely sensed rainfall data, on the basis of 

flow path and travel time information. It is found that the spatially distributed ANN, with 
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one-day previous discharge and preprocessed rainfall, successfully forecasted flow of Ganges 

river basin.  

Mukerji et al. (2009) compared the efficiency of ANN, adaptive network-based fuzzy 

inference system (ANFIS), and adaptive neuro-GA integrated system (ANGIS) models for 

flood forecasting in the Ajay basin of Jharkhand and found the ANFIS model worked with 

better accuracy.  

Duc (2009) simulated monthly runoffs of Dong Nai river basin, Viet Nam by using ANN 

models and when the results were compared with those from Tank, Harmonic and Thomas & 

Fiering models, ANN model was clearly better than the other traditional models.  

An ANN model was developed by El-Shafie et al. (2011) to predict rainfall runoff 

relationship and it was indicated through comparative study that the ANN method is more 

suitable to predict runoff than MLR model.  

Modarres (2009) used ANN with four hidden layers for Plasjan Basin in Iran to forecast flow 

of 1–2 days ahead.  

Demirel et al. (2009b) used MLP and SWAT for Pracana Basin, Portugal for 1day ahead flow 

forecast.   

Adamowski and Krapataki (2010) trained MLPs using Levenberg-Marquardt (LM), resilient 

back-propagation (RP), and conjugate gradient Powell-Beale (CGPB) learning algorithms for 

peak weekly water-demand forecasting in Nicosia and mentioned that there are a number of 

advantages associated with using the LM, RP, and CGPB learning algorithms. Furthermore, it 

was mentioned that the RP and CBPB learning algorithms have not been explored earlier for 

use in short-term urban water-demand forecasting and concluded that LM ANNs are more 

accurate than CGPB and RP ANNs, as well as MLR (multiple linear regression), for urban 

weekly peak water-demand forecasting in Nicosia.  
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Adamowski and Krapataki (2010) compared three types of ANNs: LM, RP, and CGPB. MLR 

was also used in their study because it is one of the most widely used techniques for water-

demand forecasting .They concluded that LM ANNs are more accurate than CGPB and RP. 

Previous experimental comparisons for streamflow forecasting, such as those of Shamseldin 

et al. (2002) and Shrestha et al. (2005), indicated that transfer functions are pretty much 

interchangeable as long as they are of sigmoid shape.  

Yonaba et al. (2010) compared six MLP architectures based on three different nonlinear 

transfer functions tangent sigmoid, bipolar logistic and elliot sigmoid used in the hidden 

layer, and either the same nonlinear transfer function or the linear transfer function used in 

the output layers for multistep ahead stream flow prediction over lead times from 1 to 5 days 

and found that all MLPs have shown good performance. They confirmed the universal 

approximation theorem that a linear transfer function is suitable for the output layer, as usage 

of a nonlinear transfer function in the output layer failed in improving performance values in 

their study and endorsed the tangent sigmoid as the most pertinent transfer function for 

streamflow forecasting, over the bipolar (logistic) and Elliott sigmoids. 

Abudu et al. (2010) investigated the application of PLSR (partial least square regression) in 

seasonal streamflow forecasting for snowmelt-dominated basins in the western United States.  

Abudu et al. (2010) applied both time series non-seasonal and seasonal ARIMA models and 

Jordan-Elman ANN models in forecasting one-month-ahead stream flow and observed no 

significant difference in model performance using the time series ARIMA and Jordan-Elman 

ANN models.  

Birinci and Akay (2010) compared the performance of the Radial Basis Function Neural 

Network (RBFNN) model with MLR and ARIMA models for daily mean flow prediction and 

found that the RBFNN model is better than other two models for long term continuous data. 
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The strong hydrologic non-linearity and the strong storage characteristics cannot be modeled 

adequately by a system-based model and therefore require a conceptual model while the mild 

hydrologic linearity is satisfactorily modeled by the simple linear models or lumped 

hydrologic models.  

Hybrid modeling, an integration of different models by definition, may combine forecasts 

from different individual models and integrate them into models that provide better 

forecasting solutions than just using a single model (Abudu et al., 2011). This approach is 

essentially a modeling of errors by combined application of several models and can focus on 

the mismatch between model results and observations (Solomatine and Price, 2004).  

Monthly streamflow during spring-summer runoff season in the Rio Grande Headwaters 

Basin in Colorado was forecasted by Abudu et al.(2011) using a transfer-function noise 

model and then, forecasts of TFN models were modified using an ANN  model denoted as 

hybrid TFN and ANN. The results indicated that the hybrid TFN and ANN approach 

improved forecast accuracy significantly when compared with single TFN and ANN models. 

Song et al. (2012) developed a hybrid model of neural network with the conceptual XAJ 

model to simulate the rainfall-runoff relationship of Yanduhe Basin. In the absence of the 

significant signature of periodicity and seasonality (e.g., event based simulation), the classic 

ANN or GP technique may be sufficient for the modeling. On the other hand, the WGP and 

WGPNN models are appropriate when the study process contains non-stationary and long-

term patterns (seasonality).  

Nourani et al. (2012) presented two hybrid models, wavelet–genetic programming (WGP) 

approach and wavelet–genetic programming neural network (WGPNN) approach to highlight 

the seasonal patterns of a time series. Further Nourani et al. (2012) presented an integrated 

ANN and geomorphological genetic programming based on observed time series and 
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spatially varying geomorphological parameters. The efficiency of the integrated approach 

was increased by including geomorphological features of the watershed.  

Kar et al. (2012) developed a flood forecasting model for Ayeyarwady River Basin of 

Myanmar applying ANN multilayered feed forward network along with the Takagi-Sugeno 

(TS) fuzzy inference model, to forecast the stage from 1 to 4 days in advance. The fuzzy 

model performed better than the ANN model when modelling the peak values. Kar et al. 

(2012) presented the ANN and fuzzy approaches and it was observed that with the selected 

model structure for the development of flood forecasting models for the selected forecasting 

station, in all cases ANN and fuzzy techniques provide a good workable soft computing 

based flood forecasting model and the T-S (Takagi-Sugeno) fuzzy model (Takagi and Sugeno 

1985) performs better than the MLFF (multilayered feed forward) network. When tested for 

peak flood modeling, the fuzzy model shows promising results in comparison with the ANN 

model as the sequence of most of the intermediate stages are properly modeled through the 

fuzzy model. 

Demirel et al. (2012) calibrated the ANN model by using the BP algorithm to predict flow 

heights for a lead time of 12 h and proposed an ANN-cluster analysis (CA) coupling 

procedure for model validation. 

Tiwari et al. (2012) improved performance of ANN for forecasting daily river discharge for 

1- to 5-day lead time in the Mahanadi River basin by using neural units with higher-order 

synaptic operation (NU-HSO). While, NNs with NU-HSO were compared with conventional 

NNs of neural units with linear synaptic operation (NU-LSO) for forecasting daily river 

discharge, it was found that NNs of neural units with quadratic synaptic operation (NU-CSO) 

and NNs of neural units with cubic synaptic operation (NU-QSO) achieved better 

performance even with a lower number of hidden neurons. 

2.5  CONCLUSION 
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Regarding spatial interpolation of rainfall methods it can stated that the semivariogram model 

and the parameters of Kriging should be different for the different rainfall series, even if in 

the same study area. Again to the small region with high density of rain gauges, the Kriging 

method superiority is not obvious, IDW and the Spline interpolation result can be better. But 

for large regions with low-density networks of rain gages geostatistical interpolation 

outperforms deterministic techniques Finally, it can be concluded that the different methods 

will be suitable for the different research series, and it must be determined by the data series 

distribution. 

For rainfall prediction using ARIMA model it can be concluded that ARIMA models 

performance is not much better than MLR models for sufficiently longer rainfall data. But for 

shorter time series ARIMA models outperform linear regression models. Further ANN 

models perform better than ARIMA models especially in the presence of nonlinear 

relationships and high levels of noisy data. However sometimes ANN cannot predict the 

sharp peak values. Therefore atmospheric models such as Statistical Down-Scaling Model 

(SDSM) have also been adopted whose performance is better than the ANN model, even 

though, in comparison, it is a more data intensive model than ANN.  

Soil conservation service curve number (SCS-CN) model has been widely used for surface 

runoff computations. In SCS-CN method the observed correlation between the calculated CN 

value and the rainfall depth in a watershed can be attributed to the soils and land cover spatial 

variability of the watershed. Therefore runoff estimates using tabulated curve numbers are 

unreliable and that curve number selection requires independent calibration to watersheds 

representative of regional landscape and hydrologic characteristics. This can be done using 

land cover and soil survey using remote sensing and GIS. Runoff has also been predicted 

using ANN and in most of the cases it has outperformed the statistical models. But in some 

cases the ARMA and ARIMA models provided better accuracy in runoff forecasting based 

on forecasted rainfall. To increase forecasting accuracy of ANN models, linear ARIMA and 

nonlinear GRANN (Gray Relational ANN) models have been hybridized.  

CHAPTER 3 

THE STUDY AREA AND DATA COLLECTION 

 

3.2   THE STUDY AREA 
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3.2.1 Mythology 

The literal meaning of Mahanadi River is “large size river”. At origin of Mahanadi River, 

which is located near the Ashram (place of stay in remote area) of Maharshi (Saint) Shrangi, 

it is called as holy Ganga. It is said that once all the sages of this area came at this place for 

taking holy bath in Mahakumbh (festival). The Maharshi was under meditation and penance 

at that time. The sages waited for several days to draw the attention of the Maharshi but the 

Maharshi’s meditation was not disrupted. Thereafter, the sages went for the holy bath. While 

returning after the bath, all the sages brought some holy water with them. Finding that 

Maharshi Shrangi was still in the meditation, they filled the Maharshi’s kamandal (vessel) 

with water, and returned to their native places. After some time, when the meditation of the 

Maharshi Shrangi was disrupted, the water of the kamandal fell down on the ground with the 

stroke of his hand. This water began to flow towards east and was converted into a stream. 

This stream was called as Mahanadi which is said to fulfill the desires of millions of people. 

3.2.2 Location 

Mahanadi river is the second major river in peninsular India after Godavari with respect to 

the water potential and flood producing capacity and is located in East Central India within 

geographical co-ordinates of 80º30’ to 86º50’ E and 19º20’ to 23º35’ N (Figure 3.1).  

Mahanadi river basin is the largest river of Odisha State and extends over an area of 141589 

sq. km which is nearly 4.3% of the total geographical area of India and covers five different 

states namely Maharashtra, Madhya Pradesh, Chhattisgarh, Odisha and Jharkhand (CWC, 

2009). Mahanadi River originates from a fall of Pharsiya village near Nagri town in Dhamtari 

district of Chattisgarh at an elevation of 442 m above mean sea level. About 65580 km2 of the 

basin lying in Odisha extending within geographical co-ordinates of 82º to 86º E and 19º30’ 

to 22º30’ N approximately, (Figure 3.1) has been considered in the present work.  
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Figure 3.1:  Location of Mahanadi Basin lying in Odisha, INDIA 

The total length of the river from its origin to confluence at the Bay of Bengal is about 851 

km, of which 357 km is in Chhattisgarh and 494 km is in Orissa. Drainage density of the 

basin is extremely thick. During its traverse, a number of tributaries join the river on both the 

banks. Principal tributaries of the tributary joining on Odisha are Ib, Ong and Tel (CWC, 

2009). The tributary upstream of Hirakud dam is Ib, whereas Ong and Tel are the 

downstream tributaries as shown in Figure 3.1. Average annual flow (cumecs) of the three 

tributaries Ib, Ong and Tel lying in the study area is given in Table 3.1. The average annual 
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flow of the basin measured at different places such as Sarangarh, Sambalpur, Sonepur and 

Munduli are 30586, 41816, 54881 and 66640 cumecs, respectively. 

Table 3.1: Basic Characteristics of major tributaries of Mahanadi basin lying in Odisha 

Major 

Tributaries 

State of 

Origin 

Catchment 

Area(sq. km) 

Distance(km) Average Annual 

Flow (cumecs) 

Ib Chattisgarh 12,447 251 9003 

Ong Odisha 5,128 204 2220 

Tel Odisha 22,818 296 11716 

 

The river enters in Odisha through Jharsuguda district after covering about half of its total 

length. Before Sambalpur, it meets its tributary Ib. The Ib, which is the third largest tributary 

of Mahanadi, rises in village Pandrapat, District Raigarh (Chhattisgarh) and drains Raigarh 

district of Chhattisgarh and three districts of Orissa, namely Sundargarh, Jharsuguda and 

Sambalpur. After Sambalpur Mahanadi river takes a southernly turn and it is joined by the 

Ong. The Ong drains Sartaipali, Padampur and Bijepur area of Balangir and Bargarh districts 

of Odisha. The southernly turn of the river continues up to Sonepur, where it meets with its 

tributary the Tel. The Tel, which is the second largest tributary of Mahanadi River and the 

largest of the study area, rises in village Jorigam of Koraput district of Odisha and drains 

Deobhog, Bhawanipatna and Balangir area of six districts of Odisha namely Rayagada, 

Kalahandi, Nuapada, Balangir, Boudh and Kandhamal. Other tributaries meeting the river in 

Odisha in this section are Jeera and Bheden. 

Further downstream Udayagiri and Phulbani areas are drained by the tributary Salki which 

meets Mahanadi on the right bank upstream of Boudh. It then turns East and skirts the 

boundaries of the Boudh districts  and forces a tortuous way between ridges and ledges in a 

http://en.wikipedia.org/wiki/Odisha
http://en.wikipedia.org/wiki/Baudh_district
http://en.wikipedia.org/wiki/Ridge
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series of rapids until it reaches Dholpur of this district. The rapids end here and the river rolls 

towards the Eastern Ghats, forcing its way through them via the 64 km long Satkosia Gorge. 

The Satakosia Gorge ends at Barmul of Nayagarh district. Dense forests cover the hills 

flanking the river at Barmul. Daspalla, Nayagrah and Bolgarh areas are drained by the 

tributaries Kuanria and Kusumi. Boudh, Barmul, Banki and Kaimundi are situated on the 

right bank and Baramba, Athgarh, Narsinghpur are situated on the left bank of Mahanadi of 

this section. The area of this region is 50,745 km
2

. Around 83 small and big channels carry 

flood water of this section to Mahanadi.  

The river then traverses Cuttack district in an east-west direction and enters the coastal plains 

of Odisha at Naraj, which is the head of delta and about 320 km downstream of Hirakud dam. 

Naraj is about 11 km from Cuttack and here the river pours down between two hills. A 

barrage has been constructed at Naraj to regulate the river's flow into Cuttack city. After 

Naraj the river splits into several branches. Just before entering Cuttack city, it gives off a 

large distributary called the Kathjodi. The city of Cuttack stands on the spit separating the 

two channels Mahanadi and Kathjodi. The Mahanadi River enters the Bay of Bengal via 

several channels at Paradeep , Jagatsinghpur district. The Kathjodi then branches into 

Kathjodi, Surua, Biluakahi, Devi, Kandal, Taunla and numerous other small channels which 

flow down and create the Kathjodi, Surua, Devi-Biluakhai, Devi-Kandal, Devi-Taunla islands 

and other small islands, which again join together and fall into the Bay of Bengal after 

entering Puri district. All these Islands are flood prone. The Kathjodi itself falls into the Bay 

of Bengal  as a river called the Jotdar. Another distributary Kuakhai has bifurcated into 

Kushabhadra, Bhargabi and Daya. Kusabhadra has an independent mouth to the Bay of 

Bengal whereas Bharagabi and Daya reunite and discharge into Chilika Lake. Similarly, 

another distributary Birupa has bifurcated into Genguti and Birupa and forms the Birupa-

http://en.wikipedia.org/wiki/Rapid
http://en.wikipedia.org/wiki/Eastern_Ghats
http://en.wikipedia.org/w/index.php?title=Satkosia_Gorge&action=edit&redlink=1
http://en.wikipedia.org/wiki/Cuttack_district
http://en.wikipedia.org/wiki/Odisha
http://en.wikipedia.org/wiki/Cuttack
http://en.wikipedia.org/wiki/Cuttack
http://en.wikipedia.org/wiki/Distributary
http://en.wikipedia.org/wiki/Kathjori
http://en.wikipedia.org/wiki/Paradeep
http://en.wikipedia.org/wiki/Jagatsinghpur
http://en.wikipedia.org/wiki/Bay_of_Bengal
http://en.wikipedia.org/wiki/Puri_district
http://en.wikipedia.org/wiki/Bay_of_Bengal
http://en.wikipedia.org/wiki/Bay_of_Bengal
http://en.wikipedia.org/wiki/Bay_of_Bengal
http://en.wikipedia.org/wiki/Bay_of_Bengal
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Genguti Island .These two branches flow into Kimiria and finally to the Brahmani River at 

Krushnanagar and enters the Bay of Bengal at Dhamra, Jagatsinghpur district. Other 

distributaries of Mahanadi include Chitrotpala, Luna, Karandia, Paika and Sukapaika which 

form a number of islands. All these Islands are flood prone. In between these tributaries there 

are several drainage channels. To name a few important ones are Gobari, Alaka, Baghuni, 

Kula, Prachi, Dhanua and Nuna etc. All these drainage channels are prone to tidal effect near 

the Bay of Bengal. The combined Delta formed by numerous distributaries of the Mahanadi 

and the Brahmani, is one of the largest delta in India.  

Mahanadi and its branches in this region are all embanked on both sides. However some 

embankments in Kathjodi from Khannagar to Mattagajapur and the Mahanadi right 

embankment from Jobra to the downstream end of Cuttack need further strengthening. The 

main river in this region divides into a number of branches. During the course of Delta 

formation, some islands have been formed between various channels and those islands are 

subjected to continual flooding during the monsoon due to spill of the channels. 

3.1.3 Water Resources  

Mahanadi is mainly rain fed river and the water availability undergoes large seasonal 

fluctuations. The National Commission for Integrated Water Resources Development 

estimated the basin-wise average annual flow in Indian River systems as 1953 km3, out of 

which average annual flow of Mahanadi river basin is 66.88 km3 /year.  Utilizable water 

resource is the quantum of withdrawal water from its place of natural occurrence. The 

utilizable annual surface water of the country is 690 km3, out of which 49.99 km3 /year is the 

utilizable flow of Mahanadi river basin, utilized for drinking and irrigation purposes. Total 

replenishable groundwater resource of the country is assessed as 431.89%. After allotting 

15% of this quantity for drinking, and 6 km3 for industrial purposes, the remaining can be 

http://en.wikipedia.org/wiki/Brahmani_River
http://en.wikipedia.org/wiki/Jagatsinghpur
http://en.wikipedia.org/wiki/Mahanadi_River_Delta
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utilized for irrigation purposes. Thus, the available groundwater resource for irrigation is 361 

km3, of which utilizable quantity (90%) is 325 km3 (Kumar et al., 2005).  Total replenishable 

ground water resources of Mahanadi river basin is 16.46 km3/year, out of which 2.47 

km3/year ground water has provision for domestic, industrial and other uses, so 13.99 

km3/year ground water is made available for irrigation. Therefore net draft of ground water 

resources of the basin is 0.97 km3 /year. Balance ground water potential of the basin is 13.02 

km3 /year and level of ground water development (%) per year is 6.95 km3.  

The volume of the total renewable water resources (TRWR) of India is 1,887 km3. The 

TRWR is the sum of internally renewable water resources (IRWR) and the flow generated 

outside the national borders (600 km3). The volume of potentially utilizable surface water 

resources (the part of the water resources that can be captured for first-time use and 

subsequent reuse at downstream with all possible physical and economic means) of India is 

about 690 km3. The total volume of potentially utilizable water resources (PUWR), including 

groundwater, of India is about 1,033 km3.  Total renewable water resources of Mahanadi 

basin is 66.9 km3/year and its per capita availability is 2463 m3.Potentially utilizable water 

resources of the basin is 63.6 km3/year, out of which surface water and ground water 

resources are 50 and 13.6 km3/year respectively and per capita availability of the potentially 

utilizable water resources is 2341 m3.As per the assessment made in 2001 by Orissa 

Community Tank Development and Management Society, average annual surface water 

inflow of Mahanadi river basin (in BCM) is 59.155, out of which inside Odisha and outside 

Odisha flows are 29.90 and 29.255  respectively. As per the topography and geological 

limitations 75% of the average annual flow can be utilized. 75% dependable flow of the basin 

(in BCM) is 48.732, out of which inside Odisha and outside Odisha flows are 25.508 and 

23.225 respectively. 



53 

 

India’s aggregate water withdrawal in 1995 was estimated at about 650 km3 (IWMI 2003). Of 

this, 91 percent was withdrawn for agriculture sector, 4 percent for the domestic sector, and 5 

percent for the industrial sector. Total water withdrawal of Mahanadi basin is 19.9 km3, of 

which 91%, 5% and 4% water is withdrawn for agriculture, domestic and industrial sectors 

respectively.  

3.1.5 Discharge 

Twenty number of gauge and discharge observation sites have been installed and operated by 

Central Water Commission, Government of India, to measure these hydrological variables. 

Out of these twenty sites, at 13 observation sites, sediment is also measured. The mean 

annual river flow of the basin (in MCM) is 66 640. The entire flow is only due to rainfall in 

the region since there is no contribution from either snowfall or snowmelt. The average 

annual discharge is 1895 m3/sec, with a maximum of 6352 m3 /sec occurring during the 

months of July, August and September. Minimum discharge is 759 m3 /sec and occurs during 

the months October through June.  

Average annual runoff for 2006-2007 at Tikarpada (terminal site) gauging station of the basin 

has been measured as 61945 MCM for a catchment area of 124450 sq. km., out of which the 

monsoon and non-monsoon water flow are 56562 and 5383 MCM respectively. Peak water 

level of 74.980 m recorded at this site has occurred on 30/08/1982 with discharge of 41400 

cumecs. Maximum discharge of 30863 cumecs observed at this site has occurred on 

29/08/1978(CWC, 2009).  

 

3.1.5  Problem of Floods and Droughts in Mahanadi Basin 

The spatial distribution of rainfall pattern of the basin highlights the chance of occurrence of 

flood in the downstream sub-catchments, while upstream sub-catchments set-off the threat of 

drought. This basin is highly vulnerable to flood, and has been affected by catastrophic flood 
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disasters almost annually. The monsoon of 2001 topped to the worst hit flood ever recorded 

in this basin for the past century, which inundated 38% of its geographical area. Ironically, 

this basin suffered one of its worst droughts in the same year, affecting 11 million people, and 

two-thirds of its area (CSE, 2003) (Asokan et al, 2008).  

The catchment area of Mahanadi is divided into two distinct reaches (i) Upper Mahanadi and 

(ii) Mahanadi Delta. The upstream catchment of Mahanadi is mountainous and has a steep 

slope. The catchment lies directly on the south west monsoon track and as such receives 

heavy rainfall during summer monsoon. Besides, the catchment area close to the sea is prone 

to heavy rain brought about by the cyclones generated in the Bay during September-

November. Thus the catchment has the potential of producing very high flood. The delta area 

is plain and has a flat slope. Due to flat topography of the delta area the excess flood water is 

not discharged to the sea quickly and as a consequence, Mahanadi Delta area gets flooded 

when peak flood discharge exceeds a certain limit. Upper Mahanadi area above Naraj does 

not have any significant flood problem due to topography excepting few places in IB, Bheden 

and Tel tributary catchments (OSWP, 2004). 

3.1.7 Geology and Rock 

Mahanadi basin predominantly consists of Archaean rocks represented by folded 

Khondalites, Granite gneisses and Charnockite. They are inter-banded and the first two 

appear to grade into one another. Field relationship of these rocks is complex and it is 

difficult to assign any age relationship. It is generally agreed that the rocks were deposited 

during Archaean era (2000 - 2500 Million years) and were folded and metamorphosed by at 

least two tectonic activities. The rocks have experienced metamorphic conditions of 

amphibolite facies to granulite facies. Magmatization appears to have played a major role in 

resulting present state of rocks. The area has been reported to have experienced block faulting 

during Gondwana times and area upstream of Badmul appears to be a Graben. In general 
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downstream part of the river lying in Odisha is dominated by silicate rocks of metamorphic 

origin (Ghose et al, 2011).  

3.1.7 Rainfall  

Rainfall is dominated by the summer monsoon (June through September) with an average 

annual rainfall in the basin is 1,463 mm (1,663 mm - 1,331 mm). During the remainder of the 

year, rainfall is extremely low, rarely exceeding 30 mm per month. The spatial variation in 

rainfall is moderate in the basin. Average annual rainfall in the most upstream part of the 

basin is about 1000 mm, increasing toward the central basin part (1300 mm) and further in 

the most downstream coastal belt of the basin (1700 mm) (Asokan et al,2010).  

3.1.8 Temperature  

Temperature variation of the basin is from 7°C to 45.5°C (CWC, 2009). Summer 

temperatures are around 29oC and winter temperatures of 21oC. In winter the mean daily 

minimum temperature varies from 4°C to 12°C. In summer the mean daily maximum 

temperature varies from 42°C to 45.5°C (Dadhwal et al., 2010).December is the coldest 

month with the mean minimum temperature ranging from 10°
 

C to 13.7°
 

C. May is the hottest 

month in this region where the mean maximum temperature ranges from 38°
 

C over the hills 

to 43°
 

C in the plains. As compared to eastern portion and delta area, western portions record 

the lowest and highest temperatures during winter and summer respectively. The diurnal 

range of temperatures during July-August is of the order of 5°
 

C to 6°
 

C and the same during 

winter is up to a maximum order of 14°
 

C to 16°
 

C. 

