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Abstract

The tail assignment problem is a critical part of the airline planning process that assigns specific

aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of

this paper is to develop an operationally flexible method, based upon the one-day routes business

model, to compute tail assignments that satisfy short-range—within the next three days—aircraft

maintenance requirements. While maintenance plans commonly span multiple days, the methods

used to compute tail assignments for the given plans can be overly complex and provide little recourse

in the event of schedule perturbations. The presented approach addresses operational uncertainty by

using solutions from the one-day routes aircraft maintenance routing approach as input. The daily

tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for

the current day and implicitly for the subsequent two days. A computational study will be performed

to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-

flight to reduce maintenance misalignments. The daily tail assignment problem and the developed

algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements

when evaluated using input data collected from three different airlines.

Key words: transportation, tail assignment, maintenance planning, branch-and-price, iterative algo-

rithm

1 Introduction

The tail assignment problem (TAP) is a component of the airline planning process—separated by aircraft

type—that involves the assignment of tasks to aircraft to satisfy operational constraints. A task within
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the TAP is defined as a sequence of flights that can be performed by a single aircraft, which is termed

a line-of-flight (LOF). Operational constraints include: ensuring each flight is operated by an aircraft,

satisfying aircraft maintenance requirements and planning through flights (matching high valued in-

bound and out-bound flights with the same aircraft).

The planning of LOFs typically occurs months in advance of operations. The planning stage involves

solving an aircraft routing problem that constructs LOFs, which are expected to satisfy operational

constraints. Fixing the LOFs in advance of operations is valuable for the construction of crew schedules—

given the cost benefit of crew following aircraft—and organising ground services. Unfortunately, schedule

perturbations are highly prevalent in daily operations. Such schedule perturbations can significantly

impact the operational advantages derived from using fixed LOFs by causing infeasibilities in the planned

aircraft routings and crew pairings.

Many different business models are employed by airlines for the construction and assignment of

aircraft LOFs [14]. Traditional business models involve the construction of LOFs that span multiple

days, in some cases up to a month. By spanning many days, such LOFs are highly susceptible to

disruption. It is typical that many aircraft do not finish on their originally assigned LOFs. Also, at the

end of an operational period, the performed LOFs may look vastly different to those constructed during

the planning stage. Thus, constructing LOFs to span shorter time periods and then performing the

aircraft assignment each night is expected to have significant advantages over the traditional business

models in handling schedule perturbations.

A recent business model developed to address the disruption caused by schedule perturbations uses

one-day routes—LOFs that span a single day and ensure the current days maintenance requirements

are satisfied. The planning optimisation problem developed for the one-day routes business model is

presented by Maher et al. [18]. In this paper, the suite of optimisation problems for this business model

will be completed with the development of a complementary operational optimisation problem. This

problem concerns the overnight assignment of aircraft to one-day routes LOFs to satisfy maintenance

requirements. The maintenance requirements for the following two days are satisfied through the devel-

opment of look-ahead maintenance constraints. Further, to address unavoidable schedule perturbations

an adjustment procedure is employed that minimally modifies the input LOFs. A computational study

will show the effectiveness of the one-day routes business model for satisfying daily maintenance require-

ments.

1.1 Literature review

Different business models for LOF construction in the aircraft routing problem (ARP)—string, big-cycle

and one-day routes approaches—are reviewed by Lacasse-Guay et al. [14]. The string and big-cycle

approaches are commonly solved over a number of days to provide a maintenance plan for the complete

airline fleet. Alternatively, the one-day routes approach is solved to identify LOFs for all aircraft that
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span only a single day. Maintenance planning is performed by only considering the aircraft requiring

maintenance at the end of the current day. Alternative approaches draw upon and combine concepts

from the three categories presented by Lacasse-Guay [14]. Such approaches construct aircraft routes

that span time periods ranging from one day to multiple weeks without the restrictions of the string or

big-cycle methods. It is important to note that all of these approaches can be solved many months in

advance of the day of operations.

The string maintenance planning approach constructs a set of generic flight sequences, each to be

performed by a single aircraft, that originate and terminate at maintenance opportunities. An individual

flight sequence, termed a flight route, is constructed to be maintenance feasible. As such, the solution to

a set partitioning problem, selecting a set of flight routes that covers all flights within a given time period,

satisfies a fleet’s maintenance requirements. Examples of the string maintenance planning approach are

presented by Barnhart et al. [3] and Sriram and Haghani [21]. The big-cycle approach to maintenance

planning involves the construction of a single route spanning multiple days that covers every flight in

the schedule. Equal utilisation motivates this approach. This is achieved by constructing a single cycle

that includes all flights to be operated by all aircraft. Examples of the big-cycle approach are presented

by Feo and Bard [7], Clarke et al. [5], Gopalan and Talluri [10] and Talluri [22]. It is important to note

that Feo and Bard [7], Gopalan and Talluri [10] and Talluri [22] construct big-cycle solutions using sets

of LOFs that span a single day.

An approach that lies at the intersection of the string and big cycle approaches is the weekly aircraft

maintenance routing problem presented by Liang and Chaovalitwongse [16]. The developed formulation

is solved to provide a weekly rotation tour that satisfies aircraft maintenance requirements. An extension

to the weekly aircraft maintenance routing problem presented by Liang, Feng et al. [17] aims to minimise

delay propagation. The formulation of Liang, Feng et al. [17] draws upon concepts from one-day routes

with the construction of single day LOFs that are concatenated to form weekly aircraft routing solutions.

The one-day routes approach is vastly different from the two previously discussed. This approach is

applied to identify flight routes that span a single day. The objective of the one-day routes approach is

to ensure that a sufficient number of flight routes from each airport terminate at a maintenance station

so that the maintenance critical aircraft can receive maintenance that night. The one-day routes ARP

is inherently stochastic since it assumes operations from previous days will perturb the maintenance

plan. Examples of the one-day routes approach are presented by Heinhold [13], Lapp and Cohn [15] and

Maher et al. [18].

While the ARP approaches presented above involve the generation of LOFs for input to the TAP,

alternative methods have been proposed that combine the ARP and TAP. One of the most detailed

investigations of the TAP developed in this manner is presented by Grönkvist [11]. The TAP proposed

by Grönkvist [11] is solved a month at a time and comprises features from the fleet assignment, aircraft

routing, maintenance planning and through assignment problems. The construction of LOFs within the
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TAP to minimise a robustness measure is presented by Borndörfer et al. [4]. Additionally, Borndörfer

et al. [4] construct LOFs to adjust for any perturbations from preceding days that may have affected

the maintenance plan. Only an approximate solution is given by Borndörfer et al. [4], since the integer

solution is given by a rounding heuristics applied to the optimal LP solution. Finally, flexibility in the

construction of LOFs is achieved by Ruther [19] by considering the TAP as a component of an integrated

airline planning problem. The problem presented by Ruther [19] is posed to be solved approximately four

days before the day of operations to adjust the planned solutions in response to schedule perturbations.

A compact formulation for the single day maintenance routing problem is presented by Haouari et

al. [12] that identifies a tail assignment solution without the explicit construction of LOFs. The authors

develop a formulation that is polynomial in size and present effective solution methods based upon the

reformulation-linearisation technique. Due to the deterministic focus of Haouari et al. [12], the presented

formulation of the single day aircraft maintenance routing problem is vastly different to other one-day

routes approaches by Heinhold [13], Lapp and Cohn [15] and Maher et al. [18]. Finally, Başdere and

Bilge [2] presents a compact formulation for the aircraft maintenance routing problem with an objective

to maximise the aircraft utilisation. Similar to Haouari et al. [12], LOFs are not explicitly constructed,

but the routes are implicitly defined by the assignment of flight connections to aircraft.

Many variants of the TAP have been developed in response to different airline business practices and

planning horizons. The longest planning horizon proposed for the TAP is a month, which is used by

Grönkvist [11]; however, it is suggested that any planning period could be used. One week, or seven

days, is a common planning horizon that guided the development of TAP variants presented by Başdere

and Bilge [2], Liang and Chaovalitwongse [16], Liang, Feng et al. [17], Ruther [19], and Sriram and

Haghani [21]. Regular planning horizons are not a requirement of the TAP and there are many instances

where the horizon is determined by business practices or planning restrictions. Variants employing

irregular planning horizons include Barnhart [3] with flight strings spanning a maintenance interval,

Clarke et al. [5] with a big cycle that spans a number of days equal to the number of aircraft, Feo and

Bard [7] where the time horizon is dictated by the inputs, and the three- and four-day maintenance

planning problems by Gopalan and Talluri [10] and Talluri [22] respectively. The shortest planning

horizon for the TAP is a single day. Variants of the TAP spanning a single day are presented by

Börndorfer et al. [4], Froyland et al. [8], Haouari et al. [12], Heinhold [13] and Lapp and Cohn [15]. The

focus of this paper is a variant of the TAP that assigns daily LOFs to aircraft. The developed approach

aims to complement one-day route LOF planning approaches while providing an alternative to TAP

variants formulated with time horizons that span multiple days.

