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ABSTRACT

Kun, David William MSAA, Purdue University, May 2015. Linear Matrix Inequality-
based Nonlinear Adaptive Robust Control with Application to Unmanned Aircraft
Systems. Major Professor: Inseok Hwang.

Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial ap-

plications as their lightweight on-board computers become more powerful and a�ord-

able, their power storage devices improve, and the Federal Aviation Administration

addresses the legal and safety concerns of integrating UASs in the national airspace.

Consequently, many researchers are pursuing novel methods to control UASs in order

to improve their capabilities, dependability, and safety assurance. The nonlinear con-

trol approach is a common choice as it o�ers several benefits for these highly nonlinear

aerospace systems (e.g., the quadrotor). First, the controller design is physically intu-

itive and is derived from well known dynamic equations. Second, the final control law

is valid in a larger region of operation, including far from the equilibrium states. And

third, the procedure is largely methodical, requiring less expertise with gain tuning,

which can be arduous for a novice engineer.

Considering these facts, this thesis proposes a nonlinear controller design method

that combines the advantages of adaptive robust control (ARC) with the powerful

design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed

with a discontinuous projection-based adaptation law, and guarantees a prescribed

transient and steady state tracking performance for uncertain systems in the pres-

ence of matched disturbances. The norm of the tracking error is bounded by a known

function that depends on the controller design parameters in a known form. Further-

more, the LMI-based part of the controller ensures the stability of the system while

overcoming polytopic uncertainties, and minimizes the control e�ort. This can reduce
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the number of parameters that require adaptation, and helps to avoid control input

saturation.

These desirable characteristics make the ARC-LMI control algorithm well suited

for the quadrotor UAS, which may have unknown parameters and may encounter

external disturbances such as wind gusts and turbulence. This thesis develops the

ARC-LMI attitude and position controllers for an X-configuration quadrotor heli-

copter. The inner-loop of the autopilot controls the attitude and altitude of the

quadrotor, and the outer-loop controls its position in the earth-fixed coordinate frame.

Furthermore, by intelligently generating a smooth trajectory from the given reference

coordinates (waypoints), the transient performance is improved. The simulation re-

sults indicate that the ARC-LMI controller design is useful for a variety of quadrotor

applications, including precise trajectory tracking, autonomous waypoint navigation

in the presence of disturbances, and package delivery without loss of performance.
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1. INTRODUCTION

This thesis introduces a novel linear matrix inequality-based adaptive robust control

framework for uncertain dynamic systems in the presence of bounded external dis-

turbances. The proposed controller design methodology is applied to an autonomous

unmanned aircraft system, i.e. a quadrotor helicopter, in order to demonstrate the

performance of the controller and its advantages. The following two sections pro-

vide concise literature surveys of relevant previous research. Section 1.1 describes

related works in adaptive robust control and linear matrix inequalities, as well as the

motivation for the proposed controller architecture. Section 1.2 outlines the various

approaches to modeling and controlling the quadrotor helicopter, and provides the

motivation for studying this platform.

1.1 Nonlinear Control: Related Works & Motivation

Nonlinear control of second-order dynamic systems such as electro-hydraulic and

electro-mechanical systems has been actively researched by control engineers for sev-

eral decades. The advances in manufacturing and computing have enabled these

systems to perform at high speeds in varying and hostile environments with unprece-

dented levels of accuracy. This naturally comes at the cost of requiring more complex

controller designs. Nonlinear control is a powerful approach that can take into ac-

count hard nonlinearities (such as Coulomb friction, dead-zones, and hysteresis) and

model uncertainties (such as slow or abrupt parameter changes). Furthermore, it can

handle the system’s nonlinearities in a broad range of operation, which enables mod-

ern systems to operate at higher speeds while maintaining the same desired accuracy

(see [46] for a thorough analysis of applied nonlinear control).
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Traditionally, two classes of nonlinear controllers have been used on these dynamic

systems: robust controllers and adaptive controllers. A newer approach introduced

in [55], named adaptive robust control (ARC), merges the competing strategies of de-

terministic robust control (DRC) and adaptive control (AC) via a cleverly designed

adaptation law, and achieves fast robust response with a good parameter estimation

ability. ARC has been demonstrated on several high-performance industrial applica-

tions with excellent results, e.g. precision motion control of linear motors [52]. In this

thesis, we use the results from ARC in combination with the linear matrix inequalities

(LMI)-based controller design approach [7]. For uncertain nonlinear systems in a spe-

cial polytopic form, an LMI-based optimization problem generates a static feedback

controller that guarantees global exponential stability.

The motivation behind using the LMI-based part of the controller is several-fold.

First, we can guarantee the convergence of the nominal system by selecting the desired

convergence rate and solving the LMI convex optimization problem o�ine (Chapter 7

of [7]). The result yields a conservative minimum-norm feedback gain matrix, which,

in turn, leads to smaller controller e�ort and helps to avoid actuator saturation.

Second, the LMI-based control input also guarantees the convergence in the presence

of polytopic uncertainties and nonlinearities [37], which can eliminate the need for

additional parameter estimates in the adaptation law. This reduces computation time

and avoids potential performance loss when the reference trajectory is not persistently

exciting. Third, if a polytopic nonlinearity is associated with a noisy measurement,

the LMI-based controller performance will not be degraded by the nonlinearity, as

only the predetermined bounds are considered in the controller design.

There are several recent works that integrate LMI-based control [29] with other

existing control approaches in order to overcome time delays, uncertain parameters,

and/or external disturbances. In [10], an LMI-based sliding mode control is intro-

duced for nonlinear systems in a special form, but no online learning scheme is consid-

ered. In [51], an adaptive sliding mode control scheme is derived using LMI theory to

compute the sliding surfaces, but is limited to uncertain linear systems. The authors
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in [32] develop a discontinuous controller with LMI-based adaptive sliding surfaces

for nonlinear systems with time delays. A model reference robust adaptive controller

is developed in [49] for a class of uncertain switched linear systems, and stability

is proved with LMIs. The authors of [38] examine a robust feedback linearization

control scheme based on fuzzy models for uncertain special systems with structured

uncertainty by casting the system into a Lur’e system form. An adaptive robust con-

troller design based on LMIs is considered in [61] for uncertain linear systems with

time delays. This research work sets itself apart by considering a more general class

of second-order uncertain nonlinear systems, and smoothly integrating LMI-based

feedback with the well-developed ARC approach [53].

1.2 Quadrotor Control: Related Works & Motivation

The quadrotor helicopter, more commonly referred to as a ’quadcopter’ or simply

’quadrotor’, is a very maneuverable rotorcraft with four rotors of equal size. The

first documented quadrotors, from as early as the 1920’s, were very large (over 1,600

kg) and each of the rotors had collective pitch control for di�erential thrust [15].

Since then, quadrotors have changed considerably, with an emphasis on lightweight

designs and acrobatic capabilities. For example, a typical quadrotor measures ap-

proximately 0.5 meters diagonally, weighs approximately 1 kg, and is capable of

flying between 15 and 30 minutes. Quadrotors have gained popularity over the last

decade in both research works and commercial and civil applications. The advances

in electro-mechanical, and power storage systems, as well as on-board computation

capabilities, have rendered the quadrotor a more dependable and maneuverable aerial

vehicle with many applications. For example, the Federal Aviation Administration

(FAA) approved the oil and gas company BP to inspect their Alaskan oil fields with

quadrotors [22], the German firm DHL has launched a quadrotor package-delivery

service in 2014 [18], and the Israeli company Bladeworx, which specializes in drone

aerial photography, is working towards a drone surveillance system to protect the
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Jerusalem light rail from riots and vandalism [45]. As the FAA works towards leg-

islating the civil and commercial use of unmanned aircraft systems in the national

airspace (UAS in the NAS), the developments of UAS applications are expected to

greatly expand.

Many controller design approaches have been considered for the quadrotor he-

licopter, including PID [31], [6], [16], LQR [6], [42]), model-predictive control [5],

adaptive and robust adaptive control (RAC) [33], [36], [3], [13], and robust sliding-

mode control [25], [39], [44], to name a few. Some of these approaches are focused on

acrobatic and aggressive maneuvers [31], some aim to achieve robust hover stability

during wind gusts [50], and others are interested in adaptive fault-tolerant control

and health monitoring [13], [40].

In this thesis, we develop a linear matrix inequality-based nonlinear adaptive ro-

bust controller (ARC-LMI) for the quadrotor’s attitude and position. The new ARC-

LMI controller approach is well-suited for the quadrotor system since, in addition

to the guaranteed transient tracking performance, the projection-based adaptation

law improves the steady state performance. Furthermore, the bound on the norm

of the error is prescribed by the controller design parameters in known form, assur-

ing a safe performance in the presence of bounded external disturbances (e.g. wind

gusts). It should be noted that the ARC-LMI approach is fundamentally di�erent

from the RAC approach in [14]. First, as in the traditional ARC design [55], the

ARC-LMI controller emphasizes the robust feedback term, which accounts for para-

metric uncertainties in addition to external disturbances. Moreover, by switching o�

the adaptation law, the result is a deterministic robust controller that maintains the

prescribed transient tracking performance [57].

The objective of the ARC-LMI controller is to enable the quadrotor to carry and

deliver payloads of uncertain mass in the presence of bounded environmental distur-

bances. We require only information about the bounds of the uncertain parameters

and external disturbances in order to guarantee the controller performance. There-

fore, in the quadrotor dynamic equations, we include the environmental forces, such
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as constant wind and sporadic wind gusts. These considerations are crucial for precise

trajectory tracking in a range of external conditions. The controller is in a cascaded

structure, with an outer-loop position controller and an inner-loop attitude-altitude

controller. Furthermore, the performance of the trajectory tracking is improved via

a carefully constructed exogenous system for trajectory generation.

Irrespective of the particular objective, most nonlinear controller designs require

an analytical or experimental model of the quadrotor system. The two main quadrotor

structural configurations are the ‘X-shape’ and the ‘plus-shape’. Plus-shape quadro-

tors are more commonly researched as they are simpler to model and control, given

that they are symmetrical, with a diagonal inertia matrix, and that their rotors are

aligned with the body-centered coordinate frame. On the other hand, X-configuration

quadrotors have a more complex dynamic model (depending on the fidelity of the

model), but are considered to be more stable [17]. In this thesis, we focus on the

X-configuration quadrotor, with the model based on the IRIS quadrotor [1]. We

construct the analytical model using Newtonian mechanics and some relatively mild

assumptions about the rotor and motor dynamics.

1.3 Outline of the Thesis

The remainder of this thesis is organized in the following manner. Chapter 2 is

dedicated to the proposed ARC-LMI controller design method and results. It presents

the problem statement, notation, and assumptions, and reviews the theoretical for-

mulation and lemmas from LMI-based control and ARC design. Section 2.2, specifi-

cally, develops the nonlinear ARC-LMI controller algorithm and provides a stability

and robustness theorem with its corresponding proofs. The chapter concludes with

a demonstration of the ARC-LMI controller methodology for an example dynamic

system, and presents the illustrative simulation results. Chapter 3 is dedicated

to applying the ARC-LMI controller to a quadrotor. It derives the detailed dynamic

model of the quadrotor, provides an overview of the controller architecture, constructs
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the attitude-altitude and position controllers, and proposes a trajectory generation

method to further improve the transient tracking performance. The chapter concludes

with simulation results for two illustrative examples, which demonstrate the adaptive

and robust performance of the controller. Chapter 4 presents a conclusion to the

findings in this thesis. It provides a summary of the contributions from both chapters

and details the results of the ARC-LMI controller approach. The chapter ends with

proposed directions for future research, both theoretical and application-oriented.
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2. LINEAR MATRIX INEQUALITY-BASED

NONLINEAR ADAPTIVE ROBUST CONTROL

This chapter develops a novel approach to nonlinear control of uncertain second-order

systems in the presence of matched disturbances, assuming basic knowledge about the

bounds of the uncertain parameters and disturbances. The approach combines the

advantages of adaptive robust control (ARC) with the powerful design tools of linear

matrix inequalities (LMI). Similar to the results from traditional ARC, the discontin-

uous projection-based ARC-LMI controller guarantees predetermined transient and

steady state tracking performance in the presence of bounded external disturbances

and parameter uncertainties. The norm of the error is bounded by a known function

that depends on the controller design parameters in a known form, allowing one to

prescribe the acceptable tracking error with certainty. Furthermore, the LMI-based

part of the controller ensures the stability of the system while overcoming polytopic

uncertainties, and minimizes the control e�ort. This can reduce the number of pa-

rameters that require adaptation and helps to avoid control input saturation. We

apply the ARC-LMI control algorithm to an inverted single-link manipulator in the

presence of unstructured uncertainty and drag force to demonstrate the ARC-LMI

procedure and performance.

2.1 Problem Statement and Preliminaries

Consider a dynamic system described by the following second-order di�erential

equation.

