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Sehr geehrte Damen und Herren, 

wir freuen uns, Ihnen die Tagungsbände zur 10. Auflage des Internationalen 

Fluidtechnischen Kolloquium präsentieren zu können. Als eine der weltweit wichtigsten 

Tagungen im Bereich der hydraulischen und pneumatischen Antriebs-, Steuerungs- 

und Reglungstechnik hat sich das IFK als zentrale Austauschplattform für Experten der 

Branche in Europa etabliert. Es bietet im internationalen Rahmen Anwendern, 

Herstellern und Wissenschaftlern die Möglichkeit, Innovationen zu präsentieren und 

über Entwicklungstrends zu diskutieren 

Das Institut für Fluidtechnik (IFD) der Technischen Universität Dresden organisiert und 

veranstaltet nun zum fünften Mal das IFK, welches sich wachsender Teilnehmer- und 

Vortragszahlen erfreut. Mitveranstalter ist der Fachverband Fluidtechnik im Verband 

Deutscher Maschinen- und Anlagenbau e. V. (VDMA). Die Organisation und der 

Austragungsort wechseln alle zwei Jahre zwischen dem IFD in Dresden und dem 

Institut für fluidtechnische Antriebe und Steuerungen (IFAS) in Aachen. 

Am ersten Tag der Veranstaltung widmet sich das Symposium methoden- und 

grundlagenfokussierten Beiträgen. Die beiden folgenden Konferenztage bieten einen 

umfassenden anwendungs- und technologieorientierten Überblick über den neuesten 

Stand der Fluidtechnik. In dieser Kombination ist das IFK ein einzigartiges Forum zum 

Austausch zwischen universitärer Grundlagenforschung und industrieller 

Anwendererfahrung. Eine parallele Fachausstellung bietet die Möglichkeit, sich direkt 

über Produkte zu informieren und mit Herstellern, Forschern und Anwendern von 

morgen zu vernetzen. 

Das Motto des 10. IFK lautet „Smart Fluid Power“, womit die Tagung einen der großen 

Trends der Branche in den Fokus stellt: Durch ihr hohes Maß an Flexibilität bieten sich 

nahezu unbegrenzte Möglichkeiten der Integration fluidmechatronischer Systeme in 

intelligente Netzwerke. Das IFK lebt von interessanten und hochwertigen 

wissenschaftlichen Beiträgen. 

Für einen ungezwungenen Austausch sorgen wir mit einem umfangreichen Rahmen- 

und Kulturprogramm, bestehend aus Get-Together, Festabend, Hallenfest und 

verschiedenen Exkursionen und kulturellen Ausflügen – ein kleiner Einblick in das, was 

die Stadt Dresden sonst zu bieten hat.  

Ich wünsche Ihnen viel Spaß beim Lesen der Tagungsbeiträge. 

 

 

Prof. Dr.-Ing. Jürgen Weber  
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Dear Sir or Madam, 

we are pleased to present the Proceedings for the 10th edition of the International Fluid 

Power Conference (IFK). The IFK is one of the world’s most significant scientific 

conferences on fluid power control technology and systems. It offers a common 

platform for the presentation and discussion of trends and innovations to 

manufacturers, users and scientists. 

The Institute of Fluid Power (IFD) at the TU Dresden is organising and hosting the IFK 

for the fifth time, which has shown constant growth in number of participants and 

presentations. Supporting host is the Fluid Power Association of the German 

Engineering Federation (VDMA). The organization and the conference location 

alternates every two years between Dresden at the IFD and Aachen at the Institute for 

Fluid Power Drives and Controls (IFAS). 

The symposium on the first day is dedicated to presentations focused on methodology 

and fundamental research. The two following conference days offer a wide variety of 

application and technology orientated papers about the latest state of the art in fluid 

power. It is this combination that makes the IFK a unique and excellent forum for the 

exchange of academic research and industrial application experience. A 

simultaneously ongoing exhibition offers the possibility to get product information and 

to have individual talks with manufacturers. The conference is followed by excursions 

to regional companies and technical sights. 

The theme of the 10th IFK will be “Smart Fluid Power”, covering a growing trend in the 

fluid power industry. Through its great versatility fluid power has nearly limitless 

possibilities for the integration of fluid-mechatronic systems into intelligent networks. 

We will create an atmosphere for casual exchange by offering a vast frame and cultural 

program. It consists of a get-together, a Gala dinner, laboratory festivities and various 

excursions as well as cultural trips – a little peek into what this city has to offer. 

I hope you enjoy reading the conference proceedings. 

 

 

 

Prof. Dr.-Ing. Jürgen Weber 
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Peer Review beim 10. IFK 

Auch in diesem Jahr bieten wir allen Autoren die Möglichkeit eines optionalen Peer 

Reviews für ihr Paper. Dies stellt sicher, dass die begutachteten Paper hohen wissen-

schaftlichen Anforderungen genügen und für Förderprojekte oder Promotionsarbeiten 

die entsprechende Anerkennung erhalten. Diese Paper werden im Tagungsband mit 

dem Hinweis - peer reviewed - gekennzeichnet. 

Ein vom Autor zum Review ausgewähltes Paper wird durch insgesamt drei wissen-

schaftliche Spezialisten einer unabhängigen Begutachtung unterzogen. Diese wird von 

den Mitglieder des Programmausschusses (siehe Seite 5) sowie zusätzlich vom Institut 

für Fluidtechnik der TU Dresden oder dem Institut für Fluidtechnische Antriebe und 

Steuerung der RWTH Aachen übernommen. Nach dieser ersten Bewertung haben die 

Autoren die Möglichkeit, ihr Paper falls erforderlich, mit den geforderten Änderungen zu 

überarbeiten und erneut einzureichen. Nehmen die Gutachter die Änderungen an, wird 

der Beitrag als - peer reviewed -   in den Tagungsband aufgenommen. 

Dieser aufwändige Begutachtungsprozess dient der inhaltlichen und formellen Quali-

tätssicherung und wäre ohne die fachliche Unterstützung des Programmausschusses 

nicht möglich gewesen. Die Organisatoren des IFK bedanken sich bei allen Gutachtern 

für ihre Unterstützung. 

 

Peer Review at the 10th IFK 

This year we once again give all authors the opportunity of an optional peer review of 

their papers. This guarantees that the examined papers meet the high scientific re-

quirements, and may receive their respective appreciation for funded projects or doc-

toral theses. Those papers will be marked – peer reviewed –. 

A paper that has been chosen by the author to be reviewed will be subjected to an in-

dependent examination by a total of 3 specialized experts among the Program Commit-

tee (see page 5) as well as the Institute of Fluid Power at the TU Dresden, or the Insti-

tute for Fluid Power Drives and Controls at RWTH Aachen University. After this initial 

evaluation, the authors have the opportunity to revise their paper as needed and re-

submit it with the necessary changes. If the reviewers accept the changes, the paper 

will be included in the conference transcript as – peer reviewed –. 

This extensive assessment process serves the purpose of quality assurance in terms 

of content and form, and would not have been possible without the expert support of 

the Program Committee. The organizers of the IFK want to thank all reviewers for their 

support. 

Peer Review 7
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Abstracts: Group A - Digital Hydraulics 

 
A-1 High-Performance Digital Hydraulic Tracking Control of a Mobile Boom 

Mockup 
Kalevi Huhtala, Tampere University of Technology, Finland 

 

The automation of hydraulic mobile machinery, such as excavators, requires high 
performance control solutions. In hydraulics, this means fast and accurate force, 
velocity and position control of hydraulic cylinder. Especially the force control is known 
to be difficult with traditional servo valves. Fast digital hydraulic valves together with 
modern control solutions can overcome this problem. This paper uses a new force 
control solution, which is based on the fast digital hydraulic valves and model based 
control principle. The control solution is applied in a heavy axis mimicking dynamics of 
mobile machine booms. Experimental results show good force, velocity and position 
tracking performance with varying load masses. The slow velocity performance is also 
much improved when compared to the earlier results. 
 
A-2 High-response hydraulic linear drive with integrated motion sensor and 

digital valve control 
Marko Simic, Faculty of mechanical engineering, University of Ljubljana, 
Slovenia 

 

Main purpose of the paper is to present high-response hydraulic linear drive, which is 
controlled with new digital piezo valve and where the new position transducer is 
integrated as a part of hydraulic cylinder. Hydraulic digital piezo valve with main static 
and dynamic characteristics as well as its functionality is presented in detail. The main 
static and dynamic characteristics of dygital piezo valve which influence directly on the 
linear drive performance are high resolution of the volume flow rate and high resposne 
of the valve. Beside valve characteristics the new integrated position transducer, the 
digital controller and control method, presented in the paper, have major impact on 
linear drive preformance. At the end of the paper the step response and position 
resolution of the hydraulic linear drive controlled with the new digital valve is 
compared with the results of reference hydraulic drive controlled with high response 
proportional valve. 
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A-3 Architecture, Control and NVH Development of Digital Hydraulics for Off-

Highway Vehicle Applications 
QingHui Yuan, Eaton, USA 

 

Digital hydraulics is one of promising technologies having a huge potential to 
significantly improve energy efficiency in the fluid power industry. In this paper, we 
present a digital hydraulics solution for mobile market with a large ammount of energy 
usage by hydraulic components and systems. Specifically, a novel hydraulic 
architecture, Multiplex Digital Valve (MDV) system that employs digital valves to meet 
multiple service pressure/flow requirement in off highway vehicles, is introduced. With 
MDV being integrated in an execavator, signficant hydraulic power saving have been 
validated compared to the baseline machine with the negative flow control (NFC) 
architecture. In addition, considering noise is still a critical hurdle for digital hydraulics 
to be adoped, we develop several noise reduction methods that have been evaluated 
in simulation environment and implemented in the above MDV. The sound pressure 
measured from the retrofitted MDV solution with the NVH treatment in the excavator 
has been improved signficantly over the untreated system such that it is nearly 
comparable to the baseline machine. The paper also briefly presents the sound 
quality study for better understanding of human perception and acceptance to non-
conventional sound. 
 
A-4 The Control of Multiple Actuators using Single IEHEC Pump/Motor 

Rafael Åman, Lappeenranta University of Technology, Finland 
 

The awareness and concern of our environment together with legislation have set 
more and more tightening demands for energy efficiency of non-road mobile 
machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been 
developed in Lappeenranta University of Technology (LUT) /1/. The elimination of 
resistance flow, and the recuperation of energy makes it very efficient alternative. The 
difficulties of IEHEC machine to step to the market has been the requirement of one 
IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators 
of log crane using fast on/off valves. The control system architecture is introduced. 
The system has been simulated in co-simulation using Simulink/Mevea. The 
simulated responses of pumpcontrolled system is compared to the responses of the 
conventional valve-controlled system. 
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Abstracts: Group B - Intelligent Control 

 
B-1 Active Vibration Control of Axial Piston Machine using Higher Harmonic 

Least Mean Square Control of Swash Plate 
Taeho Kim, Purdue University, USA 

 

Noise emission is a major drawback of the positive displacement machine. The noise 
source can be divided into structure borne noise source (SBNS) and fluid borne noise 
source (FBNS). Passive techniques such as valve plate optimization have been used 
for noise reduction of axial piston machines. However, passive techniques are only 
effective for limited operating conditions or at least need compromises in design. In 
this paper, active vibration control of swash plate is investigated for vibration and 
noise reduction over a wide range of operating conditions as an additional method to 
passive noise reduction techniques. A 75cc pump has been modified for 
implementation of active vibration control using the swash plate. One tri-axial 
acceleration sensor and one angle sensor are installed on the swash plate and a high 
speed servovalve is used for the swash plate actuation. The multi-frequency two-
weight least mean square (LMS) filter synthesizes the servovalve input signal to 
generate a destructive interference force which minimizes the swash plate vibration. 
An experimental test setup has been realized using Labview field-programmable gate 
array (FPGA) via cRIO. Simulation and experimental studies are conducted to 
investigate the possibility of active vibration control. 
 
B-2 Modiciency - Efficient industrial hydraulic drives through independent 

metering using optimal operating modes 
Giacomo Kolks, TU Dresden, IFD, Germany 

 

Independent metering poses a possibility of improving energy efficiency of throttle-
controlled hydraulic single-rod cylinder drives. This paper deals with the volumetric 
potentials gained through variable circuitry that comes along with independent 
metering. A method of assessment of energetic potentials is described, based on load 
specific, optimal operating modes. As a means of yielding maximum energy efficiency 
for a wide range of applications, a smooth mode switching algorithm is proposed that 
minimizes losses and allows good motion tracking. The mode switching algorithm is 
validated in simulation and on a test stand. 
 
B-3 A Machine Learning Approach for Tracking the Torque Losses in Internal 

Gear Pump - AC Motor Units 
Emad Ali, Bosch Rexroth AG, Germany 

 

This paper deals with the application of speed variable pumps in industrial hydraulic 
systems. The benefit of the natural feedback of the load torque is investigated for the 
issue of condition monitoring as the development of losses can be taken as evidence 
of faults. A new approach is proposed to improve the fault detection capabilities by 
tracking the changes via machine learning techniques. The presented algorithm is an 
art of adaptive modeling of the torque balance over a range of steady operation in 
fault free behavior. The aim thereby is to form a numeric reference with acceptable 
accuracy of the unit used in particular, taking into consideration the manufacturing 
tolerances and other operation conditions differences. The learned model gives 
baseline for identification of major possible abnormalities and offers a fundament for 
fault isolation by continuously estimating and analyzing the deviations. 
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Abstracts: Group C - Valves 

 
C-1 Advanced Proportional Servo Valve Control with Customized Control 

Code using White Space 
Peter Lauer, Eaton Corporation, USA 

 

An industrial control valve has been designed by Eaton (AxisPro® valve). The servo 
performance valve has onboard electronics that features external and internal sensor 
interfaces, advanced control modes and network capability. Advanced control modes 
are implement in the valves firmware. With the help of the white space it is possilbe to 
execute custom code directly on the valve that interact with these controls. Small 
OEM applications, like rubber moulding machines, benefit from the comination of build 
in controls and custom code, to provide adaptations for their special machines. 
 
C-2 Improvement of the Vibration Prediction of a Poppet Valve in a Cavitation 

State 
Kento Kumagai, Hitachi Construction Machinery Co., Ltd., Japan 

 

Poppet valves are popular components of hydraulic systems, but they sometimes 
induce vibration in these systems. In particular, the vibration phenomenon of a poppet 
valve in a cavitation state is a troublesome problem in hydraulic systems, because the 
dynamic effects of cavitation on the poppet valve are difficult to predict. In this 
research, we investigated the vibration phenomenon of the poppet valve in the 
cavitation state in a visualization experiment and numerical simulation. We found in 
numerical simulation that it is possible to predict the tendency of the vibration by 
assuming that the bulk modulus of hydraulic oil is affected by the ratio of cavitation 
bubbles mixed in the oil. Additionally, we proposed a simple method of estimating the 
quantity of cavitation bubbles through visualization experiments and image 
processing. We then improved the prediction accuracy of the poppet valve behavior 
by applying the bubble mixing ratio obtained using the method in the numerical 
simulation model. The described methods not only avoid the sensor effect on the flow 
field but also save the additional measurement cost, and they are easy to apply to 
hydraulics systems. 
 
C-3 Characteristics of Proportional Flow Control Poppet Valve with Pilot 

Pressure Compensation 
Jiahai Huang, Taiyuan University of Technology, China 

 

Electro-hydraulic proportional flow valves are widely used in hydraulic industry. There 
are several different structures and working principles. However, flow valves based on 
the existing principles usually have some shortcomings such as the complexity of the 
system and additional energy losses. A concept for a two-stage poppet flow valve with 
pilot pressure drop – pilot spool opening compensation is presented, and the linear 
relationship between the pilot stage and main stage, the semi-empirical flow equation 
are used in the electronic flow controller. To achieve the accurate control of the outlet 
flow, the actual input voltage of the pilot spool valve is regulated according to the 
actual pilot pressure drop, the desired flow rate and the given input voltage. The 
results show that the pilot pressure drop – pilot spool opening compensation method 
is feasible, and the proposed proportional flow control valve with this compensation 
method has a good static and dynamic performance. 
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Abstracts: Group D | G | K - Fundamentals 

 
D-1 Hydraulic fluids with new, modern base oils – structure and composition, 

difference to conventional hydraulic fluids; experience in the field 
Wolfgang Bock, Fuchs Schmierstoffe GmbH, Mannheim, Germany 

 

The paper describes the comparison and the difference of modern hydraulic 
fluidscompared to conventional hydraulic fluids. A comparison of different base oil 
groups, solvent neutrals, group I and comparison with hydrotreated/hydroprocessed 
group II and/or group III base oils is presented. The influence on oxidation stability, 
elastomer compatibility, carbon distribution and physical properties is outlined. 
 
