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Abstract: Buildings consume a large amount of energy across all sectors of 

society, and a large proportion of building energy is used by HVAC systems to 

provide a comfortable and healthy indoor environment. In medium and large-

size buildings, the central cooling system accounts for a major share of the 

energy consumption of the HVAC system. Improving the cooling system 

efficiency has gained much attention as the reduction of cooling system energy 

use can effectively contribute to environmental sustainability. The control and 

operation play an important role in central cooling system energy efficiency 

under dynamic working conditions. It has been proven that optimization of the 

control of the central cooling system can notably reduce the energy 

consumption of the system and mitigate greenhouse gas emissions. In recent 

years, numerous studies focus on this topic to improve the performance of 



 

optimal control in different aspects (e.g., energy efficiency, stability, robustness, 

and computation efficiency). This paper provides an up-to-date overview of the 

research and development of optimization approaches for controlling water-

cooled central cooling systems, helping readers to understand the new 

significant trends and achievements in this area. The optimization approaches 

have been classified as model-based and data-based. In this paper, the 

optimization methodology is introduced first by summarizing the key decision 

variables, objective function, constraints, and optimization algorithms. The 

principle and performance of various optimization approaches are then 

summarized and compared according to their classification. Finally, the 

challenges and development trends for optimal control of water-cooled central 

cooling systems are discussed. 

Keywords: Building energy, Energy efficiency, Central cooling system, Optimal 

control, System-model-based optimization, Data-based optimization. 

Nomenclature Subscripts 

𝐶𝐿 Cooling load (kW) 𝑎 Air  

𝐶𝑃 Critical point  𝑎ℎ𝑢 Air handle unit 

𝐷 Vector of decision variables 𝑎𝑝𝑝 Approach 

𝑑𝑐 Continuous decision variables  𝑐ℎ𝑤 Chilled water  

𝑑𝑠 Binary decision variables 𝑐𝑡 Cooling tower 



 

 

Abbreviation 

AFSA Artificial Fish Swarm Algorithm 

AGSO Augmented Group Search Optimization 

ANN Artificial Neural Network 

B&B Branch & Bound  

𝐷𝑃 Differential pressure (kPa) 𝑐𝑤 Cooling water  

𝑓 Frequency (Hz) 𝑒𝑥 Exchanger 

𝐽 Objective function  𝑓𝑎𝑛 Cooling tower fan 

𝐻 Head (kPa) 𝑖 Number of equipment  

𝑁 Number of equipment 𝑗 Number of equipment  

𝑀 Mass flow rate (m3/h)  𝑘 Number of equipment  

𝑂𝑀 Operation mode 𝑝𝑢𝑚 Pump 

𝑃 Power consumption (kW) 𝑟 Water return 

𝑃𝐿R Partial load ratio (%) 𝑟𝑎𝑡𝑒𝑑 Rated 

𝑄 Cooling supply (kW) 𝑠 Supply  

𝑆 Operation state 𝑠𝑒𝑡 Setpoint 

𝑇 Temperature (°C) 𝑠𝑠 Substations 

𝑡 Time 𝑡𝑒𝑟 Terminal unit 

𝑈 Vector of uncontrollable variables 𝑡𝑜𝑡𝑎𝑙 Sum of the variables 

𝛥𝑇 Temperature difference (°C) 𝑤𝑒𝑡 Wet-bulb temperature 



 

BGA Binary Genetic Algorithm  

CGA Continuous Genetic Algorithm 

COC Conventional Optimal Control 

COP Coefficient of Performance 

CSA Cuckoo Search Approach 

CTBA Camel Traveling Behavior Algorithm 

DCSA Differential Cuckoo Search Approach 

DE Differential Evolution 

DMM Data Mining Method 

DOF Degree of Freedom 

DS Differential Search 

EDOC Event-Driven Optimal Control 

EIWO Enhanced Invasive Weed Optimization 

EMA Exchange Market Algorithm 

EP Evolutionary Programming 

EPSO Elitism-based Particle Swarm Optimization  

ES Evolution Strategy  

ESM Extremum-Seeking Method 

ExS Exhaustive Search 

FA Firefly Algorithm 

GA Genetic Algorithm 



 

GD Gradient Descent 

GRG Generalized Reduced Gradient  

HAVC Heating Ventilation and Air Conditioning 

HJ Hooke Jeeves 

HOC Hierarchical Optimal Control  

IAFSA Improved Artificial Fish Swarm Algorithm 

IAFSA Improved Artificial Fish Swarm Algorithm 

IFA Improved Firefly Algorithm 

IFFA Improved Fruit Fly Algorithm 

IGA Improved Grasshopper Algorithm 

IPSO Improved Particle Swarm Optimization 

IRBSO Improved Ripple Bee Swarm Optimization 

IWO Invasive Weed Optimization 

LM Lagrangian Method 

LMA Levenberg-Marquardt Algorithm  

MAOC Multi-Agent Optimal Control 

MAPSO Multi-Agent Particle Swarm Optimization 

MGA Modified Genetic Algorithm 

MILP Mixed Integer non-Linear Program 

MPGA Multi-Phase Genetic Algorithm 

NMS Nelder-Mead Simplex 



 

PSO Particle Swarm Optimization  

QN Quasi-Newton 

RLM Reinforcement Learning Method  

ROC Robust Optimal Control 

SA Simulated Annealing 

SAM Systematic Analysis Method 

SEOC Stability-Enhanced Optimal Control 

SOC Stochastic Optimal Control 

TDE Two-stage Differential Evolution 

TDOC Time-Driven Optimal Control 

TLBO Teaching-Learning Based Optimization 

1. Introduction 

Buildings account for almost 40.0% of the global energy consumption and CO2 

emissions [1-3], so reducing the energy demand of buildings has become an 

essential component of global sustainability [4, 5]. In buildings, a large 

proportion of energy is consumed by the central cooling system to provide a 

comfortable and healthy indoor environment [6-8]. The water-cooled central 

cooling system is commonly used due to its high cooling capacity and energy 

efficiency [9, 10]. Figure 1 shows a typical water-cooled central cooling system 

consists of three main sub-systems, namely, the chilled water loop, the chiller 

plant, and the cooling water loop [11]. 



 

  

Figure 1: Basic structure of a typical water-cooled central cooling system 

Due to the common use of water-cooled central cooling systems in energy-

intensive buildings, improving the energy efficiency of the central cooling 

system is crucial for building energy conservation. Using energy-efficient 

equipment is an essential measure for reducing the energy consumption of the 

central cooling system. However, it is insufficient to minimize overall system 

energy consumption due to the interaction of different subsystems or 

components. Therefore, the control and operation become extremely important 

for system energy-saving [12]. In real applications, this is mainly achieved at 

two levels, namely, supervisory control and local control [11, 13], as shown in 

Figure 2. The supervisory control determines the operation mode and specifies 

setpoints for the local control loops. The local control adjusts the sequences 

and processes of relevant equipment to maintain the operation mode and 

setpoints determined at the supervisory control level. 



 

 

Figure 2: The control structure of water-cooled central cooling systems 

In recent decades, numerous studies have focused on optimizing the control of 

water-cooled central cooling systems to improve system performance [14-16]. 

Firstly, optimizing the control of central cooling systems could significantly 

reduce energy consumption while maintaining a comfortable indoor 

environment. For example, by optimizing cooling water temperature, Huang et 

al. [14] reduced the total system energy demand by 9.7%. Secondly, the 

optimization can help to enhance the control performance (e.g., stability and 

robustness) [17-23]. For example, using a multiplexed optimization method, 

Sun et al. [18] improved the system control stability with a 50.0% reduction in 

tracking error of setpoints. Kumar et al. [21] employed a stochastic optimization 

method to mitigate constraint violations and enhance the robustness of control 



 

by explicitly incorporating uncertainties in the optimization. The existing 

optimization methods can be classified into system-model-based and data-

based approaches [13]. Whether a method is specified as a system-model-

based or a data-based method is dependent on whether the numerical models 

are used to describe system dynamic behavior. This system model was used 

to evaluate the energy consumption or operation cost in each iteration of the 

optimization process [13]. The optimization process is to identify control 

variables that minimize the system energy use or operation costs [24, 25]. The 

methods that do not involve system models during the optimization process are 

classified as data-based optimization. The data-based optimization methods 

are generally based on the experience of engineers [26, 27], learned knowledge 

from historical data [28-31], or regulation on real systems directly [32-34]. 

In the literature, numerous studies talk about optimal control of the central 

cooling system, while only two reviews focused on this specific topic [11, 13]. 

