347 research outputs found

    Recent Progress in Some Aircraft Technologies

    Get PDF
    The book describes the recent progress in some engine technologies and active flow control and morphing technologies and in topics related to aeroacoustics and aircraft controllers. Both the researchers and students should find the material useful in their work

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF

    On Increasing the Automation Level of Heavy-Duty Hydraulic Manipulators with Condition Monitoring of the Hydraulic System and Energy-Optimised Redundancy Resolution

    Get PDF
    Hydraulic manipulators on mobile machines are predominantly used for excavation and lifting applications at construction sites and for heavy-duty material handling in the forest industry due to their superior power-density and rugged nature. These manipulators are conventionally open-loop controlled by human operators who are sufficiently skilled to operate the machines. However, in the footsteps of pioneering original equipment manufacturers (OEMs) and to keep up with the intensifying demand for innovation, more and more mobile machine OEMs have a major interest in signiïŹcantly increasing the automation level of their hydraulic manipulators and improving the operation of manipulators. In this thesis, robotic software-based functionalities in the form of modelbased condition monitoring and energy-optimal redundancy resolution which facilitate increased automation level of hydraulic manipulators are proposed.A condition monitoring system generally consists of software modules and sensors which co-operate harmonically and monitor the hydraulic system’s health in real-time based on an indirect measure of this system’s health. The premise is that when this condition monitoring system recognises that the system’s health has deteriorated past a given threshold (in other words, when a minor fault is detected, such as a slowly increasing internal leakage of the hydraulic cylinder), the condition monitoring module issues an alarm to warn the system operator of the malfunction, and the module could ideally diagnose the fault cause. In addition, when faced with severe faults, such as an external leakage or an abruptly increasing internal leakage in the hydraulic system, an alarm from the condition monitoring system ensures that the machine is quickly halted to prevent any further damage to the machine or its surroundings.The basic requirement in the design of such a condition monitoring system is to make sure that this system is robust and fault-sensitive. These properties are difficult to achieve in complex mobile hydraulic systems on hydraulic manipulators due to the modelling uncertainties affecting these systems. The modelling uncertainties affecting mobile hydraulic systems are speciïŹc compared with many other types of systems and are large because of the hydraulic system complexities, nonlinearities, discontinuities and inherently time-varying parameters. A feasible solution to this modelling uncertainty problem would be to either attenuate the effect of modelling errors on the performance of model-based condition monitoring or to develop improved non-model-based methods with increased fault-sensitivity. In this research work, the former model-based approach is taken. Adaptation of the model residual thresholds based on system operating points and reliable, load-independent system models are proposed as integral parts of the condition monitoring solution to the modelling uncertainty problem. These proposed solutions make the realisation of condition monitoring solutions more difficult on heavy-duty hydraulic manipulators compared with ïŹxed-load manipulators, for example. These solutions are covered in detail in a subset of the research publications appended to this thesis.There is wide-spread interest from hydraulic manipulator OEMs in increasing the automation level of their hydraulic manipulators. Most often, this interest is related to semi-automation of repetitive work cycles to improve work productivity and operator workload circumstances. This robotic semi-automated approach involves resolving the kinematic redundancy of hydraulic manipulators to obtain motion references for the joint controller to enable desirable closed-loop controlled motions. Because conventional redundancy resolutions are usually sub-optimal at the hydraulic system level, a hydraulic energy-optimised, global redundancy resolution is proposed in this thesis for the ïŹrst time. Kinematic redundancy is resolved energy optimally from the standpoint of the hydraulic system along a prescribed path for a typical 3-degrees-of-freedom (3-DOF) and 4-DOF hydraulic manipulator. Joint motions are also constrained based on the actuators’ position, velocity and acceleration bounds in hydraulic manipulators in the proposed solution. This kinematic redundancy resolution topic is discussed in the last two research papers. Overall, both designed manipulator features, condition monitoring and energy-optimised redundancy resolution, are believed to be essential for increasing the automation of hydraulic manipulators

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. ^ Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. ^ These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external disturbances such as wind gusts and turbulence. This thesis develops the ARC-LMI attitude and position controllers for an X-configuration quadrotor helicopter. The inner-loop of the autopilot controls the attitude and altitude of the quadrotor, and the outer-loop controls its position in the earth-fixed coordinate frame. Furthermore, by intelligently generating a smooth trajectory from the given reference coordinates (waypoints), the transient performance is improved. The simulation results indicate that the ARC-LMI controller design is useful for a variety of quadrotor applications, including precise trajectory tracking, autonomous waypoint navigation in the presence of disturbances, and package delivery without loss of performanc

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental
    • 

    corecore