 

 

3.1.9  Relative Humidity  

The highest relative humidity in the basin varies between 68% and 87% and occurs during 

July/August. The lowest relative humidity occurs during April/May and varies between 9% 
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and 45%. The average highest relative humidity in the basin is 82% and the average lowest 

relative humidity is 31.6%. 

3.1.10 Evaporation and Evapo-transpiration 

Monthly Evaporation of the basin ranges from 40 mm in winter to 360 mm in summer 

(CWC, 2009). However, the average daily pan evaporation of the basin varies from 2.4 to 

14.6 mm (Tiwari et al, 2012). The Indian Meteorological Department has reported that the 

basin has a high rate of yearly evapo-transpiration varying from 1520 mm in the east to 1740 

mm in the west. 

3.1.11 Physiography and Soil 

Physiographically, the basin can be divided in to four well-defined physical regions, namely, 

the northern plateau, the Eastern Ghat, the coastal plain and the erosional plains of central 

table land. The Northern Plateau and the Eastern Ghats are well-forested hilly regions. The 

Coastal Plain stretching over the districts of Cuttack and Puri covers the large delta formed 

by the river Mahanadi and is a fertile area well suited for intensive cultivation. The interior 

coastal plain has a relatively low elevation and relief is extremely low. The erosion plain of 

the Central Table Land is the central interior region of the basin, traversed by the river and its 

tributaries. The average elevation of the drainage basin is 426 m with a maximum of 877 m 

and a minimum of 193 m.  

The Mahanadi River basin with its tributaries flowing in Odisha like IB, Jira, Ong and Tel are 

covered by central table land region of Odisha, which covers an area of 24% of the state 

comprising of districts Balangir, Nuapada, Kalahandi, Kandhamal, Boudh, Sonepur, 

Dhenkanal, Angul, Sambalpur, Deogarh, Bargarh ,Jharsuguda and Sundargarh. The deltaic 

part of Mahanadi river basin is comprised by coastal plain region of Odisha, which covers an 

area of 26% of the state .The districts of the Mahanadi basin under this coastal plain region 

are Cuttack, Jagatsinghpur, Jajpur, Kendrapara, Puri, Nayagarh, Khordha and Ganjam.  



57 

 

The delta of Mahanadi River starts from Cuttack. The Mahanadi Delta is formed by the 

network of the rivers Mahanadi and Brahmani. The delta covers a coastline of 200 km, which 

stretches from south near Chilika to north up to Dhamra River. The Delta covers an area of 

9,500 sq km accounting for merely 7% of state’s geographical area. The Mahanadi Delta is a 

basin of huge amount of silt deposit that drains a large land mass of the Indian subcontinent 

into the Bay of Bengal. The alluvial valley is wide and relatively flat with a meandering river 

channel that changes its course. The delta’s landforms are mainly denuded hills and erosion 

plains, whose depressions contain water bodies. The central part of the delta is distinct for its 

extensive plains, leeves and paleochannels. The coastal parts contain spits, bars, lakes, creeks, 

swamps, beaches, tidal flat and mangroves. Mahanadi River drains into Bay of Bengal at 

Paradeep port. The main branchs of Mahanadi River are Kathajodi, Kuakhai, Birupa, Debi, 

Daya and Bhargabi, which meet Bay of Bengal at Paradip and Nuagarh (Devi estuary). The 

tidal estuarine part of the river covers a length of 40 km and has a basin area of 9 km2. Based 

on physical characteristics, the estuary has been characterized as a partially mixed coastal 

plain estuary. 

Primary soils available in the basin are Black soil, Red soil, Yellow soil, Brownish Red to 

Yellowish Red soil and Dark Gray Coastal alluvial soil (CWC, 2009). The main soil types 

found in the basin are Red and Yellow soils. The soil of the basin is predominantly sandy 

loam, however; sandy clay loam and clay loam are also present. Mixed red and black soils 

occur in parts of the Balangir, Sambalpur and Sundargarh districts of Odisha. Laterite soil is 

found in the lower parts of Odisha. The deltaic soil is found in the coastal plains of the Basin.  

3.2.12 Land use and Land cover 

The Mahanadi River flows slowly for 851 km and deposits more silt than any other river in 

the Indian subcontinent. Prior to the construction of Hirakud dam, the river carried a huge 

amount of silt to its mouth. As a result, its delta had one of the highest yields per acre in the 

http://en.wikipedia.org/wiki/Bay_of_Bengal
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whole of India. Its delta also features one of the largest mangrove forests in Indian 

peninsular. Today this productive plain of Mahanadi valley are home to intensive rice 

cultivation, and is a main rice producing area of the eastern coast of India. Mahanadi valley is 

best known for its fertile soil and flourishing agriculture, which primarily depends on a 

network of canals that arise from the river. Rice, oilseeds and sugarcane are the principal 

crops cultivated in the Mahanadi valley.  

The basin has a culturable area of about 79,900 km2 which is about 57% of the basin area and 

4% of the total culturable area of the country. Major crops cultivated in the basin are rice and 

wheat. Except in the coastal plains of Odisha, the basin has an extensive area under forests.  

The sparse vegetation of the highlands contrasts with the moderately luxuriant vegetation of 

the river valleys. The coastal plains of Odisha, with a high incidence of rainfall, are 

predominantly rice growing areas. As per Land Use Classification for 1999-2000, the 

reporting area for land utilization is classified into (i) forest area (ii) area not available for 

cultivation (iii) other uncultivated lands excluding fallow land (iv) fallow land (v) net area 

sown (vi) total cropped area and (vii) area sown more than once. The land utilization pattern 

of Mahanadi river basin comprises 37.275% forest area, 10.432% area not available for 

cultivation, 9.137% area for other uncultivated lands excluding fallow land, 4.967% fallow 

land and 38.187% net sown area. Besides the total cropped area is 44.696% and the area 

sown more than once is 6.508%. The major part of the basin is under agriculture land use, 

where rice and wheat are the predominant crops. The cultivable area of Mahanadi river basin  

is irrigated by different sources of irrigation such as canal, tank, tube well, other well and by 

other sources also. The percentage of gross irrigated area by canal, tank, tube well, other well 

and other sources in Mahanadi river basin are 23.050, 8.463, 12.380, 18.056, 38.048 

respectively. The percentage of net irrigated area by canal, tank, tube well, other well and 

http://en.wikipedia.org/wiki/Rice
http://en.wikipedia.org/wiki/Oilseeds
http://en.wikipedia.org/wiki/Sugarcane
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other sources in Mahanadi river basin are 5.644, 2.944, 17.905, 60.341, 13.164 

respectively(CWC, 2009). 

In Odisha, the Hirakud dam with its reservoir, built in 1956 with a gross water storage 

capacity of 8136 × 106 m3, is an engineered water storage structure that facilitates different 

human water uses, including water use for irrigation in the basin. Agricultural areas in the 

basin are cultivated throughout the year. The cropping seasons are broadly classified into 

Kharif (rain fed cultivation) and Rabi (irrigated cultivation) seasons. The Kharif season 

extends from June till November and the Rabi season spans from December till May. Out of 

the total annual irrigation water demand of 11km3 in the basin, the Kharif season utilizes 

7km3 and Rabi season demands 4km3.Major land use and associated water use changes that 

have taken place in this basin in the 20th century are related to intense irrigation of 

agricultural areas (Asokan, 2013). 

 

3.2  DATA COLLECTION  

The study area consists of thirty rain gauge stations, to monitor daily rainfall. Besides, fifteen 

stations monitor rainfall data twice daily and five stations monitor hourly rainfall data. 

Moreover, other climatic variables such as temperature, pressure, relative humidity and 

sunshine duration, are also measured at some of these stations in daily, twice daily and hourly 

intervals. In addition to the very dense rain gauge network, special care was also given to the 

quality of the discharge measurements. The basin consists of twenty four water level 

recording stations measuring water level at three times a day, of which six stations measure 

water level at hourly interval and twenty two stations record stage and discharge thrice a day. 

Very frequent stage-discharge measurements secure the accuracy of discharge measurements. 

All the stations are operated by Water Resources Department, Govt. of Odisha, whose 

characteristics are given in Table 3.2. Daily rainfall data for the period of ten years 
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(01/01/2000 to 30/04/2009) has been collected from these sites of Water Resources 

Department, Govt. of Odisha. Rainfall data (in mm) was available for twenty three stations of 

Odisha. Daily rainfall data were summed up to get monthly rainfall series for the period of 

ten years. Location of these rainfall stations are shown in Figure 3.3. 

Table 3.2 Characteristics of OWRD rainfall stations and discharge sites 

Site 
Establishment 

Year 

Rainfall 

Data used 

for 

Discharge 

Data used 

for 

River/Tributary 
Catchment 

Area(km2) 
Longitude Latitude 

Dasapalla 2000    Mahanadi  84.84 20.32 

Patora 1999    Mahanadi,Jonk 342 82.46 20.74 

Bargaon 1999     Mahanadi,Tel 1062 83.33 20.41 

Takla 2000     Mahanadi,Tel 1093 82.85 20.31 

Gorla     Mahanadi  83.58 20.61 

Tulaghat 1999     Mahanadi,Roul 1165 83.61 20.32 

Burat 1999     Mahanadi,Tel 713 83.49 20.17 

Chatikuda 1999     Mahanadi,Tel 290 83.27 19.97 

Icchapur 1999    Mahanadi,Tel 145 82.63 20.60 

Surubali 2000     Mahanadi,Tel 1628 83.95 20.17 

Magurbeda 1999     Mahanadi,Tel 1230 83.38 20.75 

Baghupali 2000     Mahanadi 1085 83.88 21.19 

Sagada 2000    Mahanadi 1106 84.07 20.69 

Bisipada 2000     Mahanadi 1657 83.23 20.40 

Bansajal 2000     Mahanadi 140 84.25 21.11 

Kadaligarh 2000     Mahanadi 170 84.31 20.94 

Sagjuri 2000    Mahanadi 350 84.06 21.05 

Rampur 2000     Mahanadi 1310 84.02 21.73 

Maneswar 2000     Mahanadi 340 83.96 20.45 

Naraj 1966     Mahanadi 132085 85.76 20.47 

Takara 2000     Mahanadi 1386 84.78 20.38 

Madhupur 2000    Mahanadi 124 84.83 20.31 

Badapandu

sar 
2000     Mahanadi 1204 85.18 20.16 

Gania 2000    Mahanadi 126122 85.08 20.39 

Tumulibud 2000     Mahanadi 686 84.03 21.89 
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Figure 3.3 Location of rainfall stations of Mahanadi Basin  

Further monthly rainfall data of twenty three stations of India Meteorological Department 

(IMD) for time period of 2009-2012 were collected from “Odisha Rainfall Monitoring 

System” monthly rainfall report. Name and location of these rainfall stations are shown in 

Figure 3.3.Rainfall data of twenty three stations are utilized for development of SCS-CN 

based runoff computation model. For development of sub-basin level runoff computation 

model, rainfall data of twenty three IMD stations and discharge data of the five CWC stations 

were utilized. Time series plots of daily and monthly rainfall data of two representative 

stations are shown in Figure 3.4. 
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Figure 3.4: Time Series Plots of Daily and Monthly Rainfall Data  

Daily discharge data for the period of ten years (01/01/2000 to 30/04/2009) has been 

collected from these sites of Water Resources Department, Govt. of Odisha. Discharge data 

(in m3/s) was available for seventeen stations of Odisha. Daily discharge data were summed 

up to get monthly discharge series for the period of ten years. Location of these discharge 

sites is shown in Figure 3.4. Besides, daily discharge data for the period from 01/12/1999 to 

31/12/2012 of five stations, namely Kesinga, Kantamal, Salebhatta, Sundargarh and 

Tikarpada of Odisha, installed and operated by Central Water Comission, Govt. of India was 

also collected. Daily discharge data of these five stations were summed up to get monthly 

discharge series of the same period. Discharge data (Q in cumec) was converted into runoff 

data (in mm) using the relation (Q*86.4/A), where A is the catchment area (in km2) of the 

station. Location of these five discharge sites is shown in Figure 3.5. Table 3.3 provides the 

saliet feature of CWC discharge site. 
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Figure 3.5: Location of Discharge Sites of Mahanadi Basin  

Table 3.3: Characteristics of CWC discharge sites 

Site River/Tributary Catchment 

Area(km2) 

Longitude Latitude Elevation 

(m) 

Kantamal Tel 19600 83.74 20.65 118 

Kesinga Tel 11960 83.23 20.20 166 

Salebhatta Ong 4650 83.54 20.98 130 

Sundargarh Ib 5870 84.00 22.11 214 

Tikarpada Lower Mahanadi 124450 84.61 20.64 50 

 

The discharge data of the seventeen stations (marked in Table 3.2) are used for the analysis 

and time series plots of daily and monthly discharge data of two representative stations are 

shown in Figure 3.6.  
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Figure 3.6: Time Series Plots of Daily and Monthly Discharge Data 

 

 

 

 

 

 

 

 

 

 



65 

 

CHAPTER 4 

DEVELOPMENT OF THEMATIC MAPS WITH  

REMOTE SENSING AND GIS SUPPORT 

 

4.1  INTRODUCTION 

Spatial variability is at the heart of geography, a field dedicated to understanding where 

things are and why. It is also a critical component in understanding many complex systems, 

particularly those which include interactions between wildly disparate sets of forces. Water 

systems, for example, can act as a powerfully unifying resource. To truly assess water 

resources in their most holistic sense, one needs to include the many aspects of hydrological 

cycle, from meteorology to surface hydrology to soil sciences to groundwater to limnology to 

aquatic ecosystems. And that is just physical system. The thematic map developed from a 

variety of perspectives of the basin provides a view of the water shed and are being used for 

hydrological analysis.  

4.2 DEVELOPMENT OF BASIN AND SUB-BASIN MAPS 

In the present study, the basin area of Mahanadi river system lying in Odisha and its sub-

basins are delineated using Arc Soil and Water Assessment Tool (Arc-SWAT) model. Arc-

SWAT is a tool of Geographic Information Systems (GIS) based software called Arc-GIS. 

Arc-SWAT which is a graphical user interface of SWAT in Arc-GIS delineates the basin into 

sub-basins and hydrologic response units (HRUs) using the digital elevation model (DEM) 

map, land use map, soil map and slope map.  For modeling purposes, the basin is divided into 

number of sub-basins. The use of sub-basins in a simulation is particularly beneficial when 

different areas of the basin are dominated by different land uses or soils, which may have 

impact on hydrology.  
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The conventional method of drainage basin delineation is obtained by using the topographic 

map. The basin divide is drawn starting from the outflow profile, drawing a line 

perpendicular to the contour lines, encompassing the headwaters and the entire stream 

network. This is usually done using scanned maps in CAD or GIS software, where the 

polygon properties can be easily calculated. But this conventional method is a little time 

consuming. The method used in this study uses the depression-less preprocessed digital 

elevation model and the calculated flow accumulation grid to determine which of the grid 

elements (or cells) drain into the specified output profile, or “pour point”. These are the cells 

that comprise the catchment area, and a polygon can easily be generated for direct calculation 

of area and perimeter.  

The Arc-SWAT requires one spatial raster data set: digital elevation model (DEM). This map 

is created in the “Polyconic” projection with the resolution in meters and elevation in meters. 

The digital elevation model (DEM) used in the present study, is GTOPO30, downloaded 

from   the site http://eros.usgs.gov/elevation-products. GTOPO30 is a global digital elevation 

model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). 

GTOPO30 is derived from several raster and vector sources of topographic information. 

GTOPO30, completed in late 1996, is developed over a three year period through a 

collaborative effort led by staff at the U.S. Geological Survey's Center for Earth Resources 

Observation and Science (EROS). The study area is extracted from the GTOPO30 and 

imported to the ArcGIS software for its delineation into sub-basins using “watershed 

delineation” tool. This tool allows delineation of the basin into sub-basins based on an 

automatic procedure using DEM data. This tool uses and expands Arc-GIS and spatial analyst 

extension functions to perform basin delineations. As the GTOPO30 DEM has a spatial 

resolution of 1 km, it does not provide enough detail to allow the interface to accurately 

https://lta.cr.usgs.gov/sites/default/files/gt30src.gif
http://www.usgs.gov/
http://eros.usgs.gov/
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predict the location of the stream network. Therefore a stream network dataset in a polyline 

vector format is superimposed onto the DEM to define the location of the stream network. 

The stream network improved hydrographic segmentation and sub-basin boundary 

delineation. The flow direction and accumulation map is prepared from the DEM by filling 

the sinks and calculating the flow direction and flow accumulation grids. Duration of this 

process depends up on spatial resolution of the DEM. In the present case, it is a process of 

just few minutes. This process is necessary when defining streams from the DEM. Then the 

stream network is created, from which sub-basins and sub-basin outlets are generated. Sub-

basin outlets are the points in the drainage network of a sub-basin where stream flow exits the 

sub-basin area. Adding outlets at the location of monitoring stations is useful for comparison 

of measured and predicted flow. In the present case, discharge data for twenty seven 

discharge sites are available for the study area, so these sites are added as sub-basin outlets. 

Then the basin outlet is defined and the basin is delineated in to fifty four sub-basins 

according to both the linking stream added outlets and manually added outlets.  

Further according to location of discharge sites and magnitude of discharge, the basin is 

demarcated into seven major sub-basins namely, Sundargarh, Hirakud, Kesinga, Kantamal, 

Salebhatta, Tikarpada and Naraj, with catchment areas1524.918, 7372.37, 10086.5, 9960.579, 

3944.771, 19172.27, 9526.295 km2 respectively. To avoid confusion, henceforth the fifty-four 

sub-basins will be termed as watersheds and the above mentioned seven major sub-basins 

will be termed as sub-basins. The maps generated from Arc-SWAT during the basin 

delineation process are presented in Figure 4.1. 

Further it was observed in the stream link and stream order maps that some portions of the 

river drainage network (such as lower left corner) are not connected to their subsequent 

networks and therefore these portions have been eliminated from the further analysis. 
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Figure 4.1: Basin and sub-basin maps of the Study Area generated stepwise in Arc-

SWAT 
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4.3 ESTIMATION OF BASIN AND SUB-BASIN PARAMETERS 

The basin area is one of the most important watershed characteristic for hydrologic design. It 

is the horizontal projection of the entire surface of the catchment, and is the area or reception 

of rainfall. Moreover, the catchment perimeter is the most straightforward variable. The mean 

elevation, or mean altitude, of a catchment is manually calculated from the weighted mean of 

the sum of partial volumes between contour lines (Zavoianu, 1985). When using digital 

elevation models, the calculation of mean elevation is done by using the median value 

(numerical value separating the higher and lower half of the sample) and the median is 

obtained from the entire sample of catchment cell elevations. The longest flow path, or length 

of the stream, is the distance measured along the stream channel from the source to outlet, a 

distance which may be measured on the topographic map. The average slope of a catchment, 

as an independent variable, is calculated as the weighted mean of all the elementary surfaces 

between two consecutive contour lines. The catchment area, catchment perimeter, mean 

elevation, longest flow path and average slope of the fifty four watersheds of the study area is 

given in Appendix I. 

4.4 DELINEATION OF THEMATIC MAPS 

Land use and soil are two important variables in addition to DEM or contour map of the 

study area. Both the maps along with the river network maps delineated for the study area are 

shown in Figure 4.2. All thematic maps developed would be used for further analysis. 
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Figure 4.2: Soil, Landuse and River netwrok map of the study area 

4.5  CONCLUSION 

Using DEM and shape files of the basin, it was delineated into seven major subbasins 

according to the location of discharge stations applying ARC-SWAT within the environment 

of ARC-GIS and then parameters of each subbasin, such as catchment area, catchment 

perimeter, mean elevation, longest flow path and average slope were estimated for runoff 

simulation. 
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CHAPTER 5 

ESTIMATION OF MEAN RAINFALL BY SPATIAL INTERPOLATION 

 

5.1  INTRODUCTION 

The application of point rain gauge as precipitation input carries lots of uncertainties 

regarding estimation of runoff (Faur`es et al., 1995 and Chaubey et al., 1999), which, in turn, 

creates problem for the discharge prediction, especially if the rain gauge is located outside the 

basin (Schuurmans and Bierkens, 2007). For such reasons, some utilities such as hydrological 

modeling(Syed et al., 2003; Kobold and Suˇselj, 2005; Gabellani et al., 2007; Cole and 

Moore, 2008; Collischonn, et al., 2008; Ruelland et al., 2008; Moulin et al., 2009) need 

rainfall data that are spatially continuous and the quality of results are by the quality of the 

continuous spatial rainfall (Singh, 1997; Andr´eassian et al., 2001; Kobold and Suˇselj, 2005; 

Leander et al., 2008; Moulin et al., 2009). 

Spatial interpolation is a technique in which with given values of a variable at a set of sample 

points, values of variable at every point can be predicted. For any unknown point, some form 

of weighted average of the values at surrounding points is taken to predict the value at the 

point where it is unknown. In other words, a continuous surface is created from a set of 

points. This type of interpolated surface is often called a statistical surface. Elevation data, 

precipitation, temperature, snow accumulation and ground water table are types of data that 

can be computed using interpolation. The basic premise behind interpolation is “Everything 

is related to everything else, but near things are more related than distant things"(Waldo 

Tobler, 1970), and therefore in interpolation near points generally receive higher weights than 

far away points. 
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      In order to generate a continuous map, for example, a digital elevation map from elevation 

points measured with a GPS device, a suitable interpolation method is required to be used to 

optimally estimate the values at those locations where no samples or measurements are taken. 

The results of the interpolation analysis can then be used for the analyses and modeling of the 

whole area. A very basic problem in spatial analysis is interpolating a spatially continuous 

variable from point samples. But interpolation should not be used when there isn't a 

meaningful value of the variable at every point within the region of interest, i.e. when points 

represent merely the presence of events, interpolation does not make sense.  

The generation of continuous surfaces starting from irregularly distributed data can be 

performed by different methods but the difficulty is the choice of the one that best reproduces 

the actual surface (Caruso and Quarta, 1998). Regarding the rainfall, indirect methods of 

creation of continuous surface based on the measurement of related auxiliary variables have 

been provided since the 1960s by ground-based meteorological RADARs and by remote 

sensing devices installed on satellite platforms. The certainty and reliability of such indirect 

methodologies for hydrological purposes have yet to be estimated. The methodologies must 

be calibrated and validated using historical data (Lanza et al., 2001). A number of 

interpolation techniques have been described in the literature, which reproduce the spatial 

continuity of rainfall fields based on rain gauge measurement. These methods can be 

generally classified into two main groups: deterministic methods and geo-statistical methods. 

Some commonly used methods are briefly introduced here. Spatial interpolation is generally 

carried out by estimating a regionalized value at un-sampled points based on a weight of 

observed regionalized values. The general formula for spatial interpolation is as follows: 

                                                                                                                    (5.1) 
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Where Zg is the interpolated value at the required points, Zsi is the observed value at point i, 

ns is the total number of observed points and λ = (λi) is the weight contributing to the 

interpolation. The problem lies in calculating the weights, λ, which will be used in the 

interpolation. The different methods for computing the weights with their outcome for the 

study area are being presented in the following sections. 

5.2  DETERMINISTIC METHODS 

5.2.1 Thiessen Polygon method or Nearest Neighborhood method 

The Thiessen polygon method assumes that the estimated values can take on the observed 

values of the closest station. The Thiessen polygon method is also known as the nearest 

neighbor (NN) method (Nalder et al., 1998). Nearest neighbor methods have been intensively 

investigated in the field of statistics and in pattern recognition procedures. Despite their 

inherent simplicity, nearest neighbor algorithms are considered versatile and robust. Although 

more sophisticated alternative techniques have been developed since their inception, nearest 

neighbor methods remain very popular. A nearest neighbor algorithm typically involves 

selecting a specified number of data vectors similar in characteristics to the vector of interest. 

One of these vectors is randomly re-sampled to represent the vector of the given time step in 

the simulation period. In the context of weather data simulation, the nearest neighbor 

approach involves simultaneous sampling, with replacement, weather variables, like 

precipitation and temperature, from the observed data. To generate weather variables for a 

new day, t+1, days with similar characteristics to those simulated for the previous day t are 

first selected from the historical record. One of these nearest neighbors is then selected 

according to a defined probability distribution or kernel and the observed values for the day 

subsequent to that nearest neighbor are adopted as the simulated values for day t+1.  
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Models based on the NN approach can easily be extended to multisite simulation of weather 

data while keeping the spatial correlation structure virtually intact. The spatial dependencies 

are preserved because the same day’s weather is adopted as the weather for all stations. Apart 

from the spatial dependencies, temporal dependence is likely to be preserved as the simulated 

values for day t +1 are conditioned on the values for the previous day t. Further, the cross-

correlation among the variables at any given site is automatically preserved as a block of 

variables, rather than a single variable, is resampled from the observed data. Monthly rainfall 

interpolation map of the study area from January to December generated by nearest neighbor 

method is shown in Figure 5.1. 
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Figure 5.1: Monthly rainfall Interpolation by Nearest Neighbor Method 
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It is to be noted that, the polygon must be changed every time a station is added or deleted 

from the network (Chow, 1964). The deletion of a station is referred to as “missing rainfall”. 

This method, although more popular than the method of taking the simple average of the 

number of stations, is not suitable for mountainous regions, because of the orographic 

influence of the rain (Goovaerts, 1999). 

