941 research outputs found

    A Self-Adaptive Chaos Particle Swarm Optimization Algorithm

    Get PDF
    As a new evolutionary algorithm, particle swarm optimization (PSO) achieves integrated evolution through the information between the individuals. All the particles have the ability to adjust their own speed and remember the optimal positions they have experienced. This algorithm has solved many practical engineering problems and achieved better optimization effect. However, PSO can easily get trapped in local extremum, making it fail to get the global optimal solution and reducing its convergence speed. To settle these deficiencies, this paper has proposed an adaptive chaos particle swarm optimization (ACPSO) based on the idea of chaos optimization after analyzing the basic principles of PSO. This algorithm can improve the population diversity and the ergodicity of particle search through the property of chaos; adjust the inertia weight according to the premature convergence of the population and the individual fitness; consider the global optimization and local optimization; effectively avoid premature convergence and improve algorithm efficiency. The experimental simulation has verified its effectiveness and superiority

    AN IMPROVED BARE-BONES PARTICLE SWARM ALGORITHM FOR MULTI-OBJECTIVE OPTIMIZATION WITH APPLICATION TO THE ENGINEERING STRUCTURES

    Get PDF
    In this paper, an improved bare-bones multi-objective particle swarm algorithm is proposed to solve the multi-objective size optimization problems with non-linearity and constraints in structural design and optimization. Firstly, the development of particle individual guide and the randomness of gravity factor are increased by modifying the updated form of particle position. Then, the combination of spatial grid density and congestion distance ranking is used to maintain the external archive, which is divided into two parts: feasible solution set and infeasible solution set. Next, the global best positions are determined by increasing the probability allocation strategy which varies with time. The algorithmic complexity is given and the performance of solution ability, convergence and constraint processing are analyzed through standard test functions and compared with other algorithms. Next, as a case study, a support frame of triangle track wheel is optimized by the BB-MOPSO and improved BB-MOPSO. The results show that the improved algorithm improves the cross-region exploration, optimal solution distribution and convergence of the bare-bones particle swarm optimization algorithm, which can effectively solve the multi-objective size optimization problem with non-linearity and constraints

    Condition trend prediction of aero-generator based on particle swarm optimization and fuzzy integral

    Get PDF
    In order to improve and enhance the prediction accuracy and efficiency of aero-generator running trend, grasp its running condition, and avoid accidents happening, in this paper, auto-regressive and moving average model (ARMA) and least squares support vector machine (LSSVM) which are used to predict its running trend have been optimized using particle swarm optimization (PSO) based on using features found in real aero-generator life test, which lasts a long period of time on specialized test platform and collects mass data that reflects aero-generator characteristics, to build new models of PSO-ARMA and PSO-LSSVM. And we use fuzzy integral methodology to carry out decision fusion of the predicted results of these two new models. The research shows that the prediction accuracy of PSO-ARMA and PSO-LSSVM has been much improved on that of ARMA and LSSVM, and the results of decision fusion based on fuzzy integral methodology show further substantial improvement in accuracy than each particle swarm optimized model. Conclusion can be drawn that the optimized model and the decision fusion method presented in this paper are available in aero-generator condition trend prediction and have great value of engineering application

    A Multi-objective Particle Swarm Optimization Algorithm Based on Reverse Learning

    Get PDF
    In order to solve the contradiction between population diversity and convergence in particle swarm optimization algorithm, in this paper, a particle swarm optimization algorithm with reverse learning is proposed. On this basis, the values of learning factor and constraint factor parameters are modified, and the linear decreasing weight strategy was adopted. By modifying the learning factor and the constraint factor, the algorithm improves the particle optimization ability. It balances the global search and local search of the particle, and the convergence speed is improved by using the inertia weight. When it is detected that the algorithm falls into the local optimal region, the position information of these poor particles is used to guide some particles to reverse learning at a faster flight speed, and the particles are quickly pulled out of the local optimal region. The reverse learning process can not only improve the diversity of particle population, but also ensure the global detection ability of the algorithm. Experimental results show that, compared with the basic MOPSO algorithm, this algorithm has fast convergence speed and high solution accuracy in function optimization

    Improved PSO algorithm based on chaos theory and its application to design flood hydrograph

    Get PDF
    AbstractThe deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm was established by introducing the chaos optimization mechanism and a global particle stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was adopted for the particles' initial movement trajectories to replace the former stochastic movement, and the chaos factor was used to guide the particles' path. When the global particles were stagnant, the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations were introduced to test COSPSO, and they proved that COSPSO can remarkably improve efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design flood hydrographs demonstrated the applicability of the improved algorithm

    A review of optimization approaches for controlling water-cooled central cooling systems

    Get PDF
    Buildings consume a large amount of energy across all sectors of society, and a large proportion of building energy is used by HVAC systems to provide a comfortable and healthy indoor environment. In medium and large-size buildings, the central cooling system accounts for a major share of the energy consumption of the HVAC system. Improving the cooling system efficiency has gained much attention as the reduction of cooling system energy use can effectively contribute to environmental sustainability. The control and operation play an important role in central cooling system energy efficiency under dynamic working conditions. It has been proven that optimization of the control of the central cooling system can notably reduce the energy consumption of the system and mitigate greenhouse gas emissions. In recent years, numerous studies focus on this topic to improve the performance of optimal control in different aspects (e.g., energy efficiency, stability, robustness, and computation efficiency). This paper provides an up-to-date overview of the research and development of optimization approaches for controlling water-cooled central cooling systems, helping readers to understand the new significant trends and achievements in this area. The optimization approaches have been classified as system-model-based and data-based. In this paper, the optimization methodology is introduced first by summarizing the key decision variables, objective function, constraints, and optimization algorithms. The principle and performance of various optimization approaches are then summarized and compared according to their classification. Finally, the challenges and development trends for optimal control of water-cooled central cooling systems are discussed
    corecore