14 research outputs found

    3-Colourability of Dually Chordal Graphs in Linear Time

    Full text link
    A graph G is dually chordal if there is a spanning tree T of G such that any maximal clique of G induces a subtree in T. This paper investigates the Colourability problem on dually chordal graphs. It will show that it is NP-complete in case of four colours and solvable in linear time with a simple algorithm in case of three colours. In addition, it will be shown that a dually chordal graph is 3-colourable if and only if it is perfect and has no clique of size four

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur

    Algorithmic Aspects of Secure Connected Domination in Graphs

    Full text link
    Let G=(V,E)G = (V,E) be a simple, undirected and connected graph. A connected dominating set SVS \subseteq V is a secure connected dominating set of GG, if for each uVS u \in V\setminus S, there exists vSv\in S such that (u,v)E(u,v) \in E and the set (S{v}){u}(S \setminus \{ v \}) \cup \{ u \} is a connected dominating set of GG. The minimum size of a secure connected dominating set of GG denoted by γsc(G) \gamma_{sc} (G), is called the secure connected domination number of GG. Given a graph G G and a positive integer k, k, the Secure Connected Domination (SCDM) problem is to check whether G G has a secure connected dominating set of size at most k. k. In this paper, we prove that the SCDM problem is NP-complete for doubly chordal graphs, a subclass of chordal graphs. We investigate the complexity of this problem for some subclasses of bipartite graphs namely, star convex bipartite, comb convex bipartite, chordal bipartite and chain graphs. The Minimum Secure Connected Dominating Set (MSCDS) problem is to find a secure connected dominating set of minimum size in the input graph. We propose a (Δ(G)+1) (\Delta(G)+1) - approximation algorithm for MSCDS, where Δ(G) \Delta(G) is the maximum degree of the input graph G G and prove that MSCDS cannot be approximated within (1ϵ)ln(V) (1 -\epsilon) ln(| V |) for any ϵ>0 \epsilon > 0 unless NPDTIME(VO(loglogV)) NP \subseteq DTIME(| V |^{O(log log | V |)}) even for bipartite graphs. Finally, we show that the MSCDS is APX-complete for graphs with Δ(G)=4\Delta(G)=4

    Dominating sets reconfiguration under token sliding

    Get PDF

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author
    corecore