Chapter 43 of ASHRAE Handbook-HVAC Applications [11] has summarized 

supervisory control strategies and optimization methods applied to HVAC 

systems. In this chapter, the general optimization approach is introduced, and 

the simplified near-optimal control strategies are then described in detail to 

guide the real application. Wang and Ma [13] have reviewed the supervisory 

optimal control in building HVAC systems and proposed a classification 

framework for optimal control methods. However, these two reviews do not 



 

summarize the decision variables, objective functions, and constraints of the 

optimal control used in this specific field. Moreover, the literature cited by the 

two reviews is mainly before 2005. With the rapid development of technology 

and computer science, many advanced optimization approaches have been 

developed for various purposes, as well as algorithms for finding the optimum 

solution. Therefore, this paper aims to provide a comprehensive overview of 

the research and recent development of optimization approaches for water-

cooled central cooling systems. 

In the rest of this paper, Section 2 described the review material and methods. 

Section 3 introduced the general optimization methodology by summarizing the 

general formulation, decision variables, objectives, constraints, and 

optimization algorithms. Then, Section 4 reviewed the recent development of 

optimization approaches and compared their performance according to their 

classification. The challenges and potential future research directions in the 

optimization of water-cooled central cooling systems are discussed in Section 

5. A summary of this review article is then provided in Section 6. 

2. Material and Methods 

2.1 Search keywords 

This research aims to provide an overview of the literature on optimization 

approaches for improving the energy efficiency of the water-cooled central 

cooling system. This study used the “Web of Science” and “Scopus” scientific 



 

databases to search relevant publications. The main search keywords included: 

“optimization”, “optimal control”, “central cooling system”, “chiller plant”, “chilling 

system”, “chilled water system”. To focus on the most recent technologies and 

approaches, only studies published in or after 2005 have been included. 

2.2 Inclusion criteria 

In the initial search, around 1897 publications were found. They were screened 

by reading through their titles and abstracts and restricted by following inclusion 

criteria：1) only English-written peer-reviewed articles published in journals, 

chapters of books, and proceedings of conferences were included; 2) studies 

that mainly focused on optimization of system design, siting and components 

sizing were excluded; and 3) articles focused on air-cooled or other types 

central cooling system was not included, as the water-cooled central cooling 

system is the main object of this review. Applying these criteria, 98 papers were 

obtained for this review. 

2.3 Data collection 

The following information was extracted from the selected publications: 1) the 

decision variables, the objective function, and constraints used in the 

optimization, 2) optimization technologies and algorithms used for solving 

optimization problems, 3) the potential energy and cost savings, and other 

aspects of performance for different optimal control methods. 



 

3. Optimization Methodology 

3.1 General formulation 

An optimization problem is typically defined in three parts: a set of decision 

variables, an objective function, and a series of constraints. The goal of 

optimization is to minimize or maximize the objective by varying the decision 

variables while satisfying a set of constraints. Equation (1) is a general objective 

function, that minimizes the total energy or operation cost of the target system. 

Equations (2) and (3) are equality and inequality constraints to which all 

potential solutions are subject.  

𝐽(𝑓, 𝐷, 𝑈) = min(∑ 𝐽𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑓𝑖 , 𝐷𝑖 , 𝑈𝑖)

𝑁

𝑖=1

) (1) 

𝑔𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑓𝑖 , 𝐷𝑖 , 𝑈𝑖) = 0 (2) 

ℎ𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑓𝑖 , 𝐷𝑖 , 𝑈𝑖) ≥ 0 (3) 

where 𝐽𝑖   represents the operational cost or energy consumption of each 

component; 𝑓𝑖 represents non-control variables, such as cooling demand and 

outdoor wet-bulb temperature; 𝐷𝑖  and 𝑈𝑖  are vectors of discrete and 

continuous control variables, which could be adjusted to minimize the objective 

function; 𝑥𝑖  and 𝑦𝑖  are input and output stream variables, respectively; 𝑔𝑖  

are equality constraints; and ℎ𝑖 represent inequality constraints. 

3.2 Decision variables 

Decision variables are input parameters that can be adjusted to minimize the 

objective function. The decision variables used in the optimization of the central 

cooling systems are summarized in Table 1, as well as their types, ranges, and 



 

corresponding energy performance of the optimization. The decision variable 

could be classified into continue (e.g., 𝑇𝑐ℎ𝑤,𝑖) and discrete variables (e.g., 𝑆𝑖 

and 𝑁 ). In the reviewed literature, the partial load ratio (𝑃𝐿𝑅𝑖 ) is the most 

commonly decision variable used to reduce chillers’ energy consumption since 

chillers consume a large proportion of the system’s energy. Although significant 

energy savings could be obtained by optimizing the 𝑃𝐿𝑅𝑖 , it has not been 

widely applied because the 𝑃𝐿𝑅𝑖 cannot be directly adjusted. Several studies 

[35-37] optimized the chilled water supply temperature (𝑇𝑐ℎ𝑤,𝑠,𝑖) of each chiller, 

a directly controllable parameter, to improve the energy efficiency. Cooling 

water supply temperature (𝑇𝑐𝑤,𝑠 ) is another important decision variable as it 

impacts the energy consumption of both chillers and cooling towers. Due to the 

coupling feature of subsystems, holistic optimization, which explores the 

synergistic effects of multiple variables to increase whole system energy 

efficiency, has become a trend with an increasing number of studies on holistic 

optimization. In holistic optimization, 𝑇𝑐ℎ𝑤,𝑠 and 𝑇𝑐𝑤,𝑠 are the most significant 

decision variables and they are typically optimized simultaneously. The energy-

saving potential of different decision variables has also been summarized in 

Table 1. It shows that the energy savings varying with system structures and 

weather conditions, and thus the variables should be selected carefully for 

various applications. Compared with subsystem optimization, holistic 

optimization generally exhibits greater energy-saving potential, detailed 



 

comparative data could be found in [15, 38, 39]. 



 

Table 1. Decision variables used in the optimization of water-cooled central cooling systems (DES: daily energy savings, WES: weekly 

energy savings, AES: annual energy savings. Others are energy savings under specified conditions) 

Subsystem Decision Variables 
Variable 

Type 
Range of Variables Energy Savings Ref. 

Chillers 

𝑃𝐿𝑅𝑖 , (𝑆𝑖) 
Continue 

(Mixed) 
𝑃𝐿𝑅𝑖 ∈ [0.3, 1.0], 𝑆𝑖 ∈ {0, 1} 

Case 1: 3.6-7.2% 

Case 2: 0.4-29.3% 

Case 3: 0.6-18.5% 

[40-60] 

𝑃𝐿𝑅𝑖 , 𝑆𝑖 Mixed 𝑃𝐿𝑅𝑖 ∈ [0.0, 1.0], 𝑆𝑖 ∈ {0, 1} DES: 1.0-21.2% [61, 62] 

𝑃𝐿𝑅𝑖 Continue 𝑃𝐿𝑅𝑖 ∈ [0.5, 1.0] 0.4-25.7% [63-68] 

𝑄𝑖 Continue 𝑄𝑖 ∈ [0,  𝑄𝑟𝑎𝑡𝑒𝑑,𝑖] DES: 0.4-9.4% [69, 70] 

𝐶𝑃𝑖 Continue 𝑄𝑐𝑝,𝑖 ∈ [𝐶𝑃𝑖−1, 𝐶𝑃𝑖] DES: 0.5-7.8% [15, 71] 

𝑇𝑐ℎ𝑤,𝑖 , 𝑆𝑖 Mixed 𝑇𝑐ℎ𝑤,𝑖 ∈ [7.0, 13.0 ℃], 𝑆𝑖 ∈ {0, 1} 0.7-13.8% 
[22, 35-37, 72, 

73] 

Cooling water 

system 

𝑇𝑐𝑤,𝑠  Continue 𝑇𝑐𝑤,𝑠 ∈ [15.4, 29.4 ℃]  AES: 9.4-9.7% [14, 74] 

𝛥𝑇𝑎𝑝𝑝 Continue  AES: 4.1-15.6%  [75-77]  

𝑇𝑐𝑤,𝑠 , 𝑄𝑐𝑝,𝑖 Continue 
𝑇𝑐𝑤,𝑠 ∈ [13.9, 23.9 ℃]  

𝑄𝑐𝑝,𝑖 ∈ [𝑄𝑟𝑎𝑡𝑒𝑑,𝑖 ,  1.1𝑄𝑟𝑎𝑡𝑒𝑑,𝑖] 
AES: 5.6% [71] 

𝑇𝑐𝑤,𝑠(, 𝑓𝑓𝑎𝑛, 𝑁𝑐𝑡) Mixed 
𝑇𝑐𝑤,𝑠 ∈ [𝑚𝑎𝑥(18.0, 𝑇𝑜𝑝 − 2.0), 𝑇𝑜𝑝 + 2.0 ℃], 

𝑓𝑓𝑎𝑛 ∈ [20, 50 𝐻𝑧], 𝑁𝑐𝑡 ∈ {1, 2, 3 … , 11} 
DES: 14.8-22.6% [78, 79] 