D-2 Experimental investigation of the Bunsen and the diffusion coefficients in 

hydraulic fluids 
Filipp Kratschun, RWTH Aachen University, Institute for Fluid Power Drives and 
Controls (IFAS), Germany 

 

The dynamic of cavitation in hydraulic components cannot be computed accurately yet 
and therefore cavitation is hard to predict. The cavitation phenomenon can be divided 
in three sub-phenomenona: Pseudo-cavitation, Gas-cavitation and Vapour-cavitation. 
Pseudo-cavitation discribes the enlargement of an air bubble due to a pressure drop. 
Gas-cavitation refers to bubble growth which is driven by diffusion of dissolved air from 
the surrounding fluid into the bubble, when the solubility of air in the fluid is lowered by 
a pressure drop. Vapor-cavitation is the evaporation of the liquid phase on the bubble 
surface. Usually all three sub-phenomenona occur simultaneously when the pressure 
decreases and are summarised as cavitation in general.  
To implement the physics of gas-cavitation in a dynamic mathematical model it is 
necessary to know the diffusion coefficient of air in the hydraulic liquid and the 
maximum amount of air which can be dissolved in the liquid. The calculation can be 
accomplished by using the Bunsen coefficient. In this paper both coefficients for three 
different hydraulic oils are calculated based on experimental results. 
 
D-3 Experimental measurements of bulk modulus of two types of hydraulic oil 

at pressures to 140MPa and temperatures to 180°C 
Shudong Yang, Huazhong University of Science and Technology, China 

 

Bulk modulus of hydraulic oil represents the resistance of hydraulic oil to compression 
and is the reciprocal of compressibility. The bulk modulus is a basic thermodynamic 
property of hydraulic oil that has a very important influence on work efficiency and 
dynamic characteristics of hydraulic systems, especially for the hydraulic systems at 
ultra-high pressure or ultra-high temperature. In this study, a bulk modulus 
experimental equipment for hydraulic oil was designed and manufactured, two types of 
hydraulic oil were selected and its isothermal secant bulk modulus were measured at 
pressures to 140MPa and temperatures of 20~180°C. Compared the experimental 
results with the calculated results from the prediction equations of liquid bulk modulus 
that proposed by Klaus, Hayward, and Song, it is found that the experimental results 
are not completely identical with the calculated results. 
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D-4 Innovative Duplex Filter for hydraulic applications 

Klaus Mössinger, Argo-Hytos, Germany 
 

For decades, duplex filters have been put to use virtually unmodified. Technologies, 
handling and use of materials show enormous potential for improvement. Filter 
element removal/replacement is performed according to a complex process sequence. 
With the newly developed Duplex Filter, the market demands concerning simple filter 
element removal/replacement, as well as weight and pressure loss reduction are fully 
met. 

 
 
G-1 Simulation of the cavitating flow in a model oil hydraulic spool valve using 

different model approaches 
Michel Schümichen, TU Dresden, Institute of Fluid Mechanics, Germany 

 

The contribution compares results of Large Eddy Simulations of the cavitating flow in a 
model oil hydraulic spool valve using an Euler-Euler and a one-way coupled Euler- 
Lagrange model. The impact of the choice of the empirical constants in the Kunz 
cavitation model is demonstrated. Provided these are chosen appropriately the 
approach can yield reasonable agreement with the corresponding experiment. The 
one-way Euler-Lagrange model yields less agreement. It is demonstrated that this is 
due to the lack of realistic volumetric coupling, rarely accounted for in this type of 
method. First results of such an algorithm are presented featuring substantially more 
realism. 
 
G-2 Visualization of cavitation and investigation of cavitation erosion in a valve 

Dominik Krahl, TU Dresden, IFD, Germany 
 

 Avoiding cavitation and especially cavitation erosion are tasks, which have to be 
considered when working with hydraulics. State of the art is the assessment of the risk 
of erosion by component testing or to completely avoid cavitation by means of CFD. 
Another reliable method to assess the risk of cavitation erosion is until now not 
available. This paper deals with this problem and delivers comparative values for a 
later method development. In a first step the cavitation of a poppet valve, which 
controls a methanol flow, is visualized. The resulting three cavitation appearances are 
deeply examined. After that the results of long-term tests at different operation 
conditions are presented. A poppet surface analysis following each experiment has 
shown different types of surface attacks. As a result of this work it is shown that both 
cavitation appearance and surface attack are strongly influenced by the temperature 
dependent air solubility of the liquid. 
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G-3 Comparison of spool radial grooves influence between water and oil 

hydraulics 
Franc Majdic, University of Ljubljana, Slovenia 

 

In this paper numerical flow calculations with respect to the annular gaps with added 
radial grooves normaly used on the spools of directional control valves were carried 
out. The impact of various annular gap geometries and radial grooves during variable 
pressure conditions, and while using different hydraulic fluids, on the flows through 
annular gaps were investigated for different flow regimes. Samples with different 
geometries and numbers of radial groves on the spool of the directional control valve 
were also made for the purpose of carrying out flow measurements. The two different 
hydraulic fluids that were used in the numerical simulations and for the flow 
measurements were a hydraulic mineral oil and tap water. The results of the numerical 
calculations for the different models of the radial grooves with axially symmetric 
geometries show their impact on the internal leakage with respect to three different 
regimes of flow. The results of the numerical calculations based on the use of a 
hydraulic oil show a trend that was established by the experimental investigation. 
 
G-4 Effects of air dissolution dynamics on the behavior of positive-

displacement vane pumps: a simulation approach 
Francesca Furno, Siemens Industry Software S.A.S., France 

 

The aim of this paper is to evaluate the effects of the dissolution time – time for the 
liquid to absorb the gas till the saturation state - on the behaviour of positive-
displacement vane pumps, in terms of pressure peaks within internal chambers and 
forces applied to the stator ring. The chamber pressurization depends on the volume 
variation and fluid Bulk modulus in the pre-compression phase during which the 
volume is trapped between the suction and the delivery port rims. If the dissolution 
time is short, then the entrained air is quickly absorbed and the fluid Bulk modulus 
sharply increases just before opening the connection to the outlet; as a consequence, 
pressure peaks may appear thus degrading the NVH characteristics of the pump. 
Moreover the pressure within internal chambers generate i) a torque demand to the 
driver (the combustion engine or an electrical motor) and ii) a total force applied to the 
stator ring. In case of fixed displacement designs, the resultant pressure force simply 
represents a load for support bearings; while in case of variable designs, it contributes 
to the displacement regulation. Simulation results show that the pump behaviour is 
very sensitive to the dissolution time when it is quite close to the duration of the 
trapped period. 

 
 
K-1 Slip length of the tribo system steel-poly-alphaolefin-steel determined by a 

novel tribometer 
Tobias Corneli, Technische Universität Darmstadt, Institute for Fluid Systems, 
Germany 

 

Nowadays sealing systems are commonly designed by means of hydrodynamic and 
elastohydrodynamic theories. Although the analytical as well as the computational 
approaches have improved in meaning full manner since the last decades: For small 
sealing gaps, in the order of micrometers and below, a discrepancy between 
experimental investigated and theoretically predicted leakage flows occur. As a cause 
for the discrepancy a breakdown of the no slip boundary condition is suspected. Since 
in small sealing gaps the continuum hypothesis is violated and molecular effects have 
to be considered. One fundamental quantity to take molecular affects into account is 
the slip length.[AES1] 
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K-2 Reducing Friction and Leakage by Means of Microstructured Sealing 

Surfaces - Example Mechanical Face Seal 
Stephan Neumann, RWTH Aachen, Institute for Machine Elements and Machine 
Design (IME), Germany 

 

By defined structuring of sliding surfaces at dynamic contact seals friction and leakage 
can be reduced. Compared to macro-structures, micro-structures have the advantage 
of a quasi-homogeneous influence on the fluid behavior in the sealing gap. The 
development of suitable microstructures based on prototypes, whose properties are 
studied on the test bench, is very expensive and time-consuming due to the 
challenging manufacturing process and measuring technologies, which are necessary 
to investigate the complex rheological behavior within the sealing gap. A simulation-
based development of microstructured sealing surfaces offers a cost- and time-saving 
alternative. This paper presents a method for simulative design and optimization of 
microstructured sealing surfaces at the example of a microstructured mechanical face 
seal. 
 
K-3 Heat Exchanger Design in Mobile Machines 

Alex Magdanz, ITI GmbH, Germany 
 

This paper examines the model-based design of thermal systems in mobile machines 
with a focus on heat exchanger design. An industry project is described in which the 
vapor compression cycle for the air-conditioning system was modeled using the 
software SimulationX. By modeling heat exchanger sections separately, multiple flow 
arrangements could be tested without the need for physical prototypes. The paper 
presents this work in the context of the full model-based design process including 
extensions for hardware in the loop (HiL) testing of control units and operator training 
using virtual machines. 
 
K-4 Numerical Simulation of Transient Diabatic Pipe Flow by using the Method 

of Characteristics 
Enrico Pasquini, FLUIDON GmbH, Aachen, Germany 

 

The following paper presents a one-dimensional numerical model for simulating 
transient thermohydraulic pipe flow based on the Method of Characteristics. In addition 
to mass and momentum conservation, the proposed scheme also guarantees 
compliance with the laws of thermodynamics by solving the energy equation. The 
model covers transient changes in fluid properties due to pressure changes, heat 
transfer and dissipation. The presented methodology also allows the computation of 
the transient temperature distribution in the pipe wall through an additional ordinary 
finite difference scheme. The numerical procedure is implemented in the commercial 
simulation software DSHplus. The capability of the code is examined by comparing the 
simulation results with theoretical solutions and experimental data. 
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Abstracts: Group E | H | L - Mobile Hydraulics 

 
E-1 A hydraulic test stand for demonstrating the operation of Eaton’s energy 

recovery system (ERS) 
Meng Wang, Eaton Corporation, USA 

 

Fuel cost represents a significant operating expense for owners and fleet managers of 
hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-
highway applications will create further expense for after-treatment and cooling. 
Solutions that help address these factors motivate fleet operators to consider and 
pursue more fuel-efficient hydraulic energy recovery systems. Electrical hybridization 
schemes are typically complex, expensive, and often do not satisfy customer payback 
expectations. This paper presents a hydraulic energy recovery architecture to realize 
energy recovery and utilization through a hydraulic hydro-mechanical transformer. The 
proposed system can significantly reduce hydraulic metering losses and recover 
energy from multiple services. The transformer enables recovered energy to be stored 
in a high-pressure accumulator, maximizing energy density. It can also provide system 
power management, potentially allowing for engine downsizing. A hydraulic test stand 
is used in the development of the transformer system. The test stand is easily 
adaptable to simulate transformer operations on an excavator by enabling selected 
mode valves. The transformer’s basic operations include shaft speed control, pressure 
transformation control, and output flow control. This paper presents the test results of 
the transformer’s basic operations on the test stand, which will enable a transformer’s 
full function on an excavator. 
 
E-2 Pressure compensator control - a novel independent metering architecture 

Jan Lübbert, TU Dresden, IFD, Germany 
 

This contribution presents an operating strategy for a novel valve structure for mobile 
machines’ working hydraulics which combines the flexibility and energetic benefits of 
individual metering with the functionality of common primary pressure compensation 
(IPC). The aim is to set up a system that uses a minimal amount of sensors and 
simple control algorithms. A control strategy theoretically described in /1/ is modified to 
facilitate the practical implementation on a mini excavator implement as a test rig. This 
test rig consists only of components that are currently common in mass production to 
show if it is possible to develop an individual metering system under these economic 
restrictions, which is more energy efficient than common flow sharing systems but 
provides the same functionality. The control algorithm is experimentally evaluated in 
terms of functionality and energy consumption. Simulations show potential for further 
improvements. 
 
E-3 Potential in hydrostatic drive through intelligent mechanical solutions 

Fabian Schmid, SAUER BIBUS GmbH, Germany 
 

Drive requirements of tractors and communal vehicles are demanding and varied. 
Energy efficiency and the different requirements in off-road and on-road operation are 
the basis for a powerful drive. Combinations with the so-called hydrostatic wide angle 
technology are often used. 
The article deals with a hydraulic drive with wide angle technology (45°) and an 
integrated, quick-shift, single stage transmission. A particularly large conversion range 
can be realized with this. Special shift elements, sensors and an adjustment 
developed for this purpose enable a fast, quiet and low-wear gear change. This new 
gearbox development will in future be implemented at RIGITRAC in cooperation with 
SAUER BIBUS. 
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E-4 Reduction of System Inherent Pressure Losses at Pressure Compensators 

of Hydraulic Load Sensing Systems 
Jan Siebert, Karlsruher Institute of Technology, FAST, MOBIMA, Germany 

 

In spite of their high technical maturity, load sensing systems (LS) have system-
inherent energy losses that are largely due to the operation of parallel actuators with 
different loads at the same pressure level. Hereby, the pressure compensators of the 
system are crucial. So far, excessive hydraulic energy has been throttled at these 
compensators and been discharged as heat via the oil. The research project 
“Reduction of System Inherent Pressure Losses at Pressure Compensators of 
Hydraulic Load Sensing Systems” aims to investigate a novel solution of reducing 
such energy losses. The pressure of particular sections can be increased by means of 
a novel hydraulic circuit. Therefore, a recovery unit is connected in series with a 
hydraulic accumulator via a special valve in the reflux of the actuators. The artificially 
increased pressure level of the section reduces the amount of hydraulic power to be 
throttled at the pressure compensators. As long as a section fulfills the switching 
condition of the valve, pressure losses at the respective pressure compensator can be 
reduced. Thus, via a suitable recovery unit excessive energy can be regenerated and 
can be directed to other process steps eventually. 

 
 
H-1 Performance of an electro-hydraulic active steering system 

Eric Fischer, TU Dresden, IFD, Germany 
 

Hydrostatic steering systems are used in construction and agricultural machines alike. 
Because of their high power density, hydraulic drives are qualified for the use in 
vehicles with high steering loads. Conventional hydrostatic steering systems are 
limited in terms of steering comfort and driver assistance. For realisation of 
appropriate steering functions, electro-hydraulic solutions are necessary. This paper 
provides an overview on existing implementations and introduces a novel steering 
system. The presented active steering system with independent meter-in and meter-
out valves fills the gap between existing active steering systems and steer-by-wire 
solutions. An appropriate control and safety concept provides advanced steering 
functions for on-road usage without the fully redundant structure of steer-by-wire 
systems. 
 
H-2 Energy-efficient steering systems for heavy-duty commercial vehicles 

Torsten Winkler, Weber-Hydraulik GmbH, Germany 
 

Besides the braking system the steering system is one of the most important systems 
on vehicles. The reliability and the performance of a steering system decides on the 
controllability of the vehicle under normal conditions as well as emergency situations. 
In everyday use the characteristics, the connectivity to assistance systems and the 
energy efficiency of the steering system become more and more important to fulfill the 
increasing demands regarding fuel consumption, carbon dioxide emissions and 
comfort.  
To meet these demands, new steering systems must be implemented and new 
technologies have to be developed. This contribution compares different approaches 
regarding functionality and energy efficiency to give an indication which system is the 
most promising solution for future front axle steering systems as well as rear steered 
axles (tag- or pusher axle) on trucks. 

  

26 10th International Fluid Power Conference | Dresden 2016



 
H-3 Automated calibration of the control unit for a power split tractor 

transmission 
Christopher Körtgen, RWTH Aachen University, IME, Germany 

 

This paper presents an approach for an automated calibration process for electronic 
control units (ECU) of power split transmissions in agricultural tractors. Today the 
calibration process is done manually on a prototype tractor by experts. In order to 
reduce development costs the calibration process is shifted from prototype testing to 
software modelling. Simultaneous optimization methods are used within the software 
modelling to calculate new parameters. The simultaneous optimization includes 
objective evaluation methods to evaluate the tractor behaviour. With the combination 
of both methods inside the software modelling, the calibration process can be 
automated. The success of this approach depends on the quality of the software 
modelling. Therefore the identification of the initial prototype behaviour and the fitting 
of the tractor software model is done at the beginning. At the end of the automated 
calibration the validation and fine-tuning of the calculated parameters are done on the 
real tractor. These steps are condensed to a five step automated calibration process 
which includes simultaneous optimization and objective evaluation methods in several 
applications. After the detailed discussion of this automated calibration process one 
function of the ECU (one transmission component) will be calibrated through this 
process as example. 
 