In practice, the input LOFs are generally not suitable for satisfying aircraft operational require-

ments. In such cases, a process that modifies the input LOFs is required. One of the most common

LOF adjustment processes, and possibly the most simple, is aircraft swapping [1]. By identifying two

aircraft, one requiring maintenance that is assigned to an LOF not terminating at a maintenance base



1 INTRODUCTION 5

and the other not requiring maintenance but assigned to an LOF terminating at a maintenance base,

that are located at the same airport at the same time during the day, maintenance requirements can

be satisfied by performing an aircraft swap. This approach is considered by Lapp and Cohn [15] by

performing a simple splicing of two LOFs to improve maintenance reachability. While aircraft swapping

is easily implemented in practice, a more sophisticated rerouting approach may be required to satisfy

all maintenance requirements. A more involved approach that performs multiple flight changes for an

aircraft LOF is presented in this paper.

Various solution approaches have been applied to solve the tail assignment and maintenance planning

problems. Branch-and-price is popular for problem formulations where aircraft routes are not provided a

priori. This is a feature of the TAP developed by Grönkvist [11], Borndörfer et al. [4] and Ruther [19] and

the maintenance planning approaches by Barnhart et al. [3] and Maher et al. [18]. Alternatively, network

based approaches are presented by Liang and Chaovalitwongse [16] and Liang, Feng et al. [17] that

generate LOFs spanning from a single day up to a one week. There are many cases where the LOFs are

generated by an ARP and provided as input to the TAP. For such problem formulations, solution methods

including Lagrangian relaxation and subgradient algorithms [5], problem specific heuristics [2,7,10,21,22]

or general-purpose mixed-integer programming solvers [2, 12, 15] have been employed. Observations

suggest that exact solution algorithms, such as branch-and-price, can be overly time-consuming and

not suitable for the practical implementation of algorithms. However, the high solution quality that is

achievable using exact solution algorithms is desired.

A compromise between the exact solution algorithm of branch-and-price and problem-specific heuris-

tics is presented in the form of iterative solution algorithms [6,23]. Iterative algorithms have previously

been employed to solve integrated airline planning problems, whereby the solution to one stage can

be fixed prior to solving the alternate stage and then iterating between the two problems. This paper

aims to extend this technique with the development of an iterative solution algorithm to improve the

solution of the TAP using a set of input LOFs. The algorithm involves i) solving the TAP to identify

any infeasibilities in the maintenance plan, and ii) solving the TAP using branch-and-price to generate

flight routes for a subset of aircraft to address these infeasibilities. The algorithm executes in run times

that are better or competitive with exact approaches while still achieving high-quality solutions.

1.2 Contributions

The mathematical model developed in this paper draws upon many concepts from the literature. The

assignment of fixed LOFs to aircraft that are adjusted to satisfy maintenance requirements is presented

by Gopalan and Talluri [10] and Talluri [22]. Focusing on the work of Talluri [22], the main limitations

are the requirement of an Euler tour and the use of heuristics to repair maintenance infeasibilities. In

particular, the Euler tour requirement is overly restrictive. This paper significantly extends the work

of Talluri [22] with the development of a TAP that is flexible in regards to the input schedule and
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the maintenance requirements of the aircraft. Without the construction of an Euler tour and by only

providing an assignment for a single day the solution of the TAP developed in this paper provides a

maintenance plan that is robust to schedule perturbations. Further, the developed solution approaches

for the TAP are exact and heuristic in nature. As such, provable optimality bounds are available for the

considered problem instances.

In contrast to the work of Gopalan and Talluri [10] and Talluri [22], fully flexible approaches com-

bining the aircraft routing and tail assignment problems are presented by Grönkvist [11], Börndorfer

et al. [4] and Ruther [19]. Flexibility in the TAP allows the generation of aircraft routes for the tail

assignment to satisfy operational constraints, such as maintenance requirements. However, maintenance

planning beyond the day-of-operations is not considered. The TAP presented in this paper provides

both full planning flexibility and a heuristic approach for practical application. Additionally, look-ahead

maintenance constraints have been developed to complement LOF construction approaches by providing

an effective method to implicitly satisfy future maintenance requirements.

The contributions of this paper focus on the analysis of the new business model employing the one-day

routes approach. The contributions include

• the development of a tail assignment problem using one-day routes as input that is solved each

day—the daily tail assignment problem (DTAP)

• the evaluation of the use of one-day routes, as produced by the approaches of Heinhold [13], Lapp

and Cohn [15] and Maher et al. [18], as a fixed input for the DTAP,

• the formulation of look-ahead constraints that implicitly satisfy day-two and day-three maintenance

requirements,

• the presentation of a branch-and-price algorithm that reconstructs LOFs to improve the mainte-

nance planning achieved by the DTAP,

• the development of an iterative algorithm that reduces the computational effort of the LOFs

reconstruction process and

• a detailed computational study demonstrating the strengths and weaknesses of solution approaches

for the DTAP.

1.3 Paper structure

The problem description and formulation is presented in Section 2. The discussion in Section 2 involves

two parts, the first presenting the DTAP to satisfy maintenance requirements for day one using one-day

routes as input and the second introducing the look-ahead constraints that implicitly satisfy day-two and

day-three maintenance requirements. Two different solution algorithms are presented in Section 3—an
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exact branch-and-price algorithm and a heuristic iterative algorithm. The branch-and-price algorithm

presented in Section 3.1 resolves the DTAP, using the input LOFs as a starting solution, to eliminate

the unsatisfied maintenance requirements arising from solving the DTAP using a fixed set of input

LOFs. An iterative algorithm is developed in Section 3.2 that aims to improve upon the computational

performance of the exact branch-and-price algorithm. Section 4 describes the data used to evaluate

the DTAP developed in this paper. The computational results involving various flight schedules are

presented in Section 5. Finally, Section 6 provides some concluding comments.

2 The daily tail assignment problem

The DTAP is solved immediately prior to the day of operations to aid the recovery of planned assignments

that are disrupted as a result of schedule perturbations. Two critical features of aircraft routing that

are highly susceptible to schedule perturbations are addressed by the DTAP: the assignment of LOFs to

aircraft and maintenance requirements. The DTAP is solved at an arbitrary time when it is expected

that most aircraft are located on the ground. The fleets considered for the DTAP are short-haul and

medium-haul fleets, hence there are no overnight flights. However, airlines may operate in multiple time

zones. Thus, all flights departing between midnight and midnight (local time) on consecutive days are

considered to belong to the same one-day schedule. It is possible for aircraft to be operating flights

while the DTAP is being solved, requiring an estimated arrival time to be used in this problem for such

aircraft. Finally, to satisfy regulatory requirements aircraft are expected to receive maintenance once

every six days.

This paper presents the DTAP defined as: Given a set of input LOFs that span the next day of

operations, assign to each aircraft exactly one LOF that originates from the current aircraft location.

The LOF assignment minimises the number of day-one maintenance-critical aircraft not terminating at

a maintenance base at the end of the next day. A further aspect unique to this paper is the consideration

of day-two and day-three maintenance requirements. Two additional sets of LOFs—one each for days

two and three—that span a single day are provided as input. All three sets of input LOFs are not

required to be identical. The number of available maintenance routes from the end of day one to the

end of days two and three are computed from the day-two and day-three LOFs. Using the number of

available maintenance routes as input, the DTAP minimises—as a secondary objective—the number of

day-two and day-three maintenance critical aircraft unable to receive maintenance on the respective days

without the explicit assignment of LOFs.

Explicit maintenance planning is only modelled in the DTAP for the forthcoming day of operation.

However, aircraft requiring maintenance on days two and three are still considered. This is supported

by the addition of constraints that ensure a sufficient number of maintenance routes depart from each

overnight airport on day two and day three for the maintenance critical aircraft. This implicit considera-
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tion of maintenance requirements is a novel approach that has not been previously investigated. For ease

of exposition Section 2.1 presents the DTAP that only considers the day-one maintenance planning. The

unique implicit enforcement of the day-two and day-three maintenance requirements using look-ahead

maintenance constraints is presented in Section 2.2.

