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Abstract: The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous 
prematurity and its inability to seek the global optimal solution when optimizing complex 
high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm 
was established by introducing the chaos optimization mechanism and a global particle 
stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was 
adopted for the particles’ initial movement trajectories to replace the former stochastic movement, 
and the chaos factor was used to guide the particles’ path. When the global particles were stagnant, 
the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations 
were introduced to test COSPSO, and they proved that COSPSO can remarkably improve 
efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design 
flood hydrographs demonstrated the applicability of the improved algorithm.
Key words: particle swarm optimization; chaos theory; initialization strategy of chaos factor; 
global particle stagnation-disturbance strategy; design flood hydrograph     

1 Introduction 
The particle swarm optimization (PSO) algorithm was first described by Eberhart and 

Kennedy (1995). It is a swarm intelligence-based algorithm used to find a solution to an 
optimization problem in a search space, or to model and predict social behavior in the pursuit 
of objectives. It has been successfully applied to many optimization problems, including 
learning artificial neural networks and model predictive control (Eberhart and Shi 2001). A 
brief and complete overview of the principle, technique, and application of the PSO algorithm 
is provided by Kennedy and Eberhart (2001) and Clerc (2006). Schutte et al. (2005) used the 
PSO algorithm for biomechanical optimization and concluded that the performance of the PSO 
algorithm is superior to that of the genetic algorithm. 

Just like other evolutionary algorithms of global optimization, PSO has the disadvantages 
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of premature convergence, delay of convergence in later periods, and an excessive decrease of 
particle variety with more iterations, which may render it incapable of converging at the global 
optimal solution. Therefore, domestic and foreign scholars have tried to improve the 
optimization performance of the basic PSO (bPSO) algorithm and developed some 
representative improved versions with superior performance. These improved models can be 
classified into four types: (1) those that balance the global and local searching capabilities of 
the algorithm by fluctuating or adjusting the parameters of PSO (Angeline 1998; Higashi and 
Iba 2003); (2) those that improve the performance of the algorithm by designing different 
types of topological structures (Mendes et al. 2004; Shi and Eberhart 2001); (3) those that 
decrease the gathering of particles by increasing the particle variety in PSO (Baskar and 
Suganthan 2004; Kennedy and Eberhart 1997); and (4) those that form a blending algorithm 
with superior performance by combining PSO with other searching technology (Wang et al. 
2001; Koay and Srinivasan 2003; Fukuyama and Yoshida 2001). 

In order to improve the PSO algorithm, this paper introduces the chaos optimization 
mechanism and a global particle stagnation-disturbance strategy, which keeps the particles 
from the stagnation state. An optimal model called the chaos-PSO (COSPOS) model was set 
up to calculate the design flood hydrograph based on similar disparity theory. In general, the 
following problems are encountered when using the conventional homogeneous frequency 
enlargement method to draw the design flood hydrograph: (1) when the flood peak and flood 
volume relation is not satisfactory, the homogeneous frequency enlargement method might 
cause different amplification rates in different time intervals of the hydrograph, leading to 
mutation or discontinuity of hydrographs between successive time intervals; (2) the 
conventional method simply duplicates the flood discharge in the same time interval, and 
cannot maintain the original typical flood process after linking each time interval; (3) the 
hydrograph is smoothed manually, rather than with a computer science technique, which 
takes more time and effort. In this study, the COSPOS algorithm was used to solve these 
problems in calculating the design flood hydrograph. 

2 Establishment of COSPSO model 
2.1 Initialization strategy  

The bPSO algorithm initializes the stochastic location of each particle in the solution 
space. The uniform distribution of particles cannot be guaranteed in this way and more time is 
needed for the particles to seek the global optimal solution. The particles’ random distribution 
also increases the randomness of the global optimal solution. If the locations of most particles 
are significantly inferior to the others, the variety of particles will rapidly decrease as the 
algorithm runs, ultimately causing prematurity. Therefore, the chaos theory and chaotic 
optimization mechanism were introduced into the bPSO algorithm to guide the optimal 
distribution of the particles in the solution space: the locations of the particles were mapped in 
the optimal chaos space so that particles would stay in the chaos state and move in a chaotic 
trajectory after they were initialized randomly (Bloch 2005). Most of the particles arrive at a 
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k

better location within a given period. Therefore, the rational selection of origin remarkably 
increases the probability that the PSO algorithm will reach the global optimal solution and 
reduces the number of iterations. At the same time, the diversity of particles does not decrease 
rapidly during the running of the algorithm, as the particles have a good initial location. We 
picked two chaos theory mapping methods, Logistic mapping and Ken mapping, for the 
following analysis:  