ẍ = f(x̄, t) + g(x̄, t) u (2.1)
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where f(·) and g(·) are nonlinear functions of the state and time, x̄ = [x(t), ẋ(t)]T

is the state vector (e.g. position and velocity or angle and angular rate), and u is

the control input (e.g. force or torque). The nonlinear function f(·) may contain

uncertain parameters and nonlinear disturbances (e.g. unmodeled dynamics and ex-

ternal disturbances), but it is assumed that their bounds are known. Additionally, we

assume that g

≠1(·) is bounded for x̄ œ R2 and t > 0. These assumptions are relatively

mild and are stated formally later in this section. The system (2.1) has the following

state-space representation when x1 := x(t) and x2 := ẋ(t)

ẋ1 = x2

ẋ2 = f(x̄, t) + g(x̄, t) u

(2.2)

The objective is to design a bounded control input u such that the system is stable

and the state x1 tracks a desired trajectory x

d

(t) as closely as possible. To achieve

this, first define the tracking error z1 := x1 ≠ x

d

and z2 := x2 ≠ ẋ

d

, which yields the

following error dynamics

ż1 = z2

ż2 = f(z̄, t) ≠ ẍ

d

(t) + g(z̄, t) u

(2.3)

where the error vector is z̄ = [z1, z2]T . In general, we can decompose f(z̄, t) into three

parts:

f(z̄, t) = Ï
p

(z̄, t)T ◊
p

+ Ï
np

(z̄, t)T ◊
np

+ �(z̄, t) (2.4)

Here Ï
p

(z̄, t) œ Rp1 is a vector of known basis functions that are linearly parametrized

by unknown weights ◊
p

œ Rp1 and can be written in a special polytopic form:
S

WU
0

Ï
p

(z̄, t)T ◊
p

T

XV = A(z̄, t)

S

WU
z1

z2

T

XV

A(z̄, t) has the following structure

A(z̄, t) = A0 + Â1(z̄, t)�A1 + · · · + Â

l

(z̄, t)�A

l

a

i

Æ Â

i

(z̄, t) Æ b

i
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where a

i

, b

i

are known bounds of the scalar function Â(z̄, t) and A0, �A

i

œ R(2◊2)

are known constant matrices for i = 1, . . . , l. Ï
np

(z̄, t) œ Rp2 is a vector of known

basis functions that are linearly parametrized by unknown weights ◊
np

œ Rp2 but

are non-polytopic, and �(z̄, t) œ R is a nonlinear function which captures external

disturbances, unmodeled dynamics, and terms that cannot be linearly parametrized.

Combining (2.3) and (2.4) we have the following second-order error dynamics.

ż1 = z2

ż2 = Ï
p

(z̄, t)T ◊
p

+ Ï
np

(z̄, t)T ◊
np

+ �(z̄, t) ≠ ẍ

d

(t) + g(z̄) u

(2.5)

As in [56], we assume some knowledge of the bounds of parameters and disturbances

in the system in (2.5).

Assumption 2.1.1 The uncertain parameters ◊ = [◊T

p

, ◊T

np

]T lie in a known bounded

region �
◊

and the disturbances � are bounded by a known function ”(z̄, t), that is,

◊ œ �
◊

, {◊ : ◊
min

< ◊ < ◊
max

} (2.6)

� œ �� , {� : |�(z̄, t)| Æ ”(z̄, t)} (2.7)

where the lower and upper bounds of the parameters ◊
min

= (◊1,min

, . . . , ◊(p1+p2),min

)T

and ◊
max

= (◊1,max

, . . . , ◊(p1+p2),max

)T and the function ”(t, x) are known.

Before continuing with the controller design, we review some preliminary theory

of linear matrix inequality (LMI) control of nonlinear polytopic systems and adaptive

robust control (ARC) methodology, which will be used to support the proposed ARC-

LMI control approach.

2.1.1 Controlling Polytopic Uncertain/Nonlinear Systems with Linear

Matrix Inequalities

The use of LMIs to analyze the stability of dynamic systems began in the 1890s,

after Aleksandr Lyapunov showed that the system ẋ = A x is stable if and only if

there exists a positive definite matrix P such that A

T

P + PA < 0, which is a special
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form of an LMI on P (Chapter 1 of [7]). Since then, much progress has been made

in the field and it has been found that LMIs appearing in control theory can be

expressed as convex optimization problems, which, in turn, can be solved by very

e�cient numerical algorithms. The MATLAB software package, for example, o�ers

an LMI Control Toolbox for LMI-based stability analysis and controller design. Of the

many applications of LMIs in control theory (see [7]), we are particularly interested

in controlling polytopic uncertain nonlinearities, which frequently appear in models

of dynamic systems. More specifically, consider a second-order polytopic uncertain

nonlinear system in the form

ẋ = A(x, t)x + B(x, t)u (2.8)

where x œ R2 is the state vector and the matrices A and B have the following

structure:

A(x, t) = A0 + Â1(x, t)�A1 + · · · + Â

l

(x, t)�A

l

B(x, t) = B0 + Â1(x, t)�B1 + · · · + Â

l

(x, t)�B

l

(2.9)

and A0, �A

i

œ R(2◊2) and B0, �B

i

œ R(2◊1) are constant matrices for i = 1, . . . , l,

and Â

i

are scalar-valued functions that satisfy

a

i

Æ Â

i

(x, t) Æ b

i

(2.10)

for i = 1, . . . , l and with known bounds, a

i

and b

i

. Note that Â

i

can be a bounded

nonlinear function or an uncertain parameter that lies within known bounds. Then,

for all t œ R and x œ R2, the matrices A(x, t), B(x, t) satisfy
5
A(x, t) B(x, t)

6
œ Co

;5
A1 B1

6
, . . . ,

5
A

N

B

N

6<
(2.11)

that is, the matrix pair remains in a convex hull with a finite number of vertices [37].

Lemma 2.1.1 The state feedback controller

u = LS

≠1
x (2.12)
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where the symmetric positive definite (s.p.d.) matrix S and the matrix L are solutions

to the following optimization problem:

Minimize — subject to:

Y
_________]

_________[

AS + BL + SA

T + L

T

B

T + 2–S Æ 0

S Ø I

Q

ca
—I L

T

L S

R

db Ø 0

(2.13)

for all (A, B) in AB

where the 2l pairs of (A, B) in AB are defined below:

AB = {(A0 + ”1A1 + · · · + ”

l

A

l

, B0 + ”1B1 + · · · + ”

l

B

l

) : ”

i

= a

i

or b

i

for i = 1, . . . , l}

makes the system (2.8) globally uniformly exponentially stable about the origin, with

a convergence rate of –, and with the Lyapunov matrix P = S

≠1. In addition, the

parameter — determines the upper bound on the feedback gain ||LS

≠1||2.

For a proof of Lemma 2.1.1, see Section 2.4.

2.1.2 Adaptive Robust Control Methodology

ARC was proposed in [55] as a high-performance nonlinear control approach that

integrates deterministic robust control (DRC) and adaptive control (AC). By as-

suming that bounds on disturbances and uncertain parameters are known, the ARC

approach maintains the benefits of these competing design approaches while overcom-

ing their drawbacks [58]. It should be noted that ARC is di�erent from the robust

adaptive control approach, e.g. [20], [21].

ARC has been implemented on electro-mechanical systems and has proven to be

a powerful control approach (see for example [62]). In recent years, ARC has been

developed to be less sensitive to noise (Desired Compensation ARC), provide accurate

parameter estimates (Indirect ARC), and be faster than the previous indirect ARC

(Integrated Direct/Indirect ARC) [54]. For clarity, we consider the traditional direct
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ARC design, however it is relatively straightforward to extend the work in this paper

to the more sophisticated ARC methods. In order to concisely convey the ARC

methodology, consider the simple first order system in (2.14).

ẋ = ÏT ◊ + � + u (2.14)

As before, Ï is a regressor of known basis functions, ◊ are the uncertain parame-

ters that lie within known bounds, � represents the disturbances and un-modeled

dynamics bounded by a known function, and u is the control input. ARC starts

with feedback linearization and a backstepping approach (for higher-order systems)

in order to track a desired trajectory x

d

(t), i.e. the initial control input is

u = ẋ

d

≠ ÏT ◊̂ ≠ kz + u

r

(2.15)

where z = x ≠ x

d

is the tracking error, ◊̂ are the parameter estimates, and u

r

is the

DRC feedback term. This input yields the closed-loop system

ż + kz = u

r

+ [ÏT ◊̃ + �] (2.16)

where ◊̃(t) = ◊ ≠ ◊̂(t) is the error in parameter estimates. ARC combines the DRC

and AC approaches by designing a DRC controller to account for disturbances and

parameter uncertainties. The left hand side of (2.16) is the stable nominal system

when k > 0, and the right hand side in brackets represents all uncertainties and

disturbances. The ideal sliding mode control law can be used to overcome these

terms.

u

r

= ≠fl sgn(z) =

Y
__]

__[

≠fl

z

|z| , if z ”= 0

0 , if z = 0
, fl Ø

---ÏT ◊̃ + �
--- (2.17)

Note that the ideal sliding mode control law leads to control chattering, so smoother

approximating functions S (fl sgn(z)) can be used instead (such as the saturation or

hyperbolic tangent function). This yields a prescribed transient tracking performance

as well as steady state tracking accuracy within a specified radius. The final control

law, then, is given by

u = ẋ

d

≠ ÏT ◊̂ ≠ kz ≠ S (fl sgn(z)) (2.18)
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An adaptation law is used to update the parameter estimates ◊̂(t) as in AC, which

improves the steady state performance and yields asymptotic tracking in the absence

of disturbances (i.e. with only parametric uncertainties). However, to merge DRC

and AC in this way, it is necessary to keep the parameter estimates bounded and, in

turn, the right hand side of (2.16). The traditional integral adaptation law can lead

to unbounded parameter estimates when there are disturbances, so the discontinuous

projection adaptation law from [55] is implemented,

˙̂
◊ = Proj

◊̂

(�Ïz) (2.19)

where � is a diagonal positive definite matrix, and Proj
◊

(•) is defined component-wise

for vector • such that Proj
◊̂

(•) =
5
Proj

◊̂1
(•1), . . . , Proj

◊̂

p

(•
p

)
6

T

, and

Proj
◊̂

i

(•
i

) :=

Y
_______]

_______[

0 if

Y
__]

__[

◊̂

i

= ◊̂

i,max

and •
i

> 0

◊̂

i

= ◊̂

i,min

and •
i

< 0

•
i

otherwise

(2.20)

which guarantees that ◊̂(t) œ �
◊

for all t, and therefore ◊̃(t) is bounded.

Lemma 2.1.2 The ARC law (2.18) implemented with the adaptation law (2.19) on

the system (2.14) guarantees that the tracking error is bounded above by a known

function and it converges to a ball of prescribed radius with a convergence rate of at

least k. Additionally, if the disturbances are eliminated for all t > t0 Ø 0, the tracking

error asymptotically converges to zero.

For a proof of Lemma 2.1.2, please refer to [53].

In the following section, we use the previous problem statement and preliminary

theory to design a control input u(z, t) that employs adaptive robust control tech-

niques together with LMI-based feedback in order to guarantee fast and accurate

tracking of the dynamic system in (2.5).
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2.2 ARC-LMI Controller Design

In this section, we present a nonlinear adaptive robust controller that incorporates

linear matrix inequalities (ARC-LMI) with the objective of tracking a time-varying

trajectory in a second-order uncertain dynamic system with bounded disturbances.

The traditional ARC method is modified and combined with an LMI-based feedback

for stabilization and overcoming polytopic uncertainties and nonlinearities in the sys-

tem. We describe a continuous approximation to the signum function for the robust

feedback control input and a modified adaptive control law. Furthermore, we prove

the guaranteed properties of the transient performance and steady state tracking with

and without external disturbances.

Let us return to the uncertain second-order system in (2.1) under Assumption 2.1.1,

which has the following error dynamics, from (2.5).

˙̄
z =

S

WU
0 1

0 0

T

XV z̄ +

S

WU
0

1

T

XV
Ó
Ï

p

(z̄, t)T ◊
p

+ Ï
np

(z̄, t)T ◊
np

+ �(z̄, t) ≠ ẍ

d

(t) + g(z̄) u

Ô
(2.21)

For now, suppose that g(z̄, t) is known (this assumption will be relaxed at a later

point). We begin by decomposing the control law into three parts: u

s

, a stabilizing

state feedback and compensation for polytopic uncertainties, u

m

, a dynamic model

compensation term, and u

r

, a robust control law. Then the complete control law can

be written as

u = g(z̄)≠1(u
s

+ u

m

+ u

r

) (2.22)

It has been shown (e.g. [48]) that using feedback linearization prior to additional con-

trol approaches can be advantageous when there are severe nonlinearities. Therefore,

we first apply a dynamic model compensation term u

m

using parameter estimates ◊̂
p

and ◊̂
np

(t), which is updated online via an adaptation law, to be specified later.

u

m

= ẍ

d

(t) ≠ Ï
p

(z̄, t)T ◊̂
p

≠ Ï
np

(z̄, t)T ◊̂
np

(t) (2.23)
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Thus, the closed-loop system is given by

˙̄
z =

S

WU
0 1

0 0

T

XV z̄ +

S

WU
0

1

T

XV
Ó
u

s

+ Ï
p

(z̄, t)T ◊̃
p

Ô
+

S

WU
0

1

T

XV
Ó
u

r

+ Ï
np

(z̄, t)T ◊̃
np

(t) + �(z̄, t)
Ô

(2.24)

where ◊̃ = ◊ ≠ ◊̂ is the error in the parameter estimates. Next, we design the

stabilizing feedback u

s

, which is robust to polytopic uncertainty. In the traditional

ARC method, a backstepping approach would be used to stabilize the nominal second-

order system, by selecting two feedback gains and designing a virtual control input

for z2. In contrast, the ARC-LMI algorithm computes the static feedback term

u

s

= Kz̄ = LS

≠1
z̄ (2.25)

where the s.p.d. matrix S and the matrix L are solutions to the optimization problem

in (2.13), with a desired convergence rate –, and — as an upper bound on ||K||2 for

the system

˙̄
z =

S

WU
0 1

0 0

T

XV z̄ +

S

WU
0

1

T

XV Ï
p

(z̄, t)T ◊̃
p

+

S

WU
0

1

T

XV u

s

(2.26)

which can be written in the form of system (2.8), with

A(z̄, t) =

S

WU
0 1

0 0

T

XV z̄ +

S

WU
0

1

T

XV Ï
p

(z̄, t)T ◊̃
p

, B(z̄, t) =

S

WU
0

1

T

XV (2.27)

This yields an optimal feedback term for the nominal system with polytopic uncer-

tainty based on the desired convergence rate, rather than by an arbitrary choice of

backstepping gains. From this we also obtain the s.p.d Lyapunov matrix P = S

≠1.