The above problem description considers the case where the LOFs are provided as input to the DTAP.

This is common in practice, since the LOFs from the aircraft routing solution are typically provided

as input. It is also common that as a result of schedule perturbation the aircraft routing LOFs do

not provide sufficient opportunities to satisfy maintenance requirements. Thereby, modifications to the

LOFs are necessary to satisfy all operational requirements. In this paper, the discussion of the solution

algorithm involves three parts. First, Sections 2.1 and 2.2 present the basic model where the LOFs are

provided as input. Second, the modification of the mathematical model to permit changes to the input

LOFs is presented in Section 2.3. Finally, the solution algorithms developed to respond to schedule

perturbations are described in Section 3.

2.1 The daily tail assignment problem without look-ahead constraints

There exist three key components of the DTAP, namely the overnight airports, aircraft and the LOFs.

Let B be the set of overnight airports. A set of aircraft Rb, all of the same type, are located at

each overnight airport b ∈ B to commence the forthcoming day of operation. The LOFs available for

assignment to an aircraft r ∈ Rb are given by the set P r, which is indexed by p. P r is populated with

LOFs that are identical for all r ∈ Rb originating for the same overnight airport b.

The LOF assignment is modelled using the binary variables yrp that equal one if aircraft r is assigned

to LOF p, and zero otherwise. The origination and termination locations of the LOF and the contained

flights are directly considered in the DTAP model. All flights of an airline schedule, which belong to the

set denoted by N , are each included in exactly one input LOF. The parameter afp is defined to equal

one if flight f is included in LOF p. Each LOF p originates and terminates at an overnight airport. A

subset of overnight airports, B̂ ⊂ B, are identified as maintenance stations.

The day-one maintenance requirements are addressed by attempting to assign each maintenance

critical aircraft to an LOF terminating at a maintenance station. The parameters op are defined to

equal one if the LOF p terminates at a maintenance station, and zero otherwise. A given aircraft

r ∈ Rb, b ∈ B is identified as maintenance critical—defined as requiring maintenance at the end of

the current day—by the parameter θr1 = 1. Otherwise θr1 = 0. Since disruptions from preceding days

may prohibit aircraft from entering a maintenance station, the slack variables sr1, r ∈ Rb, b ∈ B, are

introduced, with the objective coefficient cr1, to penalise any infeasibility of the maintenance plan.

The DTAP without look-ahead maintenance constraints can be modelled as the following mixed
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integer program:

min
∑
b∈B

∑
r∈Rb

cr1s
r
1, (1)

s.t.
∑
b∈B

∑
r∈Rb

∑
p∈P r

afpy
r
p = 1 ∀f ∈ N, (2)

∑
p∈P r

yrp ≤ 1 ∀b ∈ B, ∀r ∈ Rb, (3)

∑
p∈P r

opy
r
p + sr1 ≥ θr1 ∀b ∈ B, ∀r ∈ Rb, (4)

yrp ∈ {0, 1} ∀r ∈ R,∀p ∈ P, (5)

sr1 ≥ 0 ∀r ∈ R. (6)

The problem defined by (1)-(6) assigns LOF to aircraft and minimises the violation of maintenance

requirements. While it is possible to formulate the tail assignment as a set partitioning of input LOFs,

it is more convenient to formulate this problem as a set partitioning of flights in the network. The

latter formulation aids the development of a re-optimisation method that modifies LOFs when (1)-(6)

is maintenance infeasible. The proposed re-optimisation method is presented in Section 3. The set

partitioning of flights is given by constraints (2) that ensure every flight f ∈ N is assigned to exactly one

aircraft. Each aircraft must operate exactly one LOF, which is given by constraints (3). The day-one

maintenance requirements for the maintenance critical aircraft are enforced with constraints (4). These

constraints include a slack variable sr1 to penalise any maintenance violations.

2.2 Modelling the look-ahead maintenance constraints

The termination locations of each aircraft can be used by the look-ahead maintenance constraints to

implicitly satisfy day-two and day-three maintenance requirements. In particular, the maintenance LOFs

and maintenance paths, Definitions 2.2.1 and 2.2.2 respectively, are used to implicitly assign LOFs to

aircraft. Since the look-ahead constraints rely on LOFs originating from overnight airports on different

days, for convenience bi is used to denote overnight airport b at the start of day i.

Definition 2.2.1 (Maintenance LOF). A maintenance LOF (MLOF) is an LOF that terminates at a

maintenance station at the end of the day.

Definition 2.2.2 (Maintenance path). A maintenance path is the concatenation of an LOF from day i

and an MLOF from day i+ 1, where the origination overnight airport for the MLOF, bi+1, is identical

to the termination overnight airport for the LOF.

As a result of schedule perturbations, the number of maintenance critical aircraft at each overnight

airport is uncertain. Additionally, in the response to disruptions, LOFs are modified before and during

the day of operation. As such, the number of MLOFs departing from each overnight airport is unknown.
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Thus, by focusing only on the identification of termination locations and the number of MLOFs, stochas-

tic and robust approaches can be effectively employed. While robust formulations of this problem are

possible, this paper will focus only on the deterministic form.

The key parameters for the maintenance look-ahead constraints are the number of LOF and MLOFs

from each airport and the number of maintenance paths. The number of LOFs originating from overnight

airport i and terminating at overnight airport j is given by Lij . The parameterMbi is the number of LOFs

that can be used to satisfy the maintenance requirements for maintenance critical aircraft originating

from overnight airport bi, i.e., the number of MLOFs. A maintenance critical aircraft at overnight

airport bi can only use MLOFs originating from bi. Hence, the number of maintenance critical aircraft

at bi that can receive maintenance at the end of day i is bounded by Mbi .

An example of the number of LOFs from each overnight airport is given in Figure 1a. The first

level of the tree in Figure 1a are all LOFs departing from SYD on day 2. The second level shows all

LOFs departing from BNE, MEL and SYD on day 3. For convenience, we will focus only on the LOFs

departing from SYD. On day two, Figure 1a shows that there are 7 LOFs departing SYD. Since MEL is

the only maintenance station, there only exists 3 MLOFs departing from SYD, which means MSY D2
= 3.

Similarly, on day three the total number of LOFs departing from SYD is 7 and the number of MLOFs

is 3. As such, the parameter MSY D3 is set to 3. It can also be observed in Figure 1a that MBNE3 = 1

and MMEL3
= 3.

Given two overnight airports, one at the start of day i and one at the start of day i+1, denoted by bi

and bi+1 respectively, the number of maintenance paths constructed by concatenating an LOF departing

from bi and an MLOF departing from bi+1 is given by

Nbibi+1
= min{Lbibi+1

,Mbi+1
}. (7)

The parameters Nb2b3 identify any routing bottlenecks that can prevent the day-three maintenance

critical aircraft receiving maintenance as required. As demonstrated in the example in Figure 1c,

NSY D,BNE = 1 (indicating a bottleneck on day three), NSY D,MEL = 3 (indicating no bottleneck)

and NSY D,SY D = 2 (indicating a bottleneck on day two).

S

B M SB M S B M S

B M S

S

B M SB M S B M S

B M S

S

B M SB M S B M S

B M S

a) b) c)EOD 1

EOD 2

EOD 3

Airports
B
M
S

- BNE
- MEL (Maint)
- SYD

Num of LOFs
- 1 LOF
- 2 LOFs
- 3 LOFs

Figure 1: Available LOFs and maintenance routes from SYD at the end of day 1. a) All available LOFs.

b) Routes from SYD terminating at the maintenance station (MEL) at end of day two. c) Routes from

SYD terminating at the maintenance station (MEL) at the end of day three.
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Day-two maintenance requirements The day-two maintenance requirements are satisfied by simply

counting the number of maintenance critical aircraft terminating at each airport at the end of day one.

The parameter θr2 equals one if aircraft r requires maintenance at the end of day two, and zero otherwise.

The total number of maintenance routes departing from airport b on day two is given by the parameter

M2
b . The difference between the number of day-two maintenance critical aircraft and M2

b indicates

the feasibility of the day-one tail assignment. Any over demand for maintenance routes on day two

is minimised with a set of penalty terms in the objective function, given by the variables sb22 , b2 ∈ B̂.