(1) Logistic mapping is formulated as follows: 
         1 ( , ) (1 )k k kx f x x x                        (1) 

where x is the variable ( 0 1x ); f is the self-mapping function;  is the number of 
iterations ( ); and 

k
1,  2, ,k n  is the control parameter ( 0 4 ).

(2) Kent mapping and Logistic mapping have a mutual transformation relationship and 
topological conjugacy property. The formula for Kent mapping is as follows: 

       
0
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where  is the control parameter. Since 0 1, the Lyapunov exponent of Kent mapping 
is greater than 0, and the mapping is in chaos status. The chaos invariant set of Kent mapping 
is (0, 1). However, the chaotic sequence of Kent mapping can easily be influenced by such 
restraints of the computer as finite word length and accuracy. 

2.2 Global particle stagnation-disturbance strategy 

An important cause of prematurity of the bPSO algorithm is that the gBest particle that 
reaches the global optimal solution makes no contribution in the later period, and just follows 
the velocity and direction of the former iteration in the search. It is easily trapped in a local 
extremum in a complicated environment with lots of local extrema. No strategy is provided to 
help it escape from local optimization, but only to force calculation. The chaos theory was 
introduced to carry out a random disturbance strategy for stagnant gBest particles. The 
following is an example using Logistic mapping: 
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where B
kg  is the global optimal solution function for the kth iteration; r, r1, r2, and r3 are 

random numbers lying between 0 and 1; and  is the probability constant, lying between 
0.05 and 0.5. 

mp

The chaos stagnation-disturbance strategy not only guarantees that the algorithm can 
enhance the ability of the gBest particles to avoid local optimization when the local extremum 
is close to the global optimal point, but also provides a continuous transform mechanism to 
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help gBest particles escape from local extrema gradually when the local extrema are far from 
the global optimal point. 

2.3 Calculation steps 

(1) Two initial numbers of iterations are set as 1k  and 1k . m chaos variables  

, 1  ( = 1, 2, , )i kx i m  with different traces are obtained by assigning kx  in Eq. (1) with m
initial values, which have slight differences from one another. 

(2) According to the equation , 1 , 1i k i i i kx c d x , where ci and di are constants, the scale 
transformation between , 1i kx  and , 1i kx  is performed. Then, , 1i kx  is used in optimization 
by utilizing the chaotic carrier. 

(3) An iteration search is performed using chaos variables. To calculate the function 
value ,i kf x , it is assumed that , ,i k i k 1x x . Then, we set the initial values *

,1i ix x  and 
*

,1if f x .
(4) It is necessary to determine whether *

,i kf x f . If not, ,i kx  is abandoned. If so, 
we set *

,i kf f x  and *
,i i kx x . Then, 1kk .

(5) If  is unchanged, we go on to the next step. If not, we return to step (2). *f
(6) Reloading by the chaotic carrier is conducted according to the relationship 

*
, 1 , 1i k i i i kx x a x , where  is the adjustable constant that makes  a low-range 

chaos variable. 
ia , 1i i ka x

(7) We set , ,i k i k 1x x , and ,i kf x  is calculated. It is necessary to determine 
whether *

,i kf x f . If not, then 1k k , ,i kx  is abandoned, and we return to step (5); if 
so, we set *

,i kf f x  and *
,i i kx x .

(8) If the global optimal solution remains unchanged for many iterations, then we carry 
out the disturbance strategy and return to step (2). If not, we go on to the next step. 

(9) It is necessary to determine whether *
,i kf f x  and *

,i i kx x  comply with the 
termination rule. If not, then step (6) is repeated. If so, then the optimal solution is found: the 
optimal solution is  and the corresponding function is . *x *f

3 Verification of COSPSO  
3.1 Introduction of benchmark functions 

In order to evaluate the performance of COSPSO based on chaos theory, including the 
convergence speed of global optimization, five benchmark optimizations (Table 1) were 
introduced and analyzed (Runarsson and Yao 2000), facilitating comparison of the 
performance of COSPSO to that of bPSO. These benchmark optimizations, which aim at a 
global minimum value, are often used to test the performance of a reformed algorithm. They 
are composed of two single-peak (unimodal) functions and three multi-peak (multimodal) 
functions, which possess different characteristics and can thus test every aspect of the 
optimized performance in various problems. 