Now we design the robust feedback term u

r

to overcome the parametric uncertainties

associated with non-polytopic terms and the disturbances, that is

u

r

= ≠S (fl(z̄, t) sgn(÷)) (2.28)

where

÷ = p12z1 + p22z2 (2.29)
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with p

ij

from Lyapunov matrix P , and the bounding function, fl(z̄, t) satisfies

fl(z̄, t) Ø
---Ï

np

(z̄, t)T ◊̃
np

+ �(z̄, t)
--- (2.30)

An example of such a function fl(z̄, t), given our knowledge of the system bounds, is

fl(z̄, t) =
---Ï

np

(z̄, t)
---
T

|◊
np,max

≠ ◊
np,min

| + ”(z̄, t) (2.31)

where |•| is defined component-wise for vector •, and ”(z̄, t) Ø |�(z̄, t)|, as in Assump-

tion 2.1.1. A continuous approximation S(•) of the signum function, for example, is

the hyperbolic tangent,

S (fl sgn(÷)) = fl tanh
3

Ÿfl

‘

÷

4
(2.32)

where Ÿ = 0.2785, which satisfies the following two properties [53]:

i. ÷ S (fl sgn(÷)) Ø 0

ii. ÷ [fl sgn(÷) ≠ S (fl sgn(÷))] Æ ‘

(2.33)

These properties will be used later to prove the stability and convergence accuracy in

the steady state. Then, from (2.22), (2.23), (2.25), and (2.28), we have the following

complete control law.

u = g(z̄)≠1
ū

ū = ẍ

d

(t) ≠ Ï
p

(z̄, t)T ◊̂
p

≠ Ï
np

(z̄, t)T ◊̂
np

(t) ≠ fl(z̄, t) tanh
A

Ÿfl(z̄, t)
‘

÷

B

+ LS

≠1
z̄

(2.34)

The discontinuous projection-based adaptation law that completes the ARC-LMI

algorithm is taken from (2.19)-(2.20) and modified as follows.

˙̂
◊

np

= Proj
◊̂

np

(�Ï
np

÷) (2.35)

Note that the parameter estimates associated with the polytopic functions, ◊̂
p

, do

not need to be updated as u

s

overcomes those errors at an exponential rate. This is

an additional advantage of the ARC-LMI approach. A schematic of the ARC-LMI

controller architecture is shown in Figure 2.1.
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�
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˙̂�

Figure 2.1.. The ARC-LMI controller architecture

Theorem 2.2.1 summarizes the results obtained from the ARC-LMI controller

design. As in traditional ARC, we are able to guarantee the following transient and

steady state performance properties.

Theorem 2.2.1 (ARC-LMI) Given the uncertain second-order dynamic system (2.1)

with the error dynamics shown in (2.21) and under Assumption 2.1.1, the nonlinear

ARC-LMI control input (2.34) together with the adaptation law (2.35) yield the fol-

lowing results:

I. All signals are bounded and the tracking error is guaranteed to exponentially

converge to a ball of constant radius at a rate of convergence no less than –.

The transient performance is prescribed and can be improved by increasing –

and decreasing ‘.

II. If the system is only subject to parametric uncertainties after some time t0, i.e.

�(z̄, t) = 0, ’t Ø t0, then asymptotic tracking is guaranteed in addition to the

results in Part I.
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Proof : Theorem 2.2.1 Part I

Let the error vector z = [z1, z2]T and the Lyapunov matrix from the LMI-based op-

timization problem be P =

S

WU
p11 p12

p12 p22

T

XV. Now, consider the positive definite Lyapunov

function

V (z) = 1
2z

T

Pz (2.36)

Taking the derivative of V (z) and substituting the closed-loop error dynamics ż that

results from the ARC-LMI control input (2.34) applied to the original system (2.1)

yields

V̇ = z

T

P ż

= z

T

P

Q

ca

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊̃
p

+ u

s

Ô
R

db + z

T

P

S

WU
0

1

T

XV
Ó
ÏT

np

◊̃
np

+ � + u

r

Ô

= z

T

P

1
A(z, t) + B(z, t)LS

≠1
2

z + z

T

P

S

WU
0

1

T

XV
Ó
ÏT

np

◊̃
np

+ � ≠ S(fl sgn(÷))
Ô

From Lemma 2.1.1, we can show that z

T

P (A(z, t) + B(z, t)LS

≠1) z Æ ≠–z

T

Pz for

all z œ R2 and t Ø 0, as derived in Appendix 2.4. Therefore,

V̇ Æ ≠–z

T

Pz + z

T

P

S

WU
0

1

T

XV
Ó
ÏT

np

◊̃
np

+ � ≠ S(fl sgn(÷))
Ô

= ≠2–V + ÷

Ó
ÏT

np

◊̃
np

+ � ≠ S(fl sgn(÷))
Ô

Æ ≠2–V + |÷|
---ÏT

np

◊̃
np

+ �
--- ≠ ÷S(fl sgn(÷))

Note that z

T

P

S

WU
0

1

T

XV = z1p12 + z2p22 = ÷ as defined in (2.29). Using (2.30) and the

second property of (2.33), we arrive at

V̇ Æ ≠2–V + ÷ {fl sgn(÷) ≠ S(fl sgn(÷))}

Æ ≠2–V + ‘ (2.37)
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The Comparison Principle (page 102 of [24]) allows us to find the bounds of the

tracking error as follows. Since V̇ Æ ≠2–V + ‘, then

V (t) Æ V (0)e≠2–t + ‘

2–

1
1 ≠ e

≠2–t

2
(2.38)

Using trajectory initialization, i.e. ensuring that x

d

(0) = x1(0) and ẋ

d

(0) = x2(0), we

can satisfy z1(0) = z2(0) = 0 and therefore V (0) = 0, which results in

V (t) Æ ‘

2–

1
1 ≠ e

≠2–t

2
(2.39)

Since V = 1
2z

T

Pz = ⁄

2 ||z||2, where ⁄ œ (0, 1] is an eigenvalue of P (from S Ø I in

(2.13)), we can write

||z|| =
Û

2V

⁄

Æ
Ú

‘

⁄–

(1 ≠ e

≠2–t) Æ
Û

‘

⁄

min

–

(2.40)

where ⁄

min

is the minimum eigenvalue of P . This shows that the error norm ||z|| is

bounded by the design parameters ‘ and –, which can by freely adjusted to predeter-

mine the transient and steady state tracking performance. With the discontinuous

projection-based adaptation law, the parameter estimates are bounded and, there-

fore, the control input is bounded, which implies that the state x(t) is bounded. This

completes the proof of Theorem 2.2.1 Part I.

Proof : Theorem 2.2.1 Part II

Consider the following positive definite Lyapunov function

V (z, ◊̃
np

) = 1
2z

T

Pz + 1
2 ◊̃

T

np

�≠1◊̃
np

(2.41)

Since the uncertain parameter vector ◊
np

is assumed to be constant, ˙̃◊
np

= ≠ ˙̂
◊

np

.

The derivative of V (z, ◊̃
np

) with adaptation law (2.35), then, is given by

V̇ = z

T

P ż ≠ ◊̃
T

np

�≠1 ˙̂
◊

np

(2.42)
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From the closed-loop system in (2.21) resulting from the ARC-LMI control input

(2.34), when the system is subject only to parametric uncertainties, i.e. � = 0, V̇

can be written as

V̇ = z

T

P

Q

ca

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊̃
p

+ u

s

Ô
R

db + z

T

P

S

WU
0

1

T

XV
Ó
ÏT

np

◊̃
np

+ u

r

Ô

≠ ◊̃
T �≠1Proj

◊̂

np

(�Ï
np

÷)

Æ ≠2–z

T

Pz + z

T

P

S

WU
0

1

T

XV
Ó
ÏT

np

◊̃
np

+ u

r

Ô
≠ ◊̃

T �≠1Proj
◊̂

np

(�Ï
np

÷)

= ≠2–z

T

Pz + ÷

;
◊̃

T

np

Ï
np

+ u

r

<
≠ ◊̃

T �≠1Proj
◊̂

np

(�Ï
np

÷)

Æ ≠2–z

T

Pz + ◊̃
T

np

Ó
Ï

np

÷ ≠ �≠1Proj
◊̂

np

(�Ï
np

÷)
Ô

(2.43)

Æ ≠2–z

T

Pz (2.44)

Let k = 2–⁄̄, where ⁄̄ is the maximum eigenvalue of P . By integrating (2.44),
⁄

t

0
||z||2 Æ ≠1

k

⁄
t

0
V̇ (‹)d‹ = ≠1

k

[V (t) ≠ V (0)] Æ 1
k

V (0) (2.45)

it is clear that z œ L2
2[0, Œ). Additionally, it is straightforward to see that ż œ L2

Œ,

thus z is uniformly continuous. Then, by Barbalat’s lemma (page 323 of [24]), we

can conclude that z æ 0 as t æ Œ, which proves the asymptotic tracking claim in

Theorem 2.2.1 Part II.

In (2.43), to see that ◊̃
T

np

Ó
Ï

np

÷ ≠ �≠1Proj
◊̂

np

(�Ï
np

÷)
Ô

Æ 0, recall that � is a

diagonal p.d. matrix � = diag(“1, . . . , “

p2), and note that this vector product can be

written as the sum
p2ÿ

i=1
◊̃

np,i

C

Ï

np,i

÷ ≠ 1
“

i

Proj
◊

np,i

(“
i

Ï

np,i

÷)
D

(2.46)

The adaptation law in (2.19) has three possible cases. The first condition dictates

that if ◊̂

i

= ◊̂

i,max

and “

i

Ï

i

÷ > 0, then Proj
◊

i

(“
i

Ï

i

÷) = 0. This also signifies that

◊̃

i

= ◊

i

≠ ◊

i,max

Æ 0, and since “

i

> 0, the i-th term in (2.46) is ◊̃

np,i

Ï

np,i

÷ Æ

0. Similarly, the second condition dictates that if ◊̂

i

= ◊̂

i,min

and “

i

Ï

i

÷ < 0, then

Proj
◊

i

(“
i

Ï

i

÷) = 0. Since ◊̃

i

= ◊

i

≠ ◊

i,min

Ø 0, the i-th term in the summation is



21

also ◊̃

np,i

Ï

np,i

÷ Æ 0. Lastly, from the third condition of (2.19), Proj
◊

i

(“
i

Ï

i

÷) = “

i

Ï

i

÷.

Therefore the i-th term in (2.46) is simply ◊̃

np,i

(Ï
np,i

÷ ≠ Ï

np,i

÷) = 0. This proves that

◊̃
T

np

Ó
Ï

np

÷ ≠ �≠1Proj
◊̂

np

(�Ï
np

÷)
Ô

Æ 0.

Remark 2.2.1 Suppose that the scalar function g(z̄) is known but has an uncertain

gain on the input (with known bounds). Then we can write g(z̄) = g

u

(z̄)◊
u

, where ◊

u

is the uncertain parameter on the function g

u

. The control law in (2.34) is modified

to

u =
1
g

u

(z̄)◊̂
u

(t)
2≠1

ū

and the estimate ◊̂

u

is included in the vector ◊̂
ı

np

= [◊̂T

np

, ◊̂

u

]T and the adaptation law

(2.35). Then it is simple to verify that the results from Theorem 2.2.1 hold.

2.3 Design Example and Simulation Results

To illustrate the ARC-LMI algorithm and its performance, we demonstrate the

controller design and simulation results for a single link manipulator. The control of a

single link manipulator (or inverted pendulum) with a torque actuator is a well-known

problem (e.g. [12], [41], [27]) involving a second-order dynamic system that may have

uncertain parameters, such as mass and arm length, and complex nonlinearities, such

as Coulomb friction and drag force. These factors make it an excellent case study

for the ARC-LMI controller, both for exemplifying the design methodology and for

demonstrating the performance of the controller.

Consider the single link manipulator of mass m, length l, drag coe�cient c

d

, and

moment of inertia J . The dynamics of the arm in terms of the angle „ can be

expressed as

J „̈ = mgl sin „ ≠ c

d

„̇

---„̇
--- + d + u (2.47)
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where d is an external disturbance and u is the control torque. For simplicity, assume

that the inertia J = 1.0 kg·m2 is known. Then (2.47) can be written in the state-space

form, with x1 := „ and x2 := „̇, as

ẋ1 = x2

ẋ2 = ◊1 sin x1 ≠ ◊2x2 |x2| + d + u

(2.48)

where ◊

i

are the uncertain parameters. Suppose we want to track a desired angle

trajectory x

d

(t). The error dynamics, with z1 := x1 ≠ x

d

and z2 := ẋ1 ≠ ẋ

d

, are given

by

ż1 = z2

ż2 = ◊1 sin x1 ≠ ◊2x2 |x2| + d ≠ ẍ

d

+ u

(2.49)

The control input, u = u

s

+ u

m

+ u

r

, with

u

m

= ẍ

d

≠ ◊̂1 sin x1 + ◊̂2x2 |x2| (2.50)

leads to the following closed-loop error dynamics for z2

ż2 = ◊̃1 sin x1 ≠ ◊̃2x2 |x2| + d + u

s

+ u

r

(2.51)

The first term, for example, can be partially written in the polytopic form (2.9),

(2.10) in terms of the error state z1. To see this, note that x1 = z1 + x

d

, and write

◊̃1 sin x1 = ◊̃1 [sin(z1 + x

d

) ≠ sin(x
d

)] + ◊̃1 sin(x
d

)

Then the bounded uncertain/nonlinear function Â1 is given by

Â1(z̄, t) =

Y
__]

__[

◊̃1 [sin(z1 + x

d

) ≠ sin(x
d

)] /z1 , if z1 ”= 0

◊̃1 , if z1 = 0
(2.52)

≠◊̃1,max

Æ Â1(z̄, t) Æ ◊̃1,max

where the maximum error in parameter estimate ◊̃1,max

= ◊1,max

≠ ◊1,min

. The term

sin(x
d

) cannot be written in the polytopic form, so it is added to Ï
np

(z̄, t). Note that
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this term cannot be corrupted by measurement noise, as it depends on the known

trajectory x

d

(t), and not the state. The closed-loop error dynamics can now be written

as follows.