The termination location of LOF p at the end of day one is given by the parameter term(p). The

addition of the following constraints evaluate the satisfaction of maintenance requirements for the day-

two maintenance critical aircraft:∑
b1∈B

∑
r∈Rb1

∑
p∈P b1 |

term(p)=b2

θr2y
r
p − s

b2
2 ≤M2

b2 ∀b2 ∈ B, (8)

sb22 ≥ 0 ∀b2 ∈ B. (9)

Constraints (8) count the number of day-two maintenance critical aircraft located at b2 and sets the

slack variable sb22 to penalise any maintenance misalignments.

Day-three maintenance requirements Satisfying the day-three maintenance requirements involves

counting the number of day-three maintenance critical aircraft and assigning a day-two termination

location to each. The parameters θr3 equal one to identify whether aircraft r requires maintenance at the

end of day three, and zero otherwise. The variables ξb2b3 count the number of day-three maintenance

critical aircraft located at b2 arriving at airport b3 at the end of day two. Similar to days one and two, the

number of maintenance routes departing from overnight airport b3 is given by the parameter M3
b3

. The

additional constraints to evaluate maintenance feasibility for the day-three maintenance critical aircraft

are given by ∑
b1∈B

∑
r∈Rb1

∑
p∈P b1 |

term(p)=b2

θr3y
r
p − s

b2
3 =

∑
b3∈B

ξb2b3 ∀b2 ∈ B, (10)

∑
b3∈B̂

ξb2b3 +
∑
b1∈B

∑
r∈Rb1

∑
p∈P b1 |

term(p)=b2

θr2y
r
p − s

b2
2 ≤M2

b2 ∀b2 ∈ B, (11)

∑
b2∈B

ξb2b3 ≤M3
b3 ∀b3 ∈ B, (12)

ξb2b3 ∈ [0, N b2b3 ] ∀b2, b3 ∈ B, (13)

sb23 ≥ 0 ∀b2 ∈ B. (14)

Constraints (10) count the number of day-three maintenance critical aircraft located at b2 at the end

of day one. This constraint also assigns each of the maintenance critical aircraft to a maintenance
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route from b2 passing through b3 using the variables ξb2b3 . Since the LOFs are provided as input, it is

possible that the number of day-three maintenance critical aircraft arriving at b2 is greater than N b2b3—

causing an infeasibility. The slack variable sb23 is introduced to measure the extent of this infeasibility,

which is penalised in the objective function. Setting ξb2b3 by constraint (10) determines the number of

maintenance critical aircraft originating from b3 at the start of day three. Since day-two maintenance

critical aircraft require a maintenance route departing from b2, this reduces the number of maintenance

routes passing through b3 that are available for day-three maintenance critical aircraft, where b3 ∈ B̂.

Hence, (11) constrains the number of day-two and day-three maintenance critical aircraft terminating

at maintenance bases at the end of day two to at most M2
b2

. To ensure that at most N b2b3 day-three

maintenance critical aircraft arrive at b3 from b2 an upper bound is imposed on the variables ξb2b3 as

indicated by constraints (13).

Including both the day-two and day-three look-ahead maintenance constraints introduces dominated

inequalities. Specifically, constraints (8) are completely dominated by constraints (11). As such, only

constraints (11) are required in the implementation of the DTAP with day-two and day-three mainte-

nance look-ahead.

The addition of constraints (9) and (10)-(14) to the DTAP requires the modification of the objective

function (1). This modification involves adding for each overnight airport b ∈ B the slack variables

sb2 and sb3, which count the number of day-two and day-three maintenance misalignments, along with

the cost parameters cb2 and cb3 respectively. The objective function used for the DTAP with look-ahead

maintenance constraints is given by∑
b∈B

∑
r∈Rb

cr1s
r
1 +

∑
b∈B

{
cb2s

b
2 + cb3s

b
3

}
. (15)

2.3 Responding to schedule perturbations

Schedule perturbations regularly affect daily operations and as a result aircraft terminate at locations

different to what is planned. To address the impact of schedule perturbations, the operational model

of the DTAP requires a set of LOFs, in addition to the input LOFs, that can reduce the number

of maintenance misalignments. The original formulation of the DTAP—with and without look-ahead

maintenance constraints—considers only the input LOFs, which are contained in the sets P r, r ∈ Rb, b ∈

B. In response to schedule perturbations, the DTAP is solved with the additional sets P̄ r, r ∈ Rb, b ∈ B

that describe all possible LOFs, not including the input LOFs, for the given flight schedule.

It is important to ensure that any LOF selected from P̄ r, r ∈ Rb, b ∈ B does not exhibit large

deviation from the input LOFs. To achieve this, the set C̄ is defined to contain all connections (i, j)

that are used by the input LOFs. Additionally, the cost term

cp =
∑

(i,j)∈p\C̄

cij , (16)
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is defined for all LOFs p ∈ P̄ r, r ∈ Rb, b ∈ B, where cij is a positive weight to penalise the use of

each connection (i, j) in p that is not used by any input LOFs. The DTAP to respond to schedule

perturbations is then given by replacing P r with P r ∪ P̄ r in constraints (2)-(14) and adding the term∑
b∈B

∑
r∈Rb

∑
p∈P̄ r

cpy
r
p (17)

to objective function (15).

The set of all possible LOFs is prohibitively large to directly solve the DTAP as a mixed integer

program. As such, a branch-and-price approach is developed to dynamically construct and add LOFs

to the DTAP. The details of exact and heuristic branch-and-price approaches employed to solve the

operational model of the DTAP are described in Section 3.

3 Solution algorithms

An exact and a heuristic algorithm that dynamically generate LOFs and find solutions better than those

obtained with fixed LOFs are developed. Both algorithms are based on column generation, where the

heuristic algorithm generates LOFs only for a subset of aircraft. The exact branch-and-price algorithm

is presented in Section 3.1 and the heuristic iterative algorithm is described in Section 3.2.

In practical applications of the DTAP, it is most critical to ensure that aircraft requiring maintenance

on day one must be assigned an LOF terminating at a maintenance base. As such, the route adjustment

process focuses on the modification of day-one LOFs. Through the use of look-ahead maintenance

constraints, the adjustment of day-one LOFs will also reduce maintenance misalignments on subsequent

days. It is possible to additionally modify day-two and day-three LOFs. However, this work would

be redundant as it is expected that further route adjustments will be required at the start of each

subsequent day in response to schedule perturbations—thereby the modified LOFs would require further

modifications. As such, the solution algorithms presented here modify only the day-one input LOFs.

While the input LOFs are not expected to satisfy all operational constraints, their use is valuable

from an algorithmic point of view. First, the aircraft operational requirements are typically similar on

the day of operations compared to when the aircraft routing problem is solved. As such, only a small

number of modifications to the LOFs should be required in any LOF adjustment process. Second, the

input LOFs provide a good initial solution for the DTAP. It is expected that by using a good initial

solution, the runtime required for the LOF adjustment procedure should be greatly reduced. The benefit

from using a good initial solution will be shown in Section 5.2.2

3.1 Branch-and-price

Branch-and-price is a solution technique commonly used to solve aircraft routing and tail assignment

problems. A branch-and-price algorithm uses column generation to solve the LP relaxation at every node
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in the branch-and-bound tree. Special branching rules, such as the Ryan-Foster branching scheme [20],

are required by this algorithm to ensure that the subproblem structure is not destroyed by branching

decisions. While branch-and-price is a commonly applied solution technique, its use to solve the DTAP

deviates from the traditional sequential solution approach where modification to the input LOFs is

traditionally forbidden. This restriction arises because the modification of LOFs can have an impact on

many of the interrelated airline resources, most importantly crew.

The branch-and-price algorithm solves the DTAP by dynamically generating LOFs that minimise

the number of day-one maintenance misalignments and number of expected misalignments on day-two

and day-three. This is achieved by defining the restricted master problem (RMP) as a minimisation

problem with the objective function (15) and constraints given by (2)-(14). Additionally, only the LOFs

contained in P r, r ∈ Rb, b ∈ B are initially included in the RMP. The branch-and-price algorithm

dynamically generates LOFs from the sets P̄ r, r ∈ Rb, b ∈ B.