H-4 A tele handler vehicle as mobile laboratory for hydraulic hybrid technology 

development 
Lorenzo Serrao, Dana Off-Highway Driveline Technologies, Italy 

 

The paper describes the design of a prototype vehicle used by Dana Holding 
Corporation as a mobile laboratory for the development of Spicer® PowerBoost® 

hydraulic-hybrid powertrain technology. A telehandler vehicle was selected due to its 
versatility. Starting from the high-level requirements, design choices from the 
powertrain layout to the control architecture are discussed. The hydraulic-hybrid 
powertrain system is described, and its performance is analyzed based on 
representative driving cycles. 
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L-1 Development of a Simulation Model of a Self-Energizing Hydraulic Brake to 

Actively Compensate Brake Torque Oscillations 
Matthias Petry, RWTH Aachen University, Institute for Fluid Power Drives and 
Controls (IFAS), Germany 

 

Friction force oscillations caused by changing properties of the contact zone between 
brake disc and pad are well known from various applications. Resulting effects like 
brake judder are known phenomena in brake technologies and in the scope of various 
scientific work. A new measure to potentially reduce brake torque oscillations is the 
active compensation with the use of the control system of a self-energizing hydraulic 
brake (SEHB). New in comparison to traditional disc brakes is the fact that the brake 
torque is measured by the pressure in an additional supporting cylinder. Thus, the 
brake system is able to work in brake torque control mode. Within this paper a 
dynamic simulation model of the SEHB is shown and evaluated with measurement 
data achieved from a full scale test rig for railway applications. Based on the 
simulation model a pressure control strategy is developed to minimize brake torque 
oscillations of lower frequencies. The control parameters of the simulation are 
transferred to the experimental setup. Finally, simulation and experimental results are 
compared. Future work will deal with the development of control strategies to 
additionally minimize brake torque oscillations of the higher dynamics. 
 
L-2 Hydraulic Energy Recovery System Utilizing a Thermally Regenerative 

Hydraulic Accumulator Implemented to a Reach Truck 
Henri Hänninen, Aalto University, Finland 

 

The implementation of an energy recovery system for retreiving otherways wasted 
energy is an effective method for reducing the overall energy consumption of a mobile 
machine. In a fork lift, there are two subsystems that can be effectively modified for 
recovering energy. These are the driveline and the lift/lower function of the mast. This 
study focuses on the latter by studying a recovery system whose main component is a 
hydraulic transformer consisting of a hydraulic motor, a variable displacement pump 
and an induction motor. Since the flow rate/pressure - ratio can be modified, the 
utilization of the hydraulic transformer enables downsizing of the accumulator volume. 
However, the decrease of the gas volume leads to an increase in the compression 
ratio of the accumulator, which in terms leads to higher gas temperatures after 
charging and consequently to higher thermal losses during holding phase. In order to 
reduce these losses, a thermally regenerative unit was implemented to the gas volume 
of an accumulator to reduce the temperature build up during charging. In this study, 
the effect of improving the thermal characteristics of the accumulator to the efficiency 
of the whole energy recovery system is investigated by means of measurements. 
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L-3 A Study on Integration of Energy Harvesting System and Semi-Active 

Control for a Hydraulic Suspension System 
Mao-Hsiung Chiang, Department of Engineering Science and Ocean 
Engineering,  National Taiwan University, Taiwan 

 

Suspension systems are used to diminish the vibration of vehicles. The hydraulic 
dampers in conventional suspension systems are mainly designed with the orifices of 
the piston; however, the vibration energy will be transferred into waste heat. In recent 
years, conventional vehicles with internal combustion engines and hybrid vehicles are 
used commonly. However, with the gradual depletion of fossil fuels, electric vehicles 
are developing. For this reason, the research focuses on recycling energy from the 
suspension of vehicles to improve the vehicle’s endurance. The purpose of this study 
is to develop a semi-active suspension control system with an energy harvesting 
system. Instead of the fixed orifices in conventional vehicles, an adjusting damping 
force method with variable resistance circuits system is studied for the semi-active 
suspension control system. Thus, we are able to develop semi-active control to 
improve the riding comfort. The energy harvesting system contains a hydraulic gear 
motor and a DC generator. When vehicles vibrate, the hydraulic damper serves as a 
hydraulic pump to compress the oil and drive the hydraulic motor. At the same time, 
the hydraulic motor drives the generator to generate electricity which will be stored in a 
battery. In this study, the test rig is the quarter-car system. We first design the novel 
hydraulic suspension system combining with the energy harvesting system. The 
simulation of dynamic mathematical model will be performed and analyzed by 
MATLAB/Simulink. Besides that, the semi-active control by the fuzzy sliding mode 
controller will be realized in the hydraulic suspension system with energy harvesting 
system. Finally, a test rig is set up for practical experimental implementation and 
verification. 
 
L-4 Design and Realization of an Adjustable Fluid Powered Piston for an 

Active Air Spring 
Philipp Hedrich, TU Darmstadt, Institute for Fluid Systems, Germany 

 

In this paper, we present a new compact hydraulic linear actuator. The concept is 
devel-oped to change the rolling piston diameter of an active air spring during usage. 
By doing so, the air spring can actively apply pressure and tension forces. The 
actuator is de-signed for small movements at high forces. It is insensitive to side 
forces, which are introduced by the bellows rolling on the rolling piston of the air 
spring. A diaphragm seal-ing is used to minimize friction. Hence a precise adjustment 
of small displacements at high dynamics is possible and the system is completely 
leakage-free. We describe the design and development of this actuator and show first 
measurement results from pre-liminary tests to show its functionality. 
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Abstracts: Group F | I - Pumps 

 
F-1 Validation of the physical effect implementation in a simulation model for 

the cylinder block/valve plate contact supported by experimental 
investigations 
Stephan Wegner, RWTH Aachen University, Institute for Fluid Power Drives and 
Controls (IFAS), Germany 

 

Overall losses in swash plate type axial piston machines are mainly defined by three 
tribological interfaces. These are swash plate/slipper, piston/cylinder and cylinder 
block/valve plate. Within a research project, funded by the German Research 
Foundation, a combined approach of experimental research and simulation is chosen 
to acquire further knowledge on the cylinder block/valve plate contact. The 
experimental investigations focus on the friction torque within the contact and the 
measurement of the cylinder block movement in all six degrees of freedom. 
Simultaneously a simulation model is created focusing on the main physical effects. 
By considering the results of the experimental investigations significant physical 
effects for the simulation model are assessed. Within this paper a first comparison 
between experimental results and the simulation is presented, showing that for a 
qualitative match the implemented effects (mainly the fluid film, solid body movement, 
solid body contact, surface deformation) are sufficient to model the general behaviour 
of the investigated pump. 
 
F-2 An Investigation of the Impact of the Elastic Deformation of the 

Endcase/Housing on Axial Piston Machines Cylinder Block/Valve Plate 
Lubricating Interface 
Rene Chacon, Purdue University, USA 

 

The cylinder block/valve plate interface is a critical design element of axial piston 
machines. In the past, extensive work has been done at Maha Fluid Power Research 
center to model this interface were a novel fluid structure thermal interaction model 
was developed which accounts for thermal and elasto-hydrodynamic effects and has 
been proven to give an accurate prediction of the fluid film thickness. This paper 
presents an in-depth investigation of the impact of the elastic deformation due to 
pressure and thermal loadings of the end case/housing on the performance of the 
cylinder block/valve plate interface. This research seeks to understand in a systematic 
manner the sensitivity of the cylinder block/valve plate interface to the structural 
design and material properties. A comparison between simulations results is done by 
utilizing different end case designs and material compositions, both in the valveplate 
and end case solids. 
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F-3 Optimization of axial piston units based on demand driven relief of 

tribological contacts 
Stefan Haug, Bosch Rexroth AG, Germany 

 

Markets show a clear trend towards an ever more extensive electronic networking in 
mobile and stationary applications. This requires a certain degree of electronic 
integration of hydraulic components such as axial piston pumps. Beside some well-
known approaches, the transmission of axial piston units still is relatively unexplored 
regarding electronification. Nonetheless there is a quite high potential to be optimized 
by electronic. In view of this fact, the present paper deals with the tribological contacts 
of pumps based on a demand driven hydrostatic relief. The contact areas at cylinder - 
distributor plate, cradle bearing and slipper - swash plate will be investigated in detail 
and it will be shown how the pump behavior can be improved considerably through a 
higher level of relief and a central remaining force ratio. The potential of optimization is 
to improve the efficiency, especially in partial loaded operation, power range, also for 
multi quadrant operation, precision and stability. A stable lubricating film for slow-
speed running and for very high speeds at different pressures is ensured as well. 
 
F-4 Active Fluid Borne Noise Reduction for Aviation Hydraulic Pumps 

Arne Waitschat, Institute of Aircraft Systems Engineering, Hamburg University of 
Technology (TUHH), Germany 

 

The aviation environment holds challenging application constraints for efficient 
hydraulic system noise reduction devices. Besides strong limits on component weight 
and size, high safety and reliability standards demand simple solutions. Hence, basic 
silencers like inline expansion chambers and Helmholtz-Resonators are state-of-the-
art aboard commercial aircrafts. Unfortunately, they do not meet today’s noise 
attenuation aims regarding passenger comfort and equipment durability. Significant 
attenuation performance is expected from active concepts that generate anti-phase 
noise. However, such concepts remain a long term approach unless related costs, e.g. 
due to additional power allocation and real-time control equipment can be avoided. In 
this paper an active fluid borne noise attenuation concept is discussed that accounts 
for the mentioned constraints. An aircraft hydraulic pump is considered as main noise 
source. The active attenuator is an in-house rotary valve design. The basic feature is a 
known direct shaft coupling principle of pump and rotary valve, so no speed/ frequency 
control of the valve and no separate power supply are required. The common-shaft 
principle is further simplified here and proposed as integral feature of future “smart 
pumps”. 

 
 
I-1 Development of innovative solutions for displacement variation in 

hydrostatic machines 
Karl Hartmann, TU Braunschweig - IMN, Germany 

 

Along with the general requirement of continuously increasing efficiency of hydrostatic 
drivetrains, variable displacement machines are of major concern in research and 
development. To this effect, the whole machine performance is mainly dependent of 
the displacement variation system (DVS) performance. A lot of work to this topic 
focusses on the controller and actuator level. The aim of this paper is to offer a more 
fundamental view on DVS by giving a focus to the basic hydro-mechanical principles. 
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I-2 Experimental loss analyses of displacement controlled pumps 

Jan Lux, RWTH Aachen University, Institute for Fluid Power Drives and Controls 
(IFAS), Germany 

 

Current efficiency measurements of variable hydraulic axial piston pumps are 
performed with the displacement system locked at maximum volume, thus without the 
controller. Therefore, the controller’s effect on the efficiency is not quantified at state of 
the art measurements. Former research on control systems mainly focused on the 
dynamic behaviour. This paper aims to quantify the losses in the displacement and 
control system and to research the dependencies of those. Therefore, a test rig is built 
up at IFAS to measure the control power of displacement controlled pumps. 
Furthermore, a simulation tool is developed to increase the understanding of the loss 
mechanisms of the investigated control systems. In conclusion, the paper shows the 
potential of efficiency improvements for displacement controlled pumps. 
 
I-3 A General Method to Determine the Optimal Profile of Porting Grooves in 

Positive Displacement Machines: the Case of External Gear Machines 
Andrea Vacca, Purdue University, USA 

 

In all common hydrostatic pumps, compressibility affects the commutation phases of 
the displacing chambers, as they switch their connection from/to the inlet to/from the 
outlet port, leading to pressure peaks, localized cavitation, additional port flow 
fluctuations and volumetric efficiency reduction. In common pumps, these effects are 
reduced by proper grooves that realizes gradual port area variation in proximity of 
these transition regions.  
This paper presents a method to automatically find the optimal designs of these 
grooves, taking as reference the case of external gear pumps. The proposed 
procedure does not assume a specific geometric morphology for the grooves, and it 
determines the best feasible designs through a multi-objective optimization procedure. 
A commercial gear pump is used to experimentally demonstrate the potentials of the 
proposed method, for a particular case aimed at reducing delivery flow oscillations. 
 
I-4 A Lumped Parameter Approach for GEROTOR Pumps: Model Formulation 

and Experimental Validation 
Matteo Pellegri, Purdue University, USA 

 

This paper describes a high fidelity simulation model for GEROTOR pumps. The 
simulation approach is based on the coupling of different models: a geometric model 
used to evaluate the instantaneous volumes and flow areas inside the unit, a lumped 
parameter fluid dynamic model for the evaluation of the displacing action inside the 
unit and mechanical models for the evaluation of the internal micro-motions of the 
rotors axes. This paper particularly details the geometrical approach, which takes into 
account the actual geometry of the rotors, given as input as CAD files. This model can 
take into account the actual location of the points of contact between the rotors as well 
for the actual clearances between the rotors. The potentials of the model are shown by 
considering a particular GEROTOR design. A specific test set-up was developed 
within this research for the model validation, and comparisons in terms of steady-state 
pressure versus flow curves and instantaneous pressure ripples are shown for the 
reference pump. 
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Abstracts: Group M - Hydraulic Components 

 
M-1 Dirt Ingress Behaviour of Wipers for Hydraulic Cylinders 

Gonzalo A. Barillas, Freudenberg Sealing Technologies GmbH & Co. KG, 
Germany 

 

Dirt ingress in hydraulic cylinders is one of the sources that leads to pollution of 
hydraulic systems. There are already several test rigs to investigate external 
contamination mechanisms. However, until now only the behavior of the whole sealing 
system was analyzed. A new testing method to understand the dirt particle transport 
between a reciprocating motioned rod and a wiper is presented. The new approach 
aims to avoid known issues such as limited reproducibility and long duration. The 
paper describes the test rig design and operating principle. First measurement results 
are shown. 
 
M-2 Experimental Investigation of the Air Release in Hydraulic Reservoirs 

Marco Longhitano, RWTH Aachen University, Institute for Fluid Power Drives 
and Controls (IFAS), Germany 

 

Air contamination strongly decreases the efficiency of fluid power systems and when 
the allowable limits are exceeded, the performance of the system deteriorates. The 
hydraulic reservoir performs the function of releasing the entrained air of the hydraulic 
system to the surroundings. In recent years, the reservoir design has become an 
important task in the design of the hydraulic system due to space restrictions forcing 
the use of small sized reservoirs. Despite this fact, experimental results on an air 
release are not available. In this paper, an experimental investigation of the air release 
in hydraulic reservoirs is presented. A test apparatus using an optical method as well 
as the post-processing of the results is described. These are given in terms of an air 
release rate for different reservoir designs over a wide range of oil flow rates and air 
loads. The current study is a significant step forward in the design of fluid power 
systems, as it provides an experimental procedure to measure the air release in the 
hydraulic reservoir as well as its quantitative analysis. 
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M-3 An approach to optimize the design of hydraulic reservoirs 

Alexander Wohlers, HYDAC FluidCareCenter GmbH, Germany 
 

Increasing demands regarding performance, safety and environmental compatibility of 
hydraulic mobile machines in combination with rising cost pressures create a growing 
need for specialized optimization of hydraulic systems; particularly with regard to 
hydraulic reservoirs. In addition to the secondary function of cooling the oil, two main 
functions of the hydraulic reservoir are oil storage and de-aeration of the hydraulic oil. 
While designing hydraulic reservoirs regarding oil storage is quite simple, the design 
regarding de-aeration can be quite difficult. The author presents an approach to a 
system optimization of hydraulic reservoirs which combines experimental and 
numerical techniques to resolve some challenges facing hydraulic tank design. 
Specialized numerical tools are used in order to characterize the de-aeration 
performance of hydraulic tanks. Further the simulation of heat transfer is used to study 
the cooling function of hydraulic tank systems with particular attention to plastic tank 
solutions. To accompany the numerical tools, experimental test rigs have been built up 
to validate the simulation results and to provide additional insight into the design and 
optimization of hydraulic tanks which will be presented as well. 
 
M-4 Development of hydraulic tanks by multi-phase CFD simulation 

Thees Vollmer, TU Braunschweig - Institute of Mobile Machines and Commercial 
Vehicles, Germany 

 

Hydraulic tanks have a variety of different tasks. The have to store the volume of oil 
needed for asymmetric actors in the system as well as to supply the system with 
preconditioned oil. This includes the deaeration as air contamination is affecting the 
overall system performance. The separation of the air in the tank is being realized 
mainly by passive methods, improving the guidance of the air and oil flow. The use of 
CFD models to improve the design of hydraulic tank is recently often discussed. In this 
paper, a design method for hydraulic tanks using CFD is presented and discussed. 
First the different requirements on a hydraulic tank are described as well as the 
motivation changing the tank designs. Additionally, a quick overview on different 
calculation models for the behavior of air in oil as well as the capabilities of CFD to 
reproduce them is given. After this the methodology of tank design applying CFD is 
presented. The method is then used in an example. 
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High-Performance Digital Hydraulic Tracking Control of a

Mobile Boom Mockup

Adj. Prof. Matti  Linjama, Dr.-Ing. Mikko Huova, M. Sc. Otso Karhu & Prof. Kalevi

Huhtala

Department of Intelligent Hydraulics and Automation (IHA), Tampere University of Technology,

P.O.Box 589, 33101 Tampere, Finland, E-mail: matti.linjama@tut.fi

Abstract

The automation of hydraulic mobile machinery, such as excavators, requires high

performance control solutions. In hydraulics, this means fast and accurate force,

velocity and position control of hydraulic cylinder. Especially the force control is known

to be difficult with traditional servo valves. Fast digital hydraulic valves together with

modern control solutions can overcome this problem. This paper uses a new force

control solution, which is based on the fast digital hydraulic valves and model based

control principle. The control solution is applied in a heavy axis mimicking dynamics of

mobile machine booms. Experimental results show good force, velocity and position

tracking performance with varying load masses. The slow velocity performance is also

much improved when compared to the earlier results.