𝑇𝑐𝑤,𝑠  , 𝑓𝑓𝑎𝑛, 𝑃𝐿𝑅𝑖 , 𝑁𝑐ℎ Mixed 
𝑇𝑐𝑤,𝑠 ∈ [15.5, 29.4 ℃], 𝑓𝑓𝑎𝑛 ∈ [0.3, 1.0] 

𝑃𝐿𝑅𝑖 ∈ [0.4, 1.0], 𝑁𝑐ℎ ∈ {1, 2, 3, 4} 
16.7% [80] 

𝑀𝑐𝑤, 𝑀𝑐𝑡 Continue  2.5-8.6% [81, 82] 

𝑇𝑐𝑤 , 𝑄𝑖 , 𝑆𝑖 Mixed 𝑄 ∈ [0.5𝑄𝑚𝑎𝑥 , 𝑄𝑚𝑎𝑥 ], DES: 14.0% [83] 



 

𝑇𝑐𝑤,𝑠 ∈ [23.9, 29.4 ℃], 𝑆 ∈ {0, 1} 

Chilled water system 

𝑇𝑐ℎ𝑤,𝑠 , 𝑇𝑡𝑒𝑟,𝑠 Continue 𝑇𝑐ℎ𝑤,𝑠 ∈ [5.0, 8.0 ℃] , 𝑇𝑎,𝑠𝑢 ∈ [13.0, 19.0 ℃] AES: 6.7% [84] 

𝑇𝑐ℎ𝑤,𝑠 , 𝐷𝑃𝑠𝑒𝑡 , 𝑁𝑐ℎ𝑤,𝑝𝑢𝑚 , 𝑁𝑎ℎ𝑢  Continue 𝑇𝑐ℎ𝑤,𝑠 ∈ [5.0, 10.0 ℃]  DES: 1.3-2.6% [85] 

𝑀𝑐ℎ𝑤,𝑗 , 𝑃𝐿𝑅𝑖 Continue  9.9% [86] 

Whole system 

𝑇𝑐ℎ𝑤,𝑠 , 𝑇𝑐𝑤,𝑠 Continue 𝑇𝑐ℎ𝑤,𝑠 ∈ [5.0, 13.0 ℃] , 𝑇𝑐𝑤,𝑠 ∈ [18.0,32.0 ℃]  DES: 9.4-11.1% [87] 

𝑇𝑐ℎ𝑤,𝑠 , 𝑇𝑐𝑤,𝑠 (𝑇𝑎,𝑠𝑢) Continue 
𝑇𝑐ℎ𝑤,𝑠 ∈ [5.0, 8.0 ℃] , 𝑇𝑐𝑤,𝑠 ∈ [20.0,35.0 ℃], 

𝑇𝑎,𝑠𝑢 ∈ [12.0, 18.0 ℃] 
DES: 3.5-11.8% [18, 39, 88-91] 

𝑇𝑐ℎ𝑤,𝑠 ,  𝑇𝑐𝑤,𝑠 , 𝑄𝑖 Continue  DES: 10.5-13.6% [15] 

𝑇𝑐ℎ𝑤,𝑠  , 𝑇𝑐𝑤,𝑠 , 𝑀𝑐𝑤 Continue  WES: 22.0%. [17, 92] 

𝑇𝑐ℎ𝑤,𝑠  , 𝑇𝑐ℎ𝑤,𝑟 , 𝑀𝑐ℎ𝑤, 

𝑇𝑐𝑤,𝑠 , 𝑇𝑐𝑤,𝑟 , 𝑀𝑐𝑤 
Continue 

𝑇𝑐ℎ𝑤,𝑠 ∈ [7.0, 13.0 ℃] , 𝑇𝑐𝑤,𝑠 ∈ [30.0, 35.0 ℃] 

𝑇𝑐ℎ𝑤,𝑟 − 𝑇𝑐ℎ𝑤,𝑠 ∈ [5.0, 7.0℃], 

 𝑇𝑐𝑤,𝑟 − 𝑇𝑐𝑤,𝑠 ∈ [0.0, 7.0 ℃] 

𝑀𝑐ℎ𝑤 =
𝑄

4.2 × 106(𝑇𝑐ℎ𝑤,𝑟 − 𝑇𝑐ℎ𝑤,𝑠)
 

𝑀𝑐𝑤 ∈ [0, 0.2 𝑚3/𝑠] 

DES: 9.1-23.3% . [93] 

𝑇𝑐ℎ𝑤,𝑠  , 𝑇𝑐𝑤,𝑠 Mixed  2.0-25.0% [94, 95] 

𝑇𝑐ℎ𝑤,𝑠 , 𝑇𝑐𝑤,𝑠 , 𝑀𝑐𝑤, 𝑆𝑖 , 𝑃𝐿𝑅𝑖 , Mixed 𝑆 ∈ {0, 1}，𝑃𝐿𝑅𝑖 ∈ [0.3, 1.0] Daily cost saving: 0.2-0.5%  [96] 

 𝑇𝑐ℎ𝑤,𝑠  , 𝑇𝑐𝑤,𝑠 , 𝑀𝑐ℎ𝑤, 𝑀𝑐𝑤,𝑆𝑐ℎ,𝑖 Mixed 
𝑇𝑐ℎ𝑤,𝑠 ∈ [6.7, 9.0 ℃], 𝑇𝑐𝑤,𝑠 ∈ [28.0, 34.0 ℃]  

𝑀𝑐𝑤 ∈ [0.6𝑀𝑚𝑎𝑥, 𝑀𝑚𝑎𝑥]，𝑆 ∈ {0, 1} 
DES: 20.0-42.5% [97] 

𝑇𝑐ℎ𝑤,𝑠  , 𝑇𝑐𝑤,𝑠  , 𝑇𝑎,𝑠  𝛥𝑇𝑐𝑤, 𝑂𝑀 Mixed 

𝑇𝑐ℎ𝑤,𝑠 ∈ [11.0, 22.0 ℃], 𝑇𝑐𝑤,𝑠 ∈ [28.0, 32.0 ℃]  

𝑇𝑎,𝑠 ∈ [18.0, 27.0 ℃] , ∆𝑇𝑐𝑤 ∈ [4.0, 5.0 ℃] 

𝑂𝑀 ∈ {0, 1} 

AES: 6.6% [98] 

𝑇𝑐ℎ𝑤,𝑟 𝛥𝑇𝑎𝑝𝑝 , 𝑀𝑐ℎ𝑤, 𝑀𝑐𝑤 , 𝛥𝑇𝑠𝑠 , 𝑃𝑠 Continue  DES: 3.0-31.9% [38] 



 

3.3 Objective functions 

An objective function describes the relationship between input and output 

variables of the target system. Most studies addressed single-objective 

optimization problems, except for a few studies that considered thermal comfort 

together with system energy consumption [22, 72]. Various formulations of the 

objective function used in the optimal control of water-cooled central cooling 

systems are summarized in Table 2. The general objective is to minimize the 

total power consumption of the target system at a given instant in time, which 

is generally used for static optimization. The accumulated energy consumption 

in an optimization period is another way to define the objective function and is 

normally used for dynamic optimization. In several studies, maximizing the 

target system’s energy efficiency was set as an alternate objective function to 

obtain a convex objective function [65, 99, 100]. Similarly, minimizing the ratio 

of power consumption to the cooling load (kW/ton) over the optimization period 

was considered as the objective function in [15, 97]. 

  



 

Table 2. Various formulations of the objective function 

Objective Objective function 

Minimum power consumption at 

the current time 

𝐽 = 𝑚𝑖𝑛( ∑ 𝑃𝑐ℎ𝑤,𝑖 + ∑ 𝑃𝑐𝑡,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑃𝑝𝑢𝑚𝑝,𝑘

𝑙

𝑘=1

) 

Minimum energy consumption in 

an optimization period 

𝐽 = 𝑚𝑖𝑛( ∫ 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)

𝑡0+𝛥𝑡

𝑡0

𝑑𝑡) 𝑜𝑟 

𝐽 = 𝑚𝑖𝑛( ∑ 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)

𝑡0+𝛥𝑡

𝑡0

𝛥𝑡) 

Maximum energy efficiency 𝐽 = 𝑚𝑎𝑥( ∑ 𝐶𝑜𝑃𝑖

𝑛

𝑖=1

) 

Minimum system kW/ton 𝐽 = 𝑚𝑖𝑛(
∫ 𝑃𝑡𝑜𝑡𝑎𝑙

𝑡2

𝑡1
𝑑𝑡

∫ 𝑄𝑡𝑜𝑡𝑎𝑙
𝑡2

𝑡1
𝑑𝑡

) 

As mentioned above, an objective function is the mathematical expression of 

the system’s dynamic behavior, and it is used to evaluate the energy 

consumption and the system response to variations in the control parameters. 

The performance of the optimal control relies heavily on the accuracy of the 

system model. According to the type of knowledge used to establish the system 

model, they can be divided into physics-based, data-driven, and hybrid models. 