3.1.1 Column generation subproblem

A column generation subproblem is formed for each aircraft r ∈ Rb, b ∈ B. The objective of each

subproblem is to identify the aircraft routing variable with the minimum reduced cost. To facilitate

the description of the column generation subproblem, the dual variables related to the constraints of

the DTAP that appear in aircraft route variables reduced cost function will be presented. The dual

variables for the flight coverage constraints (2) are defined as ρ = {ρj ,∀j ∈ N}. For the LOF assignment

constraints (3), the dual variables are defined as δ = {δrb ,∀b ∈ B, ∀r ∈ Rb}. The dual variables for the

day-one maintenance enforcement constraints (4) are defined as α = {αr
b ,∀b ∈ B, ∀r ∈ Rb}. For the

day-two maintenance enforcement constraints (11), the dual variables are defined as β = {βb,∀b ∈ B}.

Finally, the dual variables for the day-three maintenance critical count constraints (10) are defined as

γ = {γb,∀b ∈ B}.

The column generation subproblem is a shortest path problem: Identifying a minimum cost path

through a network from a single source to one of multiple sink nodes. The network is defined by a set of

nodes given by N and a set of edges given by the feasible connections between the flights contained in N .

A connection between flights i and j contained in N , (i, j), is deemed feasible if i) the destination of i is

the same as the origin of j, and ii) the departure time of j occurs after the minimum turn time following

the arrival of i. All feasible connections are contained in the set C. To describe the minimum cost path,

the binary variables wr
ij equal one to indicate aircraft r uses connection (i, j) or zero otherwise. The

objective coefficient of wr
ij , denoted by cij , equals one if connection (i, j) is not observed in any input

LOFs and zero otherwise. Aircraft must originate from an overnight airport b and may terminate at any

overnight airport b′ ∈ B, describing the source and sink nodes respectively. The binary parameters ōb

are introduced to indicate whether maintenance can be performed at overnight airport b. Using these
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definitions, the column generation subproblem is given by

Cr = min
∑

(i,j)∈C

cijw
r
ij −

∑
i∈N∪B

∑
j∈N

ρjw
r
ij − δrb −

∑
i∈N

∑
b′∈B

wr
ib′
{
ōb′α

r
b′ + θr2βb′ + θr3γb′

}
, (18)

s.t.
∑
i∈N

wr
ij −

∑
k∈N

wr
jk = 0 ∀j ∈ N, (19)

∑
j∈N

wr
bj = 1, (20)

∑
j∈N

∑
b′∈B

wr
jb′ = 1, (21)

wr
ij ∈ {0, 1} ∀(i, j) ∈ C. (22)

The objective function (18) is the reduced cost function of the routing variables for aircraft r ∈ Rb, b ∈ B.

The flow balance at each node (flight) in the network is maintained by (19). The origin and destination

of a flight route is enforced through constraints (20) and (21) respectively.

A consideration of the LOF reconstruction is the impact that the alternative connections contained

in the newly generated routes has on crew. A feasible connection for a crew requires a minimum sit time,

generally longer than the minimum turn time for aircraft, between the arrival of i and the departure

of j. However, crew may use the connection (i, j) with a ground time less than the minimum sit time

but greater than the minimum turn time if an aircraft also uses this connection. Such connections are

called short connections. These connections are important for the crew scheduling solution and must be

protected in the generation of aircraft routes. This is achieved in the column generation subproblem by

ensuring that any short connections existing in the input LOFs are used in any solution to the DTAP.

3.1.2 Integer optimality

Two different branching rules are implemented to derive integer solutions and prove optimality—both

variations of the Ryan-Foster branching scheme [20]. The first rule implemented is similar to the follow-

on branching described by Froyland et al. [8]. Consider two flights i and j with the connection (i, j).

From the values of the variables yrp, r ∈ R, p ∈ P r ∪ P̄ r in the LP relaxation solution, it is possible to

deduce the values of the connection variables xrij in the compact formulation. If
∑

r∈R x
r
ij is fractional,

then a branching is performed by enforcing the use of connections (i, j) on the left branch if i or j are

present in the generated flight routes and forbidding the use of the connection (i, j) on the right branch.

The second branching rule is a variation of the Ryan-Foster branching that enforces or forbids the use

of individual flights by particular aircraft. Given flight i and aircraft r, if
∑

j∈N xrij is fractional then

the left branch enforces the use of exactly one copy of flight i in all routes generated for aircraft r and

on the right branch all routes generated for aircraft r must not contain flight i. In the implementation

of branch-and-price for the DTAP, the follow-on branching is performed with a higher priority than the

aircraft/flight branching rule.
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3.2 Iterative algorithm

The iterative algorithm for the LOF adjustment process involves evaluation and update stages. The

evaluation stage determines whether the maintenance plan can be satisfied with a fixed set of LOFs by

directly solving the DTAP—using a general purpose MIP solver. The update stage identifies alternative

day-one LOFs for a subset of aircraft. This stage employs a branch-and-price algorithm.

3.2.1 Identify aircraft for route adjustment

The solution to the evaluation stage is used to identify a subset of aircraft that require the generation

of LOFs in the update stage. The aircraft selection is based upon maintenance requirements and the

assignment of LOFs. The set of selected aircraft is given by R̂. Only a subset of flights are used to

generate LOFs in the route adjustment problem. This subset of flights, denoted by N̂ , is given by those

appearing in LOFs assigned in the evaluation stage to aircraft in R̂. Throughout the algorithm, updates

to R̂ induce updates to N̂ .

Following the first execution of the evaluation stage two different types of aircraft are identified

for inclusion in R̂. The first are day-one maintenance critical aircraft assigned to an LOF that does

not terminate at a maintenance station. The second are the aircraft assigned LOFs terminating at

maintenance stations that do not require maintenance at the end of day one.

Subsequent iterations of the algorithm augment R̂ using the solution to the evaluation stage. The

augmentation involves identifying intersecting LOFs. Two LOFs intersect if there exists a flight in one

LOF that departs within an intersection window commencing after the arrival of a flight in the other

LOF at the same airport. The intersection window has a duration that is given by the sum of the

minimum time aircraft require between two connecting flights, called the turn time, and a small buffer.

Aircraft are selected for inclusion in R̂ if they are assigned LOFs intersecting with LOFs assigned to

aircraft in R̂.

3.2.2 Route adjustment problem

The main focus of the route adjustment problem (RAP) is to identify day-one LOFs for aircraft in R̂

that minimise the maintenance misalignments for the whole fleet. Thus, the restriction of the aircraft in

R̂ to a fixed set of LOFs is relaxed. The LOFs provided as input for the DTAP are used to define the

initial set of variables for the RAP. The variables, or columns, defined by the input LOFs are a subset

of all possible aircraft routes for the given flight schedule. Hence, this problem represents the RMP for

the branch-and-price algorithm used to solve the RAP.

The column generation subproblem for the RAP is identical to that presented in Section 3.1.1. One

goal of the iterative algorithm is to reduce the computational time while still decreasing maintenance

misalignments compared to the solution obtained with fixed LOFs. As such, restrictions are imposed on
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the sets of aircraft, flights and connections used to define the column generation subproblem. In partic-

ular, a column generation subproblem is only formed for each aircraft r ∈ Rb ∩ R̂, b ∈ B. Additionally,

the set of all connections between flights contained in N̂ is given by Ĉ = {(i, j) ∈ C|i ∈ N̂ ∧ j ∈ N̂}.

Replacing N and C with N̂ and Ĉ greatly reduces the time required to solve the column generation

subproblem in each iteration.

Branch-and-price is used to solve the RAP to integer optimality. The resulting column generation

master problem solution minimises the number of maintenance misalignments given a fixed set of LOFs

for aircraft r ∈ R\R̂. Since LOFs are generated only for a subset of aircraft, it is likely that the solution

to the RAP is not optimal for the DTAP. As such, the set R̂ must be updated following an evaluation

of current best solution to the DTAP.

3.2.3 Update the variables of the DTAP

The day-one LOFs identified by solving the RAP will reduce the maintenance misalignments in the

solution of the DTAP. All columns generated in the RAP are added to the DTAP to re-evaluate the

number of maintenance misalignments. Since the column generation master problem is identical to the

DTAP, the optimal solution from the RAP is provided to the MIP solver prior to resolving the DTAP.

The solution to the DTAP is then used to identify the additional aircraft and flights to add to R̂ and N̂

respectively.