 

5.2.2  Inverse Distance Weighting (IDW) Method 

The Inverse Distance Weighting (IDW) method is based on the functions of the inverse 

distances in which the weights are defined by the opposite of the distance and normalized so 

that their sum equals one. The weights decrease as the distance increases. This method is 

more complex than the previous methods, since the power of the inverse distance function 

must be selected before the interpolation is performed. A low power leads to a greater weight 

towards a grid point value of rainfall from remote rain gauges. As the power tends toward 

zero, the interpolated values will approximate the areal-mean method, while for higher levels 

of power, the method approximates the Thiessen method (Dirks et al., 1998). There is a 

possibility of including elevation weighting along with distance weighting, known as Inverse 

Distance and Elevation Weighting (IDEW). IDEW provides more suitable results for 

mountainous regions where topographic impacts on precipitation are important (Masih et al., 

2011).The general formula of IDW is: 

                   (5.2) 

where  is the predicted value for location , N is the number of measured sample 

points surrounding the prediction location,  are the weights assigned to each measured 

point,  is the observed value at the location . The formula to determine the weights is 

the following: 
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;                                                                                           (5.3) 

Monthly rainfall interpolation map of the study area from January to December generated by 

inverse distance weighting method is shown in Figure 5.2. However, daily rainfall 

interpolation map of the study area by IDW is shown in Figure 5.3. 
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Figure 5.2: Monthly Rainfall Interpolation by Inverse Distance Weighting Method 
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Figure 5.3: Daily Rainfall Interpolation by Inverse Distance Weighting Method 

There are a few areas of concern with the IDW and other non-statistical averaging methods. 

First, the range of the interpolated values is constrained by the range of the measured values, 

i.e., no interpolated values will fall outside the observed data range. This means that high or 

low points of the area under consideration will be missed if they are not sampled. Also, 

because of the nature of the averaging formula, areas outside of the sampled area will flatten 

to the mean value. 

5.2.3  Spline Method 

The spline interpolation method is based on a mathematical model for surface estimation that 

fits a minimum-curvature surface through the input points. The method fits a mathematical 

function to a specified number of the nearest input points, while passing through the sample 

points. Spline can generate sufficiently accurate surfaces from only a few sampled points and 

they retain small features. Spline works best for gently varying surfaces like temperature. 
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There are two variations of Spline: regularized and tension. A regularized Spline incorporates 

the first derivative (slope), second derivative (rate of change of slope), and third derivative 

(rate of change in the second derivative) into its minimization calculations. Although a 

tension Spline uses only first and second derivatives, it includes more points in the Spline 

calculations, which usually creates smoother surfaces but increases computation time. As in 

the present study area, 23 interpolation points for monthly data and 25 interpolation points for 

daily data are considered, therefore regularized spline is considered adequate to create a 

smooth surface.The general formula is: 

                 (5.4) 

where N is the number of sampled points used for the estimation,  is coefficient of linear 

equations,  is distance from the sample of point and T is determined by the user. Monthly 

rainfall interpolation map of the study area from January to December generated by 

regularized Spline method is shown in Figure 5.4. However, daily rainfall interpolation map 

of the study area by regularized spline is shown in Figure 5.5. 
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Figure 5.4: Monthly Rainfall Interpolation by Regularized Spline Method 
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Figure 5.5: Daily Rainfall Interpolation by Regularized Spline Method 

 

This method is not appropriate if there are large changes in the surface within a short 

distance, because it can overshoot estimated values (Ruelland et al., 2008).  Unlike IDW 

methods, the values predicted by Spline are not constrained to the range of measured values, 

i.e., predicted values can be above the maximum or below the minimum measured value. 

 

5.3 GEOSTATISTICAL METHODS 

5.3.1 Kriging Method 

The second group of spatial interpolation methods for measuring rainfall is the geo-statistical 

methods, which constitutes a discipline connecting mathematics and earth sciences. The 

Kriging method is an example of a group of geo-statistical techniques used to interpolate the 

value of a random field. Matheron (1971) named and formalized this method in honour of 
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Daniel G. Krige, a South African mining engineer who pioneered the field of geo-statistics. 

The Kriging method is based on statistical models involving autocorrelation. Autocorrelation 

refers to the statistical relationships between measured points. The geo-statistical methods 

have the capability of producing a prediction surface and provide some measures of the 

certainty and accuracy of the predictions. In this method, the value of the variable is 

estimated for a particular point using a weighted sum of the available point observations. The 

weights of the data are chosen so that the interpolation is unbiased and the variance is 

minimized. In general, the Kriging system must be Linear, Authorized, Unbiased and 

Optimal (LAUO). Kriging is the first method of interpolation to take into account the spatial 

dependence structure of the data. There are several types of Kriging, which differ according 

to the form applied to the mean of the interest variable: (a) when it is assumed that the mean 

is constant and known, simple Kriging (SK) is applied; (b) where the mean is constant but 

unknown, ordinary Kriging (ORK) is applied; (c) where the mean is assumed to show a 

polynomial function of spatial coordinates, universal Kriging (UNK). So, in contrast to the 

other two types, this last type of Kriging is not stationary with regard to the mean. 

Stationarity defines itself here by the constancy of the mean, but also by the covariance 

between two observations that depend only on the distance between these observations. All 

the different types of Kriging apply the stationarity of the covariance, or, more generally, the 

semi-variogram. This function, which represents the spatial dependence structure of the data, 

must be estimated and modelled before making the interpolation. First of all, the 

experimental semi-variogram can be calculated as being half the squared difference between 

paired values to the distance by which they are separated: 

                                                                                (5.5) 
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where N(h) is the number of pairs of data locations at distance h apart. 

In practice, the average squared distance can be obtained for all pairs separated by a range of 

distances and these average squared differences can be plotted against the average separation 

distance. A theoretical model might then be fitted to the experimental semi-variogram 

(Figure 5.6) and the coefficient of this model (nugget effect, sill and range) can be used for a 

Kriging equation system. 

 

Figure 5.6: Experimental semi-variogram and coefficients of Kriging method (source: 

Goovaerts, 2000) 
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The kriging method encompasses several ways of integrating auxiliary variables: 

– if the mean is not constant, but we can estimate the mean at locations in the domain of 

interest, then this locally varying mean can be used to inform estimation using Simple 

Kriging; this is referred to as Simple Kriging with a Locally varying mean (SKL) (Goovaerts, 

2000); 

– Kriging with External Drift (KED) assumes that the mean of the interest variable depends 

on auxiliary variables; the theory behind KED is in fact the same as the theory behind 

universal kriging, which also contains a non-constant mean. The drift is defined externally 

through certain auxiliary variables (Hengl et al., 2003); 

– in order to better meet the assumptions of stationarity, linear regression may be carried out 

against secondary variables to remove first order trends. The residuals can be used to 

generate a new variogram and then ordinary kriging can be applied to these residuals. The 

resulting estimates can be added to the trend to give the estimated values. This technique has 

been termed Residual Kriging (RK) or Detrended Kriging (DK). 

– the other type of kriging, Ordinary Cokriging (OCK), involves estimating the variable of 

interest by the weighted linear combination of its observations and the observations of the 

auxiliary variables. This technique requires the study of the spatial dependence between 

variables in addition to the study of simple spatial dependences. 

A detailed presentation of geostatistical theories can be found in Cressie (1991); Goovaerts 

(1997); Chilès et al. (1999) and Webster et al. (2007). 

      Many previous studies in monthly or yearly steps have used only one theoretical model for 

each time step (Hevesi et al., 1992; Goovaerts, 2000; Boer et al., 2001; Todini, 2001; 



92 

 

Marqu´ınez et al., 2003; Lloyd, 2005). In this study, the semi-variogram models are fitted for 

monthly rainfall data of 112 year and daily rainfall data of nine years.  

In order to do this, existing theoretical models, circular, spherical, exponential, gaussian and 

linear models are used. For each month, four semi-variogram models for all the 23 raingauge 

stations considered are generated. Semi-variance increased according to the separation 

distance, explaining that two rainfall data close to each other are more similar, and their 

squared difference are less significant than those that are farther apart. 

      The semi-variogram model is generated by observing the coefficient of determination (r2) and 

residual sum of squared error (RSSE) values through the validation procedure with a trial-

and-error approach for different lag sizes and lag intervals (Goovaerts 1997). The lag sizes 

and number of lags varied because of a general rule of thumb, in which the lag size times the 

number of lags should be less than one-half of the largest distance between data pairs 

(Johnston et al. 2010). The optimum model parameters (sill, nugget, and range) 

corresponding to the lowest RSSE and highest R2 value are noted as 1.37, 0.0 and 0.58, 

respectively. Among the five semi-variogram models, e.g. circular, spherical, exponential, 

gaussian and linear, the exponential model estimated lowest RSSE and highest r2 values. 

Therefore, exponential semi-variogram model is selected for monthly rainfall interpolation.  

Higher error is obtained from interpolation by linear with linear drift universal Kriging. So 

this technique is not considered for further analysis. Interpolation using Linear with quadratic 

drift universal Kriging is also performed, but it estimates negative values in most of the cases. 

      Monthly rainfall interpolation map of the study area from January to December generated by 

Ordinary Kriging method is shown in Figure 5.7. However, daily rainfall interpolation map of 

the study area by ordinary kriging is shown in Figure 5.8. 
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Figure 5.7: Monthly Rainfall Interpolation by Ordinary Kriging Method 

 
Figure 5.8: Daily Rainfall Interpolation by Ordinary Kriging Method 
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5.4   PERFORMANCE EVALUATION 

The performance of the three interpolators e.g. IDW, Spline (regularized) and Ordinary 

Kriging (OK) methods are assessed and compared using cross validation. The idea consists of 

removing temporarily a rainfall observation randomly from the data set and “re-estimates” 

this value from remaining data using these three methods. The computed mean rainfall 

estimates were compared with the observed one and the error in the results have been 

estimated using mean error and root mean square error (RMSE) criteria. The governing 

equations are:  

                  (5.6) 

                (5.7) 

Table 5.1 indicates mean error and root mean square error of the three methods IDW, Spline 

(regularized) and Ordinary Kriging. Mean error should be close to zero and root mean square 

error should be as small as possible. As can be seen from the table, the Ordinary Kriging 

method provides best results with minimized error statistics.  

Table 5.1:  Performance Evaluation of IDW, Spline and Kriging Methods 

Method MEAN ERROR (mm/month) 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Inverse 

Distance 

Weighting 0.15 0.33 0.15 -0.85 -1.43 -0.24 3.45 2.23 -0.62 -1.17 -1.02 -0.12 

Regularize

d Spline 0.11 0.13 0.12 -0.32 -0.66 -0.66 2.58 -0.30 -0.18 -0.34 -0.56 -0.06 

Ordinary 

Kriging 0.07 0.07 0.11 -0.20 -0.48 0.07 2.02 1.28 0.23 -0.07 -0.37 -0.11 
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Method ROOT MEAN SQUARE ERROR (mm/month) 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Inverse 

Distance 

Weighting 

1.34 2.36 3.35 4.80 12.74 17.58 28.56 34.76 31.14 31.23 7.219 1.027 

Regularize

d Spline 1.42 2.21 3.21 4.74 12.97 12.97 26.81 35.74 31.50 30.11 5.55 1.04 

Ordinary 

Kriging 1.40 2.14 3.20 4.62 13.87 17.01 28.19 36.61 31.05 35.53 5.91 1.09 

 

 

5.5  CONCLUSION 

Both deterministic and geostatistical rainfall interpolation methods such as Inverse Distance 

Weighting, Spline and Kriging were used with monthly and daily rainfall data and the 

Ordinary Kriging method was selected for interpolation of monthly and daily rainfall over 

each subbasin as this method provided best results with minimized error statistics.  
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CHAPTER 6 

DEVELOPMENT OF CURVE NUMBERS FOR DAILY AND 

MONTHLY RUNOFF SIMULATION AND PREDICTION 

6.1 INTRODUCTION 

There are numerous methods available for rainfall generated runoff modeling. Soil 

Conservation Services Curve Number (SCS-CN) technique is one of the oldest and simplest 

method for rainfall generated runoff moelling. Many modifications have been done in SCS-

CN methods since its inception. Many developed models based on SCS-CN are in use and 

being referred by different researchers globally. In the present work, original SCS-CN, 

Mishra-Singh (MS) model (2002), Michel model (2005), and Sahu model (2007), being used 

commonly on the basis of SCS-CN concepts, with some modifications are used. Besides, 

modified and proposed empirical models, such as frequency distribution model based on 

probability of exceedance concept (FDM-PE), and SCS-CN method based on remote sensing 

and GIS data as inputs and median of ordered data for all the three antecedent moisture 

conditions (AMCs: AMC1, AMC2 and AMC3) are used in the present work (MM-SCS). 

Moreover, Artificial Neural Network based on Multi Layer Perceptron (ANN-MLP) has been 

used to generate a non-linear model function to test the applicability for simulating and 

predicting daily and monthly runoff data.  Evaluation of each model has been done using 

different error statistics and correlation coefficient. 

6.2 DESCRIPTION OF MODELS 

6.2.1  SCS-CN Model: NEH 

The SCS-CN method is developed in 1954 by the USDA Soil Conservation Service (Rallison 

1980), and is described in the Soil Conservation Service (SCS) National Engineering 
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Handbook Section 4: Hydrology (NEH-4) (SCS 1985) (Ponce and Hawkins, 1996). The SCS-

CN method is based on the water balance equation and two fundamental hypotheses. The first 

hypothesis states that the ratio of the actual amount of direct runoff to the maximum potential 

runoff is equal to the ratio of the amount of actual infiltration to the amount of the potential 

maximum retention. The second hypothesis states that the amount of initial abstraction is 

some fraction of the potential maximum retention.The water balance equation and the two 

hypotheses can be expressed mathematically, respectively, as follows. 

                                                                                                                   (6.1) 

                                    (6.2) 

                    (6.3)              

where P is total precipitation, Ia  is initial abstraction, F is cumulative infiltration excluding 

Ia, Q is direct runoff, S potential maximum retention or infiltration, and λ initial abstraction 

coefficient accounting for surface storage, interception, and infiltration before runoff begins. 

Combining Equations (6.1) and (6.2) the popular form of the existing SCS-CN method for 

direct runoff can be written as follows. 

                                         (6.4) 

As the method is practiced today, Q can be computed using equation (6.4) with the CN based 

on the land use and hydrologic soil group, and rainfall depth. Equation (6.4) is valid for 

 and  otherwise. With the initial abstraction included in equation (6.4), the 

actual retention  asymptotically approaches a constant value of ) as the rainfall 

increases unbounded. 

The parameter λ can take any value ranging from 0 to ∞. But in the existing SCS-CN method, 

λ is assumed as equal to 0.2 for usual practical applications. Equation (6.4) after putting 

λ=0.2 contains only one unknown parameter, S, which ranges between 0 to ∞. For 
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convenience in practical applications, S is defined in terms of a dimensionless parameter, CN 

(Curve Number), which varies in a more restricted range 0-100. Parameter S (mm) in terms 

of CN can be expressed as 

                                                                                                    (6.5) 

The parameter CN = 100 represents a condition of zero potential retention (S = 0), that is an 

impermeable watershed. Conversely, CN = 0 a theoretical upper bound represents to the 

potential retention (S =∞), which is an infinitely abstracting watershed.  

Many researchers attempted the practical design values validated by experience lying in a 

realistic range of 40 to 98 (Van-Mullem 1989). All the factors responsible for generation of 

runoff from rainfall in the watershed actually govern the curve number including hydro-

meteorological and watershed characteristics. The major watershed characteristics such as 

soil type, land use/treatment classes, hydrologic soil group, hydrologic condition, and 

antecedent moisture condition significantly affect CN (Mishra and Singh 2003).  

Of late, easy availability of spatially distributed digital database and use of GIS have 

accelerated the use of distributed curve numbers for runoff estimation. Composite (or area 

weighted) CN is estimated by compositing the area-weighted average CNs calculated for the 

entire watershed. To this end, satellite data of land use and soil maps obtained from various 

sources are overlaid to delineate polygons with unique land use and hydrologic soil group 

(HSG) combinations for determination of CN for each grid and then computation of the area-

weighted average CN is as follows 

                 (6.6)

  

where A1, A2, … , An represent areas of polygons having CN value CN1,CN2, … ,CNn, 

respectively; and A is the area of each grid = A1+ A2+ · · · +An. 
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A square grid of area 24 X 24 square km is generated over the study area. The land use/land 

cover map used in the present study has been extracted for spatial resolution of 1 km. The soil 

map used in the present study has been extracted from the FAO/UNESCO Digital Soil Map 

of the World (DSMW) and has a spatial resolution of 5*5 arc minutes. Soil textures are 

classified by the percentage of sand, silt, and clay present in a soil. In the present study, 

according to the USDA soil textural classification, the six dominant soils found in the study 

area are classified into sandy loam, sandy clay loam and clay soil textures. Further these three 

soil textures are classified into A, C, and D hydrologic soil groups (HSGs). In the study area, 

no soil texture with HSG of B is found. HSG indicates the minimum rate of infiltration 

obtained for bare soil after prolonged wetting. Group A soils have low runoff potential and 

high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to 

excessively well drained sand or gravel and have a high rate of water transmission (greater 

than 0.30 in/hr). Group C soils have low infiltration rates when thoroughly wetted and consist 

chiefly of soils with a layer that impedes downward movement of water and soils with 

moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 

in/hr). Group D soils have high runoff potential. They have very low infiltration rates when 

thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a 

permanent high water table, soils with a clay pan or clay layer at or near the surface, and 

shallow soils over nearly impervious material. These soils have a very low rate of water 

transmission (0-0.05 in/hr).  

The original SCS-CN method computes the direct runoff by considering only the available 

rainfall on the current day without taking care of the effect of the moisture available prior to 

the storm. On the other hand, the curve numbers are sensitive to antecedent conditions (Ponce 

1989). The curve number is usually represented for average antecedent moisture condition 

(AMC)-CNII and for direct-runoff computation it is varied, with AMC generally described 
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using 5-day antecedent rainfall (P5). For the first five days beginning from the first day of 

simulation, CN is taken as the curve number valid for AMC II (normal condition). As the 

time (day) advances, CN varies with AMC levels (Hawkins 1978; Mishra et al. 1998) 

dependent on the amount of antecedent rainfall (ANTRF). Antecedent rainfall is determined 

as follows 

                                                               (6.7)     

where t=current day, and P=rainfall of the respective day. 

The SCS-CN method defines the antecedent moisture condition as an index of basin wetness. 

In particular AMC II is defined as "the average condition”. However, determination of 

antecedent soil moisture content and classification into the antecedent moisture classes AMC 

I, AMC II and AMC III, representing dry, average and wet conditions, is an essential matter 

for the application of the SCS curve number procedure that is without a clear answer yet. The 

definition of antecedent moisture condition AMC II is the basis from which adjustments to 

the corresponding curve numbers for dry soils (AMC I) and wet soils (AMC III) are made. 

AMC II (average or normal condition) is taken as the basis from which adjustments to daily 

curve numbers are made so that they correspond to AMC I or AMC III (Hjelmfelt 1991). The 

appropriate moisture group AMC I, AMC II and AMC III is based on a five-day antecedent 

rainfall amount and season category (dormant and growing seasons) (NEH-4, 1964). 

Different AMC class limits are provided for the dormant and growing seasons based on five-

day antecedent precipitation, i.e., ANTRF (Mishra et al. 1998; Ponce 1989; Hawkins et al. 

1985). Generally, June 1- October 31 is taken as the dormant season, and the remaining 

period of the year (November 1-May 31) as the growing season.  Variation in curve numbers 

based on the total rainfall in the five days preceding the storm under consideration 

(Woodward and Croshney 1992), CNt of tth day which corresponds to CNII is converted to 

CNI or CNIII. There are many AMC-dependent CN-conversion formulas such as those of 
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Sobhani (1975), Chow et al. (1988), Hawkins et al. (1985), and Neitsch et al. (2002) are 

available in the literature. Generally, the Hawkins et al. (1985) AMC-dependent CN-

conversion formulae is considered to convert the CNII (normal condition) to CNI (dry 

condition) or to CNIII (wet condition), depending on the magnitude of the 5-day antecedent 

rainfall amount. The CN-conversion formulae are expressed as 

                 (6.8) 

                (6.9) 

It is worth noting that the initial value of CN at the start of simulation, an optimized value, 

corresponds to AMC II. These equations are applicable in the range 55≤CN≤95, which 

encompasses most estimated or experienced curve numbers (Ponce and Hawkins, 1996). 

The main advantages (Mishra and Singh 2003a; Ponce and Hawkins 1996) of the SCS-CN 

method are it is a simple conceptual method for predicting direct surface runoff from a storm 

rainfall amount, and is well supported by empirical data and wide experience, it is easy to 

apply and useful for ungauged watersheds, the method relies on only one parameter CN, and 

the parameter CN is a function of the watershed characteristics and, hence, the method 

exhibits responsiveness to major runoff- producing watershed characteristics. However, the 

method has some limitations also which are: the three AMC levels used with the SCS-CN 

method permit unreasonable sudden jumps in CN, and hence corresponding sudden jumps in 

computed runoff is possible, there is a lack of clear guidance on how to vary antecedent 

moisture condition, there is no explicit dependency of initial abstraction on the antecedent 

moisture, the method doesn’t contain any expression for time and ignores the impact of 

rainfall intensity and its temporal distribution and it is applicable to only small watersheds. 

Ponce and Hawkins (1996), for example, cautioned against its use to watersheds larger than 

250 sq. km. Besides being fairly accurate in runoff predictions, the versatility of the SCS-CN 

method lies in the fact that it is simple, easy to understand and apply, stable, and capable of 
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accounting for several watershed runoff producing characteristics, such as soil type, land 

cover and practice, hydrologic condition, and antecedent moisture condition (AMC) (Ponce 

and Hawkins 1996; Mishra and Singh 2003b). 

It is observed that variability of CN is also due to the effect of spatial variability of storm and 

watershed properties, temporal variability of storm, that is, storm intensity, quantity of 

measured data, that is, P-Q sets and antecedent rainfall and associated soil moisture (Ponce 

and Hawkins, 1996). The one to one relationship between CN and S renders the latter 

intrinsically related to antecedent moisture. Thus, potential retention is a measure of the 

ability of a given site to abstract and retain storm rainfall, provided the level of antecedent 

moisture has been factored into the analysis. In other words, potential retention and its 

corresponding curve numbers are intended to reflect not only the capacity of a given site to 

abstract and retain storm rainfall, but also (1) the recent history of antecedent rainfall or lack 

of it, which may have caused the soil moisture to depart from an average level (2) seasonal 

variation in runoff properties and (3) unusual storm conditions (Ponce and Hawkins, 1996). 

If an event rainfall depth and the CN of a watershed are known, the runoff volume can easily 

be determined using equation (6.4) and (6.5). The potential maximum retention (S) for each 

of the maximum annual storm volume Q, and the rainfall volume P can be computed using 

the following expression too. 

               (6.10) 

This equation is an algebraic rearrangement of equation (6.4) with λ=0.2. For gauged 

watersheds where both rainfall and runoff volumes are known the Curve Number values can 

be determined using equations (6.5) and (6.10). 

Indirect substitution of λ as 0.2 into Equation (6.4) yields the S-values for different P–Q sets. 

These values are mapped onto the CN-values using Equation (6.5). Geographic and other 

differences may dictate that the initial abstraction ratio λ be relaxed to the range validated by 
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local experience, say 0.0≤λ≤0.3. For λ value other than 0.2, its variation can be expressed 

using the following relation, derived from the combination of Equation (6.4) and Equation 

(6.5).  

            (6.11) 

where C is runoff factor, which is equal to Q/P. 

6.2.2 Mishra-Singh (MS) Model 

Mishra and Singh (1999) modified the popular form of the existing SCS-CN method 

(equation 6.4) for direct runoff and proposed its general form as: 

               (6.12)                                                                                                     

where a is considered equal to 0.5. 

Using the C=Sr concept, where C is the runoff coefficient (Q/(P-Ia)) and Sr is the degree of 

saturation, Mishra and Singh (2002) modified the equation of direct runoff for antecedent 

moisture M as:  

                 (6.13)                                                                                                     

where M is antecedent moisture (mm) and is computed as 

             (6.14)                                                                                                     

Here, Ia is the same as in Equation (6.3) and P5 denotes the amount of antecedent 5-day 

rainfall. 

The combination of Equations (6.3), (6.13) and (6.14) is designated as the Mishra–Singh 

(MS) model. This method advantageously obviates sudden jumps in CNs and hence 

computes runoff through incorporation of the expression of M replacing the three AMCs. 

However, it does not show an explicit dependency of Ia on M. Further, in this method, S is 
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optimized as a parameter, which is, in fact, a varying quantity depending on M for a given 

watershed. Hence, it is not clear as to which moisture level/condition the optimized S would 

correspond to. Again Mishra et al. (2004) modified the existing SCS-CN method, which is 

based on the Soil Conservation Service Curve Number (SCS-CN) methodology but 

incorporates the antecedent moisture in direct surface runoff computations. They used the 

C=Sr concept, where C is the runoff coefficient (Q/(P − Ia)) and Sr= degree of saturation and 

modified the above Equation (6.13) for antecedent moisture M as 

               (6.15)                                                                                                     

By substituting Equation (6.2) into Equation (6.15) direct surface runoff becomes 

                                                              (6.16)                                                                                                     

According to Mishra and Singh (2004), by assuming λ equal to 0.2, M can be computed as 

                (6.17) 

where P5 is the antecedent 5-day precipitation amount, and SI is the potential maximum 

retention corresponding to AMC I, by assuming the watershed to be dry 5 days before the 

onset of the rain storm. Hence by taking P5 = 0 and as SI= S + M, Equation (6.10) becomes 

             (6.18)  

In the above equation + sign before the square root is retained for M to be greater than or 

equalto zero. This equation can be generalized by replacing 0.2 by λ, and M can be expressed 

as 

              (6.19)                                                                                       

The above equation forms the modified version of the Mishra–Singh model. Here, P5≥ λS. 
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6.2.3 Michel Model  

Initially according to Michel et al. (2005) the soil moisture accounting (SMA) procedure is 

based on the notion that higher the moisture store level, higher the fraction of rainfall that is 

converted into runoff. If the moisture store level is full, all the rainfall will become runoff. 