3.3.1 Physics-based models 

Physics-based models are based on mathematical descriptions of physical 

processes and include both detailed and simplified models. They have the 

potential to capture the system dynamics with high accuracy and reliability 



 

within their allowed operating ranges. Validation of these models only requires 

a small amount of data, as they are based on the fundamental laws of heat and 

mass transfer. However, multiple iterations are generally required to solve the 

differential equations, leading to high computational costs, especially for 

detailed physics-based models. If the iteration process does not converge in a 

short control interval, the output may be unstable or undesired. These features 

prevent the online application of detailed physics-based models, and simplified 

physics-based models are commonly used in optimal control of central cooling 

systems. 

In water-cooled central cooling systems, chillers and cooling towers are two 

major components with complicated heat and mass transfer processes, and 

their physics-based models are summarized as follows. For chillers, the 

simplified theoretical chiller model, Gordon-Ng model, and Carnot model are 

commonly used. The simplified theoretical chiller model assumes a virtual 

refrigeration cycle to simplify the complicated thermodynamic processes. A 

polynomial was used to yield the actual power consumption of the chiller based 

on the virtual power consumption [78, 85, 101]. The Gordon-Ng model 

integrates the first and second thermodynamics laws, and it is simplified to an 

equation that relates the CoP of chillers to water inlet temperatures of 

condenser and evaporator and the cooling load. This model is known as the 

universal model in which the parameters are inherent to each type of 



 

compressor [102]. This model has been utilized to predict both the power 

consumption [40, 79] and the chillers' maximum cooling capacity [61]. In the 

Carnot chiller model, the COP of a chiller changes with the condensation and 

evaporation temperatures in the same way that the Carnot efficiency changes 

[14]. For cooling towers, the Braun effectiveness model and Lebrun model are 

commonly used. The Braun model partially uses the effectiveness-NTU model 

with the assumptions of linearized saturated air enthalpy and the Lewis number 

of unities [61, 76, 77]. The Braun model is the most popular in cooling tower 

modeling, but iterations are required indicating a considerable computational 

cost. The Lebrun model (also named the Toolkit model) takes a cooling tower 

as an equivalent heat exchanger. The heat transfer coefficient varies with the 

water and air mass flow rates, and the power consumption of a cooling tower 

regressed as a third-order function of the air mass flow rate [101, 103]. The 

Lebrun model is a simple model with a lower computation cost since no iteration 

is needed. 

3.3.2 Data-driven models 

Data-driven models statistically describe the relationship between the input and 

output variables without explicit knowledge of the physical processes. They 

cannot guarantee accurate and stable output, since their performance is 

dependent on the variable range covered by the training set. When the input 

data are outside the range of the training set, the output of a data-driven model 



 

may exhibit large errors, potentially reducing system efficiency or disrupting the 

stable operation of the system. Therefore, large amounts of data are required 

for model training to cover various operating conditions and to achieve 

acceptable performance. 

The data-driven models used in water-cooled central cooling systems vary from 

simple regression models to complex deep neural networks. A simple quadratic 

or cubic function of 𝑃𝐿𝑅𝑖 is generally used to estimate the power consumption 

or COP of chillers. In this simple regression model, the impact of operating 

parameters, such as 𝑇𝑐ℎ𝑤,𝑠 and 𝑇𝑐𝑤,𝑠 are not considered. Some studies have 

added 𝑇𝑐ℎ𝑤,𝑠  and 𝑇𝑐𝑤,𝑠  to the regression models to reflect their impact on 

chillers’ energy performance [22, 68, 73]. The ElectricEIR model consists of 

three regression equations that describe the capacity and efficiency under 

varying operating conditions and the power consumption under partial load 

conditions. Chillers’ power consumption can be calculated from the reference 

conditions using these equations [71, 94, 104]. The calibration of this model 

requires both full-load and partial load operating data. However, chillers rarely 

operate at full load, which makes the model calibration a difficult task. An 

adaptive piecewise approximation regression model trained online with recent 

operation data has also been used to describe the local dynamic behavior of 

the target system [39]. With a simple structure, this adaptive model can be 

calculated quickly, which is suitable for online applications. For cooling towers, 



 

the YorkCalc model is a simple empirical model based on varying approach 

temperatures, and the cooling tower energy consumption is calculated 

according to the affinity law [14, 71, 104]. The use of YorkCalc model is limited 

to the valid operating range and exceeding the limits may be problematic. In 

recent years, various neural networks, such as artificial neural networks (ANN) 

[66, 67], multi-layer perceptron networks [83, 105], and deep neural networks 

[106], have been employed to describe the dynamic behavior of the target 

system as they have good ability in processing nonlinear problems. 

3.3.3 Hybrid models 

A Hybrid model combines the advantages of physics-based and data-driven 

models. In a hybrid model, prior knowledge is used to restrict the parameters 

of a data-driven model or to define the structure of the model. With the 

restriction of prior knowledge, the variables in a hybrid model have certain 

physical meanings. A hybrid model built from simplified mathematical equations 

for the physical process would show better reliability with limited extrapolation, 

and the model training requires less data than that of data-driven models. 

Moreover, the integration of physics-based models with data-driven models in 

a single system model constitutes another hybrid model. In a system, 

components involved in complex physical processes use data-driven models, 

while the remaining components and the interactions between them use 

physics-based models. Thus, the computational time can be reduced 



 

significantly, and the system model still has significant physical meaning. For 

instance, some studies have used data-driven models (such as ANNs) for 

chillers and cooling towers to reduce the whole-system model’s complexity [17, 

92, 97]. A hybrid model that combined the output error predictor with simplified 

physics-based chiller and cooling tower models predicts the system energy 

consumption with better accuracy than a single simplified system model [107]. 

The features mentioned above help to improve the practicality of hybrid models. 

However, the models' accuracy still relies strongly on the size and quality of the 

training data. 

3.4 Constraints 

The optimal control of a water-cooled central cooling system is a typical 

constrained optimization problem because the system or components confront 

various limitations. The commonly used constraints are summarized below. 

3.4.1 Satisfying the cooling demand 

The cooling supply of the system is required to satisfy the demand of end-users, 

which is generally defined by Equation (4): 

∑ 𝐶𝑇𝑖,𝑟𝑎𝑡𝑒𝑑𝑃𝐿𝑅𝑖

𝑁

𝑖=1

= 𝐶𝐿 (4) 

Satisfying the cooling demand is an equality constraint. In practice, the 

Lagrange multiplier method [62, 63, 94] or the penalty function method [15, 69, 

71] deals with the equality constraints. The equality constraint can also be 



 

expressed as inequality constraints with small deviation since it is difficult to 

obtain solutions that satisfy equality exactly. For example, some studies [15, 71] 

have taken the variation of the chilled water supply temperature from its setpoint 

as an alternative expression of the constraint to ensure that enough cooling is 

provided. 

3.4.2 Heat and mass balances 

All possible solutions are subject to heat and mass balances, which are usually 

expressed by equality constraints. For example, the heat exhaust from chillers 

is equal to the sum of the cooling supply and the chillers’ power input [75, 80]. 

Similarly, the mass flow rate of cooling water pumps and cooling towers is equal 

to the chillers’ cooling water mass flow rate [94]. 

3.4.3 Bounds of decision variables 

The bounds of the decision variables define the allowable ranges of values, 

which are typically formulated as inequalities. These constraints are also 

considered as physical limitations of the equipment. For example, to avoid 

water freezing in the evaporator, the chilled water supply temperature cannot 

be too low. The upper bound of the chilled water supply temperature should 

maintain the indoor temperature and humidity setpoints. Some studies have 

defined varying bounds for the decision variables to narrow the search range 

and accelerate the optimization [14, 78, 108]. 



 

3.4.4 Others 

In addition to the constraints mentioned above, many other constraints are used 

to improve the target system’s performance. Limitations on the change rates of 

decision variables [73, 88] and the minimum online/offline time of critical 

equipment [62, 65, 99] have been applied in practice to enhance the operation 

stability of target systems. 

3.5 Optimization Algorithms 

An optimization algorithm is a procedure for finding an optimal or satisfactory 

solution that minimizes/maximizes the objective function. In this section, 

optimization algorithms are summarized according to their classification, as 

shown in Figure 3. They are divided into deterministic algorithms, meta-

heuristic algorithms, and hybrid algorithms. The frequency of different 

algorithms used in the reviewed literature is shown in Figure 4. 



 

 

Figure 3: Classification of optimization algorithms for optimal control 



 

 

Figure 4: Frequency of different algorithms used in optimization 

3.5.1 Deterministic algorithms 

Deterministic algorithms use specific rules defined by rigorous mathematical 

formulations to find the optimum solution. These rules help the algorithm 

converge to a stationary point quickly, and the result of a deterministic algorithm 

is definite and replicable. However, the solution found may be a local optimum, 

because deterministic optimization algorithms look for stationary points in the 

response variable. For deterministic algorithms, there are two subclasses: 

gradient-based algorithms and gradient-free algorithms. 