3.2.4 Algorithm termination

The algorithm terminates when no further improvement in the maintenance misalignments can be

achieved by adding variables to the DTAP. This is identified using various stopping criteria. First,

if the number of aircraft contained in R̂ equals the total number of aircraft, then the algorithm is ter-

minated. Second, an updated flag, which is true only if between iterations the DTAP objective function

value decreases or the number of aircraft contained in R̂ increases, is used to identify whether the al-

gorithm has stalled. The algorithm terminates if updated is false for two consecutive iterations. If no

columns are added while solving the RAP then the intersection window is increased, the set R̂ is updated

and the RAP is resolved. This situation is treated as another iteration of the algorithm and if updated

is false the failure count increases and the algorithm will terminate when this count is equal to three.

4 Model data

The data required to define the DTAP has been collected from previously performed research, estimates

from literature or generated for this study. In regards to the data generated for this study, repeated

random experiments are conducted to give a broad overview of the model.
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F267-A49 F1165-A289 F3370-A526

Flights 267 1165 3370

Aircraft 49 289 526

Overnight bases 12 67 73

Maintenance bases 1 5 10

Initial LOFs 49 289 526

Total flight times (min) 32 040 173 833 394 155

Avg flight time per aircraft (min) 653.88 601.5 749.34

Avg flights per aircraft 5.4 4.0 6.4

Length of day (min) 1 440 1 440 1 080

Table 1: The single day flight schedules used as input for the DTAP.

Three single-day flight schedules of vastly different sizes–to be operated by one fleet type—are used

for the computational experiments. The details describing the size of the flight schedules, including

the number of aircraft, overnight bases and maintenance bases, are presented in Table 1. The flight

schedules used in the current experiments have been collected from the study of Maher et al. [18]. In

Table 1 the number flights are those operated on a single day by the airline. It is assumed that each

airline is operating a cyclic schedule. As such, the input LOFs are said to be repeated on each day of

interest. It is trivial to relax this assumption with little change to the difficulty of the problem. Three

difficulty measures are provided in Table 1: the total flight times, the average flight time per aircraft and

the average number of flights per aircraft. For all flight schedules, each aircraft must perform at least 10

hours of flying during a single day on average. The largest average flight times per aircraft occurs for the

F3370-A526 schedule—almost 13 hours per day for each aircraft. For the F3370-A526 flight schedule,

the aircraft must also perform 6.4 flights per day, which involves 5.4 turns per day. Assuming that the

aircraft turn times are 30 minutes, this means that an aircraft will be busy for 13+5.4×0.5 = 15.7 hours

in the day. Given the day length of 18 hours for the F3370-A526 schedule, it is expected that finding a

feasible solution to the DTAP will be difficult. Using these metrics, it is believed that the F3370-A526

schedule, which is also the largest schedule, will yield a DTAP that is most difficult to solve. In fact,

the difficulty in solving an aircraft routing problem using the F3370-A526 flight schedule is observed in

the computational experiments of Maher et al. [18]. Specifically, the solution to the SDAMRP for the

F3370-A526 schedule required significantly more runtime than the F267-A49 and F1165-A289 schedules.

The LOFs provided as input to the DTAP are constructed using the one-day routes approach and

a classical aircraft routing problem. Both sets of LOFs are collected from the study by Maher et

al. [18]. Two different models for generating one-day routes are presented by Maher et al. [18], original

(SDAMRP) and recoverable robust formulations (SDAMRP-RR). Only the routes generated from the

SDAMRP are used for the current computational experiments. The classical aircraft routing problem

used to generate LOFs in Maher et al. [18] is given by a simple modification to the SDAMRP: eliminating

the maintenance misalignment penalty term from the objective function. The output from solving the
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models presented in Maher et al. [18] is exactly one LOF for each aircraft used to operate the flight

schedule. This is indicated in Table 1 where the initial number of LOFs is equal to the number of

aircraft.

In the performed experiments the maintenance plan is randomly generated: Assigning each aircraft

to receive maintenance exactly once in a six-day period. The six-day maintenance period has been

adopted from the work of Heinhold [13] and Maher et al. [18]. The work of Heinhold [13] introduced the

one-day routes approach and Maher et al. [18] developed an exact solution approach. Since the input

LOFs have been collected from the work of Maher et al. [18] the six-day maintenance period has been

used for this study.

To perform an extensive review of the DTAP, 100 different randomly generated maintenance plans

have been used as input. A maintenance plan for the DTAP is a six-day schedule that specifies the day

each aircraft requires maintenance. Such a schedule can be generated by randomly assigning aircraft to

one of the next six days for a maintenance check. To achieve this, the C++ standard rand() function

is called to generate a sequence of random integers. Starting from day one, an individual aircraft is

selected by computing a random number r between 0 and numAircraft− 1, where numAircraft is the

number of available aircraft. The selected aircraft r is assigned to receive maintenance on the current

day of focus. In the case that aircraft r is already assigned to a maintenance check, the next random

integer r is selected. When dnumAircraft/6e aircraft are assigned to day one for maintenance, then the

process continues for day two. The process terminates when all aircraft are assigned a day to receive

maintenance.

It is important to note that the random assignment of maintenance checks is not the method of

scheduling maintenance in practice. Maintenance scheduling depends on the work performed by each

aircraft prior to solving the DTAP. The random maintenance scheduling in the presented experiments

is used to produce a wide range of initial conditions for the DTAP.

The maintenance misalignments are penalised in objective (15) using the cost parameters cr1 =

10 000 ∀b ∈ B, ∀r ∈ Rb, cb2 = 7000 ∀b ∈ B and cb3 = 4000 ∀b ∈ B. The cost parameters are set to weight

the importance of the individual maintenance checks. Since an expected maintenance misalignment

on day-one has an immediate impact, the penalty parameter is set much higher than the penalty for

maintenance misalignments on days two and three. The proposed penalty weights are designed to avoid

trade-off between misalignments on day-one and those on subsequent days. In practice, the penalty

parameters will be set to suit the preferences of the airline.

Another important objective for an airline is to minimise fuel costs. This is driven by fuel incurring a

large proportion of all operational costs. For the presented computational experiments, the input flight

schedules are operated by a single fleet type. Making the assumption that aircraft of the same fleet

have a similar fuel consumption, all tail assignment solutions are near equal with respect to fuel costs.

As such, the cost of fuel is not considered in the current experiments. A point of future research is to
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investigate the impact of relaxing this assumption of equal fuel consumption when solving the DTAP.

5 Computational experiments

A computational study has been performed to demonstrate the operational performance of the one-day

routes business model. In addition, the conducted experiments assess the feasibility of the DTAP with

respect to maintenance requirements using fixed inputs and route adjustment approaches. Section 5.1

presents experiments using different fixed LOF inputs and maintenance schedules. Section 5.2 demon-

strates the reduction in the maintenance misalignments achieved using the exact and heuristic algorithms

for the route adjustment process. Since the iterative algorithm is a novel development of this paper, the

performance of this algorithm will guide the discussion in this section. Comparisons and evaluations of

the number of maintenance misalignments are made between the standard DTAP formulation, iterative

algorithm and branch-and-price algorithm. The evaluation of the route adjustment process is performed

with a comparison between the branch-and-price and iterative algorithms in regards to run time and the

impact on the input LOFs.

The experiments are performed using the SCIP Optimisation Suite 3.2.0, which includes SCIP 3.2.0

and SoPlex 2.2.0 [9]. The computing infrastructure used for the experiments consists of a cluster of

Intel Xeon X5672 CPUs with 3.20 GHz and 48 GB RAM, running Ubuntu 14.04. Each experiment was

performed on a single thread exclusively on one node.

5.1 Analysing the improved maintenance planning

Experiments are conducted on the DTAP to assess the number of maintenance misalignments when

using the two different LOF inputs described in Section 4. The results of Maher et al. [18] suggest that

the use of the aircraft routing LOFs should cause maintenance misalignments in the DTAP solution. In

contrast, the SDAMRP LOFs are constructed by Maher et al. [18] to significantly reduce—or completely

eliminate—the maintenance misalignments.

The results presented in Figure 2 demonstrate a decrease in the number of maintenance misalignments

as a result of using the SDAMRP LOFs compared to the aircraft routing LOFs. Surprisingly, in practice

many maintenance misalignments still exist when using the SDAMRP LOFs. This is shown by the light

grey bars in Figure 2 in the columns representing at least one misaligned aircraft. This highlights the

limitation of using fixed LOFs and the need for the development of a route adjustment process.