The following is the SMA equation   

                 (6.20) 

where V0= soil moisture store level at the beginning of the rainfall event (mm), P = 

accumulated rainfall at time t along a storm (mm), Q = accumulated runoff at time t along a 

storm (mm), and V =soil moisture store level at time t, i.e. when the accumulated rainfall is 

equal to P (mm).They incorporated a new parameter ‘Sa’ by letting Sa be a set fraction of S 

(they recommended Sa= S/3). They also replaced V0 by a fraction of S and finally suggested a 

one-parameter model to compute the surface runoff for the three AMCs. 

Michel et al. (2005) pointed out inconsistencies in the original SCS-CN method, arising 

partly from the confusion between the intrinsic parameter and the initial condition and partly 

from the incorrect use of the SMA procedure. They described (V0+Ia) as an intrinsic 

parameter (Sa) of the soil moisture model for computation of runoff as follows 

If  , then .                   (6.21) 

If , then               (6.22) 

If , then                (6.23) 

Equations (6.21)–(6.23) constitute the Michel et al. (Michel) model. Despite the improvement 

over the popular form of SCS-CN method from the SMA view-point, the Michel model lacks 

an expression for the initial soil moisture store level (V0). 

Based on soil moisture accounting procedure (SMA), Michel et al. (2005) introduced a 

simplified one-parameter SCS-CN model for runoff computations for a given storm rainfall 
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event for the three AMCs. The simplified one-parameter SCS-CN procedure can be 

expressed as 

For AMC I (V0 =0.33S),                (6.24) 

For AMC II (V0 =0.61S),               (6.25) 

For AMC III (V0 =0.87S),              (6.26) 

6.2.4 Sahu Model  

The antecedent or initial soil moisture (V0) depends not only on P5 but also on S. The 

dependency on S is based on the fact that the watershed with larger retention capacity S must 

retain higher moisture compared to the watershed with lesser S for a given P5. An expression 

for initial soil moisture store level (V0) is taken as AMC-dependent, which leads to a 

quantum jump in V0 and, in turn, runoff computations. Therefore an expression for V0 is 

suggested by Sahu et al. (2007) for continuous simulation.  

For practical applications, Sahu et al. (2007) developed a one-parameter model, described by 

the following set of equations 

If  then,                   (6.27) 

If  then,               (6.28) 

From known V0, Q can be computed as follows 

If , then .               (6.29) 

If , then .               (6.30) 

If , then .                        (6.31) 
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6.2.5 Frequency Distribution based Probability of Exceedance (FDM-PE) Model 

A prevailing application of the Curve Number method is to determine a given return period 

runoff for the same return period rainfall. This amounts to transforming a rainfall frequency 

distribution into a runoff frequency distribution (Hjelmfelt 1980). This leads to“frequency 

matching”, which sorts P and Q depths separately and re-aligns them by common rank order, 

creating a new set of P, Q pairs. These P,Q pairs have equal sampled return periods and are 

called “ordered” data, with runoff Q not necessarily matched with the original rainfall P, thus 

obtaining a probabilistic-CN by means of equation (6.5). This is contrasted with “natural” 

data (P, Q events as observed naturally) (Hawkins et al. 1990, Van Mullem et al. 2002). A 

frequency distribution model applicable for all the cases (rainfall, runoff and curve number) 

has been developed to estimate probabilistic curve number (PCN). 

6.2.6 Modified Median based- SCS (MM-SCS) Model 

As explained in the original SCS-CN method, if an event rainfall depth and the CN of a 

watershed are known, the runoff volume can easily be determined using equation (6.4) and 

(6.5). The potential maximum retention (S) for each of the maximum annual storm volume Q, 

and the rainfall volume P can be computed using equation (6.10). 

In the present case, the median CN from the sorted (in descending order) CN series is 

considered as AMC II (normal condition). Again, the median CNs of the sorted CN series 

corresponding to lower half and higher half are considered as AMC I (dry condition) and 

AMC III (wet condition) respectively. In fact, no equations and manipulations are required in 

this method to obtain AMC I and AMC III. The method is very simple and straight forward. 

Of, course, for un-gauged catchments, the method may not be applicable directly and CN 

values for AMC I, AMC II and AMC III may not be estimated due to non-availability of 

observed rainfall and runoff estimates. However, it can be developed using regional modeling 

and analysis.  
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6.2.7 Artificial Neural Network based Multi Layer Perceptron (ANN-MLP) Model 

The ANN, as the name implies, employs the model construction of a neural network, a very 

powerful computational algorithm, which is used to simulate complex nonlinear 

relationships, especially in situations where the explicit form of the relation between the 

variables involved is unknown (Gallant 1993; Smith 1994). ANN is thus defined according to 

its model inputs and its architecture: the number of layers, the number of nodes in each layer, 

the activation function in each layer, and the manner in which the layers are interconnected. 

However, one of the most unresolved questions in modeling of the rainfall-runoff process 

when applying ANNs is what architecture should be used to map the process effectively. The 

selection requires choosing an appropriate input vector, besides the hidden units and weights. 

Unlike the physically based models, the sets of variables that influence the system are not 

known a priori. Therefore, the selection of an appropriate input vector that will allow an 

ANN to map to the desired output vector successfully is not a trivial task. In most of the 

applications that are reported this has been done by a trial- and error-procedure (Fernando 

and Jayawardena, 1998). Sudheer et al. (2002) outlined a procedure for selecting an 

appropriate input vector in ANN rainfall-runoff models, based on statistical pre-processing of 

the data set. The proposed methodology has been illustrated by presenting an application of 

the procedure to an Indian River basin. The results reported by some researchers have also 

been analyzed to check the effectiveness of the proposed algorithm and then they concluded 

that their proposed algorithm would easily lead to a more compact network, thus avoiding a 

long trial- and-error procedure.  

The architecture of a feed forward ANN can have many layers where a layer represents a set 

of parallel neurons. The basic structure of ANN usually consists of three layers: the input 

layer, where the data are introduced to the network; the hidden layer or layers, where data are 

processed; and the output layer, where the results of given outputs are produced. The neurons 
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in the layers are interconnected by strength called weights. The incoming data are processed 

by nonlinear functions at hidden and output layers to get the output. The commonly used 

nonlinear function is log sigmoid function (ASCE 2000a, b). 

At present, the most common ANN architecture and algorithms being applied are multilayer 

feed forward, Hopfield networks, radial basis function network, recurrent network, self 

organization feature maps, and counter propagation networks. However, the multilayer feed 

forward networks are the most commonly used for hydrological applications (Dawson and 

Wilby 2001). In hydrology, multiple-layer perceptron (MLP) networks, a single hidden layer 

with a sigmoid transfer function and an output layer with a linear transfer function, are 

preferred for their simplicity and effectiveness (Anctil and Rat 2005; Hsu et al. 1995; 

Sivakumar et al. 2002). The MLP model architecture is often applied with the Levenberg-

Marquardt back propagation algorithm, a second-order nonlinear optimization technique 

which is usually faster and more reliable than other back propagation variants (Demuth et al. 

1992). The feed-forward operation computes an output for each input vector and then 

compares it with the actual value (Figure 6.1). The total error is calculated for all training sets 

              (6.32)                                                                        

Where Em= error for the mthinput vector; M = number of input vectors; N = number of 

outputs; and Omk, Tmk= observed and predicted values, respectively.  

 

Figure 6.1:   Standard FFNN with one hidden layer 
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6.2.7.1 The Architecture 

The MLP architecture, a feed forward-type NN, is selected in this study because it usually 

has good model performance, and also because it is the most frequently used configuration in 

hydrology. The ANN networks consisting of an input layer, one single hidden layer 

composed of 3-12 nodes, and one output layer consisting of 1 node denoting the predicted 

runoff. Each ANN model has been tested on a trial-and-error basis for the optimum number 

of neurons in the hidden layer. 

In ANN models, one major point is to determine the number of nodes in the input layer that 

provide the best calibrating results. The ANN model for the prediction of runoff is normally 

developed by using the same day rainfall, antecedent rainfall and antecedent runoff values of 

same stations as input vector (Cobaner et al. 2009). Determining the number of antecedent 

rainfall, and runoff values involves finding the lags of rainfall, and runoff values that have 

significant influence on the predicted runoff. These influencing values corresponding to the 

different lags can be very well-established through the statistical analysis of the data series. 

The input vector is selected generally by the trial-and-error method. The simple correlation 

between the dependent and independent variables helps in selecting the significant input 

vector to the model.  The correlation analysis helps to find out the possible input variable for 

the modeling, but it does not give the exact lag values (Senthil Kumar et al., 2012). Generally 

the trial-and-error method is adopted to find out the significant lag values of the input 

variable. Sudheer et al. (2002) presented a statistical procedure that avoids the trial-and error 

procedure. They reported that the statistical parameters, such as autocorrelation function 

(ACF), partial autocorrelation function (PACF), and cross-correlation function (CCF), could 

be used to find out the significant lag values of input variables. 

In this present work, an approach proposed by Sudheer et al. (2002) has been used.  With 

respect to the ACF, PACF and CCF plots, the combinations containing different numbers of 
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input values of runoff and rainfall are considered in the input layer to predict the unique 

runoff value at the future time step in the output layer of the ANN model. Figure 6.2 and 6.3 

shows PACF and CCF plots of daily and monthly runoff series respectively of Sundargarh 

sub-basin. Similar plots of other sub-basins are shown in Appendix III. A qualitative 

examination of the cross-correlation curves between the rainfall and runoff series revealed 

that antecedent rainfall heavily influences the runoff at a certain time. However, the rainfalls 

of consecutive days are also highly correlated and the rainfall occurred in recent past are 

required to be used as input to the ANN models. The neurons in the input layer of the ANN 

models represented different combinations of the various physical variables considered, and 

are chosen based on the correlation coefficients between rainfall (at different time steps) and 

the runoff data(Figure 6.2 and Figure 6.3).  

Partial Autocorrelation Function(Sundargarh Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.048 .0171

 14 -.022 .0171

 13 -.005 .0171

 12 -.007 .0171

 11 +.007 .0171

 10 -.058 .0171

  9 +.038 .0171

  8 +.101 .0171

  7 +.035 .0171

  6 +.044 .0171

  5 +.068 .0171

  4 +.101 .0171

  3 +.190 .0171

  2 +.032 .0171

  1 +.813 .0171

Lag Corr. S.E.

CrossCorrelation Function(Sundargarh Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .2521 .0176
 14 .2825 .0176
 13 .2874 .0176
 12 .2714 .0176
 11 .2651 .0176
 10 .2844 .0176
  9 .3119 .0175
  8 .3115 .0175
  7 .3222 .0175
  6 .3558 .0175
  5 .3980 .0175
  4 .3928 .0175
  3 .3685 .0175
  2 .4163 .0175
  1 .4744 .0175
  0 .3606 .0175
 -1 .2184 .0175
 -2 .1985 .0175
 -3 .2084 .0175
 -4 .2243 .0175
 -5 .2145 .0175
 -6 .2127 .0175
 -7 .1939 .0175
 -8 .1827 .0175
 -9 .1686 .0175
-10 .1486 .0176
-11 .1410 .0176
-12 .1537 .0176
-13 .1463 .0176
-14 .1385 .0176
-15 .1437 .0176
Lag Corr. S.E.

 

Figure 6.2 PACF and CCF Plots of Daily Runoff data of Sundargarh Sub-basin 
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Partial Autocorrelation Function(Sundargarh Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.013 .0945
 29 -.017 .0945
 28 +.056 .0945
 27 -.056 .0945
 26 +.112 .0945
 25 -.105 .0945
 24 -.005 .0945
 23 +.008 .0945
 22 -.115 .0945
 21 -.096 .0945
 20 -.057 .0945
 19 -.015 .0945
 18 -.033 .0945
 17 -.042 .0945
 16 -.017 .0945
 15 -.181 .0945
 14 -.049 .0945
 13 +.165 .0945
 12 +.194 .0945
 11 +.083 .0945
 10 +.107 .0945
  9 -.147 .0945
  8 -.243 .0945
  7 -.217 .0945
  6 -.190 .0945
  5 -.140 .0945
  4 -.192 .0945
  3 -.140 .0945
  2 -.158 .0945
  1 +.489 .0945
Lag Corr. S.E.

CrossCorrelation Function(Sundargarh Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .0007 .1015
 14 .3670 .1010
 13 .5688 .1005
 12 .4881 .1000
 11 .2491 .0995
 10 -.040 .0990
  9 -.273 .0985
  8 -.345 .0981
  7 -.360 .0976
  6 -.355 .0971
  5 -.316 .0967
  4 -.194 .0962
  3 .0550 .0958
  2 .3207 .0953
  1 .6662 .0949
  0 .8145 .0945
 -1 .3533 .0949
 -2 -.059 .0953
 -3 -.288 .0958
 -4 -.362 .0962
 -5 -.363 .0967
 -6 -.354 .0971
 -7 -.334 .0976
 -8 -.243 .0981
 -9 -.027 .0985
-10 .3387 .0990
-11 .5498 .0995
-12 .5626 .1000
-13 .3830 .1005
-14 -.036 .1010
-15 -.304 .1015
Lag Corr. S.E.

 

Figure 6.3 PACF and CCF Plots of Monthly Runoff data of Sundargarh Sub-basin 

Similarly, an autocorrelation function (ACF) and partial autocorrelation function (PACF) 

suggests the influencing antecedent discharge patterns in the flow at a given time. The ACF 

and PACF with 95% confidence levels are used in diagnosing the order of the autoregressive 

process and are employed in ANN modeling too. The variables that did not have a significant 

effect on the performance of the model are trimmed off from the input vector, resulting in a 

more compact network. 

6.2.7.2 Training of Daily and Monthly data using ANN Model 

ANN training is the process of adjusting the weights and biases in order for the network to 

produce the desired output in response to every input pattern in a predetermined set of 

training patterns. Back-propagation which is a supervised training algorithm is by far the 

most commonly used method for training MLPs. It is popularized by Rumelhart et al. (1986), 

although earlier work had been done by Werbos (1974), Parker (1985), and LeCun (1985). 

Mathematically training a network means minimizing the error of an error function such as 

the sum of squares function. The process of calibrating (training and testing) the ANN inputs 

and outputs is carried out with the BP algorithm (Masters 1993; Haykin 1999). The weights 

are different in the hidden and output layers and their values can be changed during the 
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process of network training through an assigned specific error-correction learning rule. Once 

the training is done, testing and the validation stage began by using the optimum values found 

for the number of neurons in the input layer and hidden layer.  

The whole rainfall and runoff data set are divided into three sets, 70% and 15% of the data 

are used to train and test the network, the rest 15% of the data are used to validate the 

network performance.  

To prevent the networks from overtraining and to enhance the generalization capability of 

networks, the training termination criteria used testing techniques to stop the training when 

the testing error began to increase. The number of maximum training epochs is set to 1,000 

and the training is terminated when there is no further improvement in testing after 100 

epochs.  The daily data from January 2000 to April 2009 are considered for the training, 

testing and validation of the model and data of each part are selected randomly. The ANN 

models are trained by using the automated neural networks function of “Statistica” software, 

developed by “Statsoft”.  The models developed for daily and monthly data of the five sub-

basins are presented in Tables 6.1 and 6.2 respectively.  

Table 6.1: ANN-MLP for Daily Rainfall generated runoff modeling 

Subbasin Input Network 

Architecture 

Kantamal Runofft-1, Runofft-2 ,Runofft-3 , Rainfallt,Rainfallt-1, 

Rainfallt-2 

6-10-1 

Kesinga Runofft-1, Rainfallt,Rainfallt-1 3-5-1 

Tikarpada Runofft-1, Rainfallt,Rainfallt-1, Rainfallt-2, Rainfallt-3, 

Rainfallt-4, Rainfallt-5 

7-12-1 

Naraj Runofft-1, Runofft-2 ,Runofft-3 , Runofft-4 , 

Rainfallt,Rainfallt-1, Rainfallt-2, Rainfallt-3 

8-9-1 

Salebhatta Runofft-1, Runofft-2 ,Runofft-3 , Rainfallt, 4-5-1 

Sundargarh Runofft-1, Rainfallt,Rainfallt-1 3-3-1 
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Table 6.2: ANN-MLP for Monthly Rainfall generated runoff modeling 

Subbasin Input Network 

Architecture 

Kantamal Runofft-1, Runofft-2 , Rainfallt,Rainfallt-1 4-9-1 

Kesinga Runofft-1, Runofft-2 , Rainfallt,Rainfallt-1 4-10-1 

Tikarpada Runofft-1, Runofft-2 , Runofft-11,Rainfallt,Rainfallt-1 5-9-1 

Naraj Runofft-1, Runofft-2 , Rainfallt,Rainfallt-1 4-5-1 

Salebhatta Runofft-1, Rainfallt,Rainfallt-1 3-3-1 

Sundargarh Runofft-1, Runofft-12 ,Rainfallt,Rainfallt-1 4-5-1 

 

6.3 EVALUATION OF DIFFERENT MODELS 

6.3.1 SCS-CN Model: NEH  

Figures 6.4 and 6.5 represent the land use/land cover map and the soil map of the study area. 

And tables 6.3 and 6.4 show the land use and land cover classification statistics and the soil 

classification statistics of the study area. 

 

Figure 6.4:  Land Use/Land Cover Map of Study Area 
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Figure 6.5:  Soil Map of Study Area 

 

Table 6.3: Land Use/Land Cover Classification Statistics of Study Area 

LU/LC 

Class 

TE

F 

TSE

F 

TMD

F 

TDD

F 

DF TF IIA IA RA W

B 

BL S 

Percenta

ge 

0.53 4.61 22.84 11.47 1.5

4 

5.5

5 

23.1

6 

21.8

0 

6.6

2 

1.1

8 

0.4

0 

0.3

2 

 

Table 6.4:  Soil Classification Statistics of Study Area 

Soil Orthic 

Acrisols 

Lithosols Ferric 

Luvisols 

Chromic 

Luvisols 

Eutric 

Nitosols 

Chromic 

Vertisols 

Water 

Bodies 

Texture 

Class 

Sandy 

Clay 

Loam 

Sandy 

Clay 

Loam 

Sandy 

Loam 

Sandy 

Clay 

Loam 

Sandy 

Clay 

Loam 

Clay  

HSG C C A C C D  

Percentage 0.33 0.85 38.05 18.34 27.76 14.25 0.43 

 

In the present study, the land use and soil coverage were merged using ARC-GIS software 

and all the polygons with particular land uses and a hydrologic soil group were selected at a 

time for assigning CN for AMC II condition. Thus, the generated CN coverage involves 
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different polygons with different CN values for AMC II condition. Then the generated CN 

coverage for AMC II condition was intersected with watershed grid for determination of 

average CN for AMC II condition. And finally average CN for AMC I and AMC III were 

computed using the equations (6.8) and (6.9) respectively. The CN was estimated by defining 

each and every hydrologic soil-land cover complex in the sub-basin, and then weighting to 

get the sub-basin average. Details of the CN values for different sub-basins are given in Table 

6.5. 

Table 6.5: CN of Sub-basins of the Study Area 

 CN Corresponding to 

Subbasin AMC II AMC I AMC III 

Sundargarh 57.04 36.79 75.67 

Salebhatta 70.59 51.28 84.90 

Kesinga 72.42 53.60 85.98 

Kantamal 69.82 50.79 84.21 

Tikarpada 72.83 54.70 86.06 

 

Using the CN from table 6.5, the potential retention S was calculated using equation (6.5) and 

then putting the calculated S value in equation (6.4), daily and monthly direct runoff were 

computed. Figure 6.6 shows daily simulation performance for the five sub-basins in terms of 

scatter plot. It can be observed that the computed runoff did not match well with the observed 

runoff. Figure 6.7 shows simulation performance for the five sub-basins in terms of scatter 

plot. Here it can be observed that the computed runoff matched better with the observed 

runoff.  
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Figure 6.6 Daily Simulation Performances of Original SCS-CN Method 
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Figure 6.7 Monthly Simulation Performances of Original SCS-CN Method 

6.3.2 Mishra-Singh (MS) Model 

The original SCS-CN equation modified and substituted by equations (6.13) and (6.14) are 

used in the study area for all the sub-basin. For some reason, the results obtained are not very 

promising for daily runoff simulations. Figure 6.8 illustrate the results for daily simulation. 

The model is over estimating the runoff in most of the cases, which is not suitable for 

planning purpose. Further, the model is not able to estimate the runoff on monthly basis due 

to consideration of P5 (5-day) cumulative rainfall for the analysis. 
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Figure 6.8 Daily Simulation Performances of Mishra-Singh Model 

6.3.3 Michel Model  

The Michel model estimates runoff using equations (6.21)-(6.26). The results obtained using 

Michel model for daily runoff is shown in Figure 6.9. In this case also, the results obtained 

are not very promising for daily runoff simulations. Further, the model is not able to estimate 

the runoff on monthly basis due to consideration of P5 (5-day) cumulative rainfall for the 

analysis. 
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Figure 6.9 Daily Simulation Performances of Michel Model 

6.3.4 Sahu Model  

The Sahu model estimates runoff using equations (6.27)-(6.31). The results obtained using 

Sahu model for daily runoff is shown in Figure 6.10. In this case also, the results obtained are 

very poor in some of the sub-basins for daily runoff simulations. Further, the model is not 

able to estimate the runoff on monthly basis due to consideration of P5 (5-day) cumulative 

rainfall for the analysis. 
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Figure 6.10 Daily Simulation Performances of Sahu Model 

6.3.5 Frequency Distribution based Probability of Exceedance (FDM-PE) Model 

The FDM-PE estimates runoff are obtained for each sub-basin by arranging rainfall data in 

descending order (according to probability of exceedance) and then estimating probabilistic 

CN (PCN) values using equation (6.10).  Figure 6.11 illustrates the procedure for estimating 

PCN for Sundargarhl sub-basin. The equation can also be derived to estimate CN from 

known probability of exceedance as shown in Figure 6.11. Using PCN, the results obtained 

are very promising. As, this is a new concept, the results need to be verified further for other 

river basins too. The FDM-PE is able to estimate the runoff based on daily as well monthly 

rainfall data (Figure 6.12 and 6.13). 



123 

 

 

 
 

Figure 6.11: Probabilistic CN estimation using FDM-PE Model for Sundargarh 

Subbasin 
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Figure 6.12 Daily Simulation Performances of FDM-PE Model  

 

 

Figure 6.13 Monthly Simulation Performances of FDM-PE Model 
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6.3.6 Modified Median based- SCS (MM-SCS) Model 

For gauged watersheds where both rainfall and runoff volumes are known the Curve Number 

values can be determined using equations (6.5). The observed rainfall and runoff data 

obtained on daily basis are used in equation (6.10) to obtain the values of S and values of Q 

are obtained using the equation (6.4).  

Thereafter, the median CN from the sorted (in descending order) CN series is considered as 

AMC II (normal condition). Again, the median CNs of the sorted CN series corresponding to 

lower half and higher half are considered as AMC I (dry condition) and AMC III (wet 

condition) respectively. The results obtained using this method provided best results in 

comparison to other methods (Figures 6.14 and 6.15). 

In fact, no equations and manipulations are required in this method to obtain AMC I and 

AMC III. The method is very simple and straight forward. Of, course, for un-gauged 

catchments, the method may not be applicable directly and CN values for AMC I, AMC II 

and AMC III may not be estimated due to non-availability of observed rainfall and runoff 

estimates. However, it can be developed using regional modeling and analysis.  
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Figure 6.14 Daily Simulation Performances of MM-SCS Model  
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Figure 6.15 Monthly Simulation Performances of MM-SCS Model 

Daily simulation performances of the methods described in sections 6.3.1 to 6.3.6 for all the 

stations are given in the appendix II.  And monthly simulation performances of the methods 

described in sections 6.3.1, 6.3.5 and 6.3.6 for all the stations are also given in the appendix 

II. 

6.3.7  Artificial Neural Network based Multi Layer Perceptron (ANN-MLP) Model 

The MLP architecture, a feed forward-type NN, is selected in this study because it usually 

has good model performance, and also because it is the most frequently used configuration in 

hydrology. The ANN networks consisting of an input layer, one single hidden layer 

composed of 3-12 nodes, and one output layer consisting of 1 node denoting the predicted 
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runoff. Table 6.1 and 6.2 illustrate the AAN-MLP model structure in the present case for 

simulating daily and monthly rainfall data having different input variables. Figure 6.16 and 

6.17 illustrates the results for daily and monthly simulation performances at validation stage, 

which are found to be inferior then MM-SCS method. However, the results are very 

promising and may be used for rainfall runoff analysis. 