In Table 1, minF(x) is the global minimum, and 1f  and 2f  are consecutive unimodal 
functions, usually used to inspect the convergence rate of the algorithm. The Rosenbrock 
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function is a typical complex function with a smooth trend, and its global optimal point is in an 
even, narrow, parabola-shaped valley. It is usually used to test the convergence rate of the 
algorithm because it requires little information and has a small likelihood of convergence to the 
global optimal point. 3f , 4f , and 5f  are complex nonlinear multimodal functions with plenty 
of local extrema. Therefore, they work effectively for the inspection of the algorithm’s global 
search performance, particle diversity, and ability to allow particles to escape from local extrema, 
guarantee convergence, and prevent prematurity. 

Table 1 Five benchmark functions 

Code of functions Optimization function Three-dimensional graph 

1f

1 2 22
Rosenbrock 1

1

Rosenbrock

( ) 100 1 ,   2.048 2.048

min 1,1, ,1 0

n

i i i i
i

F x x x x x

F x F

2
Sphere

1

Sphere

( )  ,   5.12 5.12

min 0,0, , 0 0

n

i i
i

F x x x

F x F
f2

3f
2

Rastrigin
1

Rastrigin

( ) 10 10cos 2  , 5.12 5.12

min 0,0, , 0 0

n

i i i
i

F x n x x x

F x F

4f

2

Griewank
1 1

Griewank

( ) 1 cos  , 512 512
4 000

min 0,0, , 0 0

nn
i i

i
i i

x xF x x
i

F x F

5f
Schwefel

1

Schwefel

( ) sin  , 512 512

min 420.968 750, , 420.968 750 418.982 887 27

n

i i i
i

F x x x x

F x F n

The functions with more dimensions, wider independent variable scopes, and higher 
target accuracy are more difficult to be optimized. In order to facilitate the comparison 
between the original algorithm and the improved algorithm, and to give priority to the 
performance of the latter, this study selected the most rigorous parameter sets (Eberhart and 
Kennedy 1995), shown in Table 2.  

Table 2 Function parameter settings 

Code of functions Variable range Iterations Particle quantity Function dimension 

1f [–100,100] 7 000 30 30

2f [–100,100] 7 000 30 30

3f [–100,100] 7 000 30 30

4f [–600,600] 7 000 30 30

5f [–500,500] 7 000 30 30

3.2 Parameter setting of COSPSO 

For better comparison of the performances of COSPSO and bPSO, the same parameter 
values were used, in addition to some new parameters. In bPSO the tactic of linear dynamic 
descending within the range of 0.4 to 0.9 was adopted for the inertia weight 
(Parsoploulos et al. 2001), while a constant value of 

w
0.9w  was used for the COSPSO. 
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The same value of 2 was used for the acceleration coefficients  and  of COSPSO and 
bPSO. The particle quantity was 30. There were 500 low-accuracy searches and 200 
high-accuracy searches in COSPSO. When the control parameter was 4, it could be ensured 
that Logistic mapping would be in the chaotic state. In this way, the efficient optimization 
performance of COSPSO was fully examined.  

1c 2c

3.3 Unimodal function comparison 

Fig. 1 and Fig. 2 show that the performance of COSPSO with the Logistic and Kent 
mapping functions presents a great improvement over bPSO. In the figures, L-MAP and 
K-MAP are the processes of COSPOS with Logistic mapping and Kent mapping, respectively, 
and y indicates the accuracy of iterative calculation. When solving the sphere function, 
COSPSO always maintains a speedy convergence and could be said to have a tendency of 
accelerating convergence compared with PSO. The global optimal solution of COSPSO in the 
initial stage was by no means better than that of bPSO. However, the initial individual value of 
the particles was much superior to that of randomly initialized bPSO. Therefore, the 
descending speed of the iterative curve of COSPOS was higher than that of bPSO, thus 
guaranteeing speed, efficiency, and accuracy in convergence. As seen in Fig. l, it took at least 
1 000 iterations before bPSO reached a relatively high convergence accuracy, while in 
COSPSO only 150 iterations were needed. Furthermore, the accuracy of  at the 7000th 
iteration of COSPSO was far higher than the accuracy of 

160e
50e of bPSO, as shown in Fig. 2.  