Gradient-based algorithms use function values and the associated gradient 

information to find the optimal solution. In Figure 3, the gradient-based 

algorithms employed in this field include the Lagrange multiplier (LM) method 

[49, 100], gradient descent (GD) [70], generalized reduced gradient (GRG) [77], 

and Levenberg-Marquardt algorithm (LMA) [109]. The LM algorithm utilizes the 

derivative test to seek the optimal solution. For a convex differentiable objective 



 

function, the LM method can find the global optimum quickly. However, this 

algorithm is not suitable for non-convex functions, and it may not converge 

under certain conditions, such as low cooling demand [47, 48]. The GD is a 

first-order algorithm for seeking the optimal decision variables by iteratively 

moving in the direction of the steepest descent. In the GRG method, the 

decision variables are separated into independent and dependent variables, 

and the original optimization problem can be reduced and solved by the 

reduced gradient method. The LMA combines the advantages of the GD and 

Gauss-Newton methods by adaptively selecting the parameter updating 

methods from the GD and Gauss-Newton. For a convex objective function, 

gradient-based algorithms can find the global optimum quickly. However, a 

convex objective function is not guaranteed, due to the nonlinearity and highly 

constrained nature of central cooling systems, making it difficult for gradient-

based algorithms to find the global optimum. 

Gradient-free algorithms do not use any derivatives, and only the output of the 

objective function is iteratively compared in the optimization process. The 

gradient-free optimization algorithms used in this field include the exhaustive 

search (ExS) [18, 85], Nelder-Mead simplex (NMS) [110], Hooke-Jeeves (HJ) 

[14, 104], and branch-and-bound (B&B) algorithms [61, 65]. The ExS algorithm 

tests possible solutions sequentially to find the optimum point, and it is normally 

used for discrete or discretized variables. As it is simple and easy to implement, 



 

the ExS algorithm is popularly used, as shown in Figure 4. However, its 

computational cost increases quickly with the number of decision variables. 

Some studies have introduced near-optimal points determined from prior 

knowledge to narrow the search range of the ExS algorithm [78, 79, 101]. The 

NMS is a direct search algorithm that constructs an n-dimensional simplex in 

the space of decision variables. The function values of vertices are evaluated, 

and the vertex with the highest function value is replaced with a new vertex 

through reflecting, contracting, or expanding the simplex. However, the NMS 

algorithm may fail to converge to a stationary point on nonsmoothed functions 

[111]. The HJ algorithm searches along each coordinate and determines the 

search direction through exploratory moves. This algorithm can quickly achieve 

a good reduction of the objective function when the discontinuities of the 

objective function are small [111]. The B&B algorithm performs a top-down 

recursive search through the instance tree formed by the branch operation, 

which can solve various optimization problems, including discrete and 

combinatorial optimization. 

3.5.2 Meta-heuristic algorithms 

Meta-heuristic algorithms are non-deterministic or stochastic, and the updating 

rules for the decision variables are typically inspired by nature [112]. In recent 

years, numerous meta-heuristic algorithms have been proposed and popularly 

used to optimize the control of the central cooling system, as 61.0% of the 



 

review studies use this kind of algorithm. They could be classified into biology-

based and physics-based algorithms according to the source of inspiration. 

Evolutionary and swarm intelligence algorithms are two families of biology-

based optimization algorithms. Evolutionary algorithms are inspired by the 

evolution of species, and swarm intelligence algorithms are inspired by the 

collective behavior of natural systems, such as the social behavior of birds 

flocking. Physics-based optimization algorithms are inspired by physical 

processes, such as simulated annealing (SA) [46]. Among these algorithms, the 

genetic algorithm (GA) is the most popular, followed by the particle swarm 

optimization (PSO) algorithm, as shown in Figure 4. These meta-heuristic 

algorithms normally shown better global search ability as certain tradeoffs 

between randomization and local search are made to move toward searching 

on a global scale [112]. Thus, they are suitable for global exploration in the 

space of the decision variables of complex optimization problems. Compared 

with deterministic algorithms, meta-heuristic algorithms are less mathematically 

complicated, as no derivative information is required. However, their 

convergence speed is slower, and the accuracy and reproducibility of their 

solutions may be somewhat low due to random processes. Thus, improving the 

accuracy, convergence speed, and robustness of the algorithm has been a 

trend, in recent years [40, 55, 82]. 



 

3.5.3 Hybrid algorithms 

Hybrid algorithms use two or more algorithms in a single optimization problem 

to improve search efficiency, as shown in Figure 3. In hybrid algorithms, meta-

heuristic algorithms are typically employed first for global exploration, and 

deterministic algorithms are then used to refine the search locally to improve 

the accuracy of the solution and accelerate convergence. The search efficiency 

of hybrid optimization algorithms has been verified in various studies [38, 39, 

42, 87]. For instance, the PSO+GRG algorithm achieved slightly higher energy 

savings than that obtained by the PSO or GRG algorithm alone. Moreover, a 

hybrid algorithm that integrated the GA with PSO was employed in optimal 

control of a typical chiller plant [83]. The GA and PSO were used to optimize 

binary variables and continuous variables, respectively. 

4. Optimization Approaches 

Optimization the control of central cooling systems determines the control 

variables that minimize the operational cost of the target system while providing 

a comfortable indoor thermal environment. According to whether a system 

model is used to evaluate the system energy performance in the optimization 

process, existing approaches are classified as system-model-based and data-

based, as shown in Figure 5. In the reviewed studies, the system-model-based 

method is still the major solution for optimizing the control of the water-cooled 

central cooling system, as 83.7% of reviewed papers used this kind of approach. 



 

In recent years, data mining and reinforcement learning methods have been 

gradually used in this field. 

 

Figure 5: Classification of optimization approaches 

4.1 System-model-based optimization 

The system-model-based optimization is concerned with seeking the most cost-

effective control variables while satisfying operation constraints, which requires 

a mathematical model that describes the system’s dynamic behavior. In the 

optimization process, the system model is used to estimate the system energy 

consumption and the system responses to the variation of control variables. 

The conventional system-model-based optimization for central cooling systems 

aims to minimize the system energy or operation costs. The optimization is 

conducted periodically with the assumption that the operating conditions remain 



 

constant in the upcoming control interval. In this process, uncertainties 

associated with input parameters and the system model are not considered, 

although they widely exist in engineering processes. Thus, conventional optimal 

control (COC) may not fully reveal the energy-saving potential of the target 

system. In the past decade, numerous advanced optimal control methods have 

been proposed to improve the performance of central cooling systems from 

different perspectives. In this section, the recent development of optimal control 

methods was summarized below. 

4.1.1 Predictive-based optimal control (PBOC) 

To further improve the energy efficiency, predictive-based optimal control 

determines the optimal solution from the predicted cooling demand and weather 

conditions over a finite prediction horizon instead of at an instant in time. Many 

studies have evaluated the ability of BPOC in improving the energy efficiency 

of central cooling systems [71, 92, 106]. For instance, Wang et al. [92] using a 

one-timestep-ahead optimal control method reduced the redundant energy 

consumption by 86.1%. Sala-Cardoso et al. [106] utilized a data-driven model 

for cooling demand forecasting and a deep neural network for system 

performance modeling to optimize the energy performance of a chiller plant, 

and the energy efficiency of the target system was improved by 19.5% 

compared with the standard real-time controller. 



 

4.1.2 Stability-enhanced optimal control (SEOC) 

In general, the static optimization is conducted independently in each control 

interval, which may introduce significant disturbances and thus damage the 

stability of the operation. This weakness has become the main challenge for 

applying optimal control. To avoid unstable operations, researchers have 

proposed several measures. Ma and Wang [108] employed a rule-based 

supervisor to determine the actual control settings by compromising the control 

stability and energy savings. To maintain the control stability, the control 

settings keep unchanged, if there is no significant energy-saving. Sun et al. [18] 

proposed a multiplexed optimization method to update the decision variables 

sequentially instead of simultaneously. This method reduced the energy 

consumption by 6.8%, which is comparable to the conventional optimal control 

method, and improved the control stability significantly with a 50.0% reduction 

in tracking error of setpoints. Based on the multiplexed optimization method, 

Asad et al. [19] proposed a DOF-based setpoint-resetting scheme to further 

improve the stability of control. Compared with the conventional scheme, the 

DOF-based method reduced the tracking error by 14.7-63.4% for different 

setpoints. 