A summary of the number of maintenance misalignments on days one, two and three after solving

the DTAP is presented in Figure 3. These results aim to demonstrate the influence of key features of

the DTAP—the day-two and day-three look-ahead maintenance constraints—on maintenance misalign-

ments. The first column of Figure 3 represents the solution to a model that only minimises day-one

maintenance misalignments. The second presents the impact of penalising day-two maintenance mis-
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Figure 2: Histogram presenting the number of maintenance misaligned aircraft at the end of day-one

over a set of 100 experiments solving the DTAP with fixed LOFs.

alignments. Finally, the third presents the results from solving the DTAP by additionally penalising

day-three maintenance misalignments.

A striking observation from Figure 3 is the little interaction between the different features of the

DTAP. The increase in the penalty values only impacts the feature directly affected. For example, it is

only possible to reduce the day-two or day-three maintenance misalignments through the direct consid-

eration with look-ahead constraints. As such, solving the DTAP to only minimise day-one maintenance

misalignments will result in infeasibilities of the maintenance plan on subsequent days. This result sug-

gests that the developed DTAP is valuable for reducing the number of day-one, day-two and day-three

maintenance misalignments.

The selection of LOF input is observed to be critical across all metrics presented in Figure 3. The

SDAMRP LOFs outperform the aircraft routing LOFs in all metrics except the day-three maintenance

misalignments in Case 1 for the F3370-A526 schedule and Case 3 for the F267-A49 schedule. Importantly,

the number of day-one maintenance misalignments is significantly reduced using the SDAMRP LOFs

compared to the aircraft routing LOFs. Solving the DTAP with the SDAMRP LOFs achieves a reduction

in the average number of day-one maintenance misalignments of 22.85%, 69.79% and 73.94% for the

F267-A49, F1165-A289 and F3370-A526 flight schedules respectively.

Figure 3 presents a large decrease in the number of day-two and day-three maintenance misalign-

ments when solving the DTAP using the standard settings (Case 3). The average number of day-three

maintenance misalignments using the aircraft routing and SDAMRP LOF input decreases from (9, 9),

(49, 49), (88, 88) in Case 1 to (1.25, 1.45), (0.54, 0) and (0, 0) in Case 3 for the F267-A49, F1165-A289

and F3370-A526 flight schedules respectively. Similar results are observed for the day-two maintenance
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to solve the DTAP.
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misalignments. However, the decrease is not as significant. These results suggest the need to consider

subsequent days maintenance requirements when using one-day routes as input for the tail assignment.

5.2 Evaluating the route adjustment process

The performance of the route adjustment process is assessed with comparisons between the DTAP,

branch-and-price and iterative algorithms. A comparison of the day-one maintenance misalignments

resulting from the use of each algorithm is presented in Section 5.2.1. The computational performance

of the solution algorithms is assessed in regards to the solution run time. The run time comparison is

presented in Section 5.2.2. Finally, a comparison of the changes made to the input LOFs when using

the iterative algorithm and branch-and-price is presented in Section 5.2.3.

5.2.1 Maintenance misalignments

The comparison of the iterative algorithm and the DTAP in regards to the day-one maintenance mis-

alignments is presented in Figures 4 and 5. These figures show a significant decrease in the number of

day-one maintenance misalignments by using the iterative algorithm. This effect is particularly evident

for the F1165-A289 flight schedule using the aircraft routing LOF input. Solving the DTAP using the

F1165-A289 flight schedule results in four to seventeen day-one maintenance misalignments. These mis-

alignments are completely eliminated in all experiments when the iterative algorithm is employed. While

this result is also observed when using the SDAMRP LOF input, the decrease in day-one maintenance

misalignments is not as great. This is a consequence of the DTAP solution using SDAMRP LOF input

exhibiting less day-one maintenance misalignments compared to the aircraft routing LOF input for all

flight schedules.

The success of the iterative algorithm is evident in the maximum number of day-one maintenance

misalignments across the 100 experiments. For the aircraft routing LOF input the iterative algorithm

achieves a maximum of 2, 0 and 2 maintenance misalignments for the F267-A49, F1165-A289 and
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Figure 4: Comparing the DTAP and iterative algorithm with histograms of the number of maintenance

misaligned aircraft at the end of day-one over a set of 100 experiments using the aircraft routing LOFs.
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Figure 5: Comparing the DTAP and iterative algorithm with histograms of the number of maintenance

misaligned aircraft at the end of day-one over a set of 100 experiments using the SDAMRP LOFs.

F3370-A526 flight schedules respectively. Similarly, for the SDAMRP LOF input the maximum number

of maintenance misalignments is 2, 0 and 1 respectively. While the maintenance misalignments are

not completely eliminated in all experiments, the decrease is practically significant. Performing one or

two over-the-day swaps is much simpler for the airline than rerouting the large number of misaligned

maintenance critical aircraft given by the DTAP solution.

Similar to the preceding discussion, Tables 2 and 3 present a comparison of the day-one maintenance

misalignments when using the iterative algorithm and a branch-and-price algorithm. The first observa-

tion from Tables 2 and 3 is that employing branch-and-price for the F267-A49 flight schedule results in

less maintenance misalignments compared to when the iterative algorithm is used. This result demon-

strates that the exact algorithm outperforms the heuristic on small instances. Since small instances

are typically easy to solve, a heuristic is not required to find good solutions. While the branch-and-

price algorithm achieves a better average day-one maintenance misalignment result, the small number

of misalignments achieved by both algorithms is acceptable for the tail assignment application.

Contrary to the results for the F267-A49 flight schedule, there is little difference between the per-

formance of the iterative and branch-and-price algorithms for the F1165-A289 and F3370-A526 flight

schedules in regards to day-one maintenance misalignments. All instances for the F1165-A289 and

F3370-A526 flight schedules are solved within the maximum run time of 7200 seconds for both algo-

rithms. The reduction of all maintenance misalignments for the F1165-A289 flight schedule is a positive

Aircraft routing LOFs F267-A49 F1165-A289 F3370-A526

Misalignments BnP Iter. BnP Iter. BnP Iter.

0 88 65 100 100 76 73

1 12 31 0 0 21 24

2 0 4 0 0 3 3

≥ 3 0 0 0 0 0 0

Table 2: Number of experiments exhibiting a given level of maintenance misalignments when using the

branch-and-price and iterative algorithms with the aircraft routing LOFs.
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SDAMRP LOFs F267-A49 F1165-A289 F3370-A526

Misalignments BnP Iter. BnP Iter. BnP Iter.

0 100 68 100 100 95 94

1 0 27 0 0 5 6

2 0 5 0 0 0 0

≥ 3 0 0 0 0 0 0

Table 3: Number of experiments exhibiting a given level of maintenance misalignments when using the

branch-and-price and iterative algorithms with the SDAMRP LOFs.

result for both algorithms. This demonstrates that optimal maintenance planning solutions exist for a

wide range of maintenance schedules. The results presented for the F3370-A526 flight schedule show the

difficulty in satisfying the maintenance requirements for all aircraft. However, since a the reduction in

maintenance misalignments is achieved, the effort required on the day of operations to perform further

aircraft swaps is reduced. The results presented in Tables 2 and 3 indicate that the iterative algorithm

is a very competitive heuristic for the route adjustment DTAP compared to the exact branch-and-price

algorithm.

5.2.2 Run time comparison

The run times for the 100 experiments with the DTAP, iterative and branch-and-price algorithms using

the aircraft routing and SDAMRP LOF inputs are presented in Figure 6. An important observation from

Figure 6 is the very short run times for each of the algorithms across the majority of experiments. All

experiments for the DTAP algorithm using the F267-A49, F1165-A289 and F3370-A526 flight schedule

terminate in a maximum of, respectively, 0.2, 1.44 and 76.78 seconds for the aircraft routing LOF input

and 0.14, 5.54 and 76.8 seconds for the SDAMRP LOF input. Comparatively, the iterative algorithm

requires much longer run times but still very small in magnitude. The iterative algorithm requires at

most 1.91, 53.34 and 133.31 seconds for the F267-A49, F1165-A289 and F3370-A526 flight schedules

respectively. While this represents a significant increase in run times, it is acceptable given the observed

decrease in the number of maintenance misalignments achieved by the iterative algorithm as presented

in Figures 4 and 5.