 

 

Figure 6.16 Daily Simulation Performances of ANN-MLP Model  
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Figure 6.17 Monthly Simulation Performances of ANN-MLP Model  

 

6.4  CONCLUSION 

Two new approaches based on original SCS-CN method such as Frequency Distribution 

based Probability of Exceedance (FDM-PE) Model and Modified Median based- SCS (MM-

SCS) Model were developed for simulation of daily and monthly runoff for five subbasins of 

the basin.MLP-ANN models were also developed for daily and monthly runoff simulation of 

the the five subbasins. 
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CHAPTER 7 

DERIVATION OF CURVE NUMBERS FROM DAILY TO  

MONTHLY RAINFALL-RUNOFF DATA 

 

7.1 INTRODUCTION 

In the previous chapter, rainfall generated runoff has been estimated using seven different 

methods for daily and monthly rainfall-runoff data. Out of all the methods, MM-SCS model 

provided best results with the observed values of daily and monthly rainfall data. The other 

models FDM-PE and ANN-MLP proposed in the present work also provided fairly good 

results.  

It is understood that, the CN value for estimating runoff potential for planning purposes at 

watershed, sub-basin and basin level is often a policy decision. The available approaches 

utilize either daily, weekly, half-monthly or monthly data or average physical characteristics 

of watersheds. Many researchers have demonstrated that the key parameter CN has variable 

components in a watershed (Hjelmfelt et al. 1982; McCuen 2002), and it varies with rainfall. 

The CN varies monthly, seasonally and annually. In a similar manner CN varies at daily, 

weekly and half-monthly basis too. It is, therefore, essential to carry out the required analysis 

to establish CN for the policy makers and decision makers. 

7.2 DERIVATION OF CURVE NUMBERS FROM DAILY TO MONTHLY 

RAINFALL-RUNOFF DATA 

Daily rainfall and runoff data for the period of ten years 2000-2009 has been used in the 

present analysis for the basins and sub-basins of Mahanadi river system lying in Odisha 

(Figure 7.1).  
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Figure 7.1:  Time Series Plot of Daily Rainfall-Runoff of Sub-basins 

The daily rainfall and runoff data for the stations and sub-basins are assumed to be 

represented by a linear relationship. This assumption means that the rainfall contributes fully 

to the net runoff (= rainfall excess) at the outlet of the considered basin in the time duration 

equal to the time of concentration (Tc). As a result, the routing of the rainfall-excess of the 

duration equal to or more than Tc for computation of actual (shape of) runoff hydrograph is 

not required.  This basic premise also ignores the base flow contribution to the outlet, 

specifically in the non-monsoon season which refers to the period of no or scanty rainfall, and 

can lead runoff factor (C = Q/P) greater than 1, an unrealistic state assuming 1-day or more 

than 1-day routing depending on Tc value. Therefore, CN derivations from daily rainfall-
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runoff events are considered for only those days when computed values of C are less than or 

equal to 1. The same concept is applied for all the other11 time spans for derivation of CN. 

From previous studies, it has been observed that the monthly CN is much lower than daily 

CN and this reduction is subjected to runoff coefficient(C=Q/P). As runoff coefficient 

gradually decreases from daily time scale to monthly time scale due to increase in base flow 

contribution, the CN also gradually decreases from daily time span to monthly time span. It is 

found essential to estimate CN for different durations between 1-day to 30-day which is 

necessary for various purposes such as agriculture, flood control, drought mitigation etc. 

Daily rainfall and runoff data are summed up to get rainfall-runoff series for the 11 time 

spans i.e. 2-days, 3-days, 4-days, 5-days, 6-days, 7-days, 10-days, 15-days, 20-days, 25-days 

and 30-days time spans to derive Curve numbers for each n-day period. The CN has been 

derived using equations 7.1 and 7.2, also used in previous chapter is given below: 

       (7.1) 

        (7.2) 

The CN derived from equations (7.1) and (7.2), are used in MM-SCS to obtain CN for AMC 

I, AMC II and AMC III.  A scatter plot of the curve numbers varying with storm duration 

from 1-day to 30-day for the five sub-basins is shown in Figure 7.2.  
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Figure 7.2:  CN Variations with Rainfall Duration for Sub-basins 

Through regression analysis the smooth curves are fitted and second order polynomial 

equations are derived for AMC I, AMC II and AMC III conditions. The derived second order 

polynomial equations for the all the five sub-basins having AMC I, AMC II and AMC III 

conditions at all five sub-basins of Mahanadi river system lying in Odisha are shown in 

equations (7.3) to (7.20).  

Kantamal Sub-basin 

    AMC I   (7.3) 

    AMC II  (7.4) 

                                           AMC III  (7.5)  

Kesinga Sub-basin 

    AMC I   (7.6) 

    AMC II  (7.7) 

                                           AMC III  (7.8)  
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Tikarpara Sub-basin 

    AMC I   (7.9) 

    AMC II  (7.10) 

                                           AMC III  (7.11)  

Naraj Sub-basin 

    AMC I   (7.12) 

    AMC II  (7.13) 

                                           AMC III  (7.14)  

Salebhata Sub-basin 

    AMC I   (7.15) 

    AMC II  (7.16) 

                                           AMC III  (7.17)  

Sundargarh Sub-basin 

    AMC I   (7.18) 

    AMC II  (7.19) 

                                           AMC III  (7.20)  

In these equations x is rainfall duration and y is curve number.  

The derived equations obtaining curve numbers (CN) values for any given rainfall duration 

between 1-day to 30-days are tested for their applicability and CN values are re-estimated for 

different cumulative rainfall durations.  Table 7.1 gives coefficient of determination and Nash 

and Sutcliffe simulation efficiency between observed and simulated CN values. The high 

values of R2 and ENS   for all the sub-basins having AMC I, AMC II and AMC III suggest 

suitability and applicability of derived SCS-CN equations. 
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Table 7.1:  Performance Efficiency of Developed Equation for Sub-basins 

Subbasin Coefficient of Determination(R2) Nash-Suttcliffe Simulation 

Efficiency (ENS) 

 Wet 

Condition 

Normal 

Condition 

Dry 

Condition 

Wet 

Condition 

Normal 

Condition 

Dry 

Condition 

Kantamal 0.996 0.995 0.978 0.994 0.995 0.977 

Kesinga 0.955 0.998 0.978 0.938 0.998 0.978 

Tikarpada 0.900 0.987 0.974 0.896 0.986 0.973 

Naraj 0.994 0.981 0.979 0.992 0.977 0.976 

Salebhatta 0.940 0.985 0.952 0.938 0.985 0.950 

Sundargarh 0.995 0.980 0.983 0.994 0.979 0.983 

 

Figure 7.3 shows simulation performance of the developed equations using monthly rainfall 

data for all the sub-basins as scatter plots. An independent dataset has been used in the 

validation stage, which was not used in the equation development stage. Even then, such high 

coefficient of determination values indicates high simulation performance of the developed 

equations. Table 7.2 gives the validation performance of the developed equations in terms of 

mean, standard deviation, coefficient of determination and model efficiency. It has been 

observed that for all the sub-basins mean and standard deviation of the simulated runoff are 

close to those of the observed runoff and the R2 and ENS values are also considerably high.       
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Figure 7.3:  Validation of the derived CN using monthly data  

 

Table 7.2: Error statistics of the derived CN equations  

 

Subbasin Mean Standard Deviation R2 ENS 

Observed 

Runoff 

Simulated 

Runoff 

Observed 

Runoff 

Simulated 

Runoff 

Kantamal 63.828 33.911 100.920 79.133 0.815 0.591 

Kesinga 74.112 105.779 109.249 155.079 0.705 0.659 

Tikarpada 123.784 122.382 106.794 118.641 0.755 0.754 

Salebhatta 34.031 26.270 64.966 50.220 0.832 0.670 

Sundargarh 33.818 43.881 79.141 83.644 0.833 0.820 

 

Similarly the developed equations were validated using daily rainfall data of the 14 stations 

of all the sub-basins for the year 2009 (Figure 7.4). The data which was not considered for 

CN derivation were used to test the validity of the model. Table 7.3 gives the simulation 

performance of the developed equations in terms of mean, standard deviation, coefficient of 

determination and model efficiency. It has been observed that for all the sub-basins mean and 

standard deviation of the simulated runoff are not so close to those of the observed runoff and 

the R2 and ENS values are also not considerably high.       
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Figure 7.4: Daily Simulation Performance of Developed Equation 

 

Table 7.3: Daily Simulation Performance of Developed Equation for Sub-basins 

 

Subbasin Mean Standard Deviation R2 ENS 

Observed 

Runoff 

Simulated 

Runoff 

Observed 

Runoff 

Simulated 

Runoff 

Kantamal 3.487 6.168 6.453 14.286 0.582 0.469 

Kesinga 4.113 10.318 8.113 21.613 0.477 0.349 

Tikarpada 8.505 13.026 13.272 21.566 0.694 0.619 

Salebhatta 5.327 12.547 12.360 21.108 0.619 0.517 

 

7.3  CONCLUSION 

Daily to monthly curve numbers were derived from daily to monthly rainfall-runoff data and 

equation were developed for wet, normal and dry conditions for four subbasins of the basins. 

Daily runoff was simulated using estimated daily curve number and efficiencies upto 0.69 

were achieved. 
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CHAPTER 8 

DEVELOPMENT OF RAINFALL FORECASTING MODELS  

8.1  INTRODUCTION 

In India, monthly rainfall data are easily available from different resources. These monthly 

data are very useful for the planning, development and management of available water 

resources. In previous chapters mean monthly rainfall over different sub-basins are obtained 

using Ordinary Kriging method of spatial interpolation and monthly runoff are derived from 

MM-SCS Model. In this context, if monthly rainfall forecasting models are developed, the 

monthly runoff estimates can be easily obtained, which is useful for planners and policy 

makers to make best use of available water resources.  

8.2 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL 

Typically various statistical tools are applied to auto-correlated time series of data for 

modeling and predicting future values in the monthly rainfall series. In general, 

autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA) models are applied to time series of 

rainfall data. A model which depends only on previous outputs of a system to predict an 

output is called an autoregressive (AR) model. While a model which depends only on inputs 

to the system to predict an output is called a moving average (MA) model.  The model 

derived from autoregressive and moving average processes may be a mixture of these two 

and of higher order than one as well, which is termed as a stationary ARMA model with its 

random shocks independent and normally distributed with zero mean and constant variance. 

An ARMA model can be noted as ARMA (p,q) where p is the number of AR parameters and 
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q is the number of MA parameters. It models only stationary dataset i.e. the dataset for which 

residuals are independent for all time period. 

It is understood that all hydrologic datasets are not stationary in real life. Some datasets 

follow some sort of persistence or autocorrelation which is inherently present in it and cannot 

be removed. Some sorts of trend and cycle are also associated with such datasets. Modeling 

of non-stationary datasets with ARMA model looks difficult. Non-stationary datasets can be 

modeled through autoregressive and moving average processes through differentiation i.e. the 

dataset is differentiated until it becomes stationary. For real life data required differentiation 

is at maximum of the order of three to make it stationary.  

ARIMA model is an extension of ARMA model in the sense that including autoregressive 

and moving average it has an extra part of differencing the time series. If a dataset exhibits 

long term variations such as trend, seasonality and cyclic components, differencing of dataset 

in ARIMA allows the model to deal with such long term variations. Two common processes 

of ARIMA in identifying patterns in time series data and forecasting are autoregressive and 

moving average. 

Autoregressive process: Most time series consist of elements that are serially dependent. One 

can estimate a coefficient or a set of coefficients that describe consecutive elements of the 

series from specific, time-lagged (previous) elements. Each observation of the time series is 

made up of a random error component (random shock, ξ ) and a linear combination of prior 

observations.  

Moving average process: Independent from the autoregressive process, each element in the 

series can also be affected by the past error (or random shock) which is not considered by the 
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autoregressive component. Each observation of the time series is made up of a random error 

component (random shock, ξ) and a linear combination of prior random shocks.  

The ARIMA model includes three types of parameters which are: the autoregressive 

parameters (p), the number of differencing passes (d), and moving average parameters (q). In 

the notation introduced by Box and Jenkins, models are summarized as ARIMA (p, d, q). For 

example, a model described as ARIMA (1,1,1) means it contains 1 auto regressive parameter 

and 1 moving average parameter for the time series after it is differenced once to attain 

stationary. The general form of the ARIMA model describing the current value Xt of a time 

series is: 

φ1 (B) (1-B) Xt = θ1 (B) et        (8.1) 

where φ1= Auto regressive parameter, and θ1= Moving average parameter 

Seasonal ARIMA is a generalization and extension of the ARIMA method in which a pattern 

repeats seasonally over time. In addition to the non-seasonal parameters, seasonal parameters 

for a specified lag (established in the identification phase) need to be estimated. Analogous to 

the simple ARIMA parameters, these are: seasonal autoregressive (P), seasonal differencing 

(D), and seasonal moving average parameters (Q). The seasonal lag used for the seasonal 

parameters is usually determined during the identification phase and must be explicitly 

specified. For example, a seasonal ARIMA model described as (1,1,1)(1,1,1)12 includes 1 

auto regressive parameter,1 moving average parameter,1 seasonal auto regressive parameter 

and 1 seasonal moving average parameter for the time series  after it is differenced once at 

lag 1 and differenced once at lag 12. The general form of the seasonal ARIMA model 

describing the current value Xt of a time series is: 

 

(1-φ1B)(1-α1B
12)(1-B)(1-B12) Xt = (1-θ1B)(1-γ1B

12)et    (8.2) 

where φ1=Non seasonal auto regressive parameter, α1=Seasonal auto regressive parameter 
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Xt=Current value of the time series, B=Backward shift operator BXt=Xt-1 and B12Xt=Xt-12, 

1-B=First order non seasonal difference, 1-B12=First order seasonal difference, 

θ1=Non seasonal moving average parameter, γ1=Seasonal moving average parameter, 

et =Current error term of the time series  

Four basic stages of ARIMA and seasonal ARIMA in identifying patterns in time series data 

and forecasting are model identification, parameter estimation, diagnostic checking and 

forecasting.  

At the model identification stage, number of autoregressive (p), seasonal autoregressive (P), 

moving average (q) and seasonal moving average (Q) parameters necessary to yield an 

effective model of the process are decided. The data are examined to check for the most 

appropriate class of ARIMA processes through selecting the order of the regular and seasonal 

differencing required to make the series stationary, as well as through specifying the number 

of regular and seasonal auto regressive and moving average parameters necessary to 

adequately represent the time series model. The major tools used in the identification phase 

are plots of the series, correlograms (plot of autocorrelation and partial autocorrelation verses 

lag) of autocorrelation function (ACF) and partial autocorrelation function (PACF). The ACF 

measures amount of linear dependence between observations in a time series that are 

separated by a lag k. The PACF plot helps to determine how many auto regressive terms are 

necessary to reveal seasonality of the series or to reveal trend either in the mean level or in 

the variance level of the series. 

At the parameter estimation stage, the parameters are estimated using a function 

minimization algorithm, to minimize the sums of squared residuals and to maximize the 

likelihood (probability) of the observed series, given the parameter values. To compute the 
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sums of squares (SS) of the residuals, the approximate maximum likelihood method is chosen 

as this method is the fastest and can be used for very long data sets. The maximum likelihood 

method uses the following criteria in parameter estimation: (1) The estimation procedure 

stops when the change in all parameters estimate between consecutive iterations reaches a 

minimal change of 0.001 and (2) The estimation procedure stops when the sum of squared 

residual(SSR) between consecutive iterations reaches a minimal change of 0.0001.  

At the diagnostic checking stage, the residuals from the fitted model are examined against 

adequacy. This is usually done by correlation analysis through the residual ACF plots and 

good-of-fit test by means of chi-square statistics. If the residuals are correlated, then the 

model parameters should be adjusted in the model identification stage. Otherwise the model 

is adequate to represent the time series.  

At the forecasting stage, the estimated parameters are used to calculate new values of the time 

series and confidence intervals for those predicted values. The estimation process is 

performed on transformed (differenced) data, hence before the forecasts are generated; the 

series needs to be integrated to cancel out the effect of differencing so that the forecasts are 

expressed in values compatible with the input data. This automatic integration feature is 

represented by the letter “I” in the name of the methodology (ARIMA = Auto-Regressive 

Integrated Moving Average). 

8.2.1  SARIMA Model Development  

One hundred ten years of monthly rainfall data averaged over each station of the study area 

by the ordinary Kriging method has been divided into two components: a calibration data set 

consisting of the first 90 years data (1901-1990) and a validation data set consisting of the 

remaining 20 years data (1991-2010). The calibration data set is used for identification of 
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autoregressive and moving average parameters and estimation of the identified parameters. 

However, the validation data set is used at the diagnostic stage to calculate new values of the 

series and 90% confidence intervals for those predicted values using the estimated 

parameters.  

For determining the most appropriate seasonal ARIMA model for a given variable, Box-

Jenkins (1970) methodology is applied which includes: identification of model parameters, 

estimation of model parameters and forecasting of new values of the variable. The input time 

series for ARIMA is required to be stationary and should have a constant mean, variance, and 

autocorrelation with respect to time.  

By nature, the monthly rainfall time series exhibit a yearly periodicity. By plotting the 

monthly rainfall time series, seasonality and non-stationarity can be revealed. In the present 

case also from the plot of autocorrelation verses lag of autocorrelation function (ACF), the 

appearance of a sinusoidal function with a 12-month period has been observed for the 

monthly rainfall time series data. The time series models are usually fitted to the decaying 

part of the autocorrelation function (Delleur et. al., 1978). In an ARIMA model fitted to the 

12-lag differenced series, the observation at a particular month is related to the observations 

taken during the same month of previous years. This gives rise to a multiplicative model for 

12 month seasonality, called seasonal ARIMA (p,d,q)*(P,D,Q)12model. The (p,d,q) part is the 

non-seasonal ARIMA model and the (P,D,Q)12 is the seasonal part of the ARIMA model. The 

autocorrelation functions for the 12-lag differenced series are obtained for the monthly 

rainfall series for each of the 23 stations of the basin and a significant correlation at lag 12 is 

found in all the cases.  

The ACF and PACF plots of the series show a regular pattern and confirm that the data sets 

are not stationary (Figure 8.1). The normal probability plots and histograms of the series 
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show complete departure from the expected normal value. Similar plots for other sub-basins 

are given in Appendix IV. In order to fit an ARIMA model, stationary series both in mean 

and variance is needed. For stationary of variance of the time series, a Box-Cox or power 

transformation (α=0.5) is applied to it.  The series is differenced seasonally at lag 12 due to 

the seasonality present in it. After differencing again plots the ACF and PACF are checked 

for stationary. The ACF and PACF plots of the differenced series do not show any regular 

pattern, which means that the series is stationary after having seasonal differencing. 

Therefore the (p,0,q)(P,1,Q)12 ARIMA model could be identified for the seasonally 

differenced series.  

Next the number of p, q, P and Q parameters are estimated for the (p,0,q)(P,1,Q)12 model. 

The ACF and PACF plots of the (p,0,q)(P,1,Q)12 model with first order seasonal differencing  

suggest that at initial stage our tentative model should be  (1,0,1)(1,1,1)12.Again the ACF and 

PACF plots of the residuals resulted from fitting the (1,0,1)(1,1,1)12 model showed no regular 

pattern and confirmed that the model is an appropriate representation of the monthly 

observed data sets and could be used for rainfall forecasting.  

Autocorrelation Function(Sundargarh Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.380 .0282
 29 -.389 .0282
 28 -.376 .0282
 27 -.237 .0282
 26 +.148 .0283
 25 +.606 .0283
 24 +.857 .0283
 23 +.622 .0283
 22 +.144 .0283
 21 -.231 .0283
 20 -.374 .0283
 19 -.390 .0283
 18 -.381 .0283
 17 -.394 .0284
 16 -.378 .0284
 15 -.237 .0284
 14 +.146 .0284
 13 +.621 .0284
 12 +.861 .0284
 11 +.620 .0284
 10 +.144 .0284
  9 -.235 .0285
  8 -.376 .0285
  7 -.391 .0285
  6 -.383 .0285
  5 -.390 .0285
  4 -.378 .0285
  3 -.240 .0285
  2 +.148 .0285
  1 +.622 .0285
Lag Corr. S.E.

0
7055. 0.000
6874. 0.000
6685. 0.000
6507. 0.000
6437. 0.000
6410. 0.000
5950. 0.000
5031. 0.000
4548. 0.000
4522. 0.000
4456. 0.000
4282. 0.000
4093. 0.000
3912. 0.000
3719. 0.000
3542. 0.000
3472. 0.000
3446. 0.000
2968. 0.000
2049. 0.000
1573. 0.000
1547. 0.000
1479. 0.000
1305. 0.000
1116. 0.000
934.8 0.000
747.4 0.000
571.7 0.000
501.0 0.000
474.1 0.000
  Q p

 

Partial Autocorrelation Function(Sundargarh Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.035 .0286
 29 -.006 .0286
 28 +.004 .0286
 27 -.054 .0286
 26 -.014 .0286
 25 -.028 .0286
 24 +.238 .0286
 23 +.135 .0286
 22 -.055 .0286
 21 -.109 .0286
 20 -.045 .0286
 19 -.042 .0286
 18 -.054 .0286
 17 -.064 .0286
 16 -.013 .0286
 15 -.078 .0286
 14 -.070 .0286
 13 +.113 .0286
 12 +.444 .0286
 11 +.344 .0286
 10 -.027 .0286
  9 -.382 .0286
  8 -.393 .0286
  7 -.316 .0286
  6 -.281 .0286
  5 -.192 .0286
  4 -.033 .0286
  3 -.242 .0286
  2 -.388 .0286
  1 +.622 .0286
Lag Corr. S.E.
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Histogram(Sundargarh Subbasin)
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Normal Probability Plot(Sundargarh Subbasin)
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Figure 8.1: Time Series Plots of Monthly Rainfall Data of Sundargarh Sub-basin 

Seasonal ARIMA (P,D,Q)12 models resulted from differencing operations are useful for 

forecasting purposes.  Therefore in order to analyze time series for mean monthly rainfall in 

the three sub-basins, the linear stochastic seasonal ARIMA models are used. Based on cross 

correlation, ACF and PACF, 9 different lumped data seasonal ARIMA models with various 

input combinations have been formulated to model the monthly rainfall and are evaluated by 

comparing the simulated rainfall with the hydrologic records. In all models box-cox 

transformed input time series are used. A non-seasonal lag of 1 and a seasonal lag of 12 are 

used for all models. Besides both non-differenced (d=0, D=0) and differenced (d=1, D=1) 

inputs are used in both the non-seasonal and seasonal parts of the models as listed out in 

Table 8.1. 

Table 8.2: Seasonal ARIMA Models with different no. of parameter 

Sl. 

No. 

ARIMA Model No. of 

Parameter 

Sl. No. ARIMA Model No. of 

Parameter 

1 (1,0,1)(1,1,1)12 4 6 (1,0,0)(1,1,0)12 2 

2 (1,0,1)(0,1,1)12 3 7 (0,0,1)(1,1,1)12 3 

3 (1,0,1)(1,1,0)12 3 8 (0,0,1)(0,1,1)12 2 

4 (1,0,0)(1,1,1)12 3 9 (0,0,1)(1,1,0)12 2 

5 (1,0,0)(0,1,1)12 2    
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The above mentioned 9 alternative seasonal ARIMA models are fitted to the time series of 

monthly rainfall data of 90 years (1901-1990) at each of 23 stations of the study area to select 

the best fitted one that can describe the inter-monthly variation of rainfall at that station. In 

ARIMA modeling we need to minimize the sum squared of residuals (SSR) between the 

actual and estimated values to represent the data most appropriately. But it is important to 

note that, the best ARIMA model should have the least number of parameters along with the 

minimum SSR. Therefore, in the stage of identifying the number of auto regressive and 

moving average parameters, the (p,0,q)(P,1,Q)12 ARIMA model with least number of 

parameters is obtained. To accomplish the task, nine different (p,0,q)(P,1,Q)12 ARIMA 

models with nine combinations of these four parameters are tested to find out the most 

appropriate model. 

8.2.2 Model Performance Evaluation Criteria 

8.2.2.1 Diagnostic checks 

After different models has been fitted to the data, it is important to perform diagnostic checks 

to test the adequacy of each model. One way to accomplish this is through the analysis of 

residuals. It has been found that it is effective to measure the overall adequacy of the chosen 

model by examining a quantity Q known as Ljung-Box statistic (modified Box-Pierce 

statistic), (Yurekli et. al.; 2005, Sallehuddin et. al.; 2007, Mauludiyanto et. al.; 2010, Martins 

et. al.; 2011, Landeras et. al.; 2009) which is a function of autocorrelations of residuals and 

its approximate distribution is Chi-square. The diagnostic check stage determines whether 

residuals are independent or not. The residuals independence can be determined by obtaining 

the residual autocorrelation function (RACF) using the Q(r) statistic suggested by Ljung and 

Box (1978).A test of this hypothesis can be done for the model adequacy by choosing a level 
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of significance and then comparing the value of the calculated Χ2 to the actual Χ2 value from 

the table i.e. the Q(r) statistic is compared to critical values from Chi-square distribution. If 

the calculated value is less than the actual Χ2 value, then the model is adequate, otherwise not 

i.e. if the model is correctly specified, residuals should be uncorrelated and Q(r) should be 

small (probability should be large). A significant Q(r) value indicates that the chosen model 

does not fit well. The Q(r) statistic calculated by the Ljung-Box statistic which can be 

expressed as  

                                                                                       (8.3) 

where n is the number of observations in the series and r (j) is the estimated correlation at lag 

j. Therefore, to obtain the best model, diagnostic checking of non-significance of 

autocorrelations of residuals via Ljung-Box test (modified Box-Pierce test) (Q-test based on 

Chi-square statistics) is performed. 