4.1.3 Stochastic optimal control (SOC) 

Uncertainties are widely existent in engineering processes such as control and 

monitoring. In central cooling systems, uncertainties may cause inappropriate 



 

control actions and degrade the energy performance of the target system. To 

reduce the impact of uncertainties on system performance, the data fusion [107, 

113-115] and the multi-indexes control methods [116, 117] have been proposed 

to reduce uncertainty in cooling load measurement. The study [98] has shown 

that the impact of uncertainties on optimal control methods was more significant 

than on conventional control methods. To enhance control robustness, the SOC 

method has been proposed to manage uncertainties by directly capturing 

uncertainty disturbances in the optimization formulation. Li et al. [118] used a 

SOC method to optimize the sequencing control of chillers with measurement 

and modeling uncertainties. This method introduced flexibility in decision-

making and improved the robustness of different control aspects by setting 

different threshold values. Qiu et al. [22] used the SOC method for multi-

objective optimization with measurement uncertainty. The results have shown 

that the SOC showed slightly higher energy savings (0.7%) than deterministic 

optimal control and enhanced the robustness of control by canceling 

unnecessary starts-up. Kumar et al. [21] investigated stochastic model-

predictive control in a central cooling system to mitigate uncertainties and 

constraint violations. This approach ultimately achieved 7.5% cost savings of 

the central plant and mitigated constraint violations by explicitly incorporating 

uncertainty in modeling. 



 

4.1.4 Robust optimal control (ROC) 

The ROC is another method that deals with uncertainties in the optimization 

process. This method assumes that uncertain variables belong to a limited 

range specified by lower and upper bound (uncertainty set). The ROC aims to 

make a decision that is feasible for each value in the uncertainty set, which is 

typically achieved by optimizing the worst-case objective function. The 

robustness of this method increases with the conservatism level of control. 

However, the system energy performance showed the opposite trend. Saeedi 

et al. [20] and Tian et al. [23] used this method to optimize chiller loading with 

uncertain cooling demand. According to their results, the energy consumption 

of chillers with the most conservative solution was 8.5% higher than that without 

uncertainty. This difference occurred because the optimum solution was 

obtained from the worst-case, in which the cooling demand was 10.0% higher 

than the deterministic case. This method has also been successfully used for 

optimal chiller loading with multiple uncertainties, including measurement, 

control, and threshold uncertainties [63]. However, the ROC problem is difficult 

to solve directly, and the results are very conservative, indicating low energy 

efficiency. 

4.1.5 Hierarchical optimal control (HOC) 

For large central cooling systems, a formulation of the optimization that 

adequately captures the thermal dynamic and physical interactions, as well as 



 

the tight coupling between subsystems, is a complex mixed-integer nonlinear 

constrained problem. This complicated problem is generally decomposed into 

multiple subproblems using different approaches. Zhang et al. [94, 95] 

decomposed the complicated single optimization using a Lagrangian relaxation 

approach. The optimal solutions for subproblems are determined first and then 

coordinated through iterative updating of the Lagrangian multipliers to minimize 

the high-level objective function. Using this method, a near-optimal solution can 

be obtained at a lower computational cost. Chiam et al. [38] proposed a 

hierarchical framework for holistic optimization, which decomposed the problem 

into a master level and a slave level. The nonlinear variables are optimized at 

the master level, and they are treated as known parameters to linearize the 

objective function at the slave level. With a linearized objective function at the 

slave level and fewer decision variables at the master level, the computation 

time can be reduced significantly. This HOC approach reduced the energy 

consumption of a district cooling system by 3.0-31.9% with a reasonable 

resolution time. Similarly, Rawlings et al. [119] employed a hierarchical 

decomposition for model-predictive control of a large-scale commercial HVAC 

system. In high-level optimization, the total energy consumption of the system 

is approximated to reduce the complexity. In low-level optimization, the energy 

consumption of each subsystem is considered in detail, and they are solved in 

parallel to reduce overall computational time. This two-level model-predictive 



 

control achieved cost savings of 10.0-15.0% compared with control by 

professional operators.  

4.1.6 Multi-agent optimal control (MAOC) 

The MAOC is another solution for energy system management in large-size 

buildings. This approach divides the optimization problem into smaller and more 

manageable pieces that can be solved in parallel by individual agents. 

Individual solutions are then handled by a coordination agent to achieve the 

overall objective. Cai et al. [81] proposed a MAOC framework for building 

energy system management. The results of a simulation case study show that 

the MAOC method obtained a near-optimal solution along with significant 

energy savings (2.5-12.2%). Jaramillo et al. [120, 121] compared the 

performance of different optimization algorithms under the MAOC framework in 

a central cooling system. According to their results, the MAOC with algorithms 

capable of handling mixed-integer, non-convex objective functions was able to 

find a near-optimal solution. With good scalability, the MAOC is more 

economical and easier to configure for central cooling systems [120]. However, 

there are some drawbacks including the requirement of equipment for 

additional data transfer and the tradeoff of optimality for reduced computation. 

Moreover, the control topology and inter-controller of multi-agent control are 

different from the conventional ones, and hence further research is required. 



 

4.1.7 Event-driven optimal control (EDOC) 

The conventional optimization of control is normally conducted periodically (e.g., 

every 15 min), referred to as time-driven optimal control (TDOC). The 

conventional optimal control suffers from high computational cost since the 

nonlinear objective function is evaluated in each iteration. The EDOC triggers 

optimization by predefined “events” rather than “time”. Since optimization was 

only conducted when one of the events occurred, the computational cost of 

optimal control reduced significantly [89-91]. The energy performance of event-

driven optimal control is equal to or even better than that of TDOC, and it deals 

more successfully with aperiodic behaviors of the target system because 

optimizations are conducted at the right times. For example, the computation 

time of an EDOC was found to be 59.6-83.5% shorter than that of TDOC with 

a 15 min interval, and the energy-saving rate was slightly higher than that of 

TDOC [88]. Hou et al. [122] further improved the EDOC method by establishing 

an event map between event-actions and influential decision variables. When 

an event occurs, only the corresponding decision variable is optimized, rather 

than all the decision variables, to further reduce the computational cost. The 

computational load of the EDOC was reduced by 75.9-85.2% in comparison 

with TDOC with a 30 min interval in a typical air conditioning system. Meanwhile, 

this event-driven optimal control reduced energy consumption by 4.2-7.4% in 

different seasons, which is comparable to the TDOC. 



 

4.1.8 Comparison of different optimal control methods 

Table 3 briefly summarized the performance and the features of recently 

developed optimal control methods to help readers understand and choose the 

correct method. Their performance on various aspects was compared with the 

COC method. Among them, the PBOC method shows better energy efficiency 

by employing future information in the optimization process. Other methods 

except ROC showed comparable energy savings with the COC. The ROC 

exhibited strong robustness by describing uncertainty in optimization 

formulation and making decisions to satisfy the worst-case. Thus, the results 

are very conservative, indicating low energy efficiency. The SOC also showed 

strong robustness of control by directly capturing uncertainty disturbances in 

the optimization formulation. Dealing with uncertainties increases the 

computational complexity and computation cost of the ROC and SOC, while it 

is still acceptable for engineering applications. Moreover, quantification of 

uncertainties, such as uncertainty distribution or uncertainty set of different 

variables, are normally difficult to obtain in practice. The SEOC method 

improves the system operation stability and robustness from the time domain 

perspective by reducing the number of update variables and decision variables’ 

changing rate in each control interval. The HOC and MAOC exhibit high 

computational efficiency and good scalability by decoupling the complicated 

optimization problem into manageable subproblems and solving them in 



 

parallel. Thus, they are suitable for large-size central cooling systems. The 

EDOC provided excellent computational efficiency by conducting optimization 

only when necessary, instead of periodically. The definition of “events”, which 

is used to triggering optimization procedures, is crucial to the success of using 

EDOC, and it requires abundant prior knowledge and sophisticated techniques. 



 

Table 3. The performance of various system-model-based optimal control methods (ISSOC: instant system state and operation 

condition; TER: tracking error reduction) 

Methods 
Input 

information 

Driven 

Method 
Complexity Energy savings 

Stability and 

Robustness 

Computation 

time 
Strength and weaknesses Ref. 

PBOC 
• ISSOC 

• Forecast data  
Time High 

AES: 0.5-5.6%    
•Exhibit high energy efficiency. 

•Can handle a wide variety of constraints. 

•Require a suitable cooling demand. 

forecasting model and the system model. 

[71] 

Reduce 80% 

redundant energy of 

COC 

  [92] 

DES: 19.5%   [106] 

SEOC 

• ISSOC 

•Previous 

control setting 

or set-point 

reset scheme  

Time Medium 

DES: 6.8% (6.7%)1 TER: 50% 
3.6s  

(98.3%)2 

•Enhance the stability of control. 

•Comparable energy efficiency to COC. 

•The control variable updating sequence 

and resetting scheme should be 

determined previously. 

[18] 

 
TER: 14.7–

63.4% 
 [19] 

DES: 0.7-2.6%    [108] 

SOC 

•ISSOC 

•Uncertainty 

distribution 

Time High 

 Enhanced  •Show strong robustness. 

•Near-optimal energy efficiency. 

•High computational complexity. 

•The robustness of different aspects cannot 

be enhanced simultaneously. 

•Require quantification of uncertainties. 