   Fig. 1 Optimization process of Rosenbrock function    Fig. 2 Optimization process of Sphere function 

3.4 Multimodal function comparison 

In the optimization of multimodal functions ( , , and ), the abundance of local 
extrema easily ran the algorithm into local optimization and then caused prematurity, and thus 
limited the ability of the algorithm to escape from the local extremum and converge at global 
optimization. Fig. 3, Fig. 4, and Fig. 5 show that the convergence accuracy of COSPSO was 
the same as that of the bPSO in the Griewank function. However, in other respects, such as the 
ability to escape from local extrema, convergence speed, and global optimization, COSPSO 
was evidently better than bPSO. This was well proven by its speedy convergence in the initial 
500 to 1000 iterations. Besides, the initial accuracy of the new algorithm was significantly 
higher than that of bPSO. All of these factors lead to a global optimal solution. COSPSO can 
improve the efficiency of multimodal function optimization mainly because of the chaotic 

3f 4f 5f



Si-fang DONG et al. Water Science and Engineering, Jun. 2010, Vol. 3, No. 2, 156-165 162

optimization process, in which the initial locations of particles are calculated with high 
accuracy and searching directions are highly precise, thus increasing the variety of particles. 
The variety does not diminish as iteration continues, and it can enhance particles’ ability to 
escape from the local extremum, thus avoiding the prematurity in bPSO. This can be seen 
clearly from the results of the experiment. 

     Fig. 3 Optimization process of Rastrigin function   Fig. 4 Optimization process of Griewank function 

Fig. 5 Optimization process of Schwefel function 

4 Design flood hydrograph model 
The design flood hydrograph model was established based on complete water level and 

discharge data from Changba Hydrological Station, 4 500 m upstream of the Wantou 
hydro-junction, for the period of 1953 to 2004. This model was meant for dealing with the 
following problems in solving the design flood hydrograph by enlarging a typical flood 
hydrograph at the same frequency: (1) When the flood peak and flood volume relation is not 
satisfactory, a mutation on the hydrograph may occur at the connecting point of two 
successive periods. (2) The original typical flood mode can easily be destroyed (CWRC 2001). 
Similar disparity theory was applied to establish the object function of the design flood 
hydrograph model: 

1 1 1

1 1 1

1 1 1min
n n n

i i i i i i
i i i

f k k k k k k
n n n

               (6) 

The constraint conditions are as follows: 

1 3 7

1 3 7

max max

1 1 3 3 7( )d ,   ( )d ,   ( )de e e

s s s

t t t

t t t

Q Q

Q Q t t Q Q Q t t Q Q Q t t Q7

         (7) 
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where
t

tQttQk ii
i

)()( ;
( ) ( )i i

i
Q t t Q t

k
t maxQ; , , , , and  are, 

respectively, the peak discharge, the discharge at time t, and the maximum flood volumes after 
one day, three days, and seven days of the design flood; 

)(tQ 1Q 3Q 7Q

maxQ , ( )Q t , 1Q , , and  are, 
respectively, the peak discharge, the discharge at time t, and the one-day, three-day, and 
seven-day maximum flood volumes of a typical flood at a definite frequency; 

3Q 7Q

sjt  and 

 are the beginning and ending time of the durations of one day, three days, and 
seven days; i is the number of the time interval: ; and 

e  (  = 1, 3, 7)jt j
=1,  2, ,  i n t  is the time step. 