KEYWORDS: Digital hydraulics, tracking control, force control, position control

1. Introduction

Hydraulics is used in many applications, such as aircraft actuators, paper mills and

working machines, because of their high power-to-weight ratio. The increasing

automation level sets new demands on the controllability of actuators. Accurate force,

velocity and position tracking control are the basic functions of modern hydraulic

actuators and several different solutions have been suggested. Kim et al. /1/ studied

the flatness based non-linear control and demonstrated 0.3 mm position tracking error

with the peak velocity of 63 mm/s. The commonly used performance index–the

maximum error divided by the peak velocity–was thus about 0.005 s. Koivumäki and

Mattila /2/ used virtual decomposition control in a construction crane and achieved

performance index of 0.0030 s. Recently, Linjama et al. /3/ presented a model-based

force, velocity and position tracking control solution for high inertia system. Fast digital

hydraulic valves were used and simulated results with 500 kg load mass showed

performance index of 0.0025 s. The benefits of the solution were simple controller

Group A - Digital Hydraulics | Paper A-1 37



structure, robustness against variations in bulk modulus, system delay and load mass,

and no need for differentiation of velocity or pressures. This paper experimentally

validates the results of /3/ in a heavily loaded 1-DOF boom. The target application is

mobile machine and special attention is paid on the robustness against variation in the

inertial load. Experimental results show good tracking performance with inertia between

10450 and 53000 kg. The performance index of 0.0095 s is achieved with the nominal

load mass and 0.034 s with the full range of load mass variation.

2. Model Based Control of Asymmetric Cylinder

2.1. System Model

The controller is presented in detail in /3/ and only the main points are repeated here.

The dynamics of a hydraulic cylinder with the inertia m and external force Fload can be

expressed as:

( )
( )

( )

( )
0 0

,A B
A PA AT A B PB BT B

A A B max B

A A B B load

B B
p Q Q A x p Q Q A x
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= − − = − +
+ − +

= − − −

& & & &

&& &
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The flow rates QPA, QAT, QPB, and QBT are controlled by N parallel connected on/off

valves and their flow rates are modelled by generalized turbulent flow model /4/:

( ) ( ) ( )( )
( )

1

sgn
N

i

XY X Y X Y

i

Q i i p p p p
=

= − −∑
XYx

XY v,XY
u K
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where XY is either PA, AT, PB, or BT and •(i) refers to the i:th element of the vector.

Combining equations 1 and 2 gives three coupled non-linear differential equations:

( ) ( )

( )

, , , , , , , , , , , , ,

, , ,

A A A P T B B B P T

x A B load

p f p x x p p p f p x x p p

x f p p x F

= =

=

PA AT PB BTu u u u& & & &

&& &
(3)

Control inputs of the system are control vectors of valve series (uPA, uAT, uPB, uBT), and

uncontrollable inputs are supply pressure pP, tank pressure pT and load force Fload. The

state variables are chamber pressures pA and pB, and piston position x and velocity x& .

2.2. Pressure and Force Controller

The fundamental assumption made is that the inertia m is so large that velocity does

not change significantly during the one controller sampling period. This decouples the

differential equations of Eq. 3 and makes it possible to estimate pressures using e.g.

Heun’s method. The chamber pressures can then be controlled by selecting such
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control signals that the differences between the target pressures and the estimated

pressures are minimized. The output of the hydraulic cylinder is piston force, which is

given by:

A A B BF p A p A Fµ= − −
(4)

Thus, there are two control variables and one output. One option is that the pressure

differentials over the DFCUs are the same. This gives:

( )

( )
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A B A B
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B ref P T

A B A B

F A
p p p
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+ +

−
= + +

+ +

(5)

The primary objective of the force controller is to minimize the force error while the

secondary objective is to keep pressures near the target values. This is solved by first

selecting such control candidates for the A- and B-side that the estimated error in

chamber pressures is small, and then calculating force error for each combination of

the control candidates. The control candidates are selected according to the weighted

sum of the estimated pressure error and the magnitude of the openings of the DFCUs:

( ) ( )

( ) ( )
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PA AT

PB BT

b u u

b u u
(6)

where Wu,p is the weight for the opening of the DFCUs and the vector b determines the

relative sizes of the valves. The Ncand candidates that give the smallest value for JA and

JB are selected for further analysis. The final selection is made by minimizing the

following penalty function:

( ) ( )

( )
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,

T
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ˆ 1ref u F

u F

J F F k W

W∆

= − + + + + + +

∆ + ∆ + ∆ + ∆

PA AT PB BT

PA AT PB BT

b u u u u

b u u u u
(7)

2.3. Pressure and Force Dynamics

It is shown in /3/ that the pressures have first order dynamics with time constant:

( )ˆln 1

ST

B B
τ = −

−
(8)
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The equation is valid if the real bulk modulus B is smaller than the estimate of the bulk

modulus B̂ . The A-side and B-side bulk moduli are different and the time constants of

the A-pressure and B-pressure are different. If the supply and tank pressures are

constant, the force dynamics can be expressed:

( )
( )( )

( )
1

ˆ
1 1

B A A B

A B
ref F ref

A B

A A
s

A A
F s F G s F

s s

τ τ

τ τ

+
+

+
= =

+ +
(9)

2.4. The Outer-Loop Velocity Controller

Equation 9 shows that, the inner-loop controller has the dynamics GF(s) with unknown

time constants τA and τB. The upper limit of the time constants can be determined by

estimating the lowest possible bulk modulus. The lower limit for the time constants is

zero. In addition to time constants, the system has also delay d caused by the valves,

the sampling, the computation, and the pipeline dynamics. Furthermore, the velocity is

differentiated from the low-pass filtered position. The nominal open-loop transfer

function of the system is selected to be:

( ) ( )
1

mind s

N LP

min

G s e G s
m s

−= (10)

where GLP(s) is the transfer function of the low-pass filter. The true transfer function is:

( ) ( ) ( )
1 ds

T F LPG s G s e G s
m s

−= (11)

The multiplicative error caused by parameter variations is
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Now the system remains stable if GT(s) and GN(s) have the same number of unstable

poles and following holds /5/:
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Both GT(s) and GN(s) have one pole at origin and other poles are stable. Therefore, the

stability criterion of Eq. 13 can be used. In practice, the robust tuning is made such that

there is certain margin in Eq. 13 and that this margin increases with frequency. This
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takes into account the unmodelled dynamics, such as pipeline dynamics. One possible

velocity controller is P-controller /3/:

( ) ,V P velG s K=
(14)

2.5. Position Tracking Controller

The position loop design is made similarly to the velocity controller. The nominal and

true open-loop transfer functions are:
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The multiplicative modelling error is:
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and the stability criterion is:
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A simple PI-controller is selected for the position loop:

( ) ,

,

I pos

P P pos

K
G s K

s
= + (18)

The block diagram of the control system is shown in Figure 1.

Figure 1. Block diagram of the controller.
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3. Test System

The test system and its hydraulic circuit diagram are shown in Figure 2. The system

mimics the dynamics of the joint actuator of a typical medium sized mobile machine

boom and its natural frequency is about 3 Hz with 400 kg load mass. The pressures

are measured with Druck PTX1400 sensors with 0-40 MPa measurement range and 4-

20 mA current output, and the 500 Ohms precision resistor is used to obtain voltage

signal. The piston position is measured by a potentiometer with ±10 VDC supply

voltage. The position signal has analogue RC filter with 0.22 ms time constant.  The

voltages are measured with dSPACE DS2002 16-bit ADC board. The controller is

implemented by Simulink and dSPACE DS1006 controller board.

Figure 2. The system studied.

The digital valve system consists of 4×16 miniaturized fast on/off valves /6/. All valves

have the same flow capacity. The average valve parameters are identified from the

measured responses having six valves open in DFCUs PA and BT. The measurements

are repeated with 5, 6, 7, 8, 9 and 10 MPa supply pressure and the flow rate and

corresponding pressure differentials are determined from the pressure and velocity
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measurements. The valve parameters are KV,PAi = KV,PBi = 8.7×10-9 m3/(s Pa0.53), KV,ATi =

KV,BTi = 7.5×10-9 m3/(s Pa0.53) and exponent x is 0.53 for all valves.

4. Tuning of The Controllers

4.1. Force Controller

The parameters of the force controller are the sampling time TS and weight factors

Wu,p, Wu,F and W∆u,F. The base sampling period of the controller is selected to be 5 ms,

i.e. slightly more than the maximum response time of the valves. The weight factors are

selected based on simulations such that the simultaneous opening of DFCUs PA and

AT, and DFCUs PB and BT as well as activity of valves are minimized but the force

tracking performance is still good. The values used are Wu,p = 0.05 MPa, Wu,F = 10 N,

and W∆u,F = 50 N. The estimate of the bulk modulus is selected to be 1500 MPa, which

is considered as the biggest possible value. The parameter Ncand is selected to be

eight.

4.2. Velocity and Position Controllers

The minimum inertia of the system is obtained without load masses and is estimated to

be 418 kg m2. The inertia reduced to the cylinder is thus 10450 kg at the horizontal

orientation. The maximum inertia is obtained with 400 kg load mass and is estimated to

be 53000 kg at the horizontal orientation. It is assumed that the true bulk modulus is at

least 700 MPa, which results in maximum time constants of 8 ms. The maximum

system delay is assumed to be the 3 ms valve delay plus the sampling period, i.e. 8

ms, and minimum delay is assumed to be 3 ms. The tuning of the velocity controller is

made by plotting both sides of Eq. 13 with different parameter values. The seven

equally spaced parameter values are used as follows: τA = 1–8 ms, τB = 1–8 ms, d = 3–

8 ms, m = 10450–53000 kg. Figure 3 shows the both sides of Eq. 13 for the tuning KP =

0.45×106 Ns/m. Figure 3 shows also the closed-loop velocity step responses of the

linear model. The position controller is tuned by plotting the both sides of Eq. 17 with

different parameter values. The resulting tuning is KP,pos =  12  s-1 and KI,pos =  12  s-2.

Figure 3 shows the both sides of Eq. 17 for this tuning and corresponding step

responses.

4.3. Implementation Issues

Pressure and position signals are filtered with a non-linear filter, which buffers five data

points, removes the minimum and maximum value and takes the mean value of the

remaining three data points. Pressures and position are then filtered with a first order
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linear filter. The time constants are 0.53 ms for chamber pressures, 5.3 ms for piston

position and 8.0 ms for the supply pressure. The piston velocity is differentiated from

the filtered piston position using filter suggested in /7/:

( )
( ) ( ) ( ) ( ) ( ) ( )5 3 1 2 3 3 4 5 5ˆ

35 S

x k x k x k x k x k x k
x k

T

+ − + − − − − − − −
=&

(19)

All filters run with 0.25 ms sampling period. The integrator term has ±0.1 mm deadzone

in order to avoid limit cycles /3/.

Figure 3. Both sides of Eq. 13 (top-left) and velocity step responses (top-right); both

sides of Eq. 17 (bottom-left) and position step responses (bottom-right) when

system parameters are varied.

5. Experimental Results

The supply pressure is 10 MPa in all measurements. Figure 4 presents the measured

response without load masses. The position reference is the fifth order polynomial with

50 mm amplitude and 1.25 s movement time. The peak velocity is 75 mm/s and the

maximum position tracking error is 0.71 mm. The performance index is thus 0.0095 s.

The figure shows also that pressure tracking and force tracking is good but valves are

quite active because of measurement noise. Figure 5 depicts the measured response

when the boom has 200 kg load mass at both ends. The tracking error increases to

2.58 mm and the performance index increases to 0.034 s. The response is stable but

there is small overshoot when stopping the movement as predicted by the linear model

(see Figure 3). Figure 6 shows the measured slow velocity response 200 + 200 kg load

mass. The amplitude of the movement is 5 mm and the peak velocity is 7.5 mm/s. The

response shows that the system is capable for very slow motion.
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Figure 4. Position tracking results without load masses.

Effective inertia is about 10450 kg.

Figure 5. Position tracking results with 200 + 200 kg load masses.

Effective inertia is about 53000 kg.
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Figure 6. Small amplitude position tracking results with 200 + 200 kg load masses.

6. Conclusions

The new high performance digital hydraulic force, velocity and position tracking control

solution has been experimentally validated. The solution is simple, does not need

derivatives of velocity or pressure, and gives good control performance under greatly

varying load mass and uncertain bulk modulus and system delay. The slow velocity

performance is also good despite moderate resolution of the digital valve system.

However, the results are not as good as simulations predicted in /3/. The reasons for

this are larger variation in inertia and measurement noise. The measurement noise

increases also activity of the valves.
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Nomenclature

AA, AB Piston areas m2

b Vector of relative sizes of valves of DFCUs

BA, BB Bulk moduli of the piston and rod side chambers Pa

d, dmin Actual and minimum system delay s

e Position error m

F, Fload, Fref Actual force, load force, force reference N

Fµ Friction force N

GN(s), Nominal transfer function of the velocity loop

GN,pos(s) Nominal transfer function of the position loop

GP(s), GV(s) Transfer function of the position and velocity controller

GT(s) True transfer function of the velocity loop
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GT,pos(s) True transfer function of the position loop

J Cost for the force error N

JA, JB Cost for the piston side and rod side pressure error Pa

KI,pos, KP,pos I-term and P-term gain of the position controller 1/s2

KP,vel Velocity controller gain Ns/m

m, mmin Actual and minimum load mass kg

N Number of parallel connected valves

pA, pB Pressure in the piston side and rod side chamber Pa

pA,ref, pB,ref Reference value for the piston side and rod side pressure Pa

pP, pT Supply and return line pressure Pa

QXY Flow rate of the valve system from port X to port Y, XY is

either PA, AT, PB or BT

m3/s

TS Sampling period of the controller s

uXY Vector of the control signals of the DFCU XY, where XY is

either PA, AT, PB or BT

v, vref Piston velocity and velocity reference m/s

V0A, V0B Dead volumes of the piston side and rod side chamber m3

Wu,F, W∆u,F Weight for the opening and change of opening of DFCUs N

Wu,p Weight for the opening of DFCUs Pa

x, xmax, xref Actual, maximum and reference piston position m

∆(s), ∆pos(s) Modelling error of the velocity and position loop

τA, τB Time constants of pressure dynamics s

•̂ Estimate of •
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Abstract 

Main purpose of the paper is to present high-response hydraulic linear drive, which is 

controlled with new digital piezo valve and where the new position transducer is 

integrated as a part of hydraulic cylinder. Hydraulic digital piezo valve with main static 

and dynamic characteristics as well as its functionality is presented in detail. The main 

static and dynamic characteristics of dygital piezo valve which influence directly on the 

linear drive performance are high resolution of the volume flow rate and high resposne 

of the valve.  Beside valve characteristics the new integrated position transducer, the 

digital controller and control method, presented in the paper, have major impact on 

linear drive preformance. At the end of the paper the step response and position 

resolution of the hydraulic linear drive controlled with the new digital valve is compared 

with the results of reference hydraulic drive controlled with high response proportional 

valve. 

KEYWORDS: hydraulic linear drive, digital piezo valve, high response, integrated 

motion sensor 

1. Introduction 

Advanced applications of handling and assembly which demands high dynamic 

positioning becomes a real challenge today /1/, /2/. These applications demands high 

response, high position accuracy as well as low energy consumption which can be 

achieved with the use of high-response hydraulic linear drives controlled with new 

digital piezo valves /3/, /4/. 

Most of the above mentioned industrial applications use servo hydraulic linear drives 

controlled with the conventional high-response proportional valves or servo valves. 
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Dynamic characteristics of the proportional and servo valves, even in the range of 

small control signals, are limited up to 200 Hz /5/, /6/. The main reason for limited 

dynamic response of the valve represents the valve construction and the use of 

conventional actuators. Optimization and development of new advanced control valves 

took place step by step and is mainly focused on the development of individual 

components of the servo valves /7/, /8/. The earlier researches are focused on the 

geometry optimization of the hydraulic spools in terms of mass reduction and internal 

flow force reduction /7/, /9/, /10/, /11/. Further on, the conventional actuators of 

proportional and servo valves are replaced with the high-response piezo actuators /12/, 

which increased the dynamic characteristics of the valves significantly (up to 600 Hz at 

phase shift of 90°). The step response of the valve is reduced from 7 to below 4 ms 

/13/. 