˙̄
z = A(z̄, t)z̄ + B(z̄, t)u

s

+

S

WU
0

1

T

XV
Ó
Ï

np

(z̄, t)T ◊̃
np

+ d + u

r

Ô
(2.53)

where,

A(z̄, t) = A0 + Â1(z̄, t)�A1 , A0 =

S

WU
0 1

0 0

T

XV , �A1 =

S

WU
0 0

1 0

T

XV

B(z̄, t) = B0 + Â1(z̄, t)�B1 , B0 =

S

WU
0

1

T

XV , �B1 =

S

WU
0

0

T

XV

(2.54)

with Â1 from (2.52). Then u

s

= LS

≠1
z̄ can be computed by solving the LMI opti-

mization problem (2.13). If ◊̃1,max

= 1, for a convergence rate – = 10.0, we obtain

LS

≠1 = K = [≠152.9, ≠20.2], with the corresponding Lyapunov matrix,

P = S

≠1 =

S

WU
0.996 0.066

0.066 0.007

T

XV

It emphasized that this static feedback term u

s

is optimal for the chosen – with

respect to minimizing ||K||2, and it stabilizes the nominal system with the uncertain

polytopic nonlinearity (2.52). These are key advantages of the ARC-LMI controller.

Continuing with the controller design, in (2.53) we have

Ï
np

(z̄, t) =

S

WU
sin x

d

≠x2|x2|

T

XV , ◊̃
np

=

S

WU
◊̃1

◊̃2

T

XV (2.55)

Therefore, the robust feedback term u

r

= ≠fl tanh
1

Ÿfl

‘

÷

2
, where fl(z̄, t) can be written

explicitly, using (2.31), as

fl = ◊̃1,max

| sin x

d

| + ◊̃2,max

x

2
2 + ” (2.56)

where ◊̃

i,max

= ◊

i,max

≠ ◊

i,min

and ”(z̄, t) Ø |d(z̄, t)| for all z̄ œ R2
, t Ø 0.
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For this example, suppose ◊1 = 5 and ◊2 = 1, and assume that we know the

parameters within 10% of their true values, that is

◊
np

=

S

WU
5

1

T

XV , ◊
np,min

=

S

WU
4.5

0.9

T

XV , ◊
np,max

=

S

WU
5.5

1.1

T

XV

To test the robustness to disturbances, let d = (≠1)round(t2), then the upper bound

can be chosen as ” = 1 Ø |d(t)|, and therefore fl = | sin x

d

| + 0.2x

2
2 + 1. We begin

the simulation with 5% error in each parameter estimate, i.e. ◊̂
np

(0) = [5.25, 0.95]T ,

and we remove the disturbance after 15 seconds, i.e. d(t) = 0 for t > 15. The

adaptation rate matrix � = diag([500, 100]), and the trajectory is selected to be

x

d

(t) = 1 ≠ cos(2fit/3). The tracking errors are shown in Figure 2.2, as well as

the theoretical bound on the norm of the tracking error vector ||z||. The parameter

estimation errors are shown in Figure 2.3.
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Figure 2.2.. Angle tracking errors z1(t), and the error vector norm ||z||
together with the theoretical bound Á(t) =
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Evidently, the disturbance from 0 to 15 seconds does not damage the transient

performance as the tracking error norm remains within the theoretical bound Á(t) =
Ò

‘

⁄–

(1 ≠ e

≠2–t) from (2.40). Furthermore, the steady state performance improves,

even in the presence of the external disturbance, due to the online adaptation. After

15 seconds, the disturbance is removed and, as expected, near-asymptotic tracking is

achieved (within accuracy of the simulation). The control input history is shown in

Figure 2.4, together with the previously described external disturbance.
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2.4 Additional Proofs

Proof : Lemma 2.1.1. To see that the control law (2.12) stabilizes the sys-

tem in (2.8), observe that the closed-loop dynamics are given by ẋ = [A(x, t) +

B(x, t)LS

≠1]x. Let

N(x, t) := A(x, t)S + B(x, t)L + SA(x, t)T + L

T

B(x, t)T

= N0 + Â1(x, t)�N1 + · · · + Â

l

(x, t)�N

l

where

N0 = A0S + B0L + SA

T

0 + L

T

B

T

0

�N

i

= �A

i

S + �B

i

L + S�A

T

i

+ L

T �B

T

i

, for i = 1, . . . , l

Since a

i

Æ Â

i

(x, t) Æ b

i

, then N(x, t) Æ ≠2–S for all t and x if

N0 + ”1�N1 + · · · + ”

l

�N

l

Æ ≠2–S , for ”

i

= a

i

or b

i

, i = 1, . . . , l

which is the first equation in (2.13), for all pairs (A, B) in AB. Then, if N(x, t) Æ

≠2–S for all t and x, we have:

A(x, t)S + B(x, t)L + SA(x, t)T + L

T

B(x, t)T Æ ≠2–S

Pre- and post-multiplying the previous inequality by P = S

≠1 yields

PA(x, t) + PB(x, t)LS

≠1 + A(x, t)T

P + S

≠1
L

T

B(x, t)T

P Æ ≠2–P

Using the fact that P = P

T , the previous inequality can be arranged as follows:

P [A(x, t) + B(x, t)LS

≠1] + [A(x, t) + B(x, t)LS

≠1]T P Æ ≠2–P

Notice that this corresponds to the closed-loop system, ẋ = [A(x, t) + B(x, t)LS

≠1]x.

Consider the Lyapunov function V (x) = x

T

Px, then

V̇ = 2x

T

Pẋ

= 2x

T

P [A(x, t) + B(x, t)LS

≠1]x

= x

T

P [A(x, t) + B(x, t)LS

≠1] + [A(x, t) + B(x, t)LS

≠1]T Px

Æ ≠2–x

T

Px = ≠2–V (x)
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Therefore, the closed-loop system is globally exponentially stable, with the Lyapunov

matrix P = S

≠1 and a convergence rate of –.

In addition, the final LMI in the optimization problem (2.13),
Q

ca
—I L

T

L S

R

db Ø 0 (2.57)

restricts the size of K := LS

≠1 as follows. From the Schur Complement results on

Hermitian matrix inequalities (see Theorem 1.12 of [60] and the Appendix of [11]),

we can show that (2.57) is true if and only if

S > 0 and —I ≠ LS

≠1
L

T Ø 0 (2.58)

The second inequality in (2.58) can be written as KSK

T Æ —I. Since we also require

in (2.13) that S Ø I, we obtain

KK

T Æ KSK

T Æ —I

which explicitly shows that — serves as an upper bound on ||K||2.
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3. ARC-LMI CONTROLLER DESIGN FOR A

QUADROTOR

In this chapter, we implement a novel linear matrix inequality-based nonlinear adap-

tive robust control algorithm to design the attitude and position controllers for an

X-configuration quadrotor helicopter. The inner-loop of the autopilot controls the

attitude and altitude of the quadrotor, and the outer-loop controls its position in the

earth-fixed coordinate frame. By assuming knowledge of the bounds of the quadro-

tor’s uncertain parameters (e.g. mass and moments of inertia) and predetermined

bounds on the external and unstructured disturbances (e.g. wind gusts and un-

modeled dynamics), we attain a guaranteed transient and steady state tracking per-

formance. We demonstrate the performance of the controllers via two illustrative

examples. In the first example mission, the quadrotor follows an altitude reference

trajectory in the presence of wind gusts and delivers a package of uncertain mass mid-

flight. The second example presents an autonomous waypoint flight in the presence

of constant wind and wind gusts. The results of our simulations indicate that our

controller design is useful for a variety of quadrotor applications, including precise

trajectory tracking, autonomous waypoint navigation in the presence of disturbances,

and package delivery without loss of performance.

3.1 Modeling the Quadrotor

In order to design an e�ective adaptive and robust controller, an accurate dynamic

model of the system is required. In this paper, we consider the 3D Robotics IRIS

quadrotor which has an X-configuration [1] for algorithm development and perfor-

mance validation. However, the proposed algorithms are general, and can be applied

to other types of UAS. The dynamic model of the quadrotor is derived based on the
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following assumptions: (1) the structure is rigid and has roll symmetry, (2) the origin

of the body frame is at the center of mass of the quadrotor, and (3) the rotors are

rigid in the plane perpendicular to the body z-axis.

Reference Frames & Transformations. The position of the quadrotor in the

inertial frame F I is defined by the vector › = (N, E, D)T , and the attitude in the

inertial frame is defined by the vector ÷ = („, ◊, Â)T , where „(t) is the roll angle

(about the N -axis), ◊(t) is the pitch angle (about the E-axis), and Â(t) is the yaw

angle (about the D-axis), in a right-handed coordinate frame. The linear velocities

in the body frame F b are defined by the vector V = (u, v, w)T , and the angular

velocities in the body frame are defined by the vector Ê = (p, q, r)T , where u(t) = ẋ,

v(t) = ẏ, w(t) = ż, p(t) is the roll rate (about the x-axis), q(t) is the pitch rate

(about the y-axis), and r(t) is the yaw rate (about the z-axis). The body and inertial

reference frames, and their corresponding positive rotations, are shown in Figure 3.1.

Figure 3.1.. Quadrotor reference frames and positive rotations (obtained
from [2] and annotated)
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We denote the rotation matrix that transforms the a-frame states to the b-frame

states as Ra

b

: F a æ F b. The rotation matrix from the earth-fixed inertial frame

(N, E, D) to the body-fixed frame (x, y, z) by successive rotations of yaw (Â) æ pitch

(◊) æ roll („) is given by,

RI

b

=

S

WWWWWU

c◊cÂ c◊sÂ ≠s◊

s„s◊cÂ ≠ c„sÂ s„s◊sÂ + c„cÂ s„c◊

c„s◊cÂ + s„sÂ c„s◊sÂ ≠ s„cÂ c„c◊

T

XXXXXV
(3.1)

where c– , cos(–), s– , sin(–), t– , tan(–). For a derivation of the rotation

matrix in (3.1), see Appendix A. The rotation matrix is orthogonal and has its de-

terminant det(RI

b

) = 1. Therefore, (RI

b

)≠1 = (RI

b

)T . From these properties, we can

directly derive the rotation matrix from the body frame (x, y, z) to the inertial frame

(N, E, D), Rb

I

: F b æ F I , as follows.

Rb

I

= (RI

b

)≠1 =

S

WWWWWU

cÂc◊ cÂs◊s„ ≠ sÂc„ cÂs◊c„ + sÂs„

sÂc◊ sÂs◊s„ + cÂc„ sÂs◊c„ ≠ cÂs„

≠s◊ c◊s„ c◊c„

T

XXXXXV
(3.2)

The transformations of angular velocities from the inertial frame to the body frame

and vice versa are given by,
S

WWWWWU

p

q

r

T

XXXXXV
=

S

WWWWWU

1 0 ≠s◊

0 c„ c◊s„

0 ≠s„ c◊c„

T

XXXXXV

S

WWWWWU

„̇

◊̇

Â̇

T

XXXXXV
and

S

WWWWWU

„̇

◊̇

Â̇

T

XXXXXV
=

S

WWWWWU

1 s„t◊ c„t◊

0 c„ ≠s„

0 s„/c◊ c„/c◊

T

XXXXXV

S

WWWWWU

p

q

r

T

XXXXXV
(3.3)

respectively. Here we assume that the pitch angle ◊(t) œ (≠fi/2, fi/2) for all t, to

avoid the singularity in the second transformation of (3.3).

Force Equations. Using the Newton-Euler equations to describe the dynamics

of the quadrotor in the inertial frame, the product of the mass and the inertial accel-
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eration is equal to the sum of the forces acting on the quadrotor, i.e. the weight of

the quadrotor mg, the total thrust of the four rotors T , and the drag forces F

w

.

m›̈ = mG + Rb

I

T + Fw ,

S

WWWWWU

N̈

Ë

D̈

T

XXXXXV
= g

S

WWWWWU

0

0

1

T

XXXXXV
≠ T

m

Rb

I

S

WWWWWU

0

0

1

T

XXXXXV
≠ 1

m

S

WWWWWU

k

s

(Ṅ ≠ w

N

)|Ṅ ≠ w

N

|

k

s

(Ė ≠ w

E

)|Ė ≠ w

E

|

k

u

(Ḋ ≠ w

D

)|Ḋ ≠ w

D

|

T

XXXXXV
(3.4)

where m is the mass of the quadrotor, g is the gravitational acceleration, and T is

the thrust in the (≠z) direction. The wind disturbances in the inertial frame are

(w
N

, w

E

, w

D

)T and the constants k

s

, k

u

> 0 are used to model the aerodynamic drag

on the side and upper/lower faces of the quadrotor, respectively. Note that some

works assume that the drag is linearly proportional to the freestream velocity, i.e.

Fw Ã VŒ [16], or regard the wind conditions as unstructured disturbances [6], [5],

or simply neglect drag forces altogether [31], [8], [23]. In general, the drag force is

proportional to the square of the freestream velocity (as shown in (3.4)), and the

aerodynamic coe�cients k

s

and k

u

will depend on the air density and viscosity, and

the vehicle orientation, that is k

s

, k

u

= f(fl, ‹, ›). In this paper, we use the more

accurate representation of the drag force, but we assume that these aerodynamic

coe�cients are constant for a typical flight.

