16,075 research outputs found

    Recoverable robust single day aircraft maintenance routing problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex SystemsNatural Sciences and Engineering Research Council of Canada

    Integrated aircraft scheduling problem: An auto-adapting algorithm to find robust aircraft assignments for large flight plans

    Get PDF
    The overall airline scheduling process involves hierarchical steps starting with the network design and ending with crew assignment. Aircraft routing is especially important with respect to timing and costs for an airline. In this contribution, we focus on aircraft routing where aircraft are assigned to flight legs further considering maintenance requirements. We developed and implemented algorithms that extend the aircraft routing problem (ARP) by including profit and robustness. The latter objective is important as the dependencies of flights and airlines increases and deviations to the original time plan as unexpected events like volcano eruptions or heavy weather-related issues are difficult to handle. A robust aircraft routing ensures that unforeseen events have less impact. The results are compared to current state-of-the-art solutions. We developed a test instance-generator to create specific problems and build a library for future benchmarking tests

    Un modelo integrado para el enrutamiento de aeronaves y la programación de la tripulación: Relajación lagrangiana y algoritmo metaheurístico

    Full text link
    [EN] Airline optimization is a significant problem in recent researches and airline industryl as it can determine the level of service, profit and competition status of the airline. Aircraft and crew are expensive resources that need efficient utilization. This paper focuses simultaneously on two major issues including aircraft maintenance routing and crew scheduling. Several key issues such as aircraft replacement, fairly night flights assignment and long-life aircrafts are considered in this model. We used the flight hours as a new framework to control aircraft maintenance. At first, an integrated mathematical model for aircraft routing and crew scheduling problems is developed with the aim of cost minimization. Then, Lagrangian relaxation and Particle Swarm Optimization algorithm (PSO) are used as the solution techniques. To evaluate the efficiency of solution approaches, model is solved with different numerical examples in small, medium and large sizes and compared with GAMS output. The results show that Lagrangian relaxation method provides better solutions comparing to PSO and also has a very small gap to optimum solution.[ES] La optimización de aerolíneas es un problema importante en investigaciones recientes e industria de aerolíneas, ya que puede determinar el nivel de servicio, el beneficio y el estado de competencia de la aerolínea. Las aeronaves y la tripulación son recursos costosos que necesitan una utilización eficiente. Este artículo se centra simultáneamente en dos cuestiones principales, incluyendo el enrutamiento de mantenimiento de aeronaves y la programación de la tripulación. En este modelo se consideran varios temas clave, como el reemplazo de aeronaves, la asignación de vuelos nocturnos y los aviones envejecidos. Usamos las horas de vuelo como un nuevo marco para controlar el mantenimiento de las aeronaves. Al principio, se desarrolla un modelo matemático integrado para el enrutamiento de aeronaves y los problemas de programación de la tripulación con el objetivo de la minimización de costos. A continuación, se utilizan como técnicas de solución la relajación lagran-giana y el algoritmo “Particle Swarm Optimization” (PSO). Para evaluar la eficiencia de los en-foques de la solución, el modelo se resuelve con diferentes ejemplos numéricos en tamaños pequeños, medianos y grandes y se compara con la salida GAMS. Los resultados muestran que el método de relajación lagrangiana proporciona mejores soluciones en comparación con PSO y también tiene una pequeña diferencia para una solución óptimaMirjafari, M.; Rashidi Komijan, A.; Shoja, A. (2020). An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm. WPOM-Working Papers on Operations Management. 11(1):25-38. https://doi.org/10.4995/wpom.v11i1.12891OJS2538111Al-Thani, Nayla Ahmad, Ben Ahmed, Mohamed and Haouari, Mohamed (2016). A model and optimization-based heuristic for the operational aircraft maintenance routing problem, Transportation Research Part C: Emerging Technologies, Volume 72, Pages 29-44. https://doi.org/10.1016/j.trc.2016.09.004Azadeh, A., HosseinabadiFarahani, M., Eivazy, H., Nazari-Shirkouhi, S., &Asadipour, G. (2013). A hybrid meta-heuristic algorithm for optimization of crew scheduling, Applied Soft Computing, Volume 13, Pages 158-164. https://doi.org/10.1016/j.asoc.2012.08.012Barnhart C. and Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities, Manufacturing & Service Operations Management, 6(1):3-22, 47, 69, 141, 144. https://doi.org/10.1287/msom.1030.0018Basdere, Mehmet and Bilge, Umit (2014). Operational aircraft maintenance routing problem with remaining time consideration, European Journal of Operational Research, Volume 235, Pages 315-328. https://doi.org/10.1016/j.ejor.2013.10.066Bazargan, Massoud (2010). Airline Operations and scheduling second edition, Embry-Riddle Aeronautical University, USA, Ashgate publishing limite.Belien, Jeroen, Demeulemeester, Eric and Brecht (2010). Integrated staffing and