8.2.2.2 Akaike Information Criterion 

The criterion for selecting the most appropriate model in time series analysis is that several 

models appropriate for representing a given set of data may be used. Sometimes, the choice is 

easy, but other times, it may be much difficult. Therefore, numerous criteria are introduced 

for comparing models that are different from methods of model recognition. Some of them 

are based on statistics summarized from residuals that are computed from a fitted model. In 

the present study Akaike Information Criterion (AIC) is considered. AIC is an information 

criterion for model selection based on the statistical likelihood function.AIC can be computed 

from least square statistics, using the following expression  
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                  (8.4)  

where SSR is the sum squared of residuals, n is the sample size and k is the number of 

parameters. The best model in a set can be the one which has the minimum AIC value.  

8.2.2.3 Error analysis 

There is no single performance criterion available to select the best model. Rather many 

performance criteria are used to select the best one. Each performance criteria indicates a 

particular capability of the model and hence various measures are used. But all the 

performance criteria are estimated based on the observed and predicted values. In the present 

study, to identify the best fitted model, the predicted values using the 9 different seasonal 

ARIMA models are compared to the observed data of the validation period (1991-2010). 

In the present work, to evaluate the performance of the best ARIMA model at each station, 

two different measures are used to select the best model: coefficient of determination (R2) 

and model efficiency (ENS) which can be expressed as given below in the following 

equations. 

                                                                                                      (8.5) 

                                                                                                             (8.6) 

where  is the observed rainfall at time t,  is the forecasted rainfall at time t,  and   

and  are mean values of observed and forecasted rainfall series. The ENS is the difference, 

on average, of the observed and predicted data and offers a general picture of the errors 

involved in prediction. R2 gives impartial result as it takes mean values of both the observed 

and predicted data.  
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8.3 ARTIFICIAL NEURAL NETWORK (ANN) MODEL 

Artificial Neural network (ANN) is a very sophisticated modeling technique capable of 

modeling extremely complex functions. Although we do need to have some heuristic 

knowledge of how to select and prepare data, how to select the appropriate neural network, 

and how to interpret the results, the level of knowledge needed to successfully apply neural 

networks is much lower than those needed in most traditional statistical tools and techniques. 

8.3.1 Model Development 

For the present study 110 years (1901-2010) of monthly rainfall data of 23 stations of the 

study area are used to train, test and validate a neural network and for this purpose a 

multilayer perceptron (MLP), has been used. The MLP networks are quite compact, execute 

quickly once trained but require iterative training. Before modeling of the data, it is 

preprocessed by limiting the numerical range of the input and target variables (rainfall values 

at different time steps), known as scaling process using linear transformations such that the 

original minimum and maximum of the target variable is mapped to the range (0, 1). The 

multilayer perceptron (MLP) neural networks have been generated using the sum of squares 

error function. The neurons of a network have activation functions that transform the 

incoming signals from the neurons of the previous layer using a mathematical function. The 

choice of the activation function, i.e., the precise mathematical function, is crucial in building 

a neural network model since it is directly related to the performance of the model. Here 

hyperbolic tangent (tanh ) and identity functions for the hidden and output neurons 

respectively have been chosen as activation function for MLP networks. The hyperbolic 

tangent (tanh) is a symmetric s-shaped (sigmoid) function, whose output lies in the range (-1, 
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+1). With the identity function, the activation of the neurons is passed on directly as the 

output of the neurons and the output lies in the range (-∞, +∞). 

The process of adjusting the weights connecting the inputs to the hidden neurons and the 

hidden neurons to the output neurons so that the network can approximate the underlying 

functional relationship between the inputs and the targets is known as training. Neural 

networks are highly nonlinear tools that are usually trained using iterative training 

algorithms. MLP networks can be trained with various training algorithms, including 

Gradient Descent, Conjugate Gradient and BFGS (Broyden- Fletcher-Goldfarb-Shanno) 

Quasi-Newton Back Propagation. To choose the best training algorithm, MLP networks are 

developed with these three training algorithms using the 1st-1080th data of the original series. 

It has been observed that with BFGS the coefficient of determination (R2) values of the MLP 

networks during the validation phase is highest and therefore the BFGS is the best one being 

selected as the training algorithm in this study. BFGS is much more efficient method than 

steepest descent method. It is a second derivative and line search method. Therefore this 

algorithm requires a smaller number of iterations to train a neural network given its fast 

convergence rate and more intelligent search criterion. 

The performance of neural network is measured by how well it can predict unseen data not 

included in training data set. This process is known as generalization and neural network has 

the remarkable generalization ability. During training neural networks have tendency of over-

fitting the training data accompanied by poor generalization. To combat the problem of over-

fitting and tackling the poor generalization issue, testing data set is used which is never used 

for training. Instead, it is used as a mean of validating how well a network makes progress in 

modeling the input-target relationship as training continues. That means a neural network is 

optimized using a training data set. The testing data set is used to halt training to mitigate 
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over-fitting. The process of halting neural network training to prevent over-fitting and 

improving the generalization ability is known as early stopping. Just like the testing data set, 

a validation data set which is never used for training the neural network but is used to check 

the generalization ability of the neural network after the training is over. If the performance 

of the network is found to be consistently good on both the testing and validation data set, 

then it is reasonable to assume that the network generalizes well on unseen data. In this study 

the 110 years of mean monthly rainfall sample is divided sequentially into three parts: 

training sample, test sample which are two parts of calibration data set and the third part is 

validation data set. The train sample size, test sample size and validation sample size are from 

1901-1990 (1080 observations), 1991-2002 (144 observations) and 2003-2010 (96 

observations) respectively of the total sample size. The test sample is taken to prevent the 

network from over-fitting during training process and the validation sample is taken to 

evaluate the generalization ability of the trained network.  

8.4  EVALUATION OF SARIMA MODEL 

In the present study there are 1320 number of observations, out of which 1080 number of 

observations (1901-1990) are used for model calibration and the rest 240 number of 

observations (1991-2010) are used at the validation stage. After computing the SSR values, 

the AIC values for all the nine models are computed using the equation (8.4) with the number 

of parameters as mentioned in Table 8.1. The best model for each station is selected based on 

minimum AIC value. On the basis of the AIC values, (0,0,1)1(0,1,1)12  and (1,0,0)1(0,1,1)12  

models provides best results in comparison to other models. The ACF and PACF plots of the 

residuals resulted from the (1,0,0)(0,1,1)12 and (0,0,1)1(0,1,1)12 models do not show any 

regular pattern and confirm that the model is adequate to represent observed data and could 

be used to forecast the rainfall data. Summary of the best fitted SARIMA model for all the 23 
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stations is given in Appendix IV. Table 8.2 shows best fitted model architecture of each sub-

basin along with their performance in terms of correlation coefficient in both calibration and 

validation stages. 

Table 8.2: Best Fitted Seasonal ARIMA Model of Sub-basins 

 Non-seasonal Differencing=0,Non-seasonal Lag=1, Seasonal 

Differencing=1,Seasonal Lag=12 

Subbasin Model Architecture Calibration 

Performance 

Validation 

Performance 

Correlation Coefficient (R) 

Sundargarh (0,0,1)1(0,1,1)12 1.000 0.923 

Salebhatta (1,0,0)1(0,1,1)12 1.000 0.808 

Kesinga (1,0,0)1(0,1,1)12 1.000 0.852 

Kantamal (1,0,0)1(0,1,1)12 1.000 0.836 

Tikarpada (0,0,1)1(0,1,1)12 1.000 0.850 

In addition, we measured the goodness-of-fit of the (1,0,0)(0,1,1)12 model by means of a 

quantity Q known as Ljung-Box statistic using equation (8.3), which is a function of 

autocorrelations of residuals and its approximate distribution is Chi-square. The p value for 

the autocorrelations of residuals from the (1,0,0)(0,1,1)12 and (0,0,1)1(0,1,1)12 models up to 

lag 36 is above 0.05 for all the 23 stations, which  indicates the acceptance of the null 

hypothesis of model adequacy at the 5% significance level. Therefore the set of 

autocorrelations of residuals are not significant. Finally, this concludes that the 

(1,0,0)(0,1,1)12 and (0,0,1)1(0,1,1)12 ARIMA models are adequate to represent our data and 

could be used to forecast the upcoming rainfall data. 

The coefficient of determination (R2) is obtained from scatter plot of observed and simulated 

monthly rainfall for the validation data set using the best fitted seasonal ARIMA model for 

23 rain gauge stations and it is found that that the coefficient of determination (R2) is 
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satisfactory for all the stations. High value of R2 reveals that the best fitted seasonal ARIMA 

model for each station has very well described its inter-monthly variation of rainfall. 

The model efficiency (ENS) is obtained for the validation data set using the best fitted 

seasonal ARIMA model  for the 23 stations of Mahanadi river basin and it is found  that the 

model efficiency (ENS) of seasonal ARIMA for all the 23 stations is satisfactory. A model 

efficiency of ≥ 0.5 indicates acceptable performance. Therefore the best fitted seasonal 

ARIMA has very good ability to model and forecast the monthly rainfall series of the 23 

stations. 

After selecting (1,0,0)(0,1,1)12 and (0,0,1)1(0,1,1)12 as the best ARIMA models, next task is to 

estimate values of its parameters p and Q. After estimating the parameters p and Q, rainfall 

values are computed and compared with the actual values. From comparison between the 

observed values and the ones resulted from the best fitted ARIMA models of each sub-basin 

using the estimated parameters, for the period between 2003 and 2010 of the validation stage, 

it is observed that the model is good enough to forecast rainfall, which may be used for 

proper utilization of the available water resources in future in Mahanadi river basin and sub-

basins lying in Odisha.  

Forecasting or predicting future is one of the main purposes for developing time series 

models. Therefore estimated values of the parameters p and Q were used to forecast 24 

upcoming rainfall data .The forecasted values resulted from the best fitted ARIMA models of 

each sub-basin were compared with the real values of the period from 2011 to 2012. Figure 

8.2 shows a comparison between the real values and the ones forecasted from the developed 

seasonal ARIMA model for the period between 2011 and 2012.The same figure shows a 

scatter plot between the observed rainfall and the forecasted rainfall for the same period. 
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From visual inspection of the graphical plot obtained for the actual series versus the predicted 

series, it was quite evident that the chosen model was good enough as the predicted series 

was very close to the actual series.  

       

       

 

Figure 8.2:  Forecasting Performance of Best Fitted SARIMA Model for Sub-basins 

8.5 EVALUATION OF ANN MODELS 

For the present study, 110 years (1901-2010) of monthly rainfall data of 23 stations of 

Mahanadi Basin are used to train, test and validate a neural network. Past studies have proven 

that a three-layer ANN model with one hidden layer is sufficient to handle any nonlinear 

data, if the number of hidden neurons is selected correctly. Therefore in this study, the three-
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layer MLP (multi-layer perceptron) network is chosen. The time series contains a natural 

cycle of 12-months period and hence the data of present month has maximum correlation 

with the data of 12 months lag. For all the 23 stations the R2 value increases fast with 

increase in the number of neurons in the input layer up to 12, but after 12 the R2 value does 

not vary considerably for validation of the MLP network. Therefore, the optimum number of 

neurons in the input layer is chosen as 12. Therefore feed-forward MLP neural networks with 

an input layer of number of neurons from 1 to 12 (with time lag from t-1 to t-12), one hidden 

layer and an output neuron (of time t) are used. That means the network predicts rainfall for 

the next time step from a series of previous twelve time steps. The choice of optimal number 

of neurons in the hidden layer depends on the problem domain and is a trial and error 

procedure but, generally, it can be related to the number of neurons in the input layer. 

Therefore networks with hidden neurons from 2 to 8 have been tried to find out optimal 

design of the MLP neural network. The optimum number of neurons in the hidden layer is 

chosen based on R2 value of the validation performance of the MLP network. Hence the best 

ANN model for each station is chosen with the numbers of neurons in the hidden layer giving 

maximum R2 during validation phase of the MLP network. Summary of the optimum number 

of hidden layer neuron for all the 23 stations is given in appendix IV. Table 8.3 shows best 

fitted ANN architecture of each sub-basin along with their performance in terms of 

correlation coefficient in both calibration and validation stages. 
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Table 8.3:  Best Fitted MLP ANN Model of Sub-basins 

 Input= Rainfallt-1, Rainfallt-2, Rainfallt-3, Rainfallt-4, Rainfallt-5, Rainfallt-6, 

Rainfallt-7, Rainfallt-8, Rainfallt-9, Rainfallt-10, Rainfallt-11, Rainfallt-12 

Subbasin Network 

Architecture 

Training 

Performance 

Testing 

Performance 

Validation 

Performance 

Correlation Coefficient 

Sundargarh 12-8-1 0.938 0.942 0.825 

Salebhatta 12-6-1 0.933 0.910 0.793 

Kesinga 12-6-1 0.900 0.886 0.792 

Kantamal 12-6-1 0.906 0.900 0.801 

Tikarpada 12-2-1 0.913 0.913 0.779 

 

Using the best fitted MLP ANN model described in the previous sections, monthly rainfall 

were predicted for the period from January 2011 to December 2012, in order to evaluate the 

forecasting performance of the developed model. To compare the forecasting performance of 

the best fitted ANN models with optimum number of hidden neurons of the MLP network, 

two error measures were introduced, the coefficient of determination (R2) and model 

efficiency (ENS) of the forecasting performance. The expressions of these two error measures 

have already been discussed in the seasonal ARIMA model section. R2 value is influenced by 

distribution of forecasted data with original data and is an unbiased interpreter of the 

forecasting performance. The monthly rainfall prediction performances of the MLP ANN 

model in terms of coefficient of determination for the forecasting (2011-2012) period is 

shown in figure 8.3 for the six sub-basins.  
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Figure 8.3: Forecasting Performance of Best Fitted MLP ANN for Sub-basins 

 

8.6 PERFORMANCE COMPARISON OF SARIMA AND ANN 

MODELS  

For comparison of performance measures of the two developed models, in terms of the 

statistical measure, model efficiency (ENS) of the sub-basins were computed. The monthly 

rainfall prediction performances of both the SARIMA and MLP ANN models in terms of 

model efficiency for the forecasting period (2010-2012) are shown in table 8.4(a) and 8.4(b) 

for the five sub-basins. It can be observed that for Kantamal, Kesinga ,Tikarpada  and 

Salebhatta sub-basins R2  and ENS values of MLP ANN are better than that of the seasonal 
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ARIMA model and for the Sundargarh sub-basins the R2  and ENS values of MLP ANN 

model is lower than the other model(though its value is relatively lower than that of other 

sub-basins) . Though the difference in R2 and ENS values for the two models is not so high, 

but the forecasting performance of MLP ANN model is considerably better. 

Table 8.4(a): ARIMA and ANN Model Performance Comparison 

Subbasin Mean Standard Deviation 

Observ

ed 

Rainfal

l 

Forecasted 

Rainfall(ARI

MA) 

Forecasted 

Rainfall(A

NN) 

Observ

ed 

Runoff 

Forecasted 

Rainfall(ARI

MA) 

Forecasted 

Rainfall(A

NN) 

Sundarga

rh 

130.77

1 

103.621 113.827 176.34

6 

139.421 131.472 

Salebhatt

a 

81.736 93.649 120.646 122.76

9 

121.346 138.055 

Kesinga 103.20

7 

99.077 113.414 137.71

6 

120.509 128.573 

Kantama

l 

103.80

1 

94.892 103.975 132.09

2 

114.668 123.124 

Tikarpad

a 

110.52

6 

94.399 108.960 147.32

5 

117.426 130.309 
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Table 8.4(b): ARIMA and ANN Model Performance Comparison 

Subbasin R2 ENS 

ARIMA ANN ARIMA ANN 

Sundargarh 0.759 0.645 0.581 0.349 

Salebhatta 0.691 0.719 0.652 0.663 

Kesinga 0.810 0.839 0.750 0.809 

Kantamal 0.840 0.858 0.780 0.836 

Tikarpada 0.818 0.858 0.682 0.816 

 

Forecasting performance of the SARIMA and MLP ANN models for the six sub-basins in 

terms of time series representation is shown in figures 8.2 and 8.3 respectively. These graphs 

clearly indicate that both the SARIMA and the MLP ANN models are unable to touch the 

peaks in demonstrating monthly rainfall of Mahanadi river basin. From table 8.4, it can be 

observed that the MLP ANN model seemed to show better performance compared to the 

SARIMA with higher values of R2 and ENS for the forecasting period. No significant 

difference was observed between the two models in modeling and forecasting monthly 

rainfall with both the calibration and validation datasets. This again shows that although the 

two models are different in structure and algorithm, they are essentially using the same 

information i.e. previous monthly rainfall to forecast future rainfall values. The performance 

of ANN model may be even better if there were more information such as temperature and 

humidity etc. to make the system nonlinear and to map the nonlinear system through the MLP 

neural network. Therefore MLP ANN model is further considered for rainfall forecasting. 
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8.7 RUNOFF COMPUTATION WITH DEVELOPED CN EQUATION 

USING FORECASTED RAINFALL FROM SARIMA MODEL 

Prediction of future rainfall is essential for development of water resources management 

scenarios, at watershed, sub-basin and basin scale. For rainfall forecasting reliable historic 

time series data is required. In the present study 110 years (1901-2010) of monthly rainfall 

data are analyzed to develop a theory-driven model and a data-driven model. Seasonal 

ARIMA and MLP ANN models were developed for forecasting of rainfall. Simulation 

performance of these two models at validation stage is very good. But SARIMA model is 

applied to forecast monthly rainfall of two years (2011-2012) and it is found that forecasting 

performance of this model is above satisfactory. From table 8.4 it can be stated that the 

SARIMA model can be adopted for future monthly rainfall prediction with up to 85% 

accuracy. 

After forecasting of rainfall the next task in hydrological modeling is simulation of runoff 

with the forecasted rainfall. Therefore twenty four forecasted monthly rainfall values of two 

years from the SARIMA model are applied in the SCS-CN method to compute runoff. 

Forecasted monthly rainfall of stations was interpolated using Ordinary Kriging method to 

derive forecasted monthly rainfall of sub-basins. Observed monthly runoff values for these 

two years (2011 and 2012) of Sundargarh, Tikarpada, Salebhatta, Kantamal and Kesinga 

stations were applied at their respective sub-basins. For runoff computation CNs for the three 

AMCs was computed with the three developed equations of each sub-basin shown in chapter 

7. Then using equations (6.5) and (6.4) respectively, potential retention S and direct runoff Q 

were computed. Finally the computed runoff was compared with the observed runoff. 
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Simulation performance of the SCS-CN method with forecasted rainfall from the developed 

SRIMA model for the five sub-basins is shown in Figure 8.4 in terms of scatter plot. 

Moderate coefficient of determination values indicates moderate simulation performance of 

the developed SARIMA model for rainfall forecasting. This figure also shows the time series 

plot of observed runoff and runoff computed with the SCS-CN method and it can be observed 

that the computed runoff could not match so well with the observed runoff. Extreme values 

could not be simulated very nicely. Some low values were over predicted and some high 

values were under predicted.  
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Figure 8.4: Simulation Performance of SCS-CN Method with SARIMA Monthly 

Forecasted Rainfall 

8.8  CONCLUSION 

Monthly rainfall was forecasted using seasonal ARIMA and MLP-ANN models and it was 

found that in case of monthly rainfall forecasting both the seasonal ARIMA and MLP-ANN 

models performances are comparable. Runoff was computed with developed CN equation 

using forecasted rainfall from both the SARIMA and MLP-ANN models and it was found 

that though performance of MLP-ANN was better than that of SARIMA,it was not 

considerably better.   
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CHAPTER 9 

CONCLUSIONS 

In the present work, rainfall and rainfall generated runoff has been estimated using various 

approaches for different functional analysis. The following conclusions are drawn. 

1. The study area is delineated precisely into basin and sub-basins using Arc-SWAT, which 

is a very convenient and less time consuming way within the environment of Arc-GIS. 

Many Thematic maps are also developed in GIS environment precisely, which are very 

useful inputs in rainfall-runoff analysis. The thematic map developed from a variety of 

perspectives of the basin provides a view of the water shed and are used for hydrological 

analysis of Mahanadi river basin and sub-basins lying in Odisha, India. 

2. The application of point rain gauge as precipitation input carries lots of uncertainties. 

Spatial interpolation, to estimate spatially continuous mean rainfall at sub-basin scale, 

using deterministic and geo-static approaches are found to be very effective in the study 

area. The geo-statistical interpolation methods, Ordinary Kriging (OK) with exponential 

semi-variogram model provided best results of daily and monthly rainfall with minimum 

mean and root mean square error (RMSE) values as given in Table 5.1. 

3. The original SCS-CN model has been used in the present work by providing satellite 

based land use map and soil map delineated in GIS environment, as input. The results are 

found good for monthly rainfall-runoff simulation. However the method is found not 

appropriate for daily rainfall-runoff simulation. 

4. Three models (Mishra-Singh, Michel and Sahu) modified on the basis of original SCS-

CN are used for daily rainfall-runoff simulation. The results are found to under-estimate / 
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over-estimate the estimated runoff and are poorly correlated. These models are not 

applicable for monthly rainfall-runoff modeling. 

5. Three models (FDM-PE, MM-SCS and ANN-MLP) are tested for their applicability 

along with other existing models. Out of seven models, MM-SCS model provided best 

results for daily and monthly rainfall-runoff data series. The other proposed models 

FDM-PE and ANN-MLP also provided reasonably good results. It is interesting to note 

that FDM-PE model provides best fit equation (Power equations) to estimate 

probabilistic curve number (PCN), which is very simple and useful, if established once 

for a basin or sub-basin. 

6. It is understood that, the CN values for estimating runoff potential are policy decision. 

The CN varies at daily, weekly, half-monthly, monthly, seasonally and annually. It is 

found essential to carry out the required analysis to establish CN for any given rainfall 

duration between 1-day to 30-days for the policy makers and decision makers. The 

derived equations are tested for their applicability and CN values are re-estimated for 

different cumulative rainfall durations.  The results shown in Table 7.1, substantiates the 

suitability of the developed second order regression polynomial equations for AMC I, 

AMC II and AMC III, which can be used directly for each sub-basin for any rainfall 

duration ranging between 1-day to 30-day. 

7. In India, monthly rainfall data are easily available from different resources. In this context, if 

monthly rainfall forecasting models are developed, the monthly runoff estimates can be easily 

obtained, which is useful for planners and policy makers to make best use of available water 

resources. For this purpose, performance of SARIMA is tested and the models (1,0,0)(0,1,1)12 

and (0,0,1)1(0,1,1)12 are found to provide very good results with high correlation statistics and 

minimum errors. In addition, ANN-MLP has been used too for rainfall forecasting. The model 
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architecture 12-8-1, 12-6-1, 12-2-1 provided very good results. As can be seen from Table 8.2 

and 8.3, the results obtained using both the methods are comparable. 

8. After forecasting of rainfall the next task in hydrological modeling is the simulation of 

runoff with the forecasted rainfall. Therefore twenty four forecasted monthly rainfall 

values of two years from the SARIMA and MLP ANN models are applied in the SCS-

CN method to compute runoff. The outcome of the forecasting models based on MLP 

ANN, is found to be better, but not much higher than the other model. It requires more 

input data sets and better training algorithm. Therefore the results obtained using 

SARIMA were accepted. 
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CHAPTER 10 

SCOPE OF FUTURE STUDY 

1. Further analysis is required to explore different deterministic and geo-static techniques 

suitable for spatial interpolation of rainfall.  

2. Additional basin characteristics such as slope, geology, morphology and surface 

roughness features may be included to obtain more robust mean rainfall and runoff 

estimates. 

3. In-situ soil moisture, wetness index, climate variability (evapo-transpiration, 

temperature, humidity, wind speed etc) and groundwater variables (infiltration rate, 

water table, hydraulic conductivity, field capacity etc) need to be included as input 

parameters in SCS-CN based methods.  

4. Exhaustive analysis is needed to derive Curve Numbers for any rainfall duration by using 

more input rainfall data of longer durations. 

5. Similarly, improvements are required in rainfall forecasting methodology and their 

application in runoff estimation. 