Given that the on-board sensors measure accelerations in the body frame, it is

useful to derive the force equations in this local coordinate frame. The basic kinematic

equation (BKE) gives the time rate of change of the body-frame velocities relative to

the inertial frame.

dI

dt

V = V̇ + IÊb ◊ V
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where IÊb is the rotation of the quadrotor in the inertial frame and ‘◊’ denotes the

standard vector cross-product. Therefore, the force equations in the body frame of

the quadrotor are derived as follows.

mV̇ = ≠m(Ê ◊ V) + RI

b

G + T + Fw ,

S

WWWWWU

u̇

v̇

ẇ

T

XXXXXV
=

S

WWWWWU

rv ≠ qw

pw ≠ ru

qu ≠ pv

T

XXXXXV
+ RI

b

S

WWWWWU

0

0

g

T

XXXXXV
≠ T

m

S

WWWWWU

0

0

1

T

XXXXXV
≠ 1

m

S

WWWWWU

k

s

(u ≠ w

x

)|u ≠ w

x

|

k

s

(v ≠ w

y

)|v ≠ w

y

|

k

u

(w ≠ w

z

)|w ≠ w

z

|

T

XXXXXV
(3.5)

Moment Equations. The moment equations are expressed in the body frame,

as the angular accelerations are measured solely in this frame. From the conservation

of angular momentum and Newton’s laws of motion, the inertial time derivative of

the quadrotor’s angular momentum (H = IÊ) is equal to the external moments on

the system, ·
total

. These moments include the torques and gyroscopic moments due

to the rotors, · and � respectively, and the disturbance torques due to wind, ·w. We

apply the BKE when taking the derivative of H, as follows.

dI

dt

H = Ḣ + IÊb ◊ H = ·
total

IÊ̇ + Ê ◊ (IÊ) = · + � + ·w (3.6)

where the symmetric inertia matrix I and the gyroscopic moments due to the rotors

are given by,

I =

S

WWWWWU

I

xx

0 ≠I

xz

0 I

yy

0

≠I

xz

0 I

zz

T

XXXXXV
, � = I

r

S

WWWWWU

p

q

r

T

XXXXXV
◊

S

WWWWWU

0

0

1

T

XXXXXV
�

r

=

S

WWWWWU

I

r

�
r

q

≠I

r

�
r

p

0

T

XXXXXV
(3.7)

respectively. I

r

is the rotational moment of inertia about the motor axis and the

relative rotor speed, �
r

, is defined as �
r

= ≠�1 +�2 ≠�3 +�4. The external torques

from the rotors are · = (·
„

, ·

◊

, ·

Â

)T and wind disturbances are denoted as ·w =
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(·
w,„

, ·

w,◊

, ·

w,Â

)T . Substituting (3.7) in (3.6) and solving for rotational accelerations

yields,
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+

S
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T

XXXXXV
+
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·

◊

·

Â

T

XXXXXV
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S

WWWWWU

·
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·
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XXXXXV
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where,

I≠1 = “

≠1

S

WWWWWU

I
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0 I

xz

0 “

I

yy

0

I

xz

0 I
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T

XXXXXV
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(3.9)

Navigation Equations. The body frame velocities are related to the inertial

frame velocities by the rotation matrix as follows,
S

WWWWWU

Ṅ

Ė

Ḋ

T

XXXXXV
= Rb

I

S

WWWWWU

u
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w

T

XXXXXV
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≠s◊ c◊s„ c◊c„

T

XXXXXV

S

WWWWWU

u

v

w

T

XXXXXV
(3.10)

A more intuitive inertial frame is North-East-Up, where ’Up’ is the height of the

quadrotor in the flat-Earth inertial frame, denoted by h. The transformation between

this frame and the body frame is similar, but given that Ḋ = ≠ḣ, we change the sign

of the third row of Rb

I

. This yields,
S

WWWWWU

Ṅ

Ė

ḣ

T

XXXXXV
=

S

WWWWWU

cÂc◊ cÂs◊s„ ≠ sÂc„ cÂs◊c„ + sÂs„
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s◊ ≠c◊s„ ≠c◊c„

T

XXXXXV

S

WWWWWU

u

v

w

T

XXXXXV
(3.11)

Control Inputs. The quadrotor is an underactuated mechanical system, in which

the four motor inputs are used to control the system’s six degrees of freedom [23].

The attitude of the quadrotor is coupled with its position, as a roll or pitch angle

is required in order to move in the (x, y)-plane. The IRIS quadrotor has an X-

configuration, which is symmetric about the x-axis (roll symmetry). We can derive

the forces and moments from the dimensions in Figure 3.2 and Newtonian mechanics.
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Figure 3.2.. IRIS top-view diagram (taken from [1] and annotated)

The control inputs for guiding and stabilizing the quadrotor system are mapped

from the four independent motor thrusts to one force and three torques: total thrust

force, roll torque, pitch torque, and yaw torque (T, ·

„

, ·

◊

, and ·

Â

respectively). As

shown in Figure 3.3(a), the total thrust T in the (≠z) direction is given by the sum

of thrusts from the four rotors.

T = f1 + f2 + f3 + f4 (3.12)

From Figure 3.3(b), a positive roll torque (roll right) is generated by increasing the

thrust in the left motors (motors 2 and 3) and/or decreasing the thrust in the right

motors (motors 1 and 4).

·

„

= l

„,f

(≠f1 + f2) + l

„,b

(f3 ≠ f4) (3.13)

As shown in Figure 3.3(c), a positive pitch torque (‘pitch up’) is generated by increas-

ing thrust in the front motors (motors 1 and 2) and/or decreasing thrust in the back

motors (motors 3 and 4).

·

◊

= l

◊,f

(f1 + f2) ≠ l

◊,b

(f3 + f4) (3.14)
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(a) Thrust force, T (b) Roll torque, ·„

(c) Pitch torque, ·◊ (d) Yaw torque, ·Â

Figure 3.3.. Mapping motor inputs to control inputs

The drag force on the rotors produces a yawing torque on the quadrotor in the

opposite direction of the rotor’s rotation. Therefore, a positive yaw torque (clockwise

from top-view) is generated by increasing the first and third motor speeds and/or

decreasing the second and fourth motor speeds (as seen in Figure 3.3(d)).

·

Â

= ·1 + ·2 + ·3 + ·4 (3.15)

Rotor Dynamics. The relationship between the thrust force and the rotor angu-

lar velocity is complex and varies with the angle of attack and the quadrotor velocity

relative to free stream [19]. It is further a�ected by blade flapping, where the leading

blade experiences a higher relative velocity than the retreating blade, a phenomenon

which essentially tilts the thrust vector away from its original (≠z) direction. These

e�ects are di�cult to model and have little influence during near-hover flight con-
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ditions, i.e. small angles of attack and low speeds. Therefore, as in most research

papers that study the modeling and control of quadrotors [23], [34], the following

simplified relation between the i-th rotor’s thrust f

i

and the rotor’s angular velocity

�
i

is made.

f

i

= k

t

�2
i

(3.16)

In general, the thrust constant k

t

> 0 depends on the density of air, rotor radius,

blade shape, blade flapping, and flight regime [28]. Here we assume that it remains

nearly constant throughout the flight. Similarly, the relationship between the rotor’s

angular velocity and the counter-torque due to drag on the propeller is quite complex

(see [16]), but if we assume near-hover conditions, it can be simplified as follows.

·

i

= b�2
i

(3.17)

where b > 0 is the drag factor on the propeller, assumed to be nearly constant for the

flight duration. Note that the robust feedback in the ARC-LMI controller overcomes

the simplifications in (3.16) and (3.17), as explained in Section 3.2.1.

Motor Mixing. By substituting the approximations from (3.16) and (3.17) into

the force and torque equations (3.12)-(3.15), we have the following system of equations

that relates the virtual commands of force or torque to equivalent rotor angular

velocities.
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(3.18)

The transformation from commanded forces and torques to the motor control inputs

is obtained by inverting (3.18), and is given by,
S

WWWWWWWWU
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(3.19)
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where

c1 = 2k

t

(l
◊,f

+ l

◊,b

) (3.20)

c2 = 2k

t

(l
„,f

+ l

„,b

) (3.21)

c3 = 2b(l
„,f

+ l

„,b

) (3.22)

Since this transformation produces the desired motor velocities from the virtual con-

trol inputs, it is sometimes referred to as ‘motor mixing’ [43, 26]. The control inputs

T, ·

„

, ·

◊

, and ·

Â

are designed in order to stabilize the attitude and position of the

quadrotor. From the rotor dynamics in (3.16)-(3.17) and the static motor mixing

matrix in (3.19), the control inputs are translated into commanded angular velocities

for each motor/rotor pair. Note that for the purpose of the controller design, we

assume that the motor dynamics are fast enough to be neglected. However, for a

more accurate simulation of the complete quadrotor dynamics, the motor dynamics

are also included. From the system identification performed in [31], the rotor speed

�
i

is related to the desired rotor speed �
i,d

by the following first-order di�erential

equation.

�̇
i

= k

m

(�
i,d

≠ �
i

) (3.23)

where the motor gain k

m

depends on the inertia and drag of the propeller, as well

as the mechanical and electrical characteristics of the motor. This completes the full

dynamic model of the quadrotor. For a concise summary of the quadrotor equations

of motion, see Appendix B. In the following section, we present the nonlinear adaptive

and robust controller architecture.

3.2 Controller Architecture

In this section, we describe the controller design for the autonomous quadrotor.

We begin with an overview of controller architecture, and, in Section 3.2.1, define

the linear matrix inequality-based nonlinear adaptive robust control (ARC-LMI) the-

ory. In Sections 3.2.2 and 3.2.3, we provide the detailed control input designs for
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the attitude-altitude inner-loop and the position tracking outer-loop systems, respec-

tively. In Section 3.2.4, we develop the trajectory generation technique for improved

position and altitude tracking.

The proposed controllers are based on a cascaded structure, such that the inner-

loop controls the faster attitude dynamics, and the outer-loop controls the slower

position dynamics by generating commanded angles to the inner-loop controller. From

a practical point of view, the on-board accelerometers and gyroscopes that make up

the inertial measurement unit (IMU) of the quadrotor provide local measurements at a

very fast rate (100-400 kHz), and are used in the inner-loop for stabilizing the attitude

and altitude. The inertial navigation system (INS) receives GPS measurements at a

slower rate (5 Hz), corrects the IMU measurement error with an extended Kalman

filter algorithm, and provides inertial position measurements. These measurements,

then, are used in the outer-loop controllers for trajectory tracking. A schematic of

the controller architecture is shown in Figure 3.4.

Attitude-Altitude!
Controller!

Position!
Controller!

Trajectory 
Generation!

Waypoints!

Motor!
Mixing!

Wind 
Disturbances!

Quadrotor!
Plant!

Figure 3.4.. The cascaded controller architecture
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The controllers are designed by the linear matrix inequality-based adaptive ro-

bust control (ARC-LMI) approach, which guarantees a robust transient performance

and improved steady state tracking via an online learning scheme. In addition, the

trajectory generator transforms the discrete set of waypoints into a smooth three-

dimensional path by an exogenous system that improves the trajectory tracking per-

formance and enables autonomous waypoint navigation.

3.2.1 ARC-LMI Control

The ARC-LMI control algorithm from Section 2.2 is concisely re-stated here for

reference. Consider the second-order uncertain system given by,

ẍ = f(x̄, t) + g(x̄, t) u (3.24)

and define the tracking errors z = [z1, z2]T , with z1 = x ≠ x

d

(t) and z2 = ẋ ≠ ẋ

d

(t),

where x

d

(t) is the desired trajectory. Then the system in (3.24) has the following

error dynamics.

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊
p

+ ÏT

np

◊
np

+ �(z, t) ≠ ẍ

d

(t) + g(z, t) u

Ô
(3.25)

Here Ï
p

œ Rp1 is a vector of known basis functions that are linearly parametrized by

unknown weights ◊
p

œ Rp1 and can be written in a special polytopic form, described

later. Ï
np

œ Rp2 is a vector of known basis functions that are linearly parametrized

by unknown weights ◊
np

œ Rp2 but are non-polytopic, and �(z, t) œ R is a nonlinear

function which captures external disturbances, unmodeled dynamics, and terms that

cannot be linearly parametrized. Although the uncertain parameters and external

disturbances are unknown, we assume to have information about their bounds. This

assumption is relatively mild and is stated as follows.
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Assumption 3.2.1 The uncertain parameters ◊ = [◊T

p

, ◊T

np

]T œ Rl lie in a known

bounded region �
◊

and the disturbances � are bounded by a known function ”(z, t),

that is,

◊ œ �
◊

, {◊ : ◊
min

< ◊ < ◊
max

} (3.26)

� œ �� , {� : |�(z, t)| Æ ”(z, t)} (3.27)

where the lower and upper bounds of the parameters ◊
min

= [◊1,min

, . . . , ◊

l,min

]T and

◊
max

= [◊1,max

, . . . , ◊

l,max

]T and the function ”(t, x) are known.

We propose the following control law, which is composed of three parts: u

s

, a sta-

bilizing state feedback and compensation for polytopic uncertainties, u

m

, a dynamic

model compensation term, and u

r

, a robust control law, as shown in (3.28).

u = g(z, t)≠1(u
s

+ u

m

+ u

r

) (3.28)

The adaptive model compensation term u

m

uses parameter estimates ◊̂
p

and ◊̂
np

(t),

which is updated online via an adaptation law, to be specified later.

u

m

= ẍ

d

(t) ≠ ÏT

p

◊̂
p

≠ ÏT

np

◊̂
np

(t) (3.29)

Thus, the closed-loop system is given by

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
u

s

+ ÏT

p

◊̃
p

Ô
+

S

WU
0

1

T

XV
Ó
u

r

+ ÏT

np

◊̃
np

(t) + �(z, t)
Ô

(3.30)

where ◊̃ = ◊ ≠ ◊̂ is the error in the parameter estimates. The stabilizing feedback u

s

,

which is robust to polytopic uncertainty, is given by,

u

s

= Kz = LS

≠1
z (3.31)

where the symmetric positive definite (s.p.d.) matrix S and the matrix L are solutions

to the optimization problem in (3.34), with a desired convergence rate –, and — as

an upper bound on ||K||2 for the system

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV ÏT

p

◊̃
p

+

S

WU
0

1

T

XV u

s

= A(z, t) + B(z, t)u
s

(3.32)
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where A(z, t) and B(z, t) can be written in the following polytopic form.

A(x, t) = A0 + Â1(x, t)�A1 + · · · + Â

l

(x, t)�A

l

B(x, t) = B0 + Â1(x, t)�B1 + · · · + Â

l

(x, t)�B

l

a

i

Æ Â

i

(x, t) Æ b

i

(3.33)

and A0, �A

i

œ R(2◊2) and B0, �B

i

œ R(2◊1) are constant matrices for i = 1, . . . , l,

and Â

i

are scalar-valued functions with known bounds, a

i

and b

i

. Note that Â

i

can

be a bounded nonlinear function or an uncertain parameter that lies within known

bounds. The LMI-based optimization problem is stated below.