Based on the fact that conventional servo valves with limited dynamic characteristics, 

high failure sensitivity and high manufacturing costs, are not always the best choice for 

use in high-response applications. Therefore the market demands new high-response, 

robust and low cost hydraulic valves which can be used as control components in 

modern linear drives. The use of high-response Digital Fluid Control Units (DFCU) 

presents one of the alternative approach /14/. With the development of new spools 

materials and advanced high-dynamic valve actuators, and in particular the 

development of advanced digital electronics and new control methods have opened up 

new guidelines for the development of digital hydraulic valves and linear drives. In the 

beginning the DFCU-s consists of several parallel connected conventional solenoid 

on/off seat valves. Pulse number modulation (PNM) and pulse width modulation (PWM) 

are the most common used control technique /15/. In the beginning the conventional 

low-cost switching valves were used and were not suitable for the high-response 

hydraulic linear drives due to low dynamic characteristics /16/. In the last decades 

these valves use new actuators based on piezo technology /17/ and are therefore more 

suitable for the use in high-response hydraulic linear drives. 

The paper deals with the high-dynamic hydraulic linear drive controlled with the new 

digital piezo valve. New digital electronics and control method in combination with 

integrated position transducer allows high response closed-loop position control.  

2. Hydraulic linear drive controlled with digital piezo valve 

Hydraulic scheme of the linear drive where the conventional proportional valve is 

replaced with the new digital piezo valve shows Figure 1. Functionality of the 4/3 spool 

valve is achieved with the use of four digitally controlled on/off valves (functional states: 
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P-A, B-T and P-B, A-T). The major advantage of the new digital piezo valve, compared 

to proportional and servo valves, is the step response below 0.3 ms, even at 100% 

control signal. The construction of the seat valve results in robustness and has lower 

sensitivity to oil contamination. The advantage can be seen in control method. Control 

electronic and control method allows controlling the flow rate (from 0.08 to 20 l/min at 

pressure drop per metering edge Δp=3.5 MPa) of individual on/off valve independently 

which results in high flexibility of the digital piezo valve.  

The second important component of the hydraulic linear drive presents position 

transducer installed directly into the hydraulic cylinder as it is shown in Figure 1 and 

Figure 2. The position transducer consists of encoded cylinder rod and incremental 

absolute linear shaft encoder placed in cylinder head. Encoder with the proper 

electronic parameters operates with high frequency up to 4 kHz and allows measuring 

the cylinder rod displacement up to 0.2 µm, which is important to perform high-dynamic 

and precise closed-loop position control. 

 

Figure 1: Scheme of hydraulic linear drive controlled with digital piezo valve 

 

The real picture of the prototype hydraulic linear drive shows Figure 2. Conventional 

two stage one rod hydraulic cylinder PARKER HMI ISO is used (D/d/s: 25/12/200). 

Digital piezo valve DPVL-20 is composed of 4 on/off seat valves which are controlled 

Group A - Digital Hydraulics | Paper A-2 51



with piezo actuators. Each piezo actuator has several piezo elements in order to 

achieve proper spool stroke of the valve. Control electronic and method allows 

controlling up to 12 piezo elements independently. Nominal flow rate of the valve is 

Q=20 l/min at pressure drop per metering edge ∆p=3.5 MPa. Switching response time 

of the valve is tresp<0.3 ms (0-100 % control signal). Absolute linear incremental 

position transducer RLS LinACE TM is integrated as a part of hydraulic cylinder. The 

cylinder rod presents encoded shaft while the encoder is placed into the cylinder head.  

 

Figure 2: Real picture of prototype linear drive controlled with digital piezo valve 

 

2.1. Control method  

Beside above mentioned mechanical components also the quality of the control has 

major influence on closed-loop position control. New control electronic and control 

method is specially developed for the digital piezo valve. It is based on two control 

methods, pulse number modulation and pulse width modulation method. It allows 

controlling several piezo elements placed into valves actuators totally independently. 

The maximal control voltage is U=200 V. Block scheme of the position control method 

is presented in Figure 3.   

Micro controller is used to perform the PID closed-loop position control. The actual and 

real cylinder position is compared and the position error is calculated which presents 

the input parameter of the control method. The position error is amplified (eoj) and the 

proper valves (V1, V3 – for the positive error and V2, V4 – for the negative error) are 

activated based on negative or positive error. Further on, the method defines the 

number of activated piezo elements of the active valve actuators. If the error is big the 

valve is totally opened (all piezo elements of the actuator are activated) and if the error 

is small only one piezo element of the actuator is activated. After the number of piezo 
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elements is defined the parameters of PWM method is calculated (generation of PWM 

signal) for two signals (ON - PWM signal for piezo element activation and OFF - PWM 

signal for piezo element deactivation). The minimal time period of PWM signal is limited 

to t=10 µs. Closed-loop control is performed with the frequency up to 4 kHz (compatible 

with the position transducer frequency). 

 

Figure 3: Block diagram of control method  

 

3. Experimental investigation of digital piezo valve and hydraulic linear 

drive 

Dynamic characteristics of the hydraulic linear drive depend on characteristics of the 

control components (hydraulic valve). Therefore the main valve characteristics are 

presented first followed with the dynamic characteristics of the linear drive.  The step 

response of the digital piezo valve for different control signals is shown in Figure 4a 

and Figure 4b.  Measured step response gives the response time below 0.3 ms (spool 

movement from initial position to 100% position), while the step response of the valve 

flow rate at hydraulic port A is around t=2 ms.  

By using the proper control method the minimal step size of flow rate is around 0.08 

l/min which results in flow rate characteristic close to linear (Figure 5). 
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a) Resposne of digital piezo valve 

 

b) Resposne of digital valve flow rate 

Figure 4: Characteristics of digital piezo valve 

 

 

Figure 5: Flow rate characteristics of on/off piezo valve and the step size (state PàA) 

 

The results of the experimental tests for hydraulic linear drive are presented in Figure 

6 and Figure 7. Figure 6 shows the position resolution of the hydraulic linear drive. 

The position resolution is depended directly on the valve flow rate resolution.  By using 

the digital piezo valve and the proper control method we are able to control the position 

of the hydraulic drive up to 1 µm in both directions, forward and backward (Figure 6a 

and b). The control method and the parameters should be set separately for forward 

and backward direction due to unsymmetrical hydraulic cylinder chambers.    
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a) Position resolution - forward 

 

b) Position resolution - backward 

Figure 6: Step response of hydraulic linear drive controlled with proportional and 

digital valve 

The test of dynamic step response involves two different control valves; high-response 

proportional valve Moog D633 as a reference and new digital piezo valve. The step 

response curves are measured at inlet pressure p=6 MPa. The black doted curve 

shows the step response of the linear drive controlled with proportional valve while the 

solid curve shows the step response of the linear drive controlled with digital piezo 

valve. It can be seen that linear drive controlled with digital piezo valve has much lower 

time delay at the beginning and determines higher stiffness of the hydraulic system 

which can be seen as smaller overshoot. To confirm the influence of new digital piezo 

valve on the dynamic characteristics of the linear drive deeper analysis and 

optimization processes will be performed in the future research work. 

 

Figure 6: Step response of hydraulic linear drive controlled with proportional and 

digital valve 

Group A - Digital Hydraulics | Paper A-2 55



4. Conclusions 

In this paper high-response hydraulic linear drive controlled with new digital piezo valve 

and integrated position transducer is presented. The research work is focused on the 

possibility of replacing the conventional proportional or servo valves with the new digital 

piezo valves. One of the main components that influence directly on dynamic 

characteristics of the linear drive and low energy consumption present high-response 

digital hydraulic piezo valve. Static characteristics as well as dynamic characteristics of 

the hydraulic valve and linear drive show that the use of new digital piezo valve is 

sufficient. The use of advanced piezo actuators in hydraulic on/off valves and its 

mechanical construction results in better step response. The response time of the valve 

is reduced to 0.3 ms while the response time of the linear drive is reduced to 3-4 ms. 

Proper control electronics and control method also have major impact on dynamic 

characteristics of the linear drive. Combination of PNM and PWM methods results in 

high resolution flow rate of the valve and therefore flow rate characteristics close to 

linear. In this way the number of on/off valves in DFCU unit is reduced. First results of 

the energy consumption measurement tests, which will be analysed in detail in the 

future, shows that the use of piezo actuators can reduce the energy consumption up to 

15% compared with the conventional high-response proportional valve Moog D633 of 

the same size.  

The future research work is focused on further experimental analysis and 

characterization of the hydraulic linear drive (disturbance response, position resolution 

of the linear drive, etc.).  
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6. Nomenclature 

 Cylinder rod diameter  m 

D Cylinder piston diameter m 

eoj Amplified position error m 

Q Nominal volume flow rate of the valve l/min 

 Cylinder stroke m 

tresp Time step response of the valve s 

U Control voltage  V 

D  Pressure drop per metering edge MPa 
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Abstract 

Digital hydraulics is one of promising technologies having a huge potential to 

significantly improve energy efficiency in the fluid power industry. In this paper, we 

present a digital hydraulics solution for mobile market with a large ammount of energy 

usage by hydraulic components and systems. Specifically, a novel hydraulic 

architecture, Multiplex Digital Valve (MDV) system that employs digital valves to meet 

multiple service pressure/flow requirement in off highway vehicles, is introduced. With 

MDV being integrated in an execavator, signficant hydraulic power saving have been 

validated compared to the baseline machine with the negative flow control (NFC) 

architecture. In addition, considering noise is still a critical hurdle for digital hydraulics 

to be adoped, we develop several noise reduction methods that have been evaluated 

in simulation environment and implemented in the above MDV. The sound pressure 

measured from the retrofitted MDV solution with the NVH treatment in the excavator 

has been improved signficantly over the untreated system such that it is nearly 

comparable to the baseline machine. The paper also briefly presents the sound quality 

study for better understanding of human perception and acceptance to non-

conventional sound. 

KEYWORDS: Digital Hydraulics, Digital Valves, Noise Vibration and Harshness 

(NVH), Energy Efficiency 

1. Introduction 

Digital hydraulics is fundamentally a flow control method in which a digital valve 

switches between ON and OFF, while the ratio of time spent between these two states 

determining an average flow, thus providing the equivalent flow of a traditional throttling 

valve on average. Obviously, at any instantaneous moment, the valve does not cause 

any unnecessary energy loss since either the pressure drop across the digital valve is 

negligibly small while the valve is ON, or the flow rate is close to zero when the valve is 

OFF. This is essentially the hydraulic equivalent to the electrical evolution from a 
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resistor to a transistor which provides a very efficient current control mechanism via 

Pulse Width Modulation (PWM). 

There have been commercial ON-OFF valves available. However, the switch frequency 

and bandwidth of those valves are far from meeting the stringent requirement in digital 

hydraulics. The fundamental research on improving the performance of digital valves 

have been very active in the fields. Tu and Li developed rotary spool types digital 

valves that targets high speed PWM by rotating specifially design spool unidirectionly 

/1/. University of Bath has developed a three stage valve for use in Switched 

Reactance Hydraulic Transformer (SRHT) /2/ in which a servo valve is used as the pilot 

stage to drive the final stage of digital valve. Of course such valve is actually a 

proportional valve in nature, and there will be concerns of applying such a design into 

the reality due to cost concerns. A micro valve developed at Tempere University /5/ 

utilizes a small switching valve to achieve fast switching frequency, while the large flow 

rate will be achieved by combining the flow from dozens of valves in manifold. Another 

fast switching valve (FSV) has been developed at Linz for use in digital hydraulic 

systems with the integrated electronics/4/. University of Minneosta developed crank 

slider spool valve in which two spools are driven by a crank shaft to achieve 120 Hz 

switching frequency /3/. John Lumkes has been working on a high performance valve 

that used MR fluid to engage or disengage a digital valve’s translational rod to a rotary 

disk in order to achieve higher switch speed /6/. Obviously the switching time and the 

flow rate are two critical specs for all the digital valves. The performance summary of 

the above digital valves can be seen in Figure 1. 

 

Figure 1: Performance comparison of various digital valves 
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There are the attempt to apply digital valves in some applications like wind energy and 

transportation. When it comes to mobile applications, however, it is clear that the flow 

rate of these digital valves are significantly smaller than the needs in mid-size to large–

size mobile machines. In this paper, we present a large flow reate digital valve with 

comparable switching frequency is presented to meet the mobile market requirement. 

Digital hydraulics’s efficiency gain depends largely on the circuit and architecture of the 

system architecture. For example, putting multiple digital valves with binary coded size 

in parallel is a common architecture to achieve various flow rate with the combination of 

more than one digital valves /5/. However, it is clear that this represents one way of 

implementing proportional valve functionality by using digital valves. It does not focus 

on the energy efficiency as the primary driver of adopting digital hydraulics in the first 

place. Another common implementation architecture of digital hydraulics is to Integrate 

digital valves into a piston pump so that a fixed displacement pump can be converted 

to a high efficiency variable displacement pump /8/. Similarly other types of pump with 

digital hydraulics were also investigated with various advanced control algorithm /14/. 

When it comes from rotary to linear, there are also noticeable efforts to achieve 

variable displacement cylinder by integrating digital valves to special cylinders with 

several chambers having different surface areas. /7/ Another common artchitecture is 

switched inertance converter, which a hydraulic equivalent of electrical power switch 

drive /2/. In mobile hydraulics, however, it remains a big challenges to provide a 

practical solution to integrate digital valves to the proven single or dual piston pump 

design to have a simple but versatile architecture that can be scaled to various types of 

mobile machines. In this paper, we will introduce a novel architecture called Multiplex 

Digital Valve (MDV) system for off-highway vehicles based on the high flow high 

bandwidth digital valves as aforementione. With such a architecture, we can achieve 

virtual “displacement control” scheme as proposed by /10/ but only a single pump will 

be used rather than multiple pumps, thus significantly reducing the system costs and 

increasing the adoption rate. A machine level system integration and testing has been 

completed to verify the concept. 

In the digital hydraulics research field, one less popular research topic is noise and 

vibratio. In addition to conventional hydraulic noise, fast switching valves generate 

abrupt pressure spike and big flow ripple, thus generating not only undesirable fluid 

borne noise, but also harsh structure borne noise. In the paper, we present a variety of 

noise reduction methods, and the assessment in model based framework. The final 

noise reduction methods are implemented in an integrated vehicle. Sound pressure 

has been drastically reduced compared to untreated digital hydraulic system. 
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Moreover, since digital hydraulics create unfamiliar sounds to the conventional 

hydraulic system, sound quality study is also conducted to ensure operator and by-

standers acceptance and satisfaction of digital hydraulics. 

2. Multiplex Digital Valve (MCV) Digital Hydraulics in Mobile Applications 

Hydraulics in mobile machines comsumed a significant amount of energy. According 

NFPA, the fuel of up to 1.3 Quards/year has been consumed by U.S.A mobile 

hydraulics /9/. Improving efficiency of mobile machines will have remarkable economic 

and social vallue. The dynamic and varied duties of off highway equipment, however, 

make it challenging to optimize the hydraulic systems for efficiency while maintaining 

productivity. For examples excavators must perform a wide variety of operations, from 

rapid bulk excavation and back filling to accurate flat bottom trenching and low speed 

precision craning operations. Excavators’ hydraulic systems are thus designed to be 

compromise to allow good performance for all these different duties. This compromise 

results in a large amount of metering to provide good controllability and reduce 

interactions between services supplied by a common flow source as load pressure 

fluctuate due to forces actin on the actuators. This metering for control will consume 

30-41% of an excavators hydraulic power in typical operation. 

We develop Multiplex Digital Valve (MDV) system to address the requirement for 

supplying flow to multiple loads at different pressures with the minimum throttling loss. 

This is accomplished by using individual digital valves for the different services and 

supplying each service sequentially such that the pump is only ever connected one 

service at a time and is providing flow at exactly the pressure required by that particular 

service. A simplified schematic is shown in Figure 2, in which a fixed displacement is 

connected three digital valves connecting to three different loads, while the 4th digital 

valve act as bypass function to dump extra unused flow to tank. Accumulators are used 

to smooth the flow before the directional control valves fine tune the flow to the rams. 
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Figure 2: Left: Simplified Multiplex Digital Valve (MDV) System for Excavators; 

Right: the pump pressure profiles when connecting to variable loads  

The work principle of MDV is shown in pump pressure profiles the above figure.   In 

one control period the system sequentially supplies flow through each one of the three 

load valves to deliver an average flow.  The flow command is converted to a 

percentage of total pump flow required, thus the ratio of the control period that the 

digital valve connecting the pump to that service is open for.  The ratio for the bypass 

digital valve is then the remainder of the period not used by the service digital valve 

duty cycles.   For instance, in the beginning of a control period, valve 1 is opened so 

the fixed pump delivers  at  (load 1 pressure) for of the control period   . 

Obviously,   in which  is the average flow for load 1. Then valve 1 

closes and valve 2 opens delivering the flow  at  (load 2 pressure) for  of the 

control period.  Next,  valve 2 closes and valve 3 opens delivering  at  (load 3 

pressure) for  of the control period. Finally, with all load valves closed the bypass 

valve opens to unload the pump to tank for the remaining of the control period, or 

 .  As can be seen, the proposed digital hydraulic system 

completely eliminates the parallel metering losses as well as the open center control 

valve losses associated with NFC type pump control. This also allows the metering for 

control losses to be significantly reduced because the services are decoupled and 
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metering is no longer required to prevent interactions between services due to 

changing loads. 