scheduling for an aircraft line maintenance problem, HUB RESEARCH PAPER Economics & Management.Ben Ahmed, M., Zeghal Mansour, Farah and Haouari, Mohamed (2018). Robust integrated maintenance aircraft routing and crew pairing, Journal of Air Transport Management, Volume 73, Pages 15-31. https://doi.org/10.1016/j.jairtraman.2018.07.007Ben Ahmed, M., Zeghal Mansour, F., Haouari, M. (2017). A two-level optimization approach for robust aircraft routing and retiming, Computers and Industrial Engineering, Volume 112, Pages 586-594. https://doi.org/10.1016/j.cie.2016.09.021Borndorfer, R., Schelten, U., Schlechte, T., Weider, S. (2006). A column generation approach to airline crew scheduling, Springer Berlin Heidelberg, Pages 343-348. https://doi.org/10.1007/3-540-32539-5_54Clarke, L., E. Johnson, G. Nemhauser, Z. Zhu. (1997). The Aircraft Rotation Problem. Annals of Operations Research, 69, Pages 33-46. https://doi.org/10.1023/A:1018945415148Deveci, Muhammet and ÇetinDemirel, Nihan (2018). Evolutionary algorithms for solving the airline crew pairing problem, Computers & Industrial Engineering, Volume 115, Pages 389-406. https://doi.org/10.1016/j.cie.2017.11.022Dozic, S., Kalic, M. (2015). Three-stage airline fleet planning model, J. Air Transport. Manag, 43, Pages 30-39. https://doi.org/10.1016/j.jairtraman.2015.03.011Eltoukhy, A.E., Chan, F.T., Chung, S. (2017). Airline schedule planning: a review and future directions, Ind. Manag. Data Syst, 117(6), Pages 1201-1243. https://doi.org/10.1108/IMDS-09-2016-0358Feo, T. A., J. F. Bard. (1989). Flight Scheduling and Maintenance Base Planning. Management Science, 35(12), Pages 1415-1432. https://doi.org/10.1287/mnsc.35.12.1415Goffin, J. L. (1977). On the convergence rates of subgradient optimization methods. Math. Programming, 13, Pages 329-347. https://doi.org/10.1007/BF01584346Gopalakrishnan, B., Johnson, E. L (2005). Airline crew scheduling, State-of-the-art. Ann. Oper. Res, 140(1), Pages 305-337. https://doi.org/10.1007/s10479-005-3975-3Held, M. and Karp, R.M. (1970). The Traveling-Salesman Problem and Minimum SpanningTrees. Operations Research, 18, 1138-1162. https://doi.org/10.1287/opre.18.6.1138Held, M. Wolfe, P., Crowder, H. D. (1974). Validation of subgradient optimization, Math. Programming, 6, 62-88. https://doi.org/10.1007/BF01580223Jamili, Amin (2017). A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem, Journal of Air Transport Management, Volume 58, Pages 21-30. https://doi.org/10.1016/j.jairtraman.2016.08.008Jiang, H., Barnhart, C. (2009) Dynamic airline scheduling, Transport. Sci, 43(3), Pages 336-354. https://doi.org/10.1287/trsc.1090.0269Kasirzadeh, A., Saddoune, M., Soumis, F. (2015). Airline crew scheduling: models, algorhitms and data sets, Euro Journal on Transportation and Logistics, 6(2), Pages 111-137. https://doi.org/10.1007/s13676-015-0080-xLacasse-Guay, E., Desaulniers, G., Soumis, F. (2010). Aircraft routing under different business processes, J. Air Transport. Manag, 16(5), Pages 258-263. https://doi.org/10.1016/j.jairtraman.2010.02.001Muter, İbrahim, Birbil, Ş. İlker, Bülbül, Kerem, Şahin, Güvenç,Yenigün, Hüsnü, Taş,Duygu andTüzün, Dilek (2013). Solving a robust airline crew pairing problem with column generation, Computers & Operations Research, Volume 40, Issue 3, Pages 815-830. https://doi.org/10.1016/j.cor.2010.11.005Saddoune, Mohammed, Desaulniers, Guy, Elhallaoui, Issmail and François Soumis (2011). Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, Volume 212, Pages 445-454. https://doi.org/10.1016/j.ejor.2011.02.009Safaei, Nima and K.S.Jardine, Andrew (2018). Aircraft routing with generalized maintenance constraints, Omega, Volume 80, Pages 111-122. https://doi.org/10.1016/j.omega.2017.08.013Shao Shengzhi (2012). Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry, Faculty of the Virginia Polytechnic Institute and State University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Industrial and Systems Engineering.Shao, S., Sherali, H.D., Haouari, M. (2017). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, crew pairing problem, Transport. Sci, 51(1), Pages 233-249. https://doi.org/10.1287/trsc.2015.0623Sherali, H.D., Bish, E.K., Zhu, X. (2006). Airline fleet assignment concepts, models and algorithms, Eur. J. Oper. Res, 172(1), Pages 1-30. https://doi.org/10.1016/j.ejor.2005.01.056Warburg, V., Hansen, T.G., Larsen, A., Norman, H., Andersson, E. (2008). Dynamic airline scheduling: an analysis of potentials of refleeting and retiming, J. Air Transport. Manag. 14(4), Pages 163-167. https://doi.org/10.1016/j.jairtraman.2008.03.004Yan, C. and Kung, J. (2018). Robust aircraft routing, Transport. Sci, 52(1), Pages 118-133. https://doi.org/10.1287/trsc.2015.0657Yen, J.W., Birge, J.R., (2006). A stochastic programming approach to the airline crew scheduling problem. Transportation Science, Volume 40, Pages 3-14. https://doi.org/10.1287/trsc.1050.0138Yu, G. (1998). Operation Research in the Airline Industry. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-5501-8Zeren, Bahadir and Ozkol, Ibrahim (2016). A novel column generation strategy foe large scale airline crew pairing problems, Expert system with applications, Volume 55, Pages 133-144. https://doi.org/10.1016/j.eswa.2016.01.045Zhang, Dong, Lau, H.Y.K. Henry and Yu, Chuhang (2015). A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems, Computers and Industrial Engineering, Volume 87, Pages 436-453. https://doi.org/10.1016/j.cie.2015.05.03