Minimize — subject to:

Y
_________]

_________[

AS + BL + SA

T + L

T

B

T + 2–S Æ 0

S Ø I

Q

ca
—I L

T

L S

R

db Ø 0

(3.34)

for all (A, B) in AB

where the 2l pairs of (A, B) in the convex set AB are defined below:

AB = {(A0 + ”1A1 + · · · + ”

l

A

l

, B0 + ”1B1 + · · · + ”

l

B

l

) : ”

i

= a

i

or b

i

for i = 1, . . . , l}

From this we also obtain the s.p.d Lyapunov matrix P = S

≠1. The robust feedback

term u

r

overcomes the parametric uncertainties associated with non-polytopic terms

and the disturbances, and is given by,

u

r

= ≠fl(z, t) tanh
A

Ÿfl(z, t)
‘

÷

B

fl(z, t) Ø
---ÏT

np

◊̃
np

+ �(z, t)
---

÷ = p12z1 + p22z2

Ÿ = 0.2785

(3.35)
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with p

ij

from the Lyapunov matrix P . Then, from (3.28), (3.29), (3.31), and (3.35),

we have the following complete control law.

u = g(z, t)≠1
ū

ū = ẍ

d

(t) ≠ ÏT

p

◊̂
p

≠ ÏT

np

◊̂
np

(t) + LS

≠1
z ≠ fl(z, t) tanh

A
Ÿfl(z, t)

‘

÷

B (3.36)

The discontinuous projection-based adaptation law that completes the ARC-LMI

algorithm is given by,

˙̂
◊

np

= Proj
◊̂

np

(�Ï
np

÷)

Proj
◊̂

i

(•
i

) =

Y
_______]

_______[

0 if

Y
__]

__[

◊̂

i

= ◊̂

i,max

and •
i

> 0

◊̂

i

= ◊̂

i,min

and •
i

< 0

•
i

otherwise

(3.37)

where � is a diagonal positive definite matrix. The adaptation law (3.37) guarantees

that ◊̂(t) œ �
◊

for all t, and therefore ◊̃(t) is bounded. Theorem 3.2.1 summarizes

the results obtained from the ARC-LMI controller design.

Theorem 3.2.1 (ARC-LMI) Given the uncertain second-order dynamic system (3.24)

with the error dynamics shown in (3.25) and under Assumption 3.2.1, the nonlinear

ARC-LMI control input (3.36) together with the adaptation law (3.37) yield the fol-

lowing results:

I. All signals are bounded and the tracking error is guaranteed to exponentially

converge to a ball of constant radius at a rate of convergence no less than –.

The transient performance is prescribed and can be improved by increasing –

and decreasing ‘.

II. If the system is only subject to parametric uncertainties after some time t0, i.e.

�(z, t) = 0, ’t Ø t0, then asymptotic tracking is guaranteed in addition to the

results in Part I.

For a proof of Theorem 3.2.1, see pages 18 and 19.
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3.2.2 Attitude-Altitude Control

The roll angle dynamics from (3.38) can be written explicitly as,

ṗ = c1pq + c2qr + c3�r

q + c4·„

+ � (3.38)

where,

c1 = I

xz

“

(I
xx

≠ I

yy

+ I

zz

) , c3 = I

zz

I

r

“

c2 = 1
“

(I
yy

I

zz

≠ I

2
zz

≠ I

2
xz

) , c4 = I

zz

“

� = 1
“

(I
xz

·

Â

+ I

zz

·

w,„

+ I

xz

·

w,Â

) , “ = I

xx

I

zz

≠ I

2
xz

From (3.3), we have the relation „̇ = p + (q sin „ + r cos „) tan ◊. Therefore, when „

and ◊ are small, „̇ ¥ p. Furthermore, assuming small angular rates, „̈ ¥ ṗ. In order

to track a constant reference roll angle, „

d

, we define the tracking error, z1 := „ ≠ „

d

,

and the rate error z2 := „̇ ≠ „̇

d

= „̇. Then we can write the second-order uncertain

error dynamics of (3.38) as follows.

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV {c1pq + c2qr ≠ c3�r

q + �} +

S

WU
0

c4

T

XV ·

„

(3.39)

Here z = [z1, z2]T is the error vector, � represents the lumped disturbances (including

the coupling e�ect from the yaw controller), and ·

„

is the control input that will be

designed to track „

d

. Separating the polytopic terms from the non-polytopic ones,

we can express (3.39) in the form that is used for the ARC-LMI controller design

method, that is,

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊
p

+ ÏT

np

◊
np

+ �
Ô

+

S

WU
0

c4

T

XV ·

„

(3.40)

where,

Ï
p

= pq , ◊
p

= c1

Ï
np

= [qr, �
r

q]T , ◊
np

= [c2, c3]T
(3.41)
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From Assumption 3.2.1, we know the bounds of the uncertain parameters ◊ :=

[◊
p

, ◊
np

]T , and the bound on the lumped disturbance term �. As there is an un-

certain gain c4 on the input ·

„

, we re-write (3.40) using the parameter estimation

error c̃4 = c4 ≠ ĉ4, as follows.

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊
p

+ ÏT

np

◊
np

+ c̃4·„

+ �
Ô

+

S

WU
0

ĉ4

T

XV ·

„

(3.42)

Continuing with the ARC-LMI procedure, we propose the control law,

·

„

= 1
ĉ4

(u
m

+ u

s

+ u

r

) (3.43)

and begin with the adaptive model compensation term u

m

,

u

m

= ≠ÏT

p

◊̂
p

≠ ÏT

np

◊̂
np

(3.44)

where ◊̂ are the parameter estimates. This yields the following closed-loop error

dynamics.

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊̃
p

+ u

s

Ô
+

S

WU
0

1

T

XV
Ó
ÏT

u

◊̃
u

+ � + u

r

Ô
(3.45)

where ◊̃ = ◊ ≠ ◊̂ is the error in parameter estimates, ÏT

u

= [ÏT

np

, ·

„

] and ◊T

u

=

[◊T

u

, c4]T . Then, the first half of the right-hand-side of (3.45) can be written in the

polytopic form,
S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
ÏT

p

◊̃
p

+ u

s

Ô
= A(z, t)z + B(z, t)u

s

(3.46)

where,

A(z, t) = A0 + Â1(z, t)�A1

B(z, t) = B0 + Â1(z, t)�B1

(3.47)

with,

A0 = �A1 =

S

WU
0 1

0 0

T

XV , B0 =

S

WU
0

1

T

XV , �B1 =

S

WU
0

0

T

XV

Â1 = c̃1q , a1 Æ Â1 Æ b1

(3.48)
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The bounds a1 and b1 are known from the bounds on c̃1 and the physical bound

on the pitch rate q. The stabilizing feedback term u

s

, then, can be computed from

the LMI-based optimization problem (3.34), by choosing a desired convergence rate

– > 0, such that

u

s

= LS

≠1
z = Kz (3.49)

stabilizes the nominal system with polytopic uncertainties, i.e. the system in (3.46).

A benefit of the ARC-LMI controller, compared to the traditional ARC method, is

that the optimization problem minimizes —, which is an upper bound on the norm

of the gain matrix ||K||2, thereby reducing the control e�ort and the possibility of

actuator saturation. The second half of the right-hand-side of (3.45) is stabilized via

a continuous approximation of the signum function, namely,

u

r

= ≠fl tanh
3

Ÿfl

‘

÷

4
(3.50)

where,

fl(z, t) =
---Ï

np

---
T

|◊
np,max

≠ ◊
np,min

| + ”(z, t)

”(z, t) Ø |�| , ’t, z

Ÿ = 0.2785

÷ = p12z1 + p22z2

(3.51)

the scalar ‘ > 0 is a design parameter that relates to the bound on the tracking error,

and p

ij

is from the Lyapunov matrix P = S

≠1 (obtained from the computation of u

s

).

Then, the complete control law from (3.43), (3.44), (3.49), and (3.50), which can be

written as

·

„

= 1
ĉ4

3
≠ÏT

p

◊̂
p

≠ ÏT

np

◊̂
np

+ Kz ≠ fl tanh
3

Ÿfl

‘

÷

44
(3.52)

yields a tracking error the converges at a rate of – to a known bounded norm of the

error, which is prescribed by the controller design parameters – and ‘. Furthermore,

with the discontinuous projection-based adaptation law,

˙̂
◊

u

= Proj
◊̂

u

(�Ï
u

÷) (3.53)
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the steady state performance of the controller is improved, and in the absence of

disturbances, asymptotic tracking is guaranteed. Note that with the ARC-LMI con-

troller design we have reduced the number of parameters in the adaptation from four

parameters (as would have been required by the traditional ARC) to the three un-

certain parameters in ◊
u

. The pitch and yaw controllers (·
◊

and ·

Â

, respectively) are

designed in a similar fashion for the dynamics from (3.8), namely

q̇ = c1,q

pr + c2,q

(r2 ≠ p

2) ≠ c3,q

�
r

p + c4,q

·

◊

+ �
q

(3.54)

ṙ = c1,r

pq + c2,r

qr + c3,r

�
r

q + c4,r

·

Â

+ �
r

(3.55)

respectively. The parameters are given by

c1,q

= 1
I

yy

(I
zz

≠ I

xx

) , c3,q

= I

r

I

yy

c2,q

= I

xz

I

yy

, c4,q

= 1
I

yy

�
q

= ·

w,◊

I

yy

,

and

c1,r

= 1
“

(I2
xx

≠ I

xx

I

yy

≠ I

2
xz

) , c3,r

= I

xz

I

r

“

c2,r

= I

xz

“

(≠I

xx

+ I

yy

≠ I

zz

) , c4,r

= I

xx

“

�
r

= 1
“

(I
xz

·

„

+ I

xz

·

w,„

+ I

xx

·

w,Â

) , “ = I

xx

I

zz

≠ I

2
xz

The the three controllers ·

„

, ·

◊

, and ·

Â

provide the inner-loop attitude control for

tracking the desired angles „

d

, ◊

d

, and Â

d

respectively, which are generated by the

outer-loop position controller (described in Section 3.2.3). The final part of the inner-

loop control is the altitude controller. From (3.4), the altitude dynamics can be

written in the following form.

ḧ = ≠g ≠ c

h

(ḣ ≠ w

h

)|ḣ ≠ w

h

| + cos ◊ cos „

m

T (3.56)

where c

h

= k

u

/m and w

h

is the upward wind in the inertial frame. Here we assume

that drag coe�cient of the quadrotor does not vary for small angles of pitch and roll,
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yet we consider the e�ect of this drag force, which acts as a damping term on the

acceleration of the quadrotor in the vertical axis. In order to track a time-varying

desired altitude trajectory h

d

(t), define the error states, z = [z1, z2]T , with z1 = h≠h

d

and z2 = ḣ ≠ ḣ

d

. Then the error dynamics of (3.56) can be written in the following

form.

ż =

S

WU
0 1

0 0

T

XV z +

S

WU
0

1

T

XV
Ó
≠g ≠ c

h

ḣ|ḣ| ≠ ḧ

d

+ �
h

Ô
+

S

WU
0

c

m

T

XV cos ◊ cos „ T (3.57)

where, c

m

= 1/m and �
h

= c

h

ḣ|ḣ|≠ c

h

(ḣ≠w

h

)|ḣ≠w

h

|. Note that we have separated

the low frequency component of the drag disturbance for improved estimation of the

parameter c

h

. The control input T is the combined thrust of the four rotors, and can

be designed as follows. Let,

T = 1
ĉ

m

cos ◊ cos „

(u
m

+ u

s

+ u

r

) (3.58)

The adaptive model compensation term u

m

is given by,

u

m

= ḧ

d

≠ ÏT ◊̂ (3.59)

where,

Ï =

S

WU
≠g

≠ḣ|ḣ|

T

XV

T

, ◊̂ =

S

WU
1

ĉ

h

T

XV (3.60)

The stabilizing feedback term u

s

= Kz is computed as in (3.49), for the system,

A(z, t) = A0 =

S

WU
0 1

0 0

T

XV

B(z, t) = B0 =

S

WU
0

1

T

XV

(3.61)

The robust feedback term u

r

= ≠fl tanh
1

Ÿfl

‘

÷

2
is obtained as in (3.50) and the

projection-based adaptation from (3.53) is included, both using the vectors ÏT

u

=

[ÏT

, T ] and ◊̂
T

u

= [◊̂T

, ĉ

m

]. For improved transient performance, the desired altitude
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trajectory h

d

(t) is generated via a smooth function and using trajectory initialization

to ensure z1(0) = z2(0) = 0 at each waypoint. This procedure is detailed in Sec-

tion 3.2.4. This concludes the inner-loop controllers, namely ·

„

, ·

◊

, ·

Â

, and T . In the

following section we describe the ARC method used for position tracking control of

the quadrotor in the (N, E)-plane of the flat-earth coordinate system.

3.2.3 Position Tracking Control

The outer-loop position controller in the schematic of Figure 3.4 receives the

quadrotor states, e.g. angles and velocities, and the desired trajectory, i.e. N

d

(t) and

E

d

(t), and computes the required roll, pitch, and yaw angles. In order to control the

position of the quadrotor and to track a time varying trajectory in the (N, E)-plane,

we return to the dynamic equations in (3.4).

N̈ = ≠ T

m

(cÂs◊c„ + sÂs„) ≠ k

s

m

1
Ṅ ≠ w

N

2 ---Ṅ ≠ w

N

--- (3.62)

Ë = ≠ T

m

(sÂs◊c„ ≠ cÂs„) ≠ k

s

m

1
Ė ≠ w

E

2 ---Ė ≠ w

E

--- (3.63)

Note that here the thrust input T is predetermined by the altitude controller (3.58),

therefore the control of N and E is actually derived from the commanded angles „

and ◊. Physically, this is explained by the fact that the quadrotor must roll or pitch

in order to rotate its thrust vector in the direction of desired motion. We define the

error dynamics between the North position N and the desired position N

d

as follows,

z

N

=

S

WU
z1

z2

T

XV =

S

WU
N ≠ N

d

Ṅ ≠ –

N

T

XV (3.64)

where –

N

= Ṅ

d

≠ k1z1 is a virtual control input with k1 > 0, as is required in the

backstepping controller design approach. By stabilizing ż2, i.e. when z2 æ 0, then

Ṅ = –

N

, and therefore ż1 = –

N

≠ Ṅ

d

= ≠k1z1, which is stable, meaning that the
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tracking error converges to zero, i.e. z1 æ 0. Similarly, for the error dynamics between

the East position E and the desired position E

d

, define,

z

E

=

S

WU
z3

z4

T

XV =

S

WU
E ≠ E

d

Ė ≠ –

E

T

XV (3.65)

where –

E

= Ė

d

≠ k3z3 is a virtual control input with k3 > 0. Then the second-order

error dynamics for the North and East positions are written as follows.