6. The present study area covers Mahanadi basin lying in Odisha, India, which may be 

extended to the entire Mahanadi basin. 
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APPENDIX I 

Watershed Characteristics 

Watershed Average Slope 

(%) 

Longest Flow 

Path(km) 

Mean 

Elevation(m) 

Perimeter(km) Area(Km2) 

1 197149.9 0.567902 264 49.50608 1524.918 

2 59153.09 0.043689 207 8.962832 55.39949 

3 143908.9 0.615635 287 45.21645 1422.093 

4 54919.14 0.087081 218 9.748716 91.74278 

5 177630.5 0.558139 267 36.64189 884.8161 

6 87334.61 0.075592 209 8.574567 59.44719 

7 242240.7 0.938071 234 71.73071 3704.935 

8 105708.3 0.67022 197 47.94834 1153.936 

9 178746.7 0.802716 155 61.59841 2832.032 

10 260669.6 0.206362 424 17.93034 245.9439 

11 122528.2 0.925745 173 59.65709 2258.581 

12 102872.1 0.041963 122 4.677887 18.12912 

13 205997.5 1.310262 186 90.43291 3944.771 

14 83698.73 0.379932 117 25.7237 531.1333 

15 78833.49 0.542902 128 36.64656 752.8403 

16 218041.2 0.387132 151 29.24147 675.3121 

17 63863.79 0.068689 79 6.235623 24.18846 

18 72948.44 0.267851 133 19.09981 298.38 

19 49873.71 0.066963 100 3.89668 14.09377 

20 183160.1 0.765093 110 61.20079 2026.707 

21 198936.4 0.768249 271 53.03788 1624.683 

22 462445.2 0.536591 445 42.48457 1336.373 

23 91711.75 0.596058 168 41.71272 1205.397 

24 184979.2 0.440584 154 34.70057 813.3113 
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25 99687.83 0.15434 166 10.91351 110.8717 

26 385915.3 0.931168 213 53.7957 2346.228 

27 315939.6 0.317014 157 31.58041 690.3577 

28 435859.3 1.029196 732 66.65053 2058.063 

29 733340.3 0.66302 190 57.6877 1776.933 

30 55565 0.060355 147 5.066152 28.22381 

31 166639.2 0.529391 85 35.07012 645.0041 

32 102443.4 0.046844 46 3.901358 14.09377 

33 232306.2 0.128748 158 9.748716 76.62497 

34 134314.1 0.694086 266 43.67275 1487.6 

35 147310.8 0.502665 179 43.28449 1063.23 

36 146103 0.207496 211 19.89038 284.2501 

37 92888.2 0.199755 178 16.37728 187.4845 

38 668081.1 0.937775 118 77.96634 1829.297 

39 614003.6 0.314992 389 24.55891 491.8148 

40 281726.8 0.212673 68 16.75619 220.7435 

41 54948.32 0.155474 162 11.69004 86.62272 

42 238108.3 0.970567 98 66.27162 2665.797 

43 518653.9 0.852716 319 62.36091 1359.599 

44 473949.6 0.575102 278 42.87751 1540.012 

45 464652.8 0.569332 593 59.62434 2146.721 

46 418568.5 0.82599 256 60.4383 1953.251 

47 184917.1 0.317014 166 24.94717 518.0392 

48 390808.5 0.438858 149 61.20547 2374.427 

49 138372.1 0.805279 211 47.9577 1526.821 

50 71737.4 0.07214 198 7.021508 42.34196 

51 341439.7 0.685457 222 45.60004 986.7015 

52 349652.9 0.780279 246 51.8497 1516.944 
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53 119319.8 0.077022 203 6.628566 48.38882 

54 428269.4 1.065093 227 83.43011 4012.047 

 

APPENDIX II 

Derived Daily CN of Stations 

Station Probability Based Curve 

Number 

Median Based Curve 

Number 

Catchment Characteristics 

Based Curve Number 

Wet 

Conditi

on 

Normal 

Conditi

on 

Dry 

Conditi

on 

Wet 

Conditi

on 

Normal 

Conditi

on 

Dry 

Conditi

on 

Wet 

Conditi

on 

Normal 

Conditi

on 

Dry 

Conditi

on 

Badapandu

sar 

99.137 93.476 66.947 97.086 93.476 86.168 85.873 72.189 53.226 

Baghupali 97.692 81.804 52.152 91.270 81.804 66.154 79.608 62.504 42.223 

Bansajal 99.259 91.120 63.616 95.978 91.120 81.689 83.683 68.652 48.982 

Bargaon 98.642 90.714 63.732 95.784 90.714 80.943 87.132 74.302 55.900 

Bisipada 99.550 91.150 63.393 95.993 91.150 81.746 87.132 74.302 55.900 

Burat 99.399 91.796 66.604 96.299 91.796 82.950 86.404 73.073 54.332 

Chatikuda 99.334 91.444 65.974 96.132 91.444 82.291 82.337 66.560 46.599 

Kadaligarh 98.170 88.173 59.906 94.547 88.173 76.422 83.683 68.652 48.982 

Magurbeda 99.219 90.192 62.871 95.533 90.192 79.992 84.460 69.887 50.432 

Maneswar 98.372 86.230 57.991 93.575 86.230 73.138 80.544 63.869 43.661 

Naraj 99.453 92.887 66.423 96.812 92.887 85.025 76.234 57.800 37.518 

Rampur 96.212 86.395 54.170 93.584 86.248 73.168 75.294 56.547 36.327 

Surubali 99.037 91.133 57.803 95.984 91.133 81.713 82.890 67.413 47.559 

Takara 98.563 88.537 62.934 94.726 88.537 77.055 84.555 70.038 50.613 

Takla 99.065 89.686 61.951 95.288 89.686 79.083 84.702 70.276 50.897 

Tulaghat 98.547 85.956 55.641 93.436 85.956 72.686 82.890 67.413 47.559 

Tumulibud 99.502 93.784 72.751 97.229 93.784 86.772 70.216 50.166 30.619 
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Daily Simulation Performances of Three CN Derivation Methods and Three Developed 

Models of Stations 

Station Correlation Coefficient of Observed Runoff with Runoff for 

Probability-

CN 

Median-

CN 

Catchment 

Characteristics-CN 

MS 

Model 

Sahu 

Model 

Michel 

Model 

Badapandusar 0.315 0.832 0.610 0.878 0.809 0.340 

Baghupali 0.670 0.908 0.777 0.964 0.487 0.650 

Bansajal 0.952 0.944 0.971 0.946 0.839 0.817 

Bargaon 0.845 0.966 0.908 0.941 0.776 0.876 

Bisipada 0.007 0.587 0.045 0.703 0.305 0.251 

Burat 0.898 0.969 0.926 0.885 0.645 0.798 

Chatikuda 0.744 0.961 0.844 0.914 0.743 0.868 

Kadaligarh 0.908 0.929 0.867 0.906 0.702 0.687 

Magurbeda 0.890 0.981 0.890 0.872 0.491 0.779 

Maneswar 0.846 0.945 0.730 0.879 0.621 0.640 

Naraj 0.799 0.967 0.519 0.791 0.448 0.812 

Rampur 0.650 0.962 0.616 0.914 0.672 0.804 

Surubali 0.842 0.978 0.867 0.847 0.576 0.809 

Takara 0.442 0.904 0.602 0.826 0.349 0.517 

Takla 0.929 0.982 0.919 0.950 0.785 0.890 

Tulaghat 0.814 0.966 0.916 0.911 0.731 0.841 

Tumulibud 0.750 0.919 0.301 0.915 0.615 0.674 

 

Derived Monthly CN of Stations 

Station Probability Based Curve 

Number 

Median Based Curve 

Number 

Catchment Characteristics 

Based Curve Number 

Wet 

Conditi

on 

Normal 

Conditi

on 

Dry 

Conditi

on 

Wet 

Conditi

on 

Normal 

Conditi

on 

Dry 

Conditi

on 

Wet 

Conditi

on 

Normal 

Conditi

on 

Dry 

Conditi

on 
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Badapandu

sar 

81.410 40.738 13.138 60.672 39.881 22.385 85.873 72.189 53.226 

Baghupali 83.610 43.680 8.166 64.332 43.680 25.217 79.608 62.504 42.223 

Bansajal 92.701 61.353 21.351 78.686 61.353 40.836 83.683 68.652 48.982 

Bargaon 92.459 72.057 19.005 85.708 72.057 52.856 87.132 74.302 55.900 

Bisipada 94.344 47.433 16.219 67.726 47.433 28.177 87.132 74.302 55.900 

Burat 96.074 56.668 16.281 74.100 55.161 34.848 86.404 73.073 54.332 

Chatikuda 95.912 67.622 25.683 81.107 64.862 44.524 82.337 66.560 46.599 

Kadaligarh 91.367 62.871 14.648 79.749 62.871 42.404 83.683 68.652 48.982 

Magurbeda 95.849 56.539 21.233 75.157 56.539 36.127 84.460 69.887 50.432 

Maneswar 92.364 59.906 15.043 77.652 59.906 39.380 80.544 63.869 43.661 

Naraj 96.517 57.225 25.893 75.676 57.225 36.775 76.234 57.800 37.518 

Rampur 93.731 61.800 11.702 78.917 61.680 41.170 75.294 56.547 36.327 

Surubali 93.749 48.820 24.540 68.805 48.677 29.197 82.890 67.413 47.559 

Takara 92.643 46.182 18.836 65.969 45.461 26.601 84.555 70.038 50.613 

Takla 97.287 68.280 30.174 83.350 68.280 48.344 84.702 70.276 50.897 

Tulaghat 95.665 50.397 13.411 69.066 48.981 29.449 82.890 67.413 47.559 

Tumulibud 94.424 57.064 11.700 75.555 57.064 36.623 70.216 50.166 30.619 

 

Monthly Simulation Performances of Three CN Derivation Methods of Stations 

Station Correlation Coefficient of Observed Runoff with Runoff for 

Probability-CN Median-CN Catchment Characteristics-CN 

Badapandusar 0.114 0.845 0.980 

Baghupali 0.867 0.986 0.998 

Bansajal 0.903 0.982 0.992 

Bargaon 0.955 0.999 0.999 

Bisipada 0.177 0.769 0.965 

Burat 0.862 0.991 0.995 
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Chatikuda 0.818 0.983 0.985 

Kadaligarh 0.901 0.996 0.998 

Magurbeda 0.733 0.898 0.978 

Maneswar 0.647 0.983 0.987 

Naraj 0.884 0.967 0..967 

Rampur 0.416 0.964 0.975 

Surubali 0.896 0.954 0.982 

Takara 0.419 0.897 0.956 

Takla 0.954 0.987 0.979 

Tulaghat 0.895 0.978 0.995 

Tumulibud 0.303 0.986 0.979 

 

Partial Autocorrelation Function(Salebhatta Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.007 .0171

 14 +.019 .0171

 13 -.027 .0171

 12 +.004 .0171

 11 +.013 .0171

 10 -.028 .0171

  9 +.173 .0171

  8 +.045 .0171

  7 +.071 .0171

  6 +.097 .0171

  5 +.111 .0171

  4 +.053 .0171

  3 +.209 .0171

  2 -.108 .0171

  1 +.658 .0171

Lag Corr. S.E.

 

CrossCorrelation Function(Salebhatta Subbasin)

First: Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .1253 .0172
 14 .1286 .0172
 13 .1381 .0172
 12 .1570 .0172
 11 .1873 .0172
 10 .1960 .0172
  9 .2295 .0172
  8 .2068 .0171
  7 .1922 .0171
  6 .1779 .0171
  5 .1813 .0171
  4 .1547 .0171
  3 .1540 .0171
  2 .2303 .0171
  1 .3813 .0171
  0 .4803 .0171
 -1 .2053 .0171
 -2 .0855 .0171
 -3 .0987 .0171
 -4 .1339 .0171
 -5 .1151 .0171
 -6 .1192 .0171
 -7 .1304 .0171
 -8 .1167 .0171
 -9 .1160 .0172
-10 .1045 .0172
-11 .0773 .0172
-12 .0666 .0172
-13 .0693 .0172
-14 .0859 .0172
-15 .1250 .0172
Lag Corr. S.E.

 

Partial Autocorrelation Function(Kesinga Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.028 .0171

 14 +.028 .0171

 13 +.026 .0171

 12 +.027 .0171

 11 +.027 .0171

 10 +.022 .0171

  9 +.035 .0171

  8 +.034 .0171

  7 +.046 .0171

  6 +.034 .0171

  5 +.081 .0171

  4 +.045 .0171

  3 +.118 .0171

  2 -.056 .0171

  1 +.602 .0171

Lag Corr. S.E.

  

CrossCorrelation Function(Kesinga Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .1293 .0172
 14 .1191 .0172
 13 .1308 .0172
 12 .1493 .0172
 11 .1658 .0172
 10 .1554 .0172
  9 .1482 .0172
  8 .1608 .0171
  7 .1710 .0171
  6 .1816 .0171
  5 .2002 .0171
  4 .2007 .0171
  3 .2757 .0171
  2 .4689 .0171
  1 .7469 .0171
  0 .6692 .0171
 -1 .2330 .0171
 -2 .1257 .0171
 -3 .1436 .0171
 -4 .1463 .0171
 -5 .1284 .0171
 -6 .1289 .0171
 -7 .1176 .0171
 -8 .1092 .0171
 -9 .1034 .0172
-10 .1008 .0172
-11 .1037 .0172
-12 .1070 .0172
-13 .1133 .0172
-14 .0980 .0172
-15 .1082 .0172
Lag Corr. S.E.
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Partial Autocorrelation Function(Kantamal Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.032 .0171

 14 +.026 .0171

 13 -.001 .0171

 12 +.026 .0171

 11 +.030 .0171

 10 +.022 .0171

  9 -.010 .0171

  8 +.078 .0171

  7 -.009 .0171

  6 +.070 .0171

  5 +.083 .0171

  4 +.023 .0171

  3 +.267 .0171

  2 -.349 .0171

  1 +.785 .0171

Lag Corr. S.E.

  

CrossCorrelation Function(Kantamal Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .1712 .0172
 14 .1847 .0172
 13 .1759 .0172
 12 .1717 .0172
 11 .1966 .0172
 10 .2188 .0172
  9 .2476 .0172
  8 .2815 .0171
  7 .2818 .0171
  6 .2620 .0171
  5 .2430 .0171
  4 .2674 .0171
  3 .4074 .0171
  2 .6243 .0171
  1 .7475 .0171
  0 .5020 .0171
 -1 .1983 .0171
 -2 .1321 .0171
 -3 .1652 .0171
 -4 .1877 .0171
 -5 .1897 .0171
 -6 .1701 .0171
 -7 .1507 .0171
 -8 .1646 .0171
 -9 .1591 .0172
-10 .1299 .0172
-11 .1277 .0172
-12 .1123 .0172
-13 .0884 .0172
-14 .0850 .0172
-15 .1059 .0172
Lag Corr. S.E.

 

Partial Autocorrelation Function(Tikarpada Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.021 .0171

 14 +.043 .0171

 13 +.015 .0171

 12 -.028 .0171

 11 +.009 .0171

 10 -.063 .0171

  9 +.029 .0171

  8 +.034 .0171

  7 +.031 .0171

  6 +.093 .0171

  5 +.103 .0171

  4 -.082 .0171

  3 +.082 .0171

  2 -.068 .0171

  1 +.930 .0171

Lag Corr. S.E.

  

CrossCorrelation Function(Tikarpada Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .3628 .0172
 14 .3839 .0172
 13 .4047 .0172
 12 .4310 .0172
 11 .4395 .0172
 10 .4564 .0172
  9 .4665 .0172
  8 .4584 .0171
  7 .4603 .0171
  6 .4804 .0171
  5 .5008 .0171
  4 .5388 .0171
  3 .5772 .0171
  2 .5830 .0171
  1 .5684 .0171
  0 .4481 .0171
 -1 .3390 .0171
 -2 .2986 .0171
 -3 .2875 .0171
 -4 .2689 .0171
 -5 .2565 .0171
 -6 .2612 .0171
 -7 .2664 .0171
 -8 .2625 .0171
 -9 .2425 .0172
-10 .2187 .0172
-11 .1959 .0172
-12 .1783 .0172
-13 .1619 .0172
-14 .1633 .0172
-15 .1598 .0172
Lag Corr. S.E.

 

Partial Autocorrelation Function(Naraj Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.003 .0171

 14 +.024 .0171

 13 +.007 .0171

 12 +.032 .0171

 11 +.030 .0171

 10 +.008 .0171

  9 +.043 .0171

  8 +.014 .0171

  7 -.006 .0171

  6 -.001 .0171

  5 +.045 .0171

  4 +.108 .0171

  3 +.147 .0171

  2 +.293 .0171

  1 +.745 .0171

Lag Corr. S.E.

  

CrossCorrelation Function(Naraj Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .2910 .0172
 14 .2993 .0172
 13 .3172 .0172
 12 .3311 .0172
 11 .3393 .0172
 10 .3464 .0172
  9 .3603 .0172
  8 .3771 .0171
  7 .3940 .0171
  6 .3634 .0171
  5 .3670 .0171
  4 .3905 .0171
  3 .4081 .0171
  2 .3646 .0171
  1 .2888 .0171
  0 .2052 .0171
 -1 .1817 .0171
 -2 .1750 .0171
 -3 .1610 .0171
 -4 .1482 .0171
 -5 .1461 .0171
 -6 .1411 .0171
 -7 .1401 .0171
 -8 .1437 .0171
 -9 .1553 .0172
-10 .1573 .0172
-11 .1555 .0172
-12 .1584 .0172
-13 .1643 .0172
-14 .1627 .0172
-15 .1631 .0172
Lag Corr. S.E.

 

PACF and CCF Plots of Daily Runoff Time Series of Sub-basins 
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Partial Autocorrelation Function(Salebhatta Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.047 .0945
 29 -.028 .0945
 28 -.038 .0945
 27 -.017 .0945
 26 -.077 .0945
 25 +.230 .0945
 24 +.151 .0945
 23 -.052 .0945
 22 -.114 .0945
 21 -.109 .0945
 20 -.099 .0945
 19 -.075 .0945
 18 -.083 .0945
 17 -.080 .0945
 16 -.050 .0945
 15 -.118 .0945
 14 -.027 .0945
 13 +.013 .0945
 12 +.026 .0945
 11 +.147 .0945
 10 +.007 .0945
  9 -.088 .0945
  8 -.102 .0945
  7 -.108 .0945
  6 -.097 .0945
  5 -.089 .0945
  4 -.079 .0945
  3 -.069 .0945
  2 -.166 .0945
  1 +.388 .0945
Lag Corr. S.E.

 

CrossCorrelation Function(Salebhatta Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .0255 .1015
 14 .2650 .1010
 13 .3246 .1005
 12 .3465 .1000
 11 .1413 .0995
 10 -.027 .0990
  9 -.191 .0985
  8 -.211 .0981
  7 -.225 .0976
  6 -.219 .0971
  5 -.199 .0967
  4 -.165 .0962
  3 -.018 .0958
  2 .2996 .0953
  1 .7037 .0949
  0 .6994 .0945
 -1 .2546 .0949
 -2 -.026 .0953
 -3 -.168 .0958
 -4 -.210 .0962
 -5 -.206 .0967
 -6 -.195 .0971
 -7 -.195 .0976
 -8 -.157 .0981
 -9 -.034 .0985
-10 .2593 .0990
-11 .3503 .0995
-12 .2354 .1000
-13 .1195 .1005
-14 -.080 .1010
-15 -.172 .1015
Lag Corr. S.E.

 

Partial Autocorrelation Function(Tikarpada Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.050 .0945
 29 -.033 .0945
 28 +.002 .0945
 27 -.109 .0945
 26 +.028 .0945
 25 +.070 .0945
 24 +.225 .0945
 23 +.063 .0945
 22 -.092 .0945
 21 -.145 .0945
 20 -.153 .0945
 19 -.102 .0945
 18 -.111 .0945
 17 -.114 .0945
 16 -.060 .0945
 15 -.137 .0945
 14 -.055 .0945
 13 -.087 .0945
 12 +.005 .0945
 11 +.163 .0945
 10 +.042 .0945
  9 -.077 .0945
  8 -.115 .0945
  7 -.130 .0945
  6 -.121 .0945
  5 -.122 .0945
  4 -.092 .0945
  3 -.063 .0945
  2 -.268 .0945
  1 +.534 .0945
Lag Corr. S.E.

  

CrossCorrelation Function(Tikarpada Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .0024 .1015
 14 .2680 .1010
 13 .4493 .1005
 12 .4069 .1000
 11 .2291 .0995
 10 -.060 .0990
  9 -.235 .0985
  8 -.265 .0981
  7 -.278 .0976
  6 -.268 .0971
  5 -.242 .0967
  4 -.166 .0962
  3 .0166 .0958
  2 .3214 .0953
  1 .7245 .0949
  0 .7623 .0945
 -1 .1988 .0949
 -2 -.123 .0953
 -3 -.249 .0958
 -4 -.284 .0962
 -5 -.284 .0967
 -6 -.274 .0971
 -7 -.249 .0976
 -8 -.179 .0981
 -9 .0025 .0985
-10 .2514 .0990
-11 .4181 .0995
-12 .3078 .1000
-13 .2360 .1005
-14 -.076 .1010
-15 -.217 .1015
Lag Corr. S.E.

 

Partial Autocorrelation Function(Kesinga Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.011 .0945
 29 -.026 .0945
 28 -.011 .0945
 27 +.050 .0945
 26 -.128 .0945
 25 +.098 .0945
 24 +.180 .0945
 23 +.076 .0945
 22 -.112 .0945
 21 -.091 .0945
 20 -.107 .0945
 19 -.084 .0945
 18 -.119 .0945
 17 -.018 .0945
 16 -.194 .0945
 15 +.073 .0945
 14 -.224 .0945
 13 -.066 .0945
 12 +.122 .0945
 11 +.128 .0945
 10 +.139 .0945
  9 -.083 .0945
  8 -.083 .0945
  7 -.124 .0945
  6 -.110 .0945
  5 -.150 .0945
  4 -.091 .0945
  3 -.030 .0945
  2 -.375 .0945
  1 +.621 .0945
Lag Corr. S.E.

  

CrossCorrelation Function(Kesinga Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.048 .1015
 14 .2275 .1010
 13 .5064 .1005
 12 .4980 .1000
 11 .2434 .0995
 10 -.029 .0990
  9 -.218 .0985
  8 -.290 .0981
  7 -.320 .0976
  6 -.310 .0971
  5 -.277 .0967
  4 -.210 .0962
  3 -.034 .0958
  2 .3358 .0953
  1 .7656 .0949
  0 .8724 .0945
 -1 .3893 .0949
 -2 -.040 .0953
 -3 -.248 .0958
 -4 -.318 .0962
 -5 -.327 .0967
 -6 -.319 .0971
 -7 -.287 .0976
 -8 -.207 .0981
 -9 -.073 .0985
-10 .2092 .0990
-11 .4218 .0995
-12 .4226 .1000
-13 .2606 .1005
-14 -.047 .1010
-15 -.237 .1015
Lag Corr. S.E.

 



207 

 

Partial Autocorrelation Function(Kantamal Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 +.002 .0945
 29 -.003 .0945
 28 +.003 .0945
 27 +.050 .0945
 26 -.114 .0945
 25 +.089 .0945
 24 +.247 .0945
 23 +.005 .0945
 22 -.084 .0945
 21 -.094 .0945
 20 -.080 .0945
 19 -.074 .0945
 18 -.098 .0945
 17 -.027 .0945
 16 -.155 .0945
 15 +.037 .0945
 14 -.198 .0945
 13 -.017 .0945
 12 +.146 .0945
 11 +.157 .0945
 10 +.080 .0945
  9 -.100 .0945
  8 -.100 .0945
  7 -.137 .0945
  6 -.138 .0945
  5 -.117 .0945
  4 -.130 .0945
  3 -.004 .0945
  2 -.350 .0945
  1 +.572 .0945
Lag Corr. S.E.

  

CrossCorrelation Function(Kantamal Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.021 .1015
 14 .1947 .1010
 13 .4342 .1005
 12 .4904 .1000
 11 .2382 .0995
 10 -.041 .0990
  9 -.214 .0985
  8 -.293 .0981
  7 -.306 .0976
  6 -.290 .0971
  5 -.250 .0967
  4 -.171 .0962
  3 -.014 .0958
  2 .2956 .0953
  1 .7178 .0949
  0 .8513 .0945
 -1 .3814 .0949
 -2 -.083 .0953
 -3 -.258 .0958
 -4 -.303 .0962
 -5 -.309 .0967
 -6 -.298 .0971
 -7 -.261 .0976
 -8 -.174 .0981
 -9 -.034 .0985
-10 .1927 .0990
-11 .3537 .0995
-12 .3499 .1000
-13 .2246 .1005
-14 -.075 .1010
-15 -.239 .1015
Lag Corr. S.E.

 

Partial Autocorrelation Function(Naraj Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.009 .0945
 29 -.004 .0945
 28 +.024 .0945
 27 -.034 .0945
 26 +.055 .0945
 25 +.095 .0945
 24 +.164 .0945
 23 +.019 .0945
 22 -.128 .0945
 21 -.133 .0945
 20 -.110 .0945
 19 -.078 .0945
 18 -.090 .0945
 17 -.111 .0945
 16 -.058 .0945
 15 -.124 .0945
 14 -.078 .0945
 13 -.070 .0945
 12 +.158 .0945
 11 +.221 .0945
 10 +.017 .0945
  9 -.141 .0945
  8 -.163 .0945
  7 -.160 .0945
  6 -.142 .0945
  5 -.125 .0945
  4 -.133 .0945
  3 -.034 .0945
  2 -.285 .0945
  1 +.499 .0945
Lag Corr. S.E.

  

CrossCorrelation Function(Naraj Subbasin)

First : Runoff

Lagged: Rainfall

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 .0110 .1015
 14 .3235 .1010
 13 .5217 .1005
 12 .4774 .1000
 11 .2913 .0995
 10 -.042 .0990
  9 -.308 .0985
  8 -.334 .0981
  7 -.348 .0976
  6 -.324 .0971
  5 -.272 .0967
  4 -.152 .0962
  3 .0741 .0958
  2 .3786 .0953
  1 .7140 .0949
  0 .6527 .0945
 -1 .2944 .0949
 -2 -.047 .0953
 -3 -.265 .0958
 -4 -.344 .0962
 -5 -.341 .0967
 -6 -.305 .0971
 -7 -.273 .0976
 -8 -.170 .0981
 -9 .0527 .0985
-10 .2874 .0990
-11 .4588 .0995
-12 .3784 .1000
-13 .2360 .1005
-14 -.073 .1010
-15 -.263 .1015
Lag Corr. S.E.