Two key technologies are developed in order to enable the proposed MDV solution. 

Digtal Valve  Off highway applications require high nominal flows and low switching 

times to maintain controllability, with flow requirements more than 200~300 lpm for 

every service. We developed the two stage digital valves to meet the flow rate 

requirement. The pilot stage is a 2 position, 3 way valve that is operated by two 

opposing solenoids, while the main stage is a 2 position, 2 way valve. FEM and CFD 

analysis have been conducted to maximize the electromagnetic force and minimize the 

flow induced forces. The achieved performance per laboratory testing has been 

presented as follow: the pilot stage switching time is ~0.7 ms, the main stage switching 

time is ~4 ms, the rated pressure is 400 bar, and the flow rate is 350 lpm at 5 bar ΔP.  

                           

Figure 3: Digital Valve developed in Eaton to address Mobile market 

Advanced Control Advanced control is developed to optimize the valve switching 

between different services to maximize efficiency while miminizing pressure ripple,  

deal with the flow sharing scenarior where the pump available flow is smaller than the 

flow deman, etc.  

The digital valve system was retrofitted and tested on 22T excavator which had 

previously been instrumented and tested to determine the hydraulic power utilization 

including metering losses, pump losses and “useful” work (defined as the product of 

force and velocity of the actuator). The excavator was tested with multiple operators 

performing the trenching duty. The digital valve system improved the system efficiency 

significantly, reducing the metering losses by 73% and reduced total hydraulic power 

input by 35% on average. 
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Figure 4: Vehicle integration  

3. NVH and Sound Quality Study of Digital Hydraulics  

Among many challenges in fully realizing the full benefit of digital hydraulics 

technology, Noise, Vibration and Harshness (NVH) is one of the most critical issues 

that need to be resolved. In the natural mode of operation of the hydraulic system 

presented above, flow through a digital valve switches between zero and maximum. 

Pressure surges are caused when flow is forced to stop at the valve inlet as the valve 

closes and when the flow is released out of the valve as it opens. This phenomenon is 

commonly known as the water hammer effect. These pressure pulsations lead to fluid 

borne noise. Moreover, the constant on-off function of digital valves leads to the impact 

and vibrations on the valve assembly, which propagates as structure borne noise 

through the system. Hence digital hydraulic systems are inherently susceptible to 

noise. If left untreated, this noise would be distinctly audible over the engine noise in off 

highway vehicles. 

Hence NVH is a significant challenge to the usability and commercial viability of digital 

hydraulic systems. There are three aspects to this problem: Firstly, the bystander and 

cabin sound levels need to be acceptable to government noise pollution regulations for 

construction equipment and to the OEM permitted noise levels. In Europe the 

permissible sound power level is 101 dB/1pW /12/. Secondly, with an untreated digital 

hydraulic system, the sound power level is at risk of being higher than the baseline 

excavator, which are typically below the legislative requirement, thus being as good as 

these established baseline is critical for customer adoption. Thirdly, even if the noise is 

within prescribed limits and similar to the baseline machines, the sound quality causes 

significant unease to the operator and bystanders. A distinct ‘rattling’ sound caused by 

both fluid and structure borne noise leads to poor perception of the quality of digital 

hydraulic systems.  
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A systematic methodology for NVH mitigation thus needs to be factored in system 

design process for digital hydraulic systems. In developing Eaton’s digital valve system, 

a source-path-receiver approach is chosen. This approach looks at the source of the 

noise (digital valve), the path through which it propagated (structural path and fluid 

path) and the ultimate receiver who is impacted by the noise (operator, bystander). The 

methodology looks at both aspects of NVH challenges: Noise reduction and 

improvement of sound quality by leveraging model based development approach.  In 

the next section, we are going to address Sound Power level reduction, followed by the 

sound quality study which extract critical characteristics of noise lead to improved 

sound quality. 

3.1. Noise Reduction Methods  

In this section, we have elaborated on the strategy adopted for noise reduction. Both 

fluid borne noise and structure borne noise contribute to the penultimate noise created. 

Fluid borne noise is caused primarily by the pressure transients (spikes) in hydraulic 

system due to water hammer effect. Hence any mitigation solution to reduce fluid borne 

noise would involve decreasing the pressure spikes. Structure borne noise arises out of 

mechanical impact in the digital valve system or through transmission of fluid borne 

noise to structures. Hence any mitigation solution to reduce structure borne noise 

would involve reducing structural vibrations.  

Category Probable Solutions – 

Fluid Borne Noise 

Probable Solutions – 

Structure Borne Noise 

Source Digital valve notches, check 

valves, hydraulic inductor 

Valve cushions 

Path Accumulators, suppressors Isolation Mounts 

Receiver -- System Enclosure 

Table 1: NVH Solution Hypotheses 

In the source-path-receiver approach for noise reduction, we hypothesize probable 

solutions to minimize both fluid borne and structure borne noise. The hypotheses are 

tested in model based approach. The physics based dynamic modeling and simulation 
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are conducted to evaluate each proposed solution. Only the effective solutions verified 

by model based approach will enter to the physical implementation phase for the final 

confirmation. The overall effectiveness were later confirmed by integrated 

implementation and testing. These hypotheses are listed in Table 1.  

3.1.1. Model based approach for fluid borne noise 

Each proposed NVH mitigation solution is evaluated independently using simulations in 

Easy5 and/or through testing. The metric for measuring the efficacy of each solution is 

the % reduction in the pressure spike due to introduction of the NVH solution. Thus we 

compare the pressure spikes before and after the introduction of NVH solution to 

evaluate the impact of the solution. Sometimes the solutions also have undesirable 

side effects, such as increased leakage or additional back pressure, other than the 

obvious disadvantage of added cost. Hence the drawbacks of these solutions should 

be weighed against their benefits. These proposed solutions and their benefits and 

drawbacks are explained below: 

Digital valve notches As the digital valve opens in every on-off cycle, pressure spikes 

are caused when the oil from the inlet is forced out of the valve. To reduce pressure 

spikes, instead of a sudden opening of the valve, a gradual opening, through the use of 

notches is proposed. This gradual opening will allow small amount of oil flow before the 

valve has opened fully and thus reduce pressure spike. The decrease in pressure 

spikes just after the valve is measured over possible ranges of slope and intercept. 

Check Valves During the on-off operation of digital valves, as the load valve closes 

and the bypass valve opens, there is a tendency for the oil to flow back from the load 

valve to the bypass valve. This happens when the oil in the load side sees a lower 

pressure at the bypass side if the opening times and closing times overlap. This leads 

to pressure spikes at the bypass valve as the valve opens. One way of reducing the 

pressure spikes is by using check valve just after the load digital valve. The check 

valve will prevent backward flow into the bypass line and thus prevent the pressure 

spike. The check valve is modeled in Easy5 using standard poppet valve block with 

appropriate parameters and the reduction in pressure spike at the bypass valve outlet 

is measured through simulation. 

Accumulator Pressure spikes occur on the load digital valve as the fluid is forced out 

when the valve opens. These can be reduced using a gas charged accumulator, which 

will absorb pressure spikes and lead to smoothened pressure transients. To model the 

accumulator, we use standard accumulator block in Easy5. The reduced pressure 
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spikes are measured via simulation for a range of accumulator pre-charges and 

volumes. 

Suppressor A hydraulic suppressor from Wilkes and Mclean was chosen for the noise 

reduction. It consists of a three noise baffle diffuser tube and a nitrogen charged 

diaphragm. The suppressor essentially acts as an energy absorbing device and 

reduces pressure spikes in the load and the bypass line. To model the suppressor an 

accumulator model was used with a large oil port to mimic the low flow restriction into 

the suppressor. 

The simulation results show that all the hypothesized NVH solutions lead to reduced 

pressure spikes. However, with each solution there are some drawbacks associated. 

The decision whether the hypothesized NVH solution should go ahead for integration 

onto the vehicle should be weighed by the pressure spike reduction as well as the 

drawbacks of the solution. These are summarized as follows: for digital valve notch 

refinement, 17 % pressure spike reduction is achieved; adding check valveonly only 

leads to 15 % spike reducion; accumulars are important to attenuate pressure spike, by 

73 % and 64 % for diaphram type and pison type, respectively; unsurpringly, 

suppressor is quie effective with 70 % reduction observed.  

3.1.2. Vehicle Integration to Evaluate Fluid/Structure Borne Noise 

The chosen hypotheses were tested on the vehicle. During system integration on the 

excavator, check valves and accumulators were added on the load lines. Suppressors 

were evaluated and added on all lines.  

We also validate a few hypotheses during the vehicle integration phase that are 

beyond the capability of modeling due to the limited knowledge on the material 

parameters, in particular structure borne related mitigation methods. 

Digital valve cushion desing. The digital valve design consists of the main stage 

valve spool moving along the valve sleeve via hydraulic commands from the pilot 

stage. During this motion, there is a mechanical impact between the valve spool and 

the body. Cushions on the digital valve are proposed to reduce impact noise. The 

cushions are fabricated and tested, with the reduced vibrations valve, measured by 

accelerometer impact, shown in Figure 5.  
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Figure 5: Vibration reduction through valve cushion of digital valve 

Isolation mounts and enclosure. Isolation mounts are proposed to isolate the 

hydraulic system from the vehicle body. Moreover, an enclosure on the hydraulic 

system with an acoustic foam lining is proposed to prevent hydraulic induced noise 

from propagating to the vehicle body. These are tested on the vehicle and cause 

significant reduction in the vehicle vibrations.  

 

Figure 6: SPL comparison 

3.1.3. NVH Treatment Results 

The selected NVH treatment hypotheses are integrated on the vehicle system. The 

impact of these is measured using the pressure spike reduction and the sound power 

level measured at a distance of 10 feet from the vehicle. The SPL data from the vehicle 

is shown in Figure 6. It can be seen that without the NVH mitigation plan, the 

excavator machine SPL is around 83.4 dBA, almost 10 dBA higher than the baseline 

Group A - Digital Hydraulics | Paper A-3 69



conventional excavator during the same NVH measurement approach. With the 

proposed solution, the NVH of digital hydraulic excavator is almost identical to the 

baseline excavator.  

3.2. Sound Quality Study 

As we aforementioned, sound pressure level is only one perspective with it comes to 

NVH of digital hydraulics. The vehicle operator perception and satisfaction for sound 

quality is another critical consideration. Since the digital valve hydraulic system has 

strong dynamic transient events during operation, the noise characteristics are 

dramatically different from that of a conventional hydraulic system. Therefore, an 

investigation has been conducted to evaluate the sound quality of digital vale hydraulic 

system and ways to improve it.   

Sound quality is used to describe users’ reactions to sounds from a product, associated 

with perceived acceptability and quality of the product. Even though sound quality is 

typically subjective to individual perception, and many times have to be quantified via 

jury process, there have been a rich dimensions being established to describe multiple 

aspects of sound characteristics. These dimensions include amplitude, modulation and 

roughness, tonality, frequency balance and impulsiveness. There are multiple metrics 

to represent each dimension /13/.  

.As part of the vehicle and hydraulic system integration, we developed the sound 

quality assessment methodology. The key challenge to be resolved is to reduce the 

complexity of sound quality evaluation by identifying primary dimensions according to 

the correlation with jury input. To put it simple, we record a series of sounds in a 

relevant operating environment. The recording was post-proccessed with signal 

processing software. Then the sound quality metrics are computed by using 

commercial software. Meanwhile jury ranking was conducted for these recording via 

Analytical Hierarchy Process (AHP). AHP process is a critical enabling process since 

due to subjective nature of sound quality assessment, it is very difficult to tell the 

ranking of a group of samples. However, it would be much easier to detect the 

favorability of two samples of sounds. AHP then aggregates many pair-wise inferences 

into a single global ranking for all the sound samples. Finally the correlation between 

the computed sound quality metrics and the jury ranking are calculated in order identify 

the primary dimensions. The overall process is shown in Figure 7. 

According to the developed process, the following metrics have are the most 

dominating factors in deciding the sound quality. They are sound pressure level, sound 
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loudness, impulsiveness (Kurtosis), sharpness, and articulation index. Other factors are 

relatively minor when it comes to sound quality for this particular application. More 

details of sound quality study can be referred to /11/. 

 

Figure 7: Sound Quality Development Process 

4. Conclusion  

In this paper, we present a high flow rate high bandwidth digital valve as a foundation 

for mid-size mobile applications. Based on such digital valves, a novel Digital Hydraulic 

architecture has been proposed to achieve “virtual displacement control” so that each 

load will be provided with the right pressure and the right flow by multiplexing digital 

valves. Such digital hydraulics was implemented on a 22 ton excavator and 

successfully validated the ability of digital hydraulics to complete all mobile machine 

functions while reduce the throttling losses during typical operating cycles. The 

predicated hydraulic savings were achieved, which proves that digital hydraulics is an 

effective way to improve energy efficiency. We have also presented the NVH measure 

that significantly lower the noise concerns related to the digital hydraulic technology. 

The sound quality study is presented to evaluate human perception and satisfication for 

such unfamilar sounds, and its correlation with the dominating sounds metrics which 

can potentially lead to effective ways of change and improve sound quality. In future, 

there will be benefitial to investigate the optimizition the integration between Engine 

and MDV system in order to further improve system level fuel saving.  
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Abstract

The awareness and concern of our environment together with legislation have set more 

and more tightening demands for energy efficiency of non-road mobile machinery 

(NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in 

Lappeenranta University of Technology (LUT) /1/. The elimination of resistance flow, and 

the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC 

machine to step to the market has been the requirement of one IEHEC machine per one 

actuator. The idea is to switch IEHEC between two actuators of log crane using fast 

on/off valves. The control system architecture is introduced. The system has been 

simulated in co-simulation using Simulink/Mevea. The simulated responses of pump-

controlled system is compared to the responses of the conventional valve-controlled 

system.  

KEYWORDS: IEHEC pump/motor, pump-controlled system, non-road mobile 

machinery, fast on/off valve. 

1. Introduction 

In hybrid technology it is possible to increase the efficiency of the vehicle power 

transmission system. It is often also possible to maintain the performance of the vehicle 

even when the original internal combustion engine is replaced by a remarkably smaller 

one /2/.Improvement of the efficiency of the working hydraulics has an important role 

when the target is to reduce working machine’s energy consumption /3/. The new control 

method for electro-hydraulic energy converter (IEHEC), (see Fig. 3) is introduced.  This 

machine has a high power density and allows transformation of electrical energy into 

hydraulic energy and vice versa /1/.  

There are three major features of IEHEC machine that makes it highly efficient over the 

traditional valve control system. The first one: the elimination of resistance flow apparent 

in throttle orifices which is known to be the basic problem of load sensing control system. 
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A number of modifications to load-sensing actuation have been proposed by researchers 

all over the world in order to minimize metering losses /4/, /5/, /6/, /7/, & /8/. It can be 

noted that the control for this specific system is complicated and large number of valves 

are required to realize every operating mode. All mentioned improvements on load 

sensing system reduces the metering losses but could not eliminate the losses.  

Second: the replacement of hydraulic pipelines by electric cable. In non-road mobile 

machinery, the fluid power transmission lines are flexible hoses and pipes of small 

diameter which causes considerable power losses. In the electric cables the losses 

because of their internal resistances are apparent but negligible in comparison with the 

losses apparent in the hydraulic transmission lines /9/.  In place of using long fluid power 

transmission lines, the end actuators can be supplied by the IEHEC, placed directly close 

to them.  

Thirdly: the recuperation of energy in the form of electricity. Suitable place for this 

application in heavy mobile machines are all actuators that carry out work cycle in which 

the kinetic and potential energy is available for recovery e.g. lifting cylinders in cranes, 

grippers that tend to open by the payload mass and gravity /9/.  

The prototype of IEHEC was tested by efficiency and characteristic measurements /10/. 

The testing of functionality of IEHEC as a component of working machine and finding of 

suitable application area has been the next step. Development of control interface for 

hardware-in-the-loop (HIL) simulation of IEHEC has been carried out /11/. Experiment 

has been done on applicability (functionality) and efficiency of IEHEC machine in single 

actuator /12/.  

In this paper, design of the fluid power circuit has been done on the applicability of single 

IEHEC machine for multiple actuators. The actuators are separated by using fast on/off 

valves. Two different size of asymmetric differential cylinders of log crane have been 

used in the experimental set-up. To control the cylinder movement the direction of 

rotation and the rotational speed of the IEHEC pump/motor is alternated using the 

frequency converter. The experimental set-up has been designed and assembled as 

shown in Fig. 1. The circuit diagram of designed fluid power circuit is shown in Fig. 3. 

The experimental tests have not been carried out in the physical experimental set-up. 