[118] 

AES: 7.5% (9.7%) 
Avoid constraint 

violation 
 [21] 

AES: 0.7% higher 

Cancel 

unnecessary 

start-up 

5 min for whole 

year operation 
[22] 

ROC 
•ISSOC 

•Uncertainty 
Time High  

DES: -8.5% (worst-

case)* 

Risk-averse 

strategy 
 

•Show strong robustness. 

•Energy efficiency decreases with the 

[20, 

23, 



 

set conservatism level. 

•High computational complexity. 

•Require quantification of uncertainties. 

63] 

HOC •ISSOC Time Medium 

2.0-25.0%   3.3-11.7s •Good scalability. 

•High computation efficiency. 

•Suitable for large-scale applications. 

•Only achieve near-optimal energy 

efficiency. 

[95] 

6.0-18.0%   [95] 

DES: 3.0-31.9%  Reasonable  [38] 

AES: 10.0-15.0%  170.0s [119] 

MAOC • ISSOC Time High 

12.2-42.7% 

(13.3-45.1%) 
 41.0-114.0s 

•Good scalability. 

•Achieve near-optimal energy efficiency. 

•Require additional data transfer among 

agents. 

•The control topology and inter-controller 

are different from the conventional one. 

[81] 

3.4-11.3%  6.4-86.3s [120] 

4.2-8.5%  12.5-55s [121] 

EDOC 
•ISSOC 

•Event map 
Events Medium 

DES: 6.3-11.8% 

Fewer control 

actions 

10.5-76.5s 

(59.6-83.5%) 

•Excellent computation efficiency. 

•Near-optimal energy efficiency. 

•Require abundant prior knowledge and 

sophisticated techniques for event-map 

definition. 

[88] 

DES: 6.9-11.5 % 
14.6-26.3 

(79.1-81.0%) 
[89] 

DES: 6.6-10.4% 

(4.7-10.4%) 
(62.2-84.8%) [90] 

DES: 5.8-12.1% (5.3-

9.2%) 
 [91] 

DES: 4.2-7.4% 

(4.4-7.5%) 

1.7-2.9s 

(75.9-85.2%) 
[122] 

* Negative value indicates more energy consumption than the conventional optimal control method. 



 

1 The energy savings of the conventional optimal control method. 

2 The percentage of computation time reduction compared with the conventional optimal control method. 



 

4.2 Data-based Optimization 

The data-based optimization approach determines the “best” control variables 

without using a mathematical system model. The data-based optimization 

methods used to improve the system energy efficiency include 1) systematic 

analysis, 2) data mining, 3) reinforcement learning, and 4) extremum-seeking 

methods. 

4.2.1 Systematic analysis method (SAM) 

In the systematic analysis method, the energy performance of the whole system 

is first analyzed in detail, and then energy-saving strategies are proposed to 

increase system energy efficiency. Deng et al. [26] analyzed influential factors 

systematically and proposed optimal control strategies, considering internal 

factors, external factors, and their synergetic effect, to improve the energy 

performance of a high-rise office building. These strategies increased the 

energy efficiency of the chilled water system by 29.2%. Yu and Chan [27] 

examined the correlation between control variables and system COP under 

different operating conditions to determine which control variable should be 

adjusted to improve the system energy efficiency. This method reduced the 

energy consumption of a water-cooled chiller plant by 5.3%. Wang et al. [123] 

developed a near-optimal performance map from historical operation data, and 

the cooling load of chillers was allocated according to this periodically updated 

map to achieve the near-highest COP. The performance of this method was 



 

evaluated in a simulation case, and energy reductions of 3.4-9.0% were 

achieved in comparison with original sequence strategies.  

4.2.2 Data mining method (DMM) 

Data mining refers to extracting useful information from a raw data set. In recent 

years, data mining methods, including cluster analysis [124, 125], decision tree 

[126], and association rule mining methods [16, 28, 29], have been employed 

to extract useful information from the historical operation data of the target 

system. This method could help to identify the operational problems, energy-

saving potential, and near-optimal control strategies under different operating 

conditions. During operation, control parameters are regulated according to the 

extracted near-optimal control strategies. Li et al. [124] used the hierarchical 

cluster method to determine energy-saving potential from an analysis of the 

COPs of individual chillers in different clusters. In [125], a two-step clustering 

and odds ratio analysis method was used to detect deficient controls. Several 

energy-saving measures were then proposed to improve the efficiency of a 

multi-chiller system, including switching off unnecessary chillers, setpoint 

resetting, and improving the control accuracy of chilled water and cooling water 

temperature. Fan and Xiao [126] utilized the association rule mining method to 

detect operational problems and energy-saving opportunities. Zhang et al. [28, 

29] used the FP-growth algorithm, an association rule mining method, to 

discover the operational problems hidden behind them. Zhou et al. [16] utilized 



 

the Apriori algorithm to extract control parameters associated with high energy 

efficiency, and these parameters were then used as the setpoints in practical 

operation. Using this method reduced the energy consumption of a chiller plant 

by 11.6% in summer and by 13.3% in winter [16]. 

4.2.3 Reinforcement learning method (RLM) 

RLM is a branch of machine learning techniques. The RLM not only extracts 

useful information from historical data, as do the data mining methods; it also 

learns to make decisions to maximize the reward feedback from the target 

system. Data mining methods are normally trained offline, whereas the RLM 

method typically learns online by directly interacting with the target system. In 

the RLM method, one or more agents are typically used to take a sequence of 

actions to maximize the energy efficiency of the target system. The action taken 

by agents is to change the setpoints of control variables such as chilled water 

supply temperature. The state of the target system varies with the agents’ action, 

and a reward or penalty is fed back to the agent to reveal the quality of action. 

The reward or penalty is the objective of optimization, such as the COP of the 

target system. Using the RLM could significantly reduce the energy 

consumption of the target system. For example, the Q-learning algorithm, a 

classical reinforcement learning method, was employed to optimize the chilled 

water supply temperature of chillers, and the system energy efficiency of the 

chillers increased by 4.4% in the first cooling season [30]. This method was also 



 

used to optimize the frequencies of both cooling tower fans and cooling water 

pumps. Energy reductions of 11.0% were achieved in the first cooling season 

after implementation, which is close to 14.0% obtained by the model-based 

optimization method [31]. Because of the self-learning ability, the energy-saving 

rate of the RLM increased to 12.0% in the second cooling season [31]. This 

method does not require a mathematical model for the target system, as the 

agent takes actions online directly using feedbacks from the real system. 

4.2.4 Extremum-seeking method (ESM) 

The extremum-seeking method is another model-free optimization that 

interacts with the target system directly. It roughly estimates the gradient of the 

system output by perturbing the system with a slow periodic signal, and the 

control inputs are adjusted along the gradient descent direction to seek the 

extremum point. This process is conducted online through direct interaction with 

the target system, and no mathematical model of the target system is required. 

A single-variable extremum-seeking method [32, 33] was used to optimize 

cooling tower fan speed and minimize the total energy consumption of chillers 

and cooling towers. The results showed that the total power consumption of the 

chillers and towers was very close to the estimated optimum solution. 

Meanwhile, Mu et al. [34] put forward a multivariable extremum-seeking method 

to simultaneously optimize the cooling tower airflow rate, cooling water flow rate, 

and chilled water supply temperature setpoint. This method was evaluated by 



 

simulation and converged to a near-optimal solution. Moreover, this 

multivariable extremum-seeking method with a penalty function can prevent 

integral windup due to actuator saturation. In this method, design parameters 

such as the amplitude and frequency of the perturbation signal affect the 

convergence speed and system operation stability. Therefore, these design 

parameters need to be selected carefully. It should also be noted that this 

method normally converges to a local minimum. 

4.2.5 Comparison of different data-based optimization methods 

Table 4Table 3 summarized the characteristics of different data-based 

optimization approaches to help readers understand and choose the correct 

method. All these methods could help to achieve significant energy savings. 

The SAM and DMM are conducted or trained offline to extra the energy-efficient 

rules and parameters. The SAM do not require complex system model and data 

analysis skills, but it relies heavily on the prior knowledge and experience of 

engineers. Compared with the SAM, the DMM relies less on prior knowledge, 

while the data size for training and computational complexity increased 

significantly. The RLM and ESM directly interact with the target system for 

determining the optimal control parameters. The energy savings by using these 

two methods are close to that of the system-model-based optimization 

approaches. However, the application of the RLM is still challenging due to its 

complexity and a long training period to achieve near-optimal energy efficiency. 



 

Moreover, the decisions making by RLM may be unstable due to the inherent 

uncertainty and randomness, especially in the starting period of training. These 

unstable actions may result in deterioration of the control robustness, which 

prevents the application of the method in practice. Similarly, the ESM optimizes 

the control parameters by perturbing the system, thus the perturbation signal 

should be designed carefully to avoid unstable operation. 