ż2 = ≠ T

m

(cÂs◊c„ + sÂs„) ≠ k

s

m

Ṅ

---Ṅ
--- ≠ –̇

N

+ �
N

(3.66)

ż4 = ≠ T

m

(sÂs◊c„ ≠ cÂs„) ≠ k

s

m

Ė

---Ė
--- ≠ –̇

E

+ �
E

(3.67)

where,

�
N

= k

s

m

Ó
Ṅ

---Ṅ
--- ≠

1
Ṅ ≠ w

N

2 ---Ṅ ≠ w

N

---
Ô

�
E

= k

s

m

Ó
Ė

---Ė
--- ≠

1
Ė ≠ w

E

2 ---Ė ≠ w

E

---
Ô

–̇

N

= N̈

d

≠ k1(Ṅ ≠ Ṅ

d

)

–̇

E

= Ë

d

≠ k3(Ė ≠ Ė

d

)

(3.68)

As in the altitude controller design, we separated the structured uncertainty due to

drag from the external disturbance due to wind. This provides better estimation ca-

pabilities for k

s

/m, while still allowing for the robust controller to overcome bounded

external disturbances. Given that „ and ◊ are coupled, we can stabilize (3.66) and

(3.67) as follows. Let us define,

cÂs◊c„ + sÂs„ = u2

sÂs◊c„ ≠ cÂs„ = u4

(3.69)

where the intermediate control inputs,

u2 = ≠ 1
ĉ1T

1
ĉ2Ṅ

---Ṅ
--- + –̇

N

+ u

r2 ≠ k2z2
2

(3.70)

u4 = ≠ 1
ĉ1T

1
ĉ2Ė

---Ė
--- + –̇

E

+ u

r4 ≠ k4z4
2

(3.71)
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and ĉ1 = 1/m, ĉ2 = k

s

/m, and k2, k4 > 0. Then from (3.66) and (3.67), the closed-

loop systems are given by,

ż2 + k2z2 = u

r2 +
Ó
ÏT

2 ◊̃ + �
N

Ô
(3.72)

ż4 + k4z4 = u

r4 +
Ó
ÏT

4 ◊̃ + �
E

Ô
(3.73)

respectively, where the vectors ÏT

2 = [u2, Ṅ |Ṅ |], ÏT

2 = [u4, Ė|Ė|], and ◊̃2 = ◊̃4 =

[c̃1, c̃2]T . The left hand sides of (3.72) and (3.73) represent the closed-loop stable

dynamics of the nominal systems. The right hand sides contain all model uncertainties

and disturbances, for which we know the bounds from Assumption 3.2.1. Therefore,

we can design the robust feedback terms u

r2 and u

r4 to stabilize the error dynamics

as we have done in (3.50). To improve the steady state tracking performance, we use

the projection-based parameter adaptation law,

˙̂
◊

i

= Proj
◊̂

i

(�Ï
i

z

i

) (3.74)

for i = 2, 4. Having designed the intermediate control inputs u2 and u4 and their

respective adaptation laws, we can return to the coupled equations in (3.69). To

solve for the roll and pitch angles commands, we write (3.69) in the following form.
S

WU
sÂ cÂc„

≠cÂ sÂc„

T

XV

S

WU
s„

s◊

T

XV =

S

WU
u2

u4

T

XV (3.75)

If we restrict the angles |„(t)| Æ — and |◊(t)| Æ — for all t and for some angle — < fi/2,

the previous system can be inverted to yield,
S

WU
s„

s◊

T

XV =

S

WU
sÂ ≠cÂ

cÂ/c„ sÂ/c„

T

XV

S

WU
u2

u4

T

XV (3.76)

Then the desired roll and pitch angles that are required for tracking N

d

(t) and E

d

(t)

are given by,

„

d

= sat {arcsin (sÂu2 ≠ cÂu4)} (3.77)

◊

d

= sat
I

arcsin
A

cÂ

c„

u2 ≠ sÂ

c„

u4

BJ

(3.78)
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where the saturation function, sat(•), is defined as follows,

sat(u) =

Y
_______]

_______[

— , if u > —

u , if |u| Æ —

≠— , if u < ≠—

(3.79)

with — = fi/4 radians. Note that the position control is achieved by pitch and roll

angles, irrespective of the heading angle Â. For the quadrotor system, the heading

angle is a degree of freedom that can be set to an arbitrary value. Nevertheless,

in situations where the quadrotor is taking measurements as it flies, e.g. with a

multi-spectral or infrared sensor, the heading is usually desired to be along the flight

path.

We propose the guidance logic in Algorithm 1 for computing the desired heading

angle, Â

d

. In this algorithm, atan2(•) is the arctangent function that returns the

Algorithm 1 Computing the desired heading angle Â

d

1: Â

wp

Ω fi/2 ≠ atan2(�N, �E)

2: �Â Ω Â

wp

≠ Â

i

3: if |�Â| Æ fi then

4: Â

d

Ω Â

wp

≠ �Âe

≠at

5: else

6: Â

d

= Â

wp

≠ sgn(�Â)2fi ≠ (�Â ≠ sgn(�Â)2fi)e≠at

7: end if

angle in its appropriate quadrant, Â

i

is the heading at the previous waypoint, and

Â

wp

, �N , and �E are defined in Figure 3.5. The time variable t is re-initialized upon

reaching each new waypoint, and a is a design parameter.

The guidance logic in Algorithm 1 ensures that the quadrotor turns in the shortest

direction of rotation, either clockwise or counterclockwise, at a rate that does not

exceed the physical abilities of the quadrotor, i.e. the turn rate is constrained by

Â̇

max

= (fia) rad/s. This completes the position controller in the outer-loop of the
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N!

E!

waypoint!

�wp

�

�0 = 0

�0 = �/2

�N

�E

Figure 3.5.. Definition of heading and waypoint angles in the inertial
frame

overall controller architecture. In the following section, we discuss the trajectory

generation method that improves the transient performance of the quadrotor and

allows for autonomous waypoint navigation.

3.2.4 Trajectory Generation

Generating a trajectory from a set of waypoints enables the quadrotor to navigate

autonomously and provides a framework for additional capabilities, such as mid-flight

trajectory re-planning and collision avoidance. In [4], it was shown that a better

performance is attainable when using path-following for nonlinear systems rather

than reference tracking. The authors refer to path-following as tracking a geometric

path while satisfying dynamic specifications, such as a desired velocity. In accordance
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with this, the authors in [59] examine the benefits of generating a desired trajectory

x

d

(t) from a reference trajectory x

r

(t) by using an n-th order filter,

x

(n)
d

+ —1x
(n≠1)
d

+ . . . + —

n

x

d

= x

(n)
r

+ —1x
(n≠1)
r

+ . . . + —

n

x

r

(3.80)

and assigning the initial conditions of (3.80) such that the initial errors z

i

(0) = 0

for i = 1, . . . , n. The parameters, —

i

, in this problem need to be chosen properly in

order to have a stable filter with good performance. In [9], the trajectory generation

algorithm uses the concept of di�erential flatness to compute the desired trajectory

and then optimizes the results based on time or flight envelope constraints. Inspired

by these previous works, we propose the following algorithm for trajectory generation,

which incorporate the physical capabilities of the specific quadrotor. Let the desired

state x

d

(t) denote the generated trajectory for the N , E, or h states, and consider

the function

x

d

(t) = x

f

≠ (x
f

≠ x

i

)(1 + at)e≠at + ẋ

i

te

≠at (3.81)

where x

f

is the final desired position, x

i

= x(0) and ẋ

i

= ẋ(0) are the initial position

and velocity, and a > 0 is a design parameter. The time variable t is re-initialized

upon reaching each successive waypoint. The first and second derivatives of (3.81)

are given by

ẋ

d

(t) = e

≠at [ẋ
i

+ at((x
f

≠ x

i

)a ≠ ẋ

i

)] (3.82)

ẍ

d

(t) = ≠ae

≠at [(x
f

≠ x

i

)a(at ≠ 1) + ẋ

i

(2 ≠ at)] (3.83)

It is simple to verify that x

d

(0) = x

i

and ẋ(0) = ẋ

i

, and therefore, the initial tracking

errors z1(0) = z2(0) = 0. This improves the transient performance for trajectory

tracking, as it guarantees that the Lyapunov function V (0) = 0 and therefore the

error bound is smaller. Two example trajectories and their derivatives are shown for

x

i

= ẋ

i

= ẍ

i

= 0, and x

f

= 5 meters in Figure 3.6. In both cases, the generated

trajectory satisfies z1(0) = z2(0) = 0. For the design parameter a = 0.5, the initial

error is ż2(0) = 1.25 m/s2, and for a = 1.0, ż2(0) = 5 m/s2. Therefore, a smaller a
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Figure 3.6.. Trajectory generated for x

i

= ẋ

i

= ẍ

i

= 0, and x

f

= 5

can guarantee better transient trajectory tracking as the initial acceleration error is

smaller, but it comes at the cost of a slower rise time. Although a can be chosen

arbitrarily, we propose two techniques to further improve the transient performance.

Observe that the initial value of the desired acceleration is given by,

ẍ

d

(0) = (x
f

≠ x

i

)a2 ≠ 2ẋ

i

a (3.84)

Ideally, we would like ẍ

d

(0) = ẍ

i

. However, this cannot always be guaranteed. One

method to overcome this di�culty is to minimize ” = (ẍ
d

(0) ≠ ẍ

i

) by solving the

following optimization problem,

min
a>‘

---(x
f

≠ x

i

)a2 ≠ 2ẋ

i

a ≠ ẍ

i

--- (3.85)

where ‘ > 0 is an acceptable minimum value for a. Note that this optimization

problem only needs to be solved once at each new waypoint. Another approach is to

predetermine a constant a, and ensure that the chosen waypoints are relatively close

to each other, such that (x
f

≠x

i

) is small. This can be done, for example, by dividing a

long journey into smaller intermediate trajectories with adjoining waypoints. In the

following section, we demonstrate the controller performance with two illustrative

simulations.
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3.3 Simulation Setup and Results

In this section, we present two illustrative examples to demonstrate the perfor-

mance of the ARC-LMI controller. The first example is a mid-flight package delivery

mission in the presence of wind disturbances (Figure 3.7) and the second example

is a building inspection mission in the presence of strong wind gusts and turbulence

(Figure 3.8).

Figure 3.7.. Package delivery mission schematic

Figure 3.8.. Building inspection mission schematic
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Matlab’s Simulink software is used to model the full nonlinear dynamics of the

quadrotor (with S-functions) and to model the wind conditions (with the Dryden

continuous turbulence model and the Dryden discrete wind gust model [30], [35]). The

ARC-LMI controllers and trajectory generator are also constructed with S-functions.

Further details regarding the software architecture are given in Appendix C. The

quadrotor simulation parameters are based on [1] and [47], and are shown in Table 3.1.

Table 3.1.. Quadrotor simulation parameters

Parameter Description Value Unit

m quadrotor mass 1.282 kg

m

p

package mass 0.500 kg

g gravitational acceleration 9.810 m/s2

I

xx

, I

yy

moments of inertia 4.856 ◊10≠3 kg·m2

I

zz

moment of inertia 8.801 ◊10≠3 kg·m2

I

xz

moment of inertia 2.428 ◊10≠4 kg·m2

I

r

rotor moment of inertia 8.801 ◊10≠5 kg·m2

k

s

, k

u

drag coe�cients 0.250 kg/m

k

t

motor thrust factor 1.733 ◊10≠5 kg·m

k

m

motor gain 0.200 ◊102 1/s

b rotor drag factor 1.140 ◊10≠7 kg·m2

l

„,f

length 0.222 m

l

„,b

length 0.206 m

l

◊,f

length 0.130 m

l

◊,b

length 0.136 m
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3.3.1 Example 1: Package Delivery

In the first example, we simulate a package delivery scenario in the presence of

constant wind. The quadrotor is required to descend from a height of 10 meters to

5 meters, release a package with an unknown mass of m

p

= 0.5 kilograms, and then

climb back to a height of 10 meters. The flight is autonomous and based on a set of

waypoints (shown as green spheres in Figure 3.9). The external disturbances include

a constant north-east wind velocity of 1 m/s. Once the package is dropped, the

total mass of the system (m
tot

= m + m

p

) abruptly changes. In reality, the package

influences the overall system’s drag coe�cients and moments of inertia, too. To take

these e�ects into account, the parameters that vary after dropping the package are

shown in Table 3.2.

Table 3.2.. Change in simulation parameters after package drop

Parameter Description Value Unit

m

p

package mass 0.00 kg

I

xx

, I

yy

moments of inertia 0.95 ◊I

xx

kg·m2

I

zz

moment of inertia 0.90 ◊I

zz

kg·m2

I

xz

moment of inertia 0.90 ◊I

xz

kg·m2

k

s

, k

u

drag coe�cients 0.90 ◊k

s

kg/m

A time history of the quadrotor height is shown in Figure 3.10 for clarity, and the

tracking errors are shown in Figure 3.11. The initial parameter estimates ◊̂(t0) are

equal to the parameters with no mass attached, i.e. the parameters in Table 3.1. It

is evident that the errors remain bounded even in the presence of wind disturbances

(shown in Figure 3.13) and after the abrupt change of several parameters. The norm

of the three-dimensional tracking error vector ||›
e

|| does not exceed 0.1 meters.

In this scenario, the altitude dynamics have a relatively ‘exciting’ trajectory.