The constrained nonlinear optimization problem of Eq. (6) can be converted into an 
unconstrained optimization problem by Eq. (8):  

3 71

1 1 1

1 max max
1 1 1

2 1 3 3 4
1 1 1

1 1 1min

             ( ) ( ) ( )

n n n M

i i i i i i
i i i

7

M MM n nn

i i i
i i i

f k k k k k k Q Q
n n n

Q t t Q Q t t Q Q t t Q
    (8) 

where M is a positive even number, which is set as 2 in the following calculation; and 

i ( 1,  2,  3,  4i )  are the penalty function factors, which are related to the current number of 
iterations .n i ( 1,  2,  3,  4i )  is small at the beginning and increases gradually, which is 
helpful to the search for the optimal solution at a large scale, leading to the final solution to the 
original question: 

*2 1
1 expi in T

,  2,  3,  4)i   ( 1                  (9) 

where  is a positive coefficient; *
i ( 1,  2,  3,  4i )  are random numbers larger than 

500; T is the upper limit of iterations; 
3 71

1 1 1
( ) ,  ( ) ,  and ( )

n nn

i i
i i i

Q t t Q t t Q t ti  are the 

discrete forms of , referring to the maximum flood 

volumes for one day, three days, and seven days; and  are the number of time 
intervals during the periods of one day, three days, and seven days, respectively. 

1 3

1 3

( )d ,  ( )d , 7

7

and  ( )de

s

t

t
Q t te e

s s

t t

t t
Q t t Q t t

1 3 7,  ,  and  n n n

A flood process in 1976 was considered as a typical example. Frequency analysis was 
carried out based on the long-term hydrological data series and the eigenvalue of a typical 
flood at Changba Hydrological Station. The typical flood process was mapped with 168 actual 
measurement points and the time step was one hour. The COSPSO algorithm was applied to 
draw the design flood hydrograph of Changba Hydrological Station, and, further, to calculate 
the design flood standard hydrographs of various frequencies. 

Some of the COSPSO parameters were set in Section 3.2. In addition, the initial values of 
penalty function factors were set as  and 5i

* 310i ( 1,  2,  3,  4)i . There were 500 
iterations during the whole optimization process and 700 iterations during chaos optimization. 

Table 3 shows the eigenvalues of a typical flood and design floods for different 
frequencies at Changba Hydrological Station. Fig. 6 shows different frequency design flood 
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hydrographs, which basically maintain the distribution pattern of a typical flood process and 
demonstrate the good effect of curve-fitting. 

Table 3 Eigenvalues of typical flood and design floods for different frequencies  

Flood volume (106 m3)
Flood frequency Peak discharge 

Qmax (m3/s) 1 d 3 d 7 d 
1976 typical flood 4 640 359.4 700.1  925.4 

5% 4 950 379.6 804.5 1 375.8 
3.33% 5 360 411.9 878.7 1 511.8 

2% 5 860 451.6 968.8 1 685.1 
1% 6 510 504.1 1 091.3 1 911.7 

0.50% 7 160 556.5 1 211.7 2 140.4 
0.20% 8 010 624.2 1 372.5 2 446.0 
0.10% 8 640 675.5 1 486.8 2 663.7 
0.05% 9 260 725.5 1 604.7 2 886.5 

Fig. 6 Different frequency design flood hydrographs of Changba Station 

5 Conclusions 
In COSPSO, a particle’s initial movement trajectory is assumed to be chaotic instead of 

the desultory stochastic trajectory of other models. The chaos factor is used to guide the 
particle’s path and a disturbance strategy is used to keep the global particles from stagnation. 
In the optimization solution tests of two unimodal functions and three multimodal functions, 
the COSPSO displayed its main advantages, including: (1) speedy convergence to a global 
optimum solution, (2) high efficiency in the search of particles’ initial direction, (3) 
refrainment from prematurity, (4) guarantee of particles’ initial variety, and (5) high ability to 
keep particles from the stagnation state and allow them to maintain chaotic movement. 

Based on the similar disparity theory, the scaling model for calculating a design flood 
was established and a new method of processing penalty function constraints was put forward. 
In addition, COSPSO, a cluster intelligent algorithm, was applied to optimize the solution, 
thus radically solving the problems that arise from drawing the design flood hydrograph using 
the conventional homogeneous frequency enlargement method. With Changba Hydrological 
Station as an example, the design flood hydrographs for frequencies ranging from 0.05% to 
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5% were drawn by the flood hydrograph enlargement model with COSPSO. The process is 
speedy and practical, and the results are in agreement with the typical flood process in 1976. 
The case study shows that the new method is effective for calculating the peak discharge and 
flood volumes of the design flood, and that the design flood is consistent with the typical flood 
patterns. This method allows the user to avoid the randomness and complexity of manual 
modification. 
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