Instead, the virtual prototypes modelled in Mevea software /23/ and in co-simulation 

Simulink/Mevea have been used to test the applicability. The attained results have been 

compared with the conventional valve controlled system that has been modelled using 

Mevea software.  
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Figure 1: The Log Crane test setup 

2. IEHEC  

The integrated electro-hydraulic energy converter (IEHEC) is the principal component of 

the studied multiple actuator system. The designed IEHEC consists of a bent-axis piston 

hydraulic machine of 63 cm3/rev and an integrated tooth-coil permanent magnet 

synchronous machine, which operates on the same shaft (see Fig. 2) /10/. 

The designed solution of IEHEC allows considerably high space savings in the mobile 

environment. The compact design of the integrated electrical machine imposes the use 

of efficient liquid cooling. The working hydraulic fluid can be used as cooling media. The 

hydraulic cooling system increases the power density which allows to use less active 

electrical and magnetic materials in the construction of the electrical machine /10/.  

 

Figure 2: prototype of IEHEC 

The IEHEC of 26 kW has originally been designed for the power of 45 kW. It weighs only 

43 % of a standard 45 kW induction motor coupled with the similar hydraulic machine 

and needs only 35 % of the installation length of standard setup. The maximum efficiency 

of the prototype is 90% in pumping mode and 86% in regenerating mode /10/. 
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Parameters Value 
nominal power 
Flow rate 
pressure 
voltage 
nominal current 
coolant flow 

26kW 
up to 180 l/min 
up to 400 bar 
400 V 
44 A 
4 l/m @70o c 

Table 1: Parameters of IEHEC /10/ 

3. Displacement Controlled Hybrid Actuator system  

The studied circuit diagram shown in Fig. 3, is electro-hydraulic hybrid actuator system. 

The system in question is a pump controlled fluid power system using displacement 

control (DC). The control of actuator motion in DC actuation system uses the pump 

displacement. 

Highly efficient displacement controlled actuation has been studied in /13/. The basis for 

the advantages of DC actuation reside in the complete elimination of resistance control.   

 

Figure 3: The studied system circuit diagram 

In this system differential volume and volumetric losses are balanced on the low pressure 

side. Low pressure is given by the characteristics of low pressure source pump and 

accumulator and limited by the pressure relief valve. Two pilot operated check valves 

ensure that the low pressure level is always connected to the low pressure of the cylinder. 

This depends on the operating quadrant. The four quadrant operation of differential 

cylinder in DC solution for linear servo actuator has been proposed in /14/ and /15/. In 

this test the low pressure is set to pset=20 bar.  

The hydraulic pump-motor used in this system is directly driven by the electrical motor-

generator controlled by a frequency convertor in reference to the actuators piston rod 
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velocities. Hence, the system is capable to recover the energy released in motoring 

quadrants and stored into batteries.   

The switching of the IEHEC machine between actuators (i.e. lifting and tilting actuators 

of log crane) as shown in the Fig.3 is managed by fast on/off solenoid valves. In the 

studied system the piston rods of two actuators are initially in fully retracted (lifting) and 

in fully extended (tilting) positions. The different position of the actuator piston rod would 

require different operating direction of the IEHEC machine which in turns the system 

cannot operate for two actuators at a time. This problem can be managed by reverting 

the tilting cylinder ports and, thus, the extension of lifting and retraction of tilting would 

operate in same direction of rotation of IEHEC. Thus the switching of the actuator can 

be managed easily by the fast on/off valves. 

4. Modelling of the studied circuit  

The opening of the fast on/off 2/2 directional valves are solved using first order dynamics, 

Eq. (1). 

!" # $%&'$
()*+),

                                                                                                                      (1) 

Similarly, for the angular speed of the electrical machine 

-" # .%&'.
(/0102

                                                                                                                      (2) 

The pump volume flow is calculated using, Eq. (3) 

34 # - 5 64 5 789:                                                                                                         (3) 

And, the cylinder flow is  

3;<: # =" 5 >;<:                                                                                                              (4) 

The pressure build up in the volumes can be described by the continuity equations of 

Merritt, Eq. (5). /16/. 

?" # @A
B
C3                                                                                                                       (5) 

The compressional volume flow can be described by equation (6). 

C3 # D3EF G D39HI G D6"                                                                                             (6) 

, where 6"  is externally supplied volume flow into and out of the volume (i.e. accumulator 

and actuator flow). 
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The volume flows in and out of each volume can be described in terms corresponding 

pressure drop by Eq. (7). 

3 # JKCLM                                                                                                                     (7) 

The volume flows of every orifices in the circuit is approximated by Eq. (7). The 

conditional statements and smoothening function have been used to avoid numerical 

problems in the simulation.  

The force produced by the cylinder can be calculated using the chamber pressures and 

the cylinder and piston areas as shown in Eq. (8). 

N # ?O>O G ?P>P G QR"                                                                                                     (8) 

The oil volume Voil of the pressure accumulator is described using Eq. (9). 

69E: # S3T;;H UV W 69E:X                                                                                                   (9) 

The volume of the gas Vgas is then the differential of maximum volume of pressure vessel 

Vmax and oil volume.  

6YTZ # 6[T\ G 69E:                                                                                                            (10) 

The gas pressure is solved using energy balance equation, Eq. (11). 

?YTZ6]^_` # ?YTZa6]^_
`                                                                                                    (11) 

H=1*10-5 s Cd=0.6 g = 9.81 m/s2 Llift =0.53 m Ltilt=0.78 m 

Be=1.5*109 Pa !=860 kg/m3 dcv=20*10-3 m dp-lift=0.1 m dp-tilt=0.09 m 

Uin=0…10 V b=5000 Ns/m dpcv=10*10-3 m dr-lift=0.056 m dr-tilt=0.056 m 

Cv=4.12*10-8 "=78.5 rad/s dpr=16*10-3 m T=20 s  

Vp=1.003*10-5 m3/rad Vmax=5*10-3 m3    

Table 2: Parameters used in the simulation 

 

5. The control of the system   

The IEHEC machine is controlled by the ABB ACS800M1 frequency converter. This 

frequency controller works based on direct torque control (DTC) of the electrical motor. 

For DTC, a typical torque response is 1 to 2 ms when operating below 40 Hz /17/. In 
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simulation time constant of b # cdefg has been used to control the IEHEC machine. This 

value is valid for variable displacement axial piston pump /18/.  

The direction of the rotation of the IEHEC machine has to be alternated in order to 

change the direction of the volume flow. Due to the combined inertia of rotor, pump shaft 

and piston block, the build-up of the angular speed takes longer however, the torque 

response is fast enough to build-up the angular speed. According to the design 

parameter of the IEHEC machine the machine can speed up at no load from 0 to 1500 

rpm by 25 ms. Thus, the used time constant is valid /18/.  

The volume flow from/to the IEHEC unit to/from the system actuators are guided by 

Rexroth 2/2 directional poppet valve of size NS6 with booster amplifier (fast on/off valves) 

with the response time of 10ms, /19/ and /20/. One fast on/off valve allow the maximum 

flow of 35 L/min at a pressure drop of 30 bar, and, thus, maximum Q=70 L/min by opening 

two valves at a time is possible per actuator.  

6. Conventional valve-controlled system modelled using Mevea software 

The 3D model of the log crane is created the same way as the model in co-simulation. 

The translational forces in the dummies are replaced by hydraulic pressure forces. All 

the hydraulic components shown in the conventional valve controlled fluid power circuit 

(see Fig. 6) are provided by Mevea software /23/. The forces (F1 and F2) are the external 

forces applied on the cylinder rods due to the inertia of the log crane links. The selected 

constant pressure pump builds-up 100 bar pressure in volume 1. The direction of the 

flow is controlled by 4/3 solenoid directional control valve /21/. The solenoids are working 

with a signal input of +/- 10 V. The pressure drop across the valve is 35 bar with nominal 

flowrate of 40 l/min. The semi-empirical volume flow coefficient (Cv) is calculated using 

Eq. 12.  The time constant of a certain valve can be obtained from the Bode-diagram 

provided by the valve manufactures. Typically, the frequency from the Bode-diagram is 

chosen using the -45o phase shift /22/.  The time constant can be calculated using Eq. 

13.  

hi #
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                                                                                                                 (13)                 
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Figure 4: The conventional fluid power circuit of studied log crane 

7. Result  

In this Chapter, the simulation results are described. Simulations are carried out by 

solving mathematical model of proposed fluid power circuit (see Fig. 3). The maximum 

stroke for the lifting and the tilting cylinders are 0.53 m and 0.78 m, respectively. In the 

co-simulation Simulink/Mevea the virtual model of the log crane links weight of 495 kg 

are considered. The main challenge of the simulation was the transition point of the 

switching of the actuator, where there is frequent pressure drop in the opening and 

closing of the fast on/off switching valve which further leads to oscillation in the system. 

The total simulation time is 20 s. The used input signal is sample based pulse generation 

for the IEHEC machine and fast on/off valves. The pulse generation input signal of the 

IEHEC machine works in a cycle time of 5 s to change the direction of rotation (see Fig. 

50), whereas, the fast on/off valves works with sample time of 100 ms (see Fig. 5b). The 

first 5 s of the simulation time the IEHEC machine rotates in a clockwise direction, which 

provides a positive volume flow (Q1), which leads to defined positive movement of the 

cylinder piston. The next 5 s of the simulation time, the IEHEC machine rotates in 

counter-clockwise direction providing opposite volume flow (Q2), that leads to opposite 

of the defined positive movement of the cylinders piston. These cycle repeats for the total 

period of the simulation. The control signal inputs for the fast on/off valves of the two 

actuators are working exactly opposite to each other (i.e. both of them never open at the 

same time). The mathematical model of the IEHEC driven fluid power circuit has been 

simulated using co-simulation method in Simulink/Mevea, results and comparison are 

described in the following sub-chapters. Due to the different time steps used in the 

simulation of IEHEC driven system and conventional valve controlled system results are 

plotted independently.  

Figure 6 shows the simulated rotational speed with respect to the reference rotational 

speed, (!in) direction of the IEHEC machine. The positive movement (extension) of the 
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cylinders piston requires more volume flow than the negative movement (retraction). 

Thus, the positive movement requires higher rotational speed.  Note that the !in is the 

reference for the PI controller that sets the simulated rotational speed of shaft. The 

vibration apparent in the graph is natural for this type of fast on/off control.  

a) 

 

b) 

Figure 5: The control signal input: a) IEHEC machine b) Fast switching on/off valve 

zoom out the first 2 s 

!

Figure 6: The simulated angular speed and reference angular speed of IEHEC 
machine. 

7.1. Co-simulation Simulink/Mevea results 

The control signal used for the IEHEC machine and fast on/off switch valves are shown 

in Fig. 5a and Fig. 5b. The inputs from Mevea simulation model of the log crane is used 

instead of constant mass-load used in the Simulink model. Figure 7a shows the piston 

position of the actuators. The switching of the IEHEC machine between the actuators 

can be seen from the step movement, when the lifting cylinder piston moves, the tilting 

cylinder piston stops and vice versa. The positive movement of the cylinders piston are 

the extension.  

The velocities of the actuator pistons are shown in Fig. 8a. The reduced velocities of the 

piston apparent to the plot is because of the piston approaching the end of the cylinder, 

which starts to move back and forth due to lack of damping.  
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Figure 9a shows the power consumption of the IEHEC pump in the fluid power circuit. 

The different position of the log crane link (i.e. weight to be lifted or lowered) requires 

different amount of energy. This is due to different mass moment of inertia of the links at 

different lifting position. The maximum power consumption in the co-simulation result is 

7 kW. The power consumption never reach’s to zero, because either of the cylinders are 

moving in the entire period of the simulation. 

7.2. Results of conventional valve-controlled system 

The conventional valve controlled fluid power circuit (see Fig. 4). Figure 7b shows the 

cylinders piston position. The movement of the actuator pistons are controlled by the 4/3 

directional valve. Depending on the valve spool position the negative and positive 

movement of the actuator piston can be controlled. The extension of the cylinders piston 

is positive movement.  

Figure 8b shows the velocity of the actuator piston. The oscillation at the opening and 

closing of the valve is apparent to the valve controlled fluid power circuit. The power 

consumption of conventional valve controlled fluid power circuit is shown in Fig. 9b. The 

fluid power circuit maximum power consumption calculated from the pressure and 

flowrate is 9 kW.  

a) 

 

b) 

 

Figure 7: Cylinders piston positions: a) co-simulation b) conventional valve control  

!

a) 

 

b) 

Figure 8: Cylinders piston velocities: a) co-simulation b) conventional valve control  
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a) 

 

b) 

 

Figure 9: Power consumption of pump: a) co-simulation b) conventional valve control 

7.3. Comparison of the IEHEC driven system and the conventional system  

In comparison, the work cycle of the circuit driven by IEHEC and conventional valve 

controlled fluid power circuit has been considered. The work cycle can be defined as the 

cylinder piston travelled length within a certain working time. Figure 7 shows the position 

of the cylinders piston. In both cases the cylinders piston travels 0.2 m in retracting 

direction. This distance travelled by the cylinders piston is accomplished within 5 s 

working time.  

The power consumption of the pumps within this working cycle (see Fig. 9). The power 

consumption of the pump in conventional valve controlled fluid power circuit is 4500 W 

in the lowering and 9000 W in the lifting whereas, the power consumption of the co-

simulation IEHEC pump-motor is varying between 1000 W and 4000 W in the lowering, 

and between 2000 W and 7000 W in lifting. The high peak at the beginning is due to the 

friction resistance in the cylinders piston sealing and the mass of the boom at the start 

of piston movement.  

8. Discussion and Future work  

The main challenge of commercializing electro-hydraulic hybrid actuator system has 

been the requirement of one IEHEC unit per actuator, which leads to high investment 

costs. The concept of pump switching has been introduced in /13/. In this thesis, a fluid 

power circuit is implemented for switching the IEHEC unit between two actuators. The 

system has been simulated using co-simulation Simulink/Mevea. Attained results are 

compared to results of conventional valve-controlled system. During simulation, the main 

challenge has been the transition point of switching the actuators. The used fast on/off 

valve with booster amplifier have been tested by manufacturer with a promising time 

constant of 10 ms. In the  co-simulation work the system response time of 100ms was 

sufficient to reach the stable movement of actuator piston. The control method has been 

tested using virtual model of the log crane.  
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The oscillations in the system is apparent to the fluid power circuit in which the fast on/off 

valves are used for guiding the volume flow. The fast opening and closing of the on/off 

valve causes pressure drops in the system which further increases the oscillations in the 

system.  The other reason for the oscillation is due to lacking of damping in the system. 

In modelling of the studied fluid power circuit the viscous damping in the cylinders has 

been the only damping considered in the system. Thus, the PI controller with cylinder 

velocities feedback have been added in the modelling of the electrical machine control.  

The designed fluid power circuit using IEHEC can operate with less power than the 

conventional valve controlled circuit even though, there is frequent opening and closing 

of switching valves of the actuators. The IEHEC driven fluid power circuit is 20 % more 

efficient than conventional valve controlled fluid power circuit.  
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10. Nomenclature 

x 

R"  

A 
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! 

g 

Piston position [m] 

Piston velocity [m/s] 

Area [m2] 

Diameter [mm]  

Density [kg/m3] 

Gravity [m/s2] 

P 

P 

Be 

b  

" 

Uin 

T  

Vp 
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L 

b 

H 

Pressure [Pa] 

Power [W] 

Effective bulk modulus [Pa] 

Time constant [s] 

Angular speed [rad/s] 

Reference signal [V] 

Simulation time [s] 

Radian volume [m3/rad] 

Efficiency [%] 

Cylinder stroke [m] 

Viscous friction coefficient [Ns/m]  

Integrated time step [s] 
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Abstract 

Noise emission is a major drawback of the positive displacement machine. The noise 

source can be divided into structure borne noise source (SBNS) and fluid borne noise 

source (FBNS). Passive techniques such as valve plate optimization have been used for 

noise reduction of axial piston machines. However, passive techniques are only effective 

for limited operating conditions or at least need compromises in design. In this paper, 

active vibration control of swash plate is investigated for vibration and noise reduction 

over a wide range of operating conditions as an additional method to passive noise 

reduction techniques. A 75cc pump has been modified for implementation of active 

vibration control using the swash plate. One tri-axial acceleration sensor and one angle 

sensor are installed on the swash plate and a high speed servovalve is used for the 

swash plate actuation. The multi-frequency two-weight least mean square (LMS) filter 

synthesizes the servovalve input signal to generate a destructive interference force 

which minimizes the swash plate vibration. An experimental test setup has been realized 

using Labview field-programmable gate array (FPGA) via cRIO. Simulation and 

experimental studies are conducted to investigate the possibility of active vibration 

control. 