 

PACF and CCF Plots of Monthly Runoff Time Series of Sub-basins 

Optimized Neural Network Structure of Daily Rainfall-Runoff Models for Stations 

Station Input Network 

Architecture 

Training 

Performance 

Testing 

Performance 

Validation 

Performance 

Correlation Coefficient 

Badapandusar Runofft-

1,Rainfallt,Rainfallt-1 

3-6-1 0.952622 0.895081 0.883660 

Baghupali Runofft-1, Runofft-2 

,Runofft-3, 

Rainfallt,Rainfallt-1 

5-5-1 0.964467 0.905719 0.961573 

Bansajal Runofft-1, Rainfallt 2-7-1 0.867596 0.971063 0.926563 

Bargaon Runofft-1, Runofft-2 

,Runofft-3 , 

Rainfallt,Rainfallt-1 

5-7-1 0.832116 0.905426 0.816451 

Bisipada Runofft- 3-8-1 0.889366 0.961788 0.889581 
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1,Rainfallt,Rainfallt-1 

Burat Runofft-1,Rainfallt 2-6-1 0.932643 0.852241 0.695227 

Chatikuda Runofft-

1,Rainfallt,Rainfallt-1 

3-7-1 0.802113 0.829324 0.833666 

Kadaligarh Runofft-

1,Rainfallt,Rainfallt-1 

3-3-1 0.538364 0.824117 0.545724 

Magurbeda Runofft-

1,Rainfallt,Rainfallt-1 

3-8-1 0.887770 0.788330 0.572845 

Maneswar Runofft-1,Rainfallt 2-5-1 0.668776 0.797439 0.621700 

Naraj Runofft-1, Runofft-2 

,Runofft-3 , Runofft-4 , 

Rainfallt,Rainfallt-1, 

Rainfallt-2, Rainfallt-3 

8-11-1 0.838748 0.940569 0.950569 

Rampur Runofft-

1,Rainfallt,Rainfallt-1 

3-6-1 0.920238 0.956834 0.951579 

Surubali Runofft-1,Rainfallt 2-4-1 0.911878 0.902365 0.913115 

Takara Runofft-

1,Rainfallt,Rainfallt-1 

3-10-1 0.756132 0.630685 0.697855 

Takla Runofft-

1,Rainfallt,Rainfallt-1 

3-8-1 0.871863 0.838230 0.820649 

Tulaghat Runofft-1,Rainfallt 2-8-1 0.797698 0.843584 0.800136 

Tumulibud Runofft-1,Rainfallt 2-3-1 0.849080 0.828812 0.975035 

 

Optimized Neural Network Structure of Monthly Rainfall-Runoff Models for Stations 

Station Input Network 

Architecture 

Training 

Performance 

Testing 

Performance 

Validation 

Performance 

Correlation Coefficient 

Badapandusar Runofft-1, 

Rainfallt,Rainfallt-1, 

Rainfallt-2 

4-10-1 0.970510 0.888590 0.985080 

Baghupali Runofft-1, 

Rainfallt,Rainfallt-1 

3-8-1 0.753767 0.507449 0.324110 

Bansajal Runofft-1, Runofft-12 4-6-1 0.889786 0.542577 0.802705 
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,Rainfallt,Rainfallt-1 

Bargaon Runofft-1, 

Rainfallt,Rainfallt-1 

3-5-1 0.761034 0.694489 0.960666 

Bisipada Runofft-1, Runofft-2 

,Runofft-12 

,Rainfallt,Rainfallt-1 

5-10-1 0.854087 0.885012 0.823119 

Burat Runofft-1, 

Rainfallt,Rainfallt-1 

3-9-1 0.789030 0.827558 0.878641 

Chatikuda Runofft-1, Runofft-2 , 

Rainfallt,Rainfallt-1 

4-3-1 0.903001 0.748038 0.960032 

Kadaligarh Runofft-1, 

Rainfallt,Rainfallt-1 

3-4-1 0.690388 0.697327 0.998803 

Magurbeda Runofft-1, 

Rainfallt,Rainfallt-1 

3-3-1 0.959014 0.914909 0.996835 

Maneswar Runofft-1, Rainfallt 2-4-1 0.958333 0.816375 0.930031 

Naraj Runofft-1, Runofft-2 , 

Rainfallt,Rainfallt-1 

4-7-1 0.900733 0.712729 0.953313 

Rampur Runofft-1, Runofft-2 , 

Rainfallt 

3-5-1 0.843734 0.401993 0.933423 

Surubali Runofft-1, Runofft-2 , 

Rainfallt,Rainfallt-1 

4-9-1 0.906211 0.705282 0.982581 

Takara Runofft-1, 

Rainfallt,Rainfallt-1 

3-4-1 0.871319 0.620951 0.996230 

Takla Runofft-1, Runofft-2 , 

Rainfallt,Rainfallt-1 

4-5-1 0.880287 0.123139 0.993362 

Tulaghat Runofft-1, 

Rainfallt,Rainfallt-1 

3-4-1 0.688083 0.308826 0.995064 

Tumulibud Runofft-1, 

Rainfallt,Rainfallt-1 

3-9-1 0.504002 0.723149 0.582130 
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APPENDIX III 

Computed Daily and Monthly CN from equations for Stations 

Station Daily Curve Number Derived from 

Developed Equation 

30-Day Curve Number Derived from 

Developed Equation 

 Wet 

Condition 

Normal 

Condition 

Dry 

Condition 

Wet 

Condition 

Normal 

Condition 

Dry 

Condition 

Badapandusar 97.399 88.45 73.791 56.19 37.99 28.58 

Baghupali 95.334 89.452 74.511 84.72 60.8 43.22 

Bansajal 96.062 89.28 75.49 75.24 42.88 28.8 

Bargaon 96.748 91.15 77.777 68.56 51.71 32.74 

Bisipada 96.836 87.788 74.253 73.81 44.52 26.49 

Burat 96.824 90.386 79.992 89.11 60.98 33.65 

Chatikuda 98.125 92.039 81.543 87.25 72 51.76 

Kadaligarh 96.942 89.742 76.272 80.76 58.77 39.79 

Magurbeda 96.555 88.076 74.433 71.76 43.88 26.96 

Maneswar 96.244 88.614 75.385 82.44 52.48 26.52 

Naraj 97.143 91.744 78.882 88.82 81.13 64.73 

Rampur 96.129 88.976 77.282 87.4 58.7 44.86 

Surubali 97.581 90.563 77.491 68.32 50.05 35.47 

Takara 94.009 85.148 70.61 76.29 42.17 25.95 

Takla 96.156 90.837 78.701 82.41 64.07 47.41 

Tulaghat 94.02 84.439 67.43 81.26 44.39 26.83 

Tumulibud 97.604 93.926 86.592 92.79 69.16 45.18 

 

Performance Efficiency of Developed Equation of Stations 

Station Coefficient of Determination(R2) Nash-Suttcliffe simulation efficiency (ENS) 

 Wet 

Condition 

Normal 

Condition 

Dry 

Condition 

Wet 

Condition 

Normal 

Condition 

Dry 

Condition 

Badapandusar 0.991 0.996 0.990 0.991 0.996 0.990 

Baghupali 0.845 0.911 0.904 0.809 0.906 0.894 

Bansajal 0.991 0.996 0.990 0.991 0.996 0.990 

Bargaon 0.982 0.998 0.990 0.981 0.998 0.990 

Bisipada 0.997 0.983 0.973 0.997 0.983 0.972 

Burat 0.973 0.987 0.992 0.972 0.987 0.992 

Chatikuda 0.957 0.995 0.980 0.956 0.994 0.979 

Kadaligarh 0.932 0.983 0.985 0.928 0.983 0.985 

Magurbeda 0.993 0.992 0.983 0.992 0.992 0.983 

Maneswar 0.906 0.988 0.991 0.897 0.988 0.991 

Naraj 0.955 0.955 0.813 0.954 0.953 0.773 

Rampur 0.852 0.985 0.978 0.840 0.985 0.977 

Surubali 0.994 0.997 0.979 0.993 0.997 0.978 

Takara 0.967 0.988 0.976 0.966 0.988 0.971 

Takla 0.952 0.985 0.988 0.947 0.985 0.988 

Tulaghat 0.986 0.995 0.970 0.985 0.995 0.970 

Tumulibud 0.951 0.996 0.997 0.949 0.996 0.996 
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APPENDIX IV 

Autocorrelation Function(Tikarpada Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.463 .0282
 29 -.452 .0282
 28 -.392 .0282
 27 -.193 .0282
 26 +.212 .0283
 25 +.629 .0283
 24 +.835 .0283
 23 +.643 .0283
 22 +.204 .0283
 21 -.182 .0283
 20 -.388 .0283
 19 -.451 .0283
 18 -.463 .0283
 17 -.458 .0284
 16 -.395 .0284
 15 -.189 .0284
 14 +.204 .0284
 13 +.639 .0284
 12 +.842 .0284
 11 +.646 .0284
 10 +.210 .0284
  9 -.189 .0285
  8 -.393 .0285
  7 -.459 .0285
  6 -.467 .0285
  5 -.455 .0285
  4 -.395 .0285
  3 -.194 .0285
  2 +.208 .0285
  1 +.645 .0285
Lag Corr. S.E.

0
7831. 0.000
7561. 0.000
7305. 0.000
7112. 0.000
7066. 0.000
7010. 0.000
6514. 0.000
5641. 0.000
5125. 0.000
5073. 0.000
5031. 0.000
4844. 0.000
4591. 0.000
4324. 0.000
4063. 0.000
3869. 0.000
3825. 0.000
3773. 0.000
3267. 0.000
2389. 0.000
1873. 0.000
1819. 0.000
1775. 0.000
1584. 0.000
1325. 0.000
1056. 0.000
800.8 0.000
609.1 0.000
563.0 0.000
510.1 0.000
  Q p

 

Partial Autocorrelation Function(Tikarpada Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.050 .0286
 29 +.005 .0286
 28 +.004 .0286
 27 -.075 .0286
 26 +.020 .0286
 25 +.032 .0286
 24 +.187 .0286
 23 +.132 .0286
 22 -.070 .0286
 21 -.108 .0286
 20 -.056 .0286
 19 -.016 .0286
 18 -.044 .0286
 17 -.054 .0286
 16 -.042 .0286
 15 -.078 .0286
 14 -.057 .0286
 13 +.130 .0286
 12 +.369 .0286
 11 +.327 .0286
 10 +.025 .0286
  9 -.312 .0286
  8 -.375 .0286
  7 -.345 .0286
  6 -.305 .0286
  5 -.176 .0286
  4 -.084 .0286
  3 -.285 .0286
  2 -.356 .0286
  1 +.645 .0286
Lag Corr. S.E.

 

 

Histogram(Tikarpada Subbasin)

 Expected Normal
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Autocorrelation Function(Kesinga Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.515 .0282
 29 -.489 .0282
 28 -.392 .0282
 27 -.153 .0282
 26 +.250 .0283
 25 +.636 .0283
 24 +.816 .0283
 23 +.640 .0283
 22 +.244 .0283
 21 -.143 .0283
 20 -.386 .0283
 19 -.487 .0283
 18 -.519 .0283
 17 -.495 .0284
 16 -.396 .0284
 15 -.149 .0284
 14 +.241 .0284
 13 +.642 .0284
 12 +.828 .0284
 11 +.656 .0284
 10 +.251 .0284
  9 -.144 .0285
  8 -.393 .0285
  7 -.496 .0285
  6 -.524 .0285
  5 -.492 .0285
  4 -.394 .0285
  3 -.157 .0285
  2 +.250 .0285
  1 +.649 .0285
Lag Corr. S.E.

0
8239. 0.000
7906. 0.000
7606. 0.000
7413. 0.000
7384. 0.000
7305. 0.000
6799. 0.000
5965. 0.000
5454. 0.000
5380. 0.000
5355. 0.000
5169. 0.000
4874. 0.000
4539. 0.000
4234. 0.000
4039. 0.000
4012. 0.000
3940. 0.000
3429. 0.000
2581. 0.000
2049. 0.000
1972. 0.000
1946. 0.000
1755. 0.000
1452. 0.000
1114. 0.000
815.6 0.000
624.3 0.000
594.0 0.000
517.2 0.000
  Q p

 

Partial Autocorrelation Function(Kesinga Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.027 .0286
 29 +.015 .0286
 28 -.004 .0286
 27 -.055 .0286
 26 +.023 .0286
 25 +.063 .0286
 24 +.183 .0286
 23 +.091 .0286
 22 -.054 .0286
 21 -.102 .0286
 20 -.060 .0286
 19 -.007 .0286
 18 -.028 .0286
 17 -.025 .0286
 16 -.050 .0286
 15 -.057 .0286
 14 -.029 .0286
 13 +.132 .0286
 12 +.355 .0286
 11 +.343 .0286
 10 +.077 .0286
  9 -.216 .0286
  8 -.343 .0286
  7 -.334 .0286
  6 -.309 .0286
  5 -.170 .0286
  4 -.123 .0286
  3 -.332 .0286
  2 -.296 .0286
  1 +.649 .0286
Lag Corr. S.E.
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Histogram(Kesinga Subbasin)

 Expected Normal
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Normal Probability Plot(Kesinga Subbasin)
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Autocorrelation Function(Kantamal Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.509 .0282
 29 -.486 .0282
 28 -.398 .0282
 27 -.164 .0282
 26 +.246 .0283
 25 +.639 .0283
 24 +.826 .0283
 23 +.647 .0283
 22 +.239 .0283
 21 -.152 .0283
 20 -.393 .0283
 19 -.484 .0283
 18 -.510 .0283
 17 -.492 .0284
 16 -.402 .0284
 15 -.159 .0284
 14 +.237 .0284
 13 +.646 .0284
 12 +.836 .0284
 11 +.658 .0284
 10 +.246 .0284
  9 -.157 .0285
  8 -.399 .0285
  7 -.494 .0285
  6 -.515 .0285
  5 -.490 .0285
  4 -.402 .0285
  3 -.165 .0285
  2 +.243 .0285
  1 +.653 .0285
Lag Corr. S.E.

0
8304. 0.000
7979. 0.000
7682. 0.000
7483. 0.000
7449. 0.000
7373. 0.000
6862. 0.000
6008. 0.000
5485. 0.000
5414. 0.000
5385. 0.000
5192. 0.000
4900. 0.000
4576. 0.000
4275. 0.000
4074. 0.000
4043. 0.000
3973. 0.000
3455. 0.000
2589. 0.000
2053. 0.000
1978. 0.000
1948. 0.000
1751. 0.000
1451. 0.000
1124. 0.000
828.3 0.000
630.0 0.000
596.4 0.000
523.9 0.000
  Q p

Partial Autocorrelation Function(Kantamal Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.038 .0286
 29 +.013 .0286
 28 -.004 .0286
 27 -.066 .0286
 26 +.030 .0286
 25 +.051 .0286
 24 +.182 .0286
 23 +.100 .0286
 22 -.062 .0286
 21 -.097 .0286
 20 -.064 .0286
 19 -.006 .0286
 18 -.028 .0286
 17 -.032 .0286
 16 -.056 .0286
 15 -.063 .0286
 14 -.033 .0286
 13 +.133 .0286
 12 +.355 .0286
 11 +.327 .0286
 10 +.062 .0286
  9 -.246 .0286
  8 -.362 .0286
  7 -.353 .0286
  6 -.313 .0286
  5 -.163 .0286
  4 -.120 .0286
  3 -.322 .0286
  2 -.321 .0286
  1 +.653 .0286
Lag Corr. S.E.

 

Histogram(Kantamal Subbasin)
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Normal Probability Plot(Kantamal Subbasin)
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Autocorrelation Function(Salebhatta Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.462 .0282
 29 -.450 .0282
 28 -.393 .0282
 27 -.197 .0282
 26 +.207 .0283
 25 +.642 .0283
 24 +.851 .0283
 23 +.651 .0283
 22 +.200 .0283
 21 -.191 .0283
 20 -.391 .0283
 19 -.450 .0283
 18 -.463 .0283
 17 -.456 .0284
 16 -.398 .0284
 15 -.194 .0284
 14 +.201 .0284
 13 +.651 .0284
 12 +.861 .0284
 11 +.660 .0284
 10 +.207 .0284
  9 -.190 .0285
  8 -.395 .0285
  7 -.455 .0285
  6 -.468 .0285
  5 -.453 .0285
  4 -.398 .0285
  3 -.200 .0285
  2 +.209 .0285
  1 +.653 .0285
Lag Corr. S.E.

0
7995. 0.000
7728. 0.000
7474. 0.000
7280. 0.000
7231. 0.000
7178. 0.000
6662. 0.000
5756. 0.000
5226. 0.000
5176. 0.000
5131. 0.000
4941. 0.000
4689. 0.000
4422. 0.000
4164. 0.000
3967. 0.000
3920. 0.000
3870. 0.000
3344. 0.000
2426. 0.000
1888. 0.000
1835. 0.000
1790. 0.000
1598. 0.000
1342. 0.000
1073. 0.000
820.1 0.000
625.3 0.000
576.2 0.000
522.6 0.000
  Q p

 

Partial Autocorrelation Function(Salebhatta Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.046 .0286
 29 +.020 .0286
 28 +.018 .0286
 27 -.052 .0286
 26 +.005 .0286
 25 +.044 .0286
 24 +.185 .0286
 23 +.127 .0286
 22 -.082 .0286
 21 -.119 .0286
 20 -.045 .0286
 19 -.000 .0286
 18 -.041 .0286
 17 -.030 .0286
 16 -.022 .0286
 15 -.051 .0286
 14 -.055 .0286
 13 +.146 .0286
 12 +.397 .0286
 11 +.388 .0286
 10 +.042 .0286
  9 -.300 .0286
  8 -.381 .0286
  7 -.327 .0286
  6 -.324 .0286
  5 -.180 .0286
  4 -.061 .0286
  3 -.287 .0286
  2 -.378 .0286
  1 +.653 .0286
Lag Corr. S.E.

    

Histogram(Salebhatta Subbasin)

 Expected Normal
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Normal Probability Plot(Salebhatta Subbasin)
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Time Series Plots of Monthly Rainfall Data 

Autocorrelation Function(Tikarpada Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.025 .0285

 14 +.039 .0285

 13 -.013 .0285

 12 -.017 .0286

 11 +.009 .0286

 10 +.043 .0286

  9 +.020 .0286

  8 -.004 .0286

  7 -.066 .0286

  6 -.038 .0286

  5 +.007 .0286

  4 -.030 .0287

  3 -.015 .0287

  2 -.002 .0287

  1 -.000 .0287

Lag Corr. S.E.

0

14.64 .4776

13.84 .4615

11.93 .5332

11.72 .4685

11.38 .4119

11.29 .3356

 9.00 .4376

 8.53 .3838

 8.51 .2898

 3.20 .7831

 1.39 .9249

 1.33 .8562

  .26 .9665

  .01 .9975

  .00 .9972

  Q p

 

Partial Autocorrelation Function(Tikarpada Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.026 .0287

 14 +.037 .0287

 13 -.016 .0287

 12 -.017 .0287

 11 +.006 .0287

 10 +.039 .0287

  9 +.019 .0287

  8 -.005 .0287

  7 -.067 .0287

  6 -.039 .0287

  5 +.007 .0287

  4 -.030 .0287

  3 -.015 .0287

  2 -.002 .0287

  1 -.000 .0287

Lag Corr. S.E.
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Histogram(Tikarpada Subbasin)

 Expected Normal

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

Upper Boundaries (x<=boundary)

0

50

100

150

200

250

300

350

400

450

N
o
 o

f 
o
b
s

 

Normal Probability Plot(Tikarpada Subbasin)

-8 -6 -4 -2 0 2 4 6 8 10 12

Value

-4

-3

-2

-1

0

1

2

3

4

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

 
Autocorrelation Function(Kesinga Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.014 .0285

 14 +.024 .0285

 13 +.007 .0285

 12 +.005 .0286

 11 +.054 .0286

 10 +.039 .0286

  9 +.036 .0286

  8 -.004 .0286

  7 -.067 .0286

  6 -.048 .0286

  5 +.000 .0286

  4 -.031 .0287

  3 -.042 .0287

  2 +.016 .0287

  1 -.001 .0287

Lag Corr. S.E.

0

20.12 .1673

19.87 .1343

19.14 .1188

19.09 .0865

19.06 .0601

15.46 .1163

13.56 .1387

12.01 .1509

11.99 .1010

 6.48 .3714

 3.62 .6052

 3.62 .4598

 2.44 .4854

  .31 .8575

  .00 .9780

  Q p

 

Partial Autocorrelation Function(Kesinga Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.021 .0287

 14 +.026 .0287

 13 +.004 .0287

 12 +.005 .0287

 11 +.049 .0287

 10 +.031 .0287

  9 +.034 .0287

  8 -.004 .0287

  7 -.070 .0287

  6 -.049 .0287

  5 +.001 .0287

  4 -.031 .0287

  3 -.042 .0287

  2 +.016 .0287

  1 -.001 .0287

Lag Corr. S.E.

 

Histogram(Kesinga Subbasin)

 Expected Normal
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Normal Probability Plot(Kesinga Subbasin)
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Autocorrelation Function(Kantamal Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.022 .0285

 14 +.035 .0285

 13 -.004 .0285

 12 -.004 .0286

 11 +.037 .0286

 10 +.046 .0286

  9 +.027 .0286

  8 -.002 .0286

  7 -.074 .0286

  6 -.043 .0286

  5 +.003 .0286

  4 -.040 .0287

  3 -.029 .0287

  2 +.006 .0287

  1 -.000 .0287

Lag Corr. S.E.

0

19.15 .2072

18.55 .1831

17.08 .1959

17.05 .1477

17.03 .1071

15.36 .1195

12.82 .1709

11.95 .1535

11.95 .1024

 5.29 .5071

 3.02 .6967

 3.01 .5556

 1.08 .7827

  .04 .9801

  .00 .9941

  Q p

 

Partial Autocorrelation Function(Kantamal Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.027 .0287

 14 +.034 .0287

 13 -.007 .0287

 12 -.005 .0287

 11 +.031 .0287

 10 +.038 .0287

  9 +.025 .0287

  8 -.003 .0287

  7 -.077 .0287

  6 -.044 .0287

  5 +.003 .0287

  4 -.040 .0287

  3 -.029 .0287

  2 +.006 .0287

  1 -.000 .0287

Lag Corr. S.E.

 

Histogram(Kantamal Subbasin)

 Expected Normal
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Normal Probability Plot(Kantamal Subbasin)
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Autocorrelation Function(Salebhatta Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.015 .0285

 14 +.026 .0285

 13 +.011 .0285

 12 -.010 .0286

 11 +.050 .0286

 10 +.047 .0286

  9 +.049 .0286

  8 +.007 .0286

  7 -.059 .0286

  6 -.056 .0286

  5 +.010 .0286

  4 -.033 .0287

  3 -.027 .0287

  2 +.017 .0287

  1 -.001 .0287

Lag Corr. S.E.

0

20.95 .1386

20.68 .1102

19.84 .0994

19.69 .0733

19.57 .0517

16.53 .0854

13.85 .1279

10.86 .2098

10.81 .1473

 6.53 .3666

 2.64 .7550

 2.51 .6425

 1.22 .7478

  .36 .8332

  .00 .9774

  Q p

 

Partial Autocorrelation Function(Salebhatta Subbasin)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.023 .0287

 14 +.028 .0287

 13 +.008 .0287

 12 -.010 .0287

 11 +.047 .0287

 10 +.040 .0287

  9 +.050 .0287

  8 +.008 .0287

  7 -.062 .0287

  6 -.056 .0287

  5 +.011 .0287

  4 -.033 .0287

  3 -.027 .0287

  2 +.017 .0287

  1 -.001 .0287

Lag Corr. S.E.
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Histogram(Salebhatta Subbasin)

 Expected Normal
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Diagnostic Check Plots of Residual from Best Fitted Seasonal ARIMA Model 

Best Fitted SARIMA Model of Stations  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Best Fitted MLP ANN Model of Stations  

Station Network Architecture 

Angul (0,0,1)1(0,1,1)12 

Balangir (1,0,0)1(0,1,1)12 

Bargarh (1,0,0)1(0,1,1)12 

Boudh (0,0,1)1(0,1,1)12 

Cuttack (0,0,1)1(0,1,1)12 

Debgarh (0,0,1)1(0,1,1)12 

Dhenkanal (0,0,1)1(0,1,1)12 

Ganjam (0,0,1)1(0,1,1)12 

Jagatsingpur (1,0,0)1(0,1,1)12 

Jajpur (0,0,1)1(0,1,1)12 

Jharsuguda (0,0,1)1(0,1,1)12 

Kalahandi (1,0,0)1(0,1,1)12 

Kandhamal (0,0,1)1(0,1,1)12 

Kendrapada (1,0,0)1(0,1,1)12 

Khordha (0,0,1)1(0,1,1)12 

Nabarangpur (1,0,0)1(0,1,1)12 

Nayagarh (0,0,1)1(0,1,1)12 

Nuapada (1,0,0)1(0,1,1)12 

Puri (1,0,0)1(0,1,1)12 

Rayagada (0,0,1)1(0,1,1)12 

Sambalpur (0,0,1)1(0,1,1)12 

Sonepur (0,0,1)1(0,1,1)12 

Sundargarh (0,0,1)1(0,1,1)12 

Station Network Architecture 

Angul 12-8-1 

Balangir 12-5-1 

Bargarh 12-7-1 

Boudh 12-6-1 

Cuttack 12-6-1 

Debgarh 12-8-1 

Dhenkanal 12-6-1 
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Ganjam 12-4-1 

Jagatsingpur 12-7-1 

Jajpur 12-5-1 

Jharsuguda 12-5-1 

Kalahandi 12-6-1 

Kandhamal 12-5-1 

Kendrapada 12-6-1 

Khordha 12-2-1 

Nabarangpur 12-8-1 

Nayagarh 12-2-1 

Nuapada 12-4-1 

Puri 12-4-1 

Rayagada 12-5-1 

Sambalpur 12-7-1 

Sonepur 12-5-1 

Sundargarh 12-7-1 
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