138 research outputs found

    The Biomolecular Interaction Network Database and related tools 2005 update

    Get PDF
    The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues

    PINT: Protein–protein Interactions Thermodynamic Database

    Get PDF
    The first release of Protein–protein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of protein–protein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available a

    MINT: the Molecular INTeraction database

    Get PDF
    The Molecular INTeraction database (MINT, ) aims at storing, in a structured format, information about molecular interactions (MIs) by extracting experimental details from work published in peer-reviewed journals. At present the MINT team focuses the curation work on physical interactions between proteins. Genetic or computationally inferred interactions are not included in the database. Over the past four years MINT has undergone extensive revision. The new version of MINT is based on a completely remodeled database structure, which offers more efficient data exploration and analysis, and is characterized by entries with a richer annotation. Over the past few years the number of curated physical interactions has soared to over 95 000. The whole dataset can be freely accessed online in both interactive and batch modes through web-based interfaces and an FTP server. MINT now includes, as an integrated addition, HomoMINT, a database of interactions between human proteins inferred from experiments with ortholog proteins in model organisms ()

    MoKCa database - mutations of kinases in cancer

    Get PDF
    Members of the protein kinase family are amongst the most commonly mutated genes in human cancer, and both mutated and activated protein kinases have proved to be tractable targets for the development of new anticancer therapies The MoKCa database (Mutations of Kinases in Cancer, http://strubiol.icr.ac.uk/extra/mokca) has been developed to structurally and functionally annotate, and where possible predict, the phenotypic consequences of mutations in protein kinases implicated in cancer. Somatic mutation data from tumours and tumour cell lines have been mapped onto the crystal structures of the affected protein domains. Positions of the mutated amino-acids are highlighted on a sequence-based domain pictogram, as well as a 3D-image of the protein structure, and in a molecular graphics package, integrated for interactive viewing. The data associated with each mutation is presented in the Web interface, along with expert annotation of the detailed molecular functional implications of the mutation. Proteins are linked to functional annotation resources and are annotated with structural and functional features such as domains and phosphorylation sites. MoKCa aims to provide assessments available from multiple sources and algorithms for each potential cancer-associated mutation, and present these together in a consistent and coherent fashion to facilitate authoritative annotation by cancer biologists and structural biologists, directly involved in the generation and analysis of new mutational data

    SMART 5: domains in the context of genomes and networks

    Get PDF
    The Simple Modular Architecture Research Tool (SMART) is an online resource () used for protein domain identification and the analysis of protein domain architectures. Many new features were implemented to make SMART more accessible to scientists from different fields. The new ‘Genomic’ mode in SMART makes it easy to analyze domain architectures in completely sequenced genomes. Domain annotation has been updated with a detailed taxonomic breakdown and a prediction of the catalytic activity for 50 SMART domains is now available, based on the presence of essential amino acids. Furthermore, intrinsically disordered protein regions can be identified and displayed. The network context is now displayed in the results page for more than 350 000 proteins, enabling easy analyses of domain interactions

    DOMINO: a database of domain–peptide interactions

    Get PDF
    Many protein interactions are mediated by small protein modules binding to short linear peptides. DOMINO () is an open-access database comprising more than 3900 annotated experiments describing interactions mediated by protein-interaction domains. DOMINO can be searched with a versatile search tool and the interaction networks can be visualized with a convenient graphic display applet that explicitly identifies the domains/sites involved in the interactions

    Snap: an integrated SNP annotation platform

    Get PDF
    Snap (Single Nucleotide Polymorphism Annotation Platform) is a server designed to comprehensively analyze single genes and relationships between genes basing on SNPs in the human genome. The aim of the platform is to facilitate the study of SNP finding and analysis within the framework of medical research. Using a user-friendly web interface, genes can be searched by name, description, position, SNP ID or clone name. Several public databases are integrated, including gene information from Ensembl, protein features from Uniprot/SWISS-PROT, Pfam and DAS-CBS. Gene relationships are fetched from BIND, MINT, KEGG and are integrated with ortholog data from TreeFam to extend the current interaction networks. Integrated tools for primer-design and mis-splicing analysis have been developed to facilitate experimental analysis of individual genes with focus on their variation. Snap is available at and at

    Gene3D: modelling protein structure, function and evolution

    Get PDF
    The Gene3D release 4 database and web portal () provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives—including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein–protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers

    GWIDD: Genome-wide protein docking database

    Get PDF
    Structural information on interacting proteins is important for understanding life processes at the molecular level. Genome-wide docking database is an integrated resource for structural studies of protein–protein interactions on the genome scale, which combines the available experimental data with models obtained by docking techniques. Current database version (August 2009) contains 25 559 experimental and modeled 3D structures for 771 organisms spanned over the entire universe of life from viruses to humans. Data are organized in a relational database with user-friendly search interface allowing exploration of the database content by a number of parameters. Search results can be interactively previewed and downloaded as PDB-formatted files, along with the information relevant to the specified interactions. The resource is freely available at http://gwidd.bioinformatics.ku.edu
    corecore