The benefit of the iterative algorithm is evident when comparing the run times with that of the

branch-and-price algorithm. Figure 6 shows the iterative algorithm achieves a smaller run time on

average compared to branch-and-price for the F267-A49 and F1165-A289 flight schedules. The same

benefit is not observed for the F3370-A526 flight schedule where the branch-and-price approach achieves

a better run time performance for some instances. The iterative algorithm achieves a better average

run time when the aircraft routing flight schedule is used, specifically 42.67 seconds compared to 50.44

seconds. Conversely, the average run time when the SDAMRP input is used is worse for the iterative

algorithm, 30.94 seconds compared to 28.70 seconds. Interestingly, the maximum run time for the
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Figure 6: The run time required to solve 100 tail assignment instances using the DTAP, iterative

algorithm and branch-and-price algorithm.

iterative algorithm is significantly greater than that for the branch-and-price algorithm using both inputs

for the F3370-A526 flight schedule. This is due to a single instance where the branch-and-price algorithm

solves the tail assignment problem at the root node. For this particular instance the branch-and-price

algorithm solves in a run time less than that required for the DTAP. As such, it is not possible for the

iterative algorithm to achieve any improvement on this instance. Overall, the maintenance misalignment

reduction presented in Section 5.2.1 and run time comparison given by Figure 6 demonstrates that the

iterative algorithm is a very useful practical approach for reducing the number of day-one maintenance

misalignments when compared with the branch-and-price algorithm.

The initial solution given by the input LOFs provides a significant algorithmic benefit. In comparison

to the runtimes of the SDAMRP presented in Maher et al. [18], the solution times for the DTAP are

orders of magnitude less than that for the SDAMRP. Specifically, the runtime to solve the SDAMRP for

the F3370-A526 schedule is reported as 65,087 seconds [18] compared to the maximum runtime of 61.13

seconds for solving the DTAP by branch-and-price using the SDAMRP LOF input. While the runtime

difference is largest for the F3370-A526 schedule, the benefit from using the LOF input for the DTAP

is also observed for both the F267-A49 and F1165-A289 schedules.

The performance improvements provided by the input LOFs explain the small difference in the

runtimes between the branch-and-price and iterative algorithms. Since the branch-and-price algorithm

exhibits good runtimes, there is limited gains that can be made through a heuristic approach. However,

the benefits of such a heuristic approach is still observed in the results generated using the F1165-

A289 schedule. These benefits may suggest that in cases where the input LOFs are far from suitable

for satisfying maintenance requirements, the iterative algorithm can significantly reduce the solution
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runtimes.

5.2.3 Impact on input LOFs

A comparison between the exact branch-and-price algorithm and the iterative algorithm is presented in

Tables 4 and 5. The metrics for this comparison are i) the number of connection changes between the

input LOFs and the final tail assignment solution and ii) the number of columns added. The results

are presented as the average over 100 experiments with random maintenance plans for both the aircraft

routing and SDAMRP LOF input.

The results presented in Tables 4 and 5 demonstrate that the iterative algorithm is very competitive

with branch-and-price in both metrics. Most importantly, pairing these results with those presented in

Sections 5.2.1 and 5.2.2 shows that the iterative algorithm reduces the maintenance misalignment with

reduced computational effort. As such, this algorithm has demonstrable value for solving the DTAP and

reducing maintenance misalignments.

Only a small number of connection changes are reported for both the branch-and-price and iterative

algorithms in Tables 4 and 5. This is important from the perspective of minimising the impact that

modifying LOFs has on other airline resources that rely on the aircraft routing solution, such as crew.

The number of connection changes that are performed as part of the route adjustment process is very

small compared to the total number of used connections. In the worst case, which is for the F267-A49

schedule using the aircraft routing LOFs, the percentage of connection changes is 7.62%. This is due

to the limited number of maintenance locations and hence more rerouting is required to correct for

any schedule perturbations. In the best case—F3370-A526 schedule using the SDAMRP LOFs—the

percentage of connection changes is 0.24%. This is a negligible change to the aircraft routing solution.

Thus, it is expected that little change to the associated crew pairing solution will be required.

The small number of connection changes points to the value of the one-day routes business model.

By only planning for a single day, only small changes are required to adjust the aircraft routing solution

to ensure all maintenance requirements are satisfied. An important result is the significant decrease

in the number of connection changes for the F1165-A289 schedule when using the SDAMRP LOFs.

This provides a clear indication that using one-day routes in planning helps to reduce the number of

Aircraft routing LOFs F267-A49 F1165-A289 F3370-A526

Connection Changes
Branch-and-price 16.62 (7.62%) 22.4 (2.56%) 21.5 (0.76%)

Iterative algorithm 16.52 (7.58%) 20.76 (2.37%) 22 (0.77%)

LOFs Added
Branch-and-price 1165.9 7077.28 4013.94

Iterative algorithm 512.56 1857.68 2070.58

Table 4: The average number of connection changes (percentage of total used connections) and columns

added over 100 experiments when solving the DTAP with branch-and-price and the iterative algorithm

using the aircraft routing LOFs.
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SDAMRP LOFs F267-A49 F1165-A289 F3370-A526

Connection Changes
Branch-and-price 14.8 (6.79%) 6.74 (0.77%) 6.74 (0.24%)

Iterative algorithm 14.68 (6.73%) 6.8 (0.78%) 6.78 (0.24%)

LOFs Added
Branch-and-price 1352.2 7442.89 2407.53

Iterative algorithm 457.36 1946.17 1343.87

Table 5: The average number of connection changes (percentage of total used connections) and columns

added over 100 experiments when solving the DTAP with branch-and-price and the iterative algorithm

using the SDAMRP LOFs.

maintenance misalignments and the required changes as a result of schedule perturbations.

An advantage of the iterative algorithm is its application in integrated settings. The route adjustment

problem is solved independently of the original problem, as such it is possible to apply this solution

approach when integrating the DTAP with an additional planning problem that uses LOFs as input.

For example, the gate assignment problem is solved using the DTAP solution as input. As such, these

two problems could be integrated and the route adjustment process applied. Since the route adjustment

process is solved independent of the target problem, the identified LOFs can be used as input for both the

gate assignment problem and the DTAP. In such an integrated setting, the development of an effective

solution algorithm for the integrated problem requires an efficient route adjustment problem.

In regards to the efficiency of the route adjustment problem an important comparison metric for

the iterative algorithm is the number of columns added. While the exact branch-and-price algorithm is

shown in Section 5.2.2 to require only small run times for most experiments, this may not be the case

when applying the DTAP in integrated settings. Since the iterative algorithm generates significantly

less columns, improved efficiency is expected when integrating the DTAP with other airline planning

processes.

6 Conclusions

The DTAP is an important and necessary stage in the airline planning process. The business model of

using one-day routes for short term maintenance planning is the focus of this paper. In particular, an

operational optimisation problem tasked with the overnight assignment of aircraft to LOFs is developed.

The presented DTAP aims to minimise the number of maintenance misalignments on days one, two

and three. To further reduce the number of maintenance misalignments with little impact to the input

LOFs, an exact branch-and-price algorithm and a heuristic iterative algorithm to reconstruct LOFs are

presented. These algorithms both employ branch-and-price with the iterative algorithm only generating

aircraft routes for a subset of the considered fleet. The results demonstrate the effectiveness of the

one-day routes business model through the ability of the DTAP and route adjustment process to reduce

the number of maintenance misalignments for a given set of LOFs.



REFERENCES 29

The DTAP is formulated with constraints that implicitly satisfy maintenance requirements on days

two and three. This implicit method is shown to be an effective method to plan maintenance with a

model that is solvable by state-of-the-art mixed integer programming solvers. Further, this modelling

approach can be generalised to maintenance planning problems that span across multiple time periods.

It is demonstrated that solving the DTAP without look-ahead constraints results in a large number of

maintenance misalignments across a three day period. Additionally, even with the look-ahead constraints

the maintenance misalignments resulting from solving the DTAP indicate the need to develop a route

adjustment process. The exact and heuristic algorithms developed are shown to be very effective in

reducing the number of maintenance misalignments. The results demonstrate that the iterative algorithm

is very competitive compared to the branch-and-price algorithm. The strength of the iterative algorithm

is the use of mixed-integer programming solvers to guide the search for improving aircraft routes.

The integration of tasks within the airline planning process is a critical development for high quality

solution approaches. The presented work integrates part of the planning process, the overnight aircraft

assignment, with an operational problem of reoptimising aircraft routes. Future research involves iden-

tifying tasks for integration with the DTAP. Such tasks include achieving equal utilisation of the fleet

and managing the non-uniform costs of aircraft of various ages. Also, the iterative algorithm presents

a practical solution approach to aid the integration of maintenance planning with other operational

problems. The investigation into the use of the iterative algorithm in an integrated setting is a focus of

future work.
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