Therefore, we can expect the parameter estimates to be closer to their true val-
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Figure 3.9.. Package delivery: three-dimensional trajectory tracking. The
green shperes are waypoints, the red dashed line shows the package drop
location, and the star indicates the initial position.
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Figure 3.10.. Package deliv-
ery: altitude history (solid
blue line) reference height
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Figure 3.12.. Package deliv-
ery: roll, pitch, and yaw histo-
ries (solid lines), and reference
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Figure 3.13.. Package deliv-
ery: wind disturbances: 1 m/s
NW wind.

ues. Figure 3.15 presents the time history of the total mass estimate m̂

tot

from the

altitude controller’s adaptation law, together with the true value m

tot

. Evidently, the

mass estimate quickly approaches the correct value, which helps to reduce the steady

state tracking error. Furthermore, the motor speeds in Figure 3.14 indicate that there

was no actuator saturation and the control inputs responded quickly to the sudden

package drop.
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Figure 3.14.. Package deliv-
ery: motor angular velocities,
normalized.
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To further demonstrate the advantages of the ARC-LMI controller, we simulate a

sinusoidal altitude reference tracking, in the presence of a 7 m/s wind gust (equivalent

to a downward force of 0.75 times the weight of the quadrotor), and a 0.5 kg package

dropped at t = 10 sec (see Figure 3.16). The absolute altitude tracking error is

compared in Figure 3.17 with two other control methods: a project-based direct

adaptive controller (i.e. the ARC-LMI controller without the robust feedback), and

a deterministic robust controller (i.e. the ARC-LMI controller with the adaptation

switched o�). The initial parameter estimates are those of the nominal system without

a package.
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Figure 3.16.. Controller com-
parison: altitude tracking and
package drop (at t = 10 sec)in
the presence of a 1 m/s NW
wind and a 7 m/s wind gust
from 5-12 seconds.
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From Figure 3.17, it is evident that the ARC-LMI controller has at most the

same absolute altitude tracking error as the other controllers. Aided by the online

learning scheme, the ARC-LMI controller has significantly smaller errors during the

strong wind gust disturbance (between 5-12 seconds). Furthermore, the steady state

tracking error is significantly improved from 15 seconds onward, i.e. after the package
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is dropped and the wind gust ends. Therefore, it should be evident that the ARC-LMI

control algorithm successfully merges the adaptive and robust approaches without

sacrificing the performance of either one.

3.3.2 Example 2: Building Inspection in Wind Gusts

In this second example, we simulate a building inspection mission in an urban

environment. The quadrotor is carrying an uncertain mass (m
p

= 0.25 kg) that

represents an added camera or other visual sensor. The mission requires a close flight

around a right-angle corner of a building. However, the wind in the simulation is

turbulent and a sudden downward gust begins at t = 5 seconds. This type of airflow

is common in urban environments and in close proximity to tall buildings [50].

This mission motivates the importance of precise trajectory tracking, because a

large deviation could signify a collision between the quadrotor and the building. It

should be made clear that this scenario is a particular case that belongs to a larger

class of problems, for which the ARC-LMI controller is well suited, as shown in the

following figures. Figure 3.18 displays the three-dimensional trajectory and waypoints

of the quadrotor, and Figure 3.19 presents the tracking errors. Considering the strong

downward wind gust and turbulent air flow (shown in Figure 3.21), the trajectory

tracking is highly precise, and the three-dimensional error vector is norm-bounded by

at most 0.2 meters. The attitude angles, which receive the reference commands from

the outer-loop position controller, are presented in Figure 3.20.

The drag force from the wind gust was equivalent to 0.75 times the weight of

the quadrotor, which is a considerable disturbance. It should be noted from Fig-

ure 3.22 that the motors were not saturated, but were close to their maximum thrust

capability. Nevertheless, the trajectory tracking performance was not compromised.

Furthermore, as the the trajectory in this example was constant, we cannot expect the

parameter estimates to converge to their true values, but we still guarantee that the

robust feedback will overcome these uncertainties in addition to external disturbances.
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Figure 3.18.. Building inspec-
tion: three-dimensional tra-
jectory tracking. The green
shperes are waypoints, the red
dashed line shows the package
drop location, and the star in-
dicates the initial position.
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Figure 3.20.. Building in-
spection: roll, pitch, and
yaw histories (solid blue lines),
and reference angles (dashed
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This is justified by the incorrect total mass estimate shown in Figure 3.23. The mass

estimator is, in fact, excited by the downward wind, which cannot be di�erentiated

from additional weight.
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Figure 3.22.. Building inspec-
tion: motor velocities, nor-
malized.
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Figure 3.23.. Building in-
spection: total mass estimate
(solid blue line) and true total
mass (dashed red line).

In summary, the ARC-LMI controller was designed in Section 3.2 with the ob-

jective of precise trajectory tracking in the presence of parameteric uncertainties and

disturbances. In addition to external disturbances, the ARC-LMI controller was

shown to be robust to unmodeled dynamics (e.g., we have neglected the motor dy-

namics in the controller design). We have presented two illustrative examples, which

are based on recent quadrotor applications, to demonstrate the performance of the

controller. In both cases, the ARC-LMI controller overcame the parameteric uncer-

tainties, the external disturbances, and the unmodeled dynamics, and attained a high

level of precision in transient and steady state tracking.
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4. CONCLUSION

This thesis has dealt primarily with the nonlinear controller design for dynamic sys-

tems in the presence of parametric uncertainties and matched disturbances. The

theoretical framework was presented and applied to an autonomous quadrotor simu-

lation.

Chapter 2 has presented a novel control approach, which fuses the synergistic

qualities of adaptive robust control (ARC) and the powerful design tools of linear

matrix inequalities (LMI) to control uncertain second-order nonlinear systems. The

ARC-LMI control input is continuous and bounded, and guarantees fast and robust

trajectory tracking in the presence of bounded disturbances. The LMI-based robust

stabilizing feedback term is optimized to reduce the control e�ort. In general, tran-

sient performance can be prescribed by tuning two design parameters in a known

form. In the absence of external disturbances, asymptotic tracking is attained, and,

if the trajectory is su�ciently exciting, the parameters converge to their true values.

We have illustrated the ARC-LMI controller on a single-link manipulator system and

demonstrated that the tracking error remains within the prescribed bounds even in

the presence of external disturbances. As expected, the tracking error asymptotically

converged to zero when the disturbance was removed.

Chapter 3 has presented a new nonlinear control approach applied to the atti-

tude and trajectory tracking of a quadrotor helicopter with an X-configuration. A

detailed dynamic model of the quadrotor helicopter was derived based on Newtonian

mechanics prior to the controller design process. The ARC-LMI controller guarantees

a prescribed transient performance in the presence of uncertain parameter uncertain-

ties (e.g. moments of inertia and quadrotor mass) and bounded external disturbances

(e.g. constant wind disturbance and wind gusts). These properties made the ARC-

LMI controller well suited for problems such as precise trajectory tracking in windy
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conditions and package delivery scenarios. We have demonstrated the proposed ARC-

LMI controller with two illustrative examples. As expected, the ARC-LMI controller

was able to maintain the bounded tracking errors and, after dropping the package

of uncertain mass (which caused an abrupt change in the system’s mass and iner-

tia parameters) the online adaptation law reduced the steady state tracking errors.

Moreover, by using the proposed trajectory generation scheme, a precise trajectory

tracking performance was achieved, while minimizing the control e�ort and avoiding

actuator saturation.

4.1 Future Work

In future works, we will extend the ARC-LMI theory to multiple-input multiple-

output systems for more general systems in a semi-strict feedback form. The ARC-

LMI algorithm can also be extended to account for norm-bound linear di�erential

inclusions, such that the LMI-based feedback term can stabilize a larger class of

uncertain nonlinearities. Additionally, by considering an integrated direct/indirect

adaptive robust controller with linear matrix inequalities, the parameter estimation

can be improved without deteriorating the robust transient performance. This type

of controller can be used with fault-detection schemes to alert the control engineer of

actuator malfunction.

Furthermore, we will test the performance of the ARC-LMI controller on the IRIS

quadrotor, both in autonomous flight in windy conditions and in package dropping

experiments. By extending the ARC-LMI controller approach to multi-input multi-

output systems, the attitude controller can be designed simultaneously for all three

torque-input channels, which could produce an even better performance than the

modular approach in this thesis (at the expense of a more sophisticated controller

design).



REFERENCES



66

REFERENCES

[1] 3D Robotics. IRIS Operation Manual V5, March 2014.

[2] Adafruit. 3D Robotics Iris drone featured on blog.adafruit.com. http://bit.

ly/1vP7vYh. Accessed: 2015-02-20.

[3] P. Adigbli, C. Grand, J.-B. Mouret, and S. Doncieux. Nonlinear attitude and
position control of a micro quadrotor using sliding mode and backstepping tech-
niques, 2007.

[4] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović. Performance limitations
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A. Derivation of the Rotation Matrix

We can derive the rotation matrix from the inertial frame (N, E, D) to the body

frame (x, y, z) by successive rotations following the conventional order of yaw (Â) æ

pitch (◊) æ roll („). The rotation matrix that transforms an a-frame to a b-frame is

denoted Ra

b

: F a æ F b. For a more concise notation, the trigonometric functions

are abbreviated as: c– , cos(–), s– , sin(–), t– , tan(–).

Step 1: Yaw

x̂1 = cos Â N̂ + sin Â Ê

ŷ1 = ≠ sin Â N̂ + cos Â Ê

ẑ1 = D̂

∆ RI

b1 =

S

WWWWWU

cÂ sÂ 0

≠sÂ cÂ 0

0 0 1

T

XXXXXV

Step 2: Pitch
x̂2 = cos ◊ x̂1 ≠ sin ◊ ẑ1

ŷ2 = ŷ1

ẑ2 = sin ◊ x̂1 + cos ◊ ẑ1

∆ Rb1
b2 =

S

WWWWWU

c◊ 0 ≠s◊

0 1 0

s◊ 0 c◊

T

XXXXXV

Step 3: Roll
x̂ = x̂2

ŷ = cos „ ŷ2 + sin „ ẑ2

ẑ = ≠ sin „ ŷ2 + cos Â ẑ2

∆ Rb2
b

=

S

WWWWWU

1 0 0

0 c„ s„

0 ≠s„ c„

T

XXXXXV

Figure A.1.. Yaw æ pitch æ roll rotations and rotation matrices
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Therefore, the rotation matrix from the inertial frame (N, E, D) to the body frame

(x, y, z) is given by,

RI

b

= Rb2
b

Rb1
b2 RI

b1 =

S

WWWWWU

c◊cÂ c◊sÂ ≠s◊

s„s◊cÂ ≠ c„sÂ s„s◊sÂ + c„cÂ s„c◊

c„s◊cÂ + s„sÂ c„s◊sÂ ≠ s„cÂ c„c◊

T

XXXXXV

Furthermore, it is clear that Rb2
b

, Rb1
b2, and RI

b1 are orthogonal, and therefore, their

product RI

b

= Rb2
b

Rb1
b2 RI

b1 is also orthogonal.
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B. Summary of Quadrotor Equations of Motion

The following equations summarize the dynamic model of the quadrotor system. The

bold symbols denote the control inputs to the system (T , ·„, ·◊, ·Â).

FORCE EQUATIONS:

u̇ = rv ≠ qw ≠ g sin ◊ ≠ k

s

m

(u ≠ w

x

)|u ≠ w

x

|

v̇ = pw ≠ ru + g cos ◊ sin „ ≠ k

s

m

(v ≠ w

y

)|v ≠ w

y

|

ẇ = qu ≠ pv + g cos ◊ cos „ ≠ k

u

m

(w ≠ w

z

)|w ≠ w

z

| ≠ 1
m

T

(B.1)

KINEMATIC EQUATIONS:

„̇ = p + (q sin „ + r cos „) tan ◊

◊̇ = q cos „ ≠ r sin „

Â̇ = (q sin „ + r cos „)/ cos ◊

(B.2)

MOMENT EQUATIONS:

ṗ = 1
I

xx

I

zz

≠I

2
xz

{I

xz

(I
xx

≠ I

yy

+ I

zz

)pq + (I
yy

I

zz

≠ I

2
zz

≠ I

2
xz

)qr

+I

zz

I

r

�
r

q + I

zz

·„ + I

xz

·Â + I

zz

·

w,„

+ I

xz

·

w,Â

}

q̇ = 1
I

yy

{(I
zz

≠ I

xx

)pr + I

xz

(r2 ≠ p

2) ≠ I

r

�
r

p + ·◊ + ·

w,◊

}

ṙ = 1
I

xx

I

zz

≠I

2
xz

{(I2
xx

≠ I

xx

I

yy

+ I

2
xz

)pq + I

xz

(≠I

xx

+ I

yy

≠ I

zz

)qr

+I

xz

I

r

�
r

q + I

xx

·Â + I

xz

·„ + I

xx

·

w,Â

+ I

xz

·

w,„

}

(B.3)

NAVIGATION EQUATIONS:

Ṅ = cÂc◊ u + (cÂs◊s„ ≠ sÂc„) v + (cÂs◊c„ + sÂs„) w

Ė = sÂc◊ u + (sÂs◊s„ + cÂc„) v + (sÂs◊c„ ≠ cÂs„) w

ḣ = s◊ u ≠ c◊s„ v ≠ c◊c„ w

(B.4)
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C. Quadrotor Simulation: Simulink Structure

The Matlab Simulink model in Figure C.1 was used to simulate and control the full

nonlinear quadrotor. The controllers within the subsystems of Figure C.1 were coded

Figure C.1.. Simulink model of quadrotor

with Simulink S-functions. The trajectory generation algorithm was also coded with

Simulink S-functions.

The wind disturbances were simulated with the aid of the following built-in

Simulink models: horizontal wind model, Dryden discrete wind gust model, and

Dryden continuous turbulence model, as show in Figure C.2. The second discrete

wind gust block was used to cancel the wind gust generated by the first block (after a

predetermined number of seconds), as there is no built-in method for ending a wind

gust.
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Figure C.2.. Simulink model of wind disturbances
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