 

Table 4. Comparison of various data-based optimization methods 

Methods Algorithms Data size  Energy savings Complexity Time use Strengths and weaknesses Ref. 

SAM 

Systematic analysis 
One-day filed test  

(15-min)1 
DES: 29.2% Low  

• Do not require complex system models and 

data analysis skills. 

• Rely on the prior knowledge and experience 

of engineers 

[26] 

data envelopment analyses 6-month (0.5-hour) DES: 5.3% Low  [27] 

Performance map 1-2 months AES: 3.4-9.0% Medium  [123] 

DMM 

hierarchal cluster 1-year (1-hour)  High  

• Rely less on prior knowledge. 

• Require skillful data mining technologies and 

a large historical operation data set. 

[124] 

2-step cluster  1-year  High  [125] 

Decision tree and QuantMiner 1-year  High  [126] 

Apriori algorithm  4-year  DES: 11.6-13.3% High   [16] 

FP-growth algorithm 1-year (5-min)  High  [28, 29] 

RLM 

Q-learning (table-based) 
4-year  

(Online training) 
AES: 4.4% (4.95%)2 High 

<1.0s 

(10.0s)3 

• Requires less prior knowledge of the system. 

• Long training time to achieve near-optimal 

energy efficiency. 

• Actions may be unstable due to inherent 

uncertainty and randomness. 

[30] 

Q-learning (table-based) 
two cooling seasons 

(Online training) 
AES: 11.0-12.0% (14%) High [31] 

ESM 

Standard/ Anti-windup ESM - 0.3-5.7% (0.3-5.7%) Medium 
Settling time: 

11720-13735s 
• Do not require mathematical system model. 

• Seek the minimum point online. 

• Normally converges to a local minimum. 

[32, 33] 

Newton-Based ESM - 14.2-26.6% (15.2-27.7% ) Medium 
Settling time: 

1382-1536s 
[34] 

1 Time interval of the data collected. 

2 The maximum energy savings estimated by a system-model-based optimization approach. 

3 The computational time of the system-model-based optimization approach.



 

5. Discussion and Future Work 

5.1 Discussion  

5.1.1 System-model-based optimization 

Recently, considerable efforts (83.7% of the reviewed papers) have been 

devoted to system-model-based optimization, and they can improve the system 

energy performance from different aspects. To improve the performance of a 

target system, users could select optimal control methods according to their 

characteristics, as summarized in Section 4.1.8. For systems with significant 

dynamic features, such as thermal storage and dynamic energy price, a 

predictive-based optimal control method might be a suitable solution, as the 

future control input and future system response are predicted for decision 

making. For systems with strict control requirements, the existence of 

uncertainties may fail in meeting the control requirements. In this scenario, SOC 

and ROC are two potential solutions that take uncertainties into account in the 

optimization formulation. ROC provides a more conversion solution than SOC 

as it finds the solution to counteract the worst-case scenario. For large, 

complicated central cooling systems, the computation time is a crucial factor 

that impacts the selection of optimal control methods. The HOC and MAOC 

improve the computational efficiency by dividing the complex optimization into 

small manageable subproblems. The EDOC could significantly reduce the 

computation time by triggering online optimization only when necessary. 



 

Moreover, two or more optimal control methods might be employed together to 

improve the overall performance of the target system. For example, the 

predictive-based optimal control combined with stochastic or robust optimal 

control might be used for systems with significant dynamic features and non-

ignorable uncertainties. 

5.1.2 Data-based optimization 

In recent years, DMM and RLM have increasingly been used as they rely less 

on the export knowledge of the system than that of the SAM. DMM normally 

requires a large data size for training offline (as shown in Table 4), which is 

suitable for existing systems with rich historical operating data. RLM interacts 

with the target system for online training, thus this method could be used in a 

newly built system or system with less historical data, while it may suffer a long 

training period. 

5.2 Future work 

By summarizing the previous literature, the following aspects were found to be 

the trends of the recent studies and future work directions. First, many studies 

on optimization of the control of central cooling systems were found to 

emphasize improving the control stability and robustness in addition to the 

system energy efficiency. Although uncertainties have a significant effect on the 

system's overall performance including energy efficiency, stability, and 

robustness of control, they are ignored in conventional optimal control. Ignoring 



 

uncertainties in optimal control might lead to energy efficiency degradation and 

failure to satisfy constraints in practice. Several studies have tried to deal with 

uncertainties in optimizing the control of the central cooling system. In these 

studies, they mainly focus on dealing with the measurement and forecasting 

uncertainty of the cooling demand in the local control process, such as chiller 

sequencing control. As uncertainties widely exist in the control process on both 

the supervisory and the local control levels, more efforts are required to dealing 

with uncertainties both in local and supervisory control levels. Moreover, the 

uncertainties are assumed to be known in the previous studies, which are 

difficult to be quantified in practice due to the lack of data and the variations of 

system structure. Therefore, more efforts on quantification of uncertainties and 

dealing with uncertainties in optimization are needed in the future. 

Second, another frequently discussed problem on optimal control methods is 

the computational efficiency, as the long computation time prevents the 

application of online optimal control in complex central cooling systems. In the 

literature, there are two directions to improve the computational efficiency of the 

optimization, dividing the complex optimization problems into more 

manageable pieces (HOC and MAOC) and conducting the optimization only 

when necessary (EDOC). However, they are still in the early stages of 

development. Studies on multi-agent optimal control have focused only on the 

design of the algorithm. Issues related to hardware implementation, such as 



 

control topology design and inter-controller communication, must be 

considered. For event-driven optimal control, the definition of event space is the 

key factor for the success of using EDOC. The events and their corresponding 

thresholds are impacted by multiple factors, such as the system types and 

climate conditions. The methods of event space definition should be further 

investigated considering both system energy efficiency and stability of system 

operation. 

Third, in past few years, machine learning methods have increasingly been 

used for optimizing the control of central cooling systems as they rely less on 

the export knowledge of the system. Currently, the machine learning algorithms 

employed in optimal control of central cooling systems are rule-based or table-

based with limited and predefined state space and action space, which 

sacrifices the flexibility and precision of control. Therefore, value-based or 

network-based machine learning methods is required to further improve the 

energy performance and control precision. With the development of technology, 

more advanced systems (e.g., renewable energy and thermal storage) are 

integrated with central cooling systems, which exhibit more complex dynamic 

properties. Therefore, machine learning methods that explore the synergistic 

effects of different subsystems and components, such as multi-agent RLM, are 

worth further investigation to improve both the energy and control performance 

of the target system. 



 

6. Conclusions 

This study reviews the state-of-the-art optimization approaches for controlling 

the water-cooled central cooling systems. Two kinds of optimization 

approaches, including system-model-based and data-based, have been 

successfully applied in optimizing the control of water-cooled central cooling 

systems. The optimization formulation, including decision variables, objective 

functions, constraints, and optimization algorithms, and various optimization 

approaches in previous studies were summarized, which will be helpful in 

subsequent studies to conduct similar optimization. 

For optimization formulation, frequently used decision variables are partial load 

ratio, cooling water temperature, and chilled water temperature. However, it is 

not recommended to use the partial load ratio of each chiller as the decision 

variable, as it is an undirect controllable variable. Due to the tight coupling 

feature among subsystems, holistic optimization is recommended to explore 

the synergistic effects of multiple variables and to achieve the global optimum. 

The objective function impacts the accuracy and computation time of the 

optimization. Hybrid models with acceptable accuracy and shorter computation 

time are recommended for real-time optimal control. For solving optimization 

problems, meta-heuristic optimization algorithms have increasingly applied in 

optimizing the control of the water-cooled central cooling system, since they 

normally exhibit good global search capability.  



 

Based on the conducted review, the system-model-based optimization is still 

the major optimization approach for improving the operation energy efficiency 

of the central cooling system. In addition to improving system energy efficiency, 

enhancing the stability, robustness, and computation efficiency of optimal 

control methods have been the trends of recent development. The SOC and 

ROC exhibit strong robustness by describing uncertainty in optimization 

formulation. However, the computational complexity and computation cost 

increased. Moreover, the ROC is very conservative indicating low energy 

efficiency, as the ROC makes decisions that satisfy the worst-case. The HOC, 

MAOC, and EDOC improve the computational efficiency from different aspects, 

and they are suitable for large-size complex central cooling systems. However, 

in these methods, the control stability and robustness were not considered. 

Therefore, it is recommended to analyze the main control demand and compare 

the performance of different optimal control methods before selecting the most 

suitable one or combination of them. 

The data-based optimization approach has been increasingly studied in recent 

years, especially data mining and reinforcement learning methods. Although 

using the machine learning methods could achieve near-optimal energy 

savings, the application of the machine method is still challenging due to its 

complexity and limited control flexibility and precision. Therefore, more efforts 

are required to further improve energy efficiency and control performance of 



 

machine learning methods in optimizing the control of the water-cooled central 

cooling system. 
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