    The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThe tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of this paper is to develop an operationally flexible method, based upon the one-day routes business model, to compute tail assignments that satisfy short-range—within the next three days—aircraft maintenance requirements. While maintenance plans commonly span multiple days, the methods used to compute tail assignments for the given plans can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by using solutions from the one-day routes aircraft maintenance routing approach as input. The daily tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A computational study will be performed to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-flight to reduce maintenance misalignments. The daily tail assignment problem and the developed algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements when evaluated using input data collected from three different airlines

    Scheduling of an aircraft fleet

    Get PDF
    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques

    Solution Repair/Recovery in Uncertain Optimization Environment

    Full text link
    Operation management problems (such as Production Planning and Scheduling) are represented and formulated as optimization models. The resolution of such optimization models leads to solutions which have to be operated in an organization. However, the conditions under which the optimal solution is obtained rarely correspond exactly to the conditions under which the solution will be operated in the organization.Therefore, in most practical contexts, the computed optimal solution is not anymore optimal under the conditions in which it is operated. Indeed, it can be "far from optimal" or even not feasible. For different reasons, we hadn't the possibility to completely re-optimize the existing solution or plan. As a consequence, it is necessary to look for "repair solutions", i.e., solutions that have a good behavior with respect to possible scenarios, or with respect to uncertainty of the parameters of the model. To tackle the problem, the computed solution should be such that it is possible to "repair" it through a local re-optimization guided by the user or through a limited change aiming at minimizing the impact of taking into consideration the scenarios

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools
    corecore