KEYWORDS: Active vibration control; Axial piston machine; Multi-frequency two-

weight LMS filter; Structure Borne Noise Source reduction; 

1. Introduction  

Positive displacement machines are widely used in many applications of the industry due 

to their advantages of high power density, controllability, and high efficiency. The noise 

emission is a major drawback of positive displacement machines. Moreover, it is as an 

obstacle in widening the application of positive displacement machines. Many 

researchers have investigated noise reduction of positive displacement machines with 

different approaches. The main approaches can be categorized into research focused 

on the transmission path of noise /1/ and research focused on sources of noise /2, 3, 4/. 
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The noise source can be divided into structure borne noise source (SBNS) and fluid 

borne noise source (FBNS). Passive techniques such as valve plate optimization have 

been investigated for noise reduction of axial piston machines /4/. However, passive 

techniques are only effective for limited operating conditions or at least need 

compromises in design. Active techniques have been investigated for FBNS reduction 

/5, 6, 7/. However, few researchers have investigated active techniques for SBNS using 

swash plate vibration control. A group of researchers in Japan investigated vibration 

control of the swash plate to reduce SBNS of an axial piston pump by manually tuning 

the phase and amplitude of synchronized sinusoidal input signals /8, 9/. However, 

manual tuning leads to limited vibration and noise reduction performance. 

In this paper, active vibration control of the swash plate is investigated for vibration and 

noise reduction over a wide range of operating conditions as an additional method to 

passive noise reduction techniques. The swash plate moment acts as a disturbance to 

the pump control system. The swash plate acceleration is a periodic signal, which is 

composed of harmonic components of fundamental frequencies of the swash plate 

moment. The concept of active vibration control is to cancel vibration of the swash plate 

by applying destructive interference signal to the swash plate control. The least mean 

square algorithm uses the synchronized reference signal for synthesizing destructive 

interference input, which minimizes swash plate acceleration. 

2. Pump modification and swash plate acceleration measurement 

A 75cc axial piston pump is modified to have a swash plate acceleration sensor, a swash 

plate angle sensor, a high speed direct drive servovalve, and a rotation speed sensor for 

vibration reduction via swash plate control.  

 

Figure 1: Cutaway drawing of the modified pump 
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Figure 1 (left) shows the cutaway drawing of the modified pump which has a tri-axial 

acceleration sensor (PCB W356A12: ±500m/s2), a noncontact type angle sensor 

(Contelec Vert-X 31E) and a high speed direct drive servovalve (Parker D1FP: 350Hz 

@5% input, 40LPM). The side cover is redesigned to have an angle sensor and cable 

path for the sensors. Figure 1 (right) shows an encoder (Heidenhain ROD426) connected 

to the pump shaft through the auxiliary mount to measure rotation speed. Figure 2 shows 

the circuit of the dedicated test rig for active vibration control. One hydraulic motor 

(130cc) is connected with the hydraulic pump (75cc) via shaft coupling in order to drive 

the pump. 

A relief valve is used on the pump delivery line to apply loads to the hydraulic pump. Two 

flowmeters are installed on the pump delivery line and case drain line to measure the 

delivery flow rate and case drain flow rate. An oil filter is placed on the external pump 

control pressure line in order to protect the direct drive servovalve. An accumulator is 

installed between the oil filter and the direct drive servovalve to minimize pressure drop 

across the oil filter under fast dynamic conditions. The control and data acquisition of the 

test rig are implemented using LabVIEW FPGA via NI cRIO-9033. Different actuators 

and sensors have different control loop frequencies. For example, the active vibration 

control of the pump, the speed control of the motor, and the pressure sensors / 

flowmeters used 10KHz, 100Hz, and 100Hz control loop frequencies respectively. 

 

Figure 2: Hydraulic circuit of active vibration control test rig 

The acceleration of swash plate is measured using an acceleration sensor mounted 

35mm below the rotation axis of the swash plate as shown in Figure 3 (left). The aX 

direction of the acceleration sensor is positioned perpendicular to the radial direction to 

capture swash plate moment (MX). Figure 3 (right) shows the acceleration measurement 
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in the time domain and frequency domain. The acceleration is measured at the rotation 

speed of 803rpm, swash plate angle of 6.8deg, delivery pressure of 70bar, and low 

pressure of 28bar. The acceleration signal is high-pass filtered to remove the DC offset 

and low-pass filtered using an 800Hz cut-off frequency. The FFT of the acceleration 

signal shows fundamental frequency and its harmonic components. The fundamental 

frequency of the swash plate moment (MX) can be calculated from the rotation speed 

and number of pistons according to Equation (1). In case of an odd number of pistons 

pump, the principle frequency of MX is twice the fundamental frequency since there are 

two peaks per period /10/. The FFT of the swash plate acceleration shows a high peak 

at the second harmonic frequency as shown in Figure 3 (right).  

( 60) (803 60) 9 120.45 (Hz),   : number of pistonfundf rpm z z= ´ = ´ =  
(1) 

 

Figure 3: Location of swash plate acceleration sensor (left)  

and swash plate acceleration measurement (right) 

3. Pump control system modelling 

The pump control system consists of the electro-hydraulic module (direct drive 

servovalve, swash plate angle sensor) and the mechanical module (swash plate, control 

cylinder, control actuator and linkage). The direct drive servovalve regulates flow rate 

into the swash plate control cylinder consequently causing linear motion of the control 

actuator. The linkage system transforms linear motion of the control actuator into 

rotational motion of the swash plate.  

The direct drive servovalve can be modeled using a second order transfer function of the 

input current and the output stroke of servovalve as equation (2). 

2 2 2( ) ( ) ( 2 )v v v v v vY s U s s sw z w w= + +  (2) 

The swash plate, the control actuator, and the linkage can be simplified as a single 

equivalent mass as shown in Figure 4. The equation of motion can be obtained 

rsensor=35mm

120.4 

5th 

10th 15th 
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considering the pressure force (FΔp), the friction force (FF) and the self-adjusting force 

(FSL) from swash plate moment (MX) acting on control actuator, see equation (3). 

 

Figure 4: Modelling of pump control system 

The pressure force (FΔp) acting on the control actuator can be derived using the pressure 

difference between the two control cylinders, see equation (5). The friction force (FF) 

acting on the control actuator can be modeled using the Stribeck curve, see equation 

(6). The self-adjusting force (FSL) can be calculated from the swash plate moment (MX) 

and the lever arm length (rac) as equation (7). The differential pressure (Δp) can be 

calculated using the pressure build-up equation considering flows coming in and out of 

the control cylinder as equation (8). The common hydraulic capacitance (CH) is 

calculated as equation (8). The flow rate from the direct drive servovalve can be 

calculated from the nominal flow rate of the servovalve as equation (9). 

eq p F SLm x F F F
D

= - -eq p Fm x F Feq p Feq p Feq p Feq p Feq p Feq p FF FF F  (3) 
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Combining and linearizing equation (2) to (9), the dynamic system of the pump control 

system can be expressed as equation (10). 
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(10) 

4. Model validation 

Simulation results are compared with swash plate acceleration measurements to validate 

the model. Two different sine signals (frequency: 150Hz and 300Hz, amplitude: ±3V 

(±30%)) are applied to the pump control system at a servovalve supply pressure of 41bar. 

The direct drive servovalve has a bandwidth of 350Hz at ±5% input signal. The stroke 

measurements of the direct drive servovalve show that a constant second order transfer 

function cannot closely estimate the servovalve response at a different input of 

frequencies. Two different second order transfer functions are used for two different input 

signals. A signal delay of 700µsec is added to the model acceleration based on the step 

response test. The comparison between the linear pump model and the real pump using 

different input signals verified a close match of the hydraulic model.  

 

   Figure 5: Comparison of pump response (model vs real pump) at different input 

5. Adaptive LMS filter 

Adaptive LMS filters are widely used in the area of active noise control and active 

vibration control due to their simplicity and stable operation. The error signal (e(n)) of an 

adaptive finite impulse response (FIR) filter can be expressed as equation (11) where, 

d(n) is the desired response, y(n) is the filter output, X(n) is an input vector, and WT is a 

weight vector of the adaptive FIR filter. The Mean Square Error (MSE) is defined as 

equation (12). The optimum filter weight vector (W*) can be calculated when the gradient 
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of the MSE is equal to zero as in equation (13). Combining equations (12) and (13) can 

be expressed as equation (14) /11, 12/. 

( ) ( ) ( ) ( ) ( ) ( )Te n d n y n d n W n X n= - = -  (11) 

2 2

2
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= - +

2 2[ ( )] (2 22 2e n2 2[[ ( )( )2 22 22 2

 
(12) 

*RW P=  (13) 

The steepest descent algorithm is implemented according to equation (15). The LMS 

algorithm is an implementation of the steepest descent algorithm with a squared error as 

an estimation of MSE, see equation (17) /12/. 

* *

min min( ) [ ( ) ]  [ ( ) ] ( ) ( )T Tn W n W R W n W V n RV nx x x= + - - = +  
(14) 

( 1) ( ) ( 2) ( ) ( )  [ ( )]W n W n n W n P RW nm x m+ = - Ñ = + -  
(15) 

ˆ( ) 2 ( ) ( ) 2 ( ) ( )n e n e n X n e nxÑ = Ñ = -  (16) 

ˆ( 1) ( ) ( 2) ( ) ( ) ( ) ( )W n W n n W n X n e nm x m+ = - Ñ = +  
(17) 

6. Active vibration control using higher harmonic two-weight LMS filter 

with delay compensation 

Figure 6 (left) shows the block diagram of a single frequency two-weight LMS filter. 

When a sinusoidal reference input is applied, the adaptive LMS filter, G(z) can be 

modeled as an equivalent linear transfer function as equation (18) /13/, where, µ is the 

convergence factor and A is the amplitude of reference input. 

 

Figure 6: Block diagram of two-weight LMS notch filter 

The generalized closed loop transfer function (H(z)=E(z)/D(z)) for length L was derived 

as equation (19) /13/. The poles of H(z) can be calculated as equation (20). The stability 

of H(z) changes according to the value of convergence factor µ. As µ increases, the 
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poles increase and exits the unit circle when µLA2/4>1 /13/. Therefore the stability 

condition of H(z) can be written as equation (21). 

( ) ( )
2 2

0 0( ) ( ) ( ) cos 1 2 cos 1G z Y z E z A z z zm w wé ù= » - - +
ë û

 
(18) 

( ) ( )
2 2 2 2

0 0( ) 2 cos 1 (2 2) cos 1 2H z z z z LA z LAw m w m= - + - - + -  
(19) 

( )
2 1 2 2

0 1exp( ), 2,  cos 1 4 cos 1 2p p p p pz r j r LA LA LAq m q m w m
-

- é ù= ± = = - -
ë û

 
(20) 

20 4 LAm< <  (21) 

Delay compensation can be used to compensate the phase change of the pump control 

system as shown in Figure 6 (right). The output of a single frequency two-weight LMS 

filter with delay compensation can be calculated as equation (22). The weights are 

updated via LMS algorithm according to equation (23) /11/. 

0 0 1 00 0 1 1   ( ) cos( ),   ( ) sin( )( ) ( ) ( ) ( ) ( ), x n A w n x n A w ny n w n x n w n x n = == +  (22) 

0 0 0 1 1 1( 1) ( ) ( ) ( ),   ( 1) ( ) ( ) ( )w n w n x n e n w n w n x n e nm m+ = + -D + = + -D  
(23) 

A multi-frequency two-weight LMS filter with delay compensation is applied to cancel 

multiple harmonic components of swash plate vibration as shown in Figure 7.  

 

Figure 7: Block diagram of higher harmonic LMS active vibration control 

The multi-frequency two-weight LMS filter is formulated by connecting single frequency 

two-weight LMS filters of different harmonic frequencies in parallel. Thus, individual 

adjustment of the convergence factor (µ) and delay (Δ) is possible at each frequency. 

The reference signals are synchronized with the rotational speed of the pump to precisely 

estimate fundamental frequency of swash plate acceleration. 
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7. Active vibration control simulation 

The multi-frequency two-weight LMS filter is simulated with the linear pump model in 

MatLab. The acceleration signal used in the simulation is recreated from the measured 

acceleration signal using least square fitted Fourier series with 16 harmonic components, 

see Figure 8. The acceleration signal is added to the output of pump model as a 

disturbance. The frequency of the reference signal is set to the fundamental frequency 

of the swash plate acceleration assuming the synchronized reference signal. Signal 

delay is added between the active vibration controller and the pump model to reflect 

delays introduced by the sensors and electronics. The second order transfer function of 

bandwidth 350Hz is used for the direct drive servovalve model. 

 

Figure 8: Recreated swash plate acceleration using Fourier series 

Figure 9 (left) shows the swash plate acceleration from dynamic simulation of the multi-

frequency two-weight LMS filter. The vibration control is turned on from 10sec to 40sec. 

The active vibration control reduced the swash plate acceleration approximately 30%. 

The active vibration controller utilized 5 harmonic frequencies from fundamental to fifth 

harmonic frequency.  

 

Figure 9: Acceleration in simulation (time domain vs frequency domain) 
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Figure 9 (right) shows a comparison of acceleration FFTs between ‘with AVC’ and 

‘without AVC’ to see the acceleration reduction at targeted harmonic frequencies 

(fundamental to fifth harmonics). The reduction of the first 5 harmonics shows the 

influence of active vibration control. The FFT shows that the residual acceleration with 

vibration control consists of higher harmonic components. Figure 11 (above) shows 10 

weights of 5 two-weight LMS filters which converge to stable values while the active 

vibration control is turned on. 

8. Active vibration control measurement 

Figure 10 (left) shows the swash plate acceleration from the real pump measurement of 

multi-frequency two-weight LMS filter. The fundamental frequency is generated from the 

rotational speed of the pump and feed into the reference signal generator of FPGA. The 

swash plate vibration control is turned on from 2sec to 37sec. The active vibration control 

reduced the swash plate acceleration approximately 30%. In the real pump test, different 

sets of convergence factors and delays are used at each harmonic frequency. The single 

convergence factor and delay for all harmonic frequencies could not provide stable active 

vibration control results.   

 

Figure 10: Acceleration in measurement (time domain vs frequency domain) 

Figure 10 (right) compares FFTs of the measured acceleration between ‘with AVC’ and 

‘without AVC’. The comparison shows an acceleration reduction at the first 5 harmonic 

components with active vibration control. At the same time, a slight increase of higher 

harmonic components is observed from the FFT. Figure 11 shows weights of the 

adaptive LMS filters from the simulation (top) and the measurement (bottom). All weights 

converged to stable values with active vibration control. Weights of the second harmonic 

are the largest values showing that most of the input signals are in low frequency. 

Individual tuning of convergence factors and delays at each harmonic frequency resulted 

a stable vibration reduction under steady state conditions. Different values of delays and 

convergence factors were needed for some different operation conditions, since the 
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characteristics of direct drive servovalve changes depending on the frequency and 

amplitude of input signal, which are dependent on the operating conditions. 

 

 

Figure 11: Comparison of weights (simulation vs measurement) 

9. Conclusion 

The aim of this paper is to study the possibility of active vibration reduction using direct 

swash plate control for structure borne noise source (SBNS) reduction. The active 

vibration control can be used as a complementary noise reduction method for existing 

passive noise reduction techniques to overcome their limitations. A 75cc axial piston 

pump was modified for active vibration control of the swash plate including a tri-axial 

acceleration sensor, a swash plate angle sensor, a rotation speed sensor, and a high 

speed servovalve. A new test rig is created for active vibration control research allowing 

acceleration measurement and high speed active vibration control for a wide range of 

operating conditions. Measurement and simulation results showed good acceleration 

reduction performance using multi-frequency two-weight LMS filter with delay 

compensation under steady state conditions. The measurement results also showed a 

slight increase of higher harmonic components with active vibration control. The result 

of this investigation demonstrated the possibility of SBNS reduction via direct swash 

plate control. 
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11. Nomenclature 

M Swash plate moment Nm 

a Acceleration m/s2 

ffund Fundamental frequency of swash plate moment Hz 

Z Number of pistons - 

rsensor Sensor position from the rotational axis m 

rac Swash plate lever arm length m 

F Force N 

p Pressure bar 

Q Flow rate m3/s 

Aac Control actuator piston area m2 

x Control actuator displacement m 

m Mass kg 

CH Hydraulic capacitance m5/N 

AS Effective inertia of adjustment system kg m2 

Coefficient of Coulomb friction force N 

Coefficient of viscous friction N s/m 

Coefficient of static friction force N 

Bulk modulus of oil Pa 

Leakage coefficient from control cylinder to case m3/Pa s 

Volume m3 

Servovalve stroke m 

Servovalve natural frequency rad/s 
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Servovalve damping ratio - 

Error of adaptive filter - 

Desired response of adaptive filter - 

Output of adaptive filter - 

Weight vector of adaptive filter - 

Optimum weight vector - 

Convergence rate of adaptive filter - 

Length of adaptive filter - 

Frequency of reference signal rad/s 

Delay in signal  

Mean Square Error -

Gradient operator - 

Input cross-correlation matrix - 

Input correlation matrix - 
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Abstract 

Independent metering poses a possibility to improve energy efficiency of throttle-

controlled hydraulic single-rod cylinder drives. This paper deals with energetic poten-

tials gained through variable circuitry that come along with independent metering. A 

method to assess energetic potentials is described, based on load specific, optimal 

operating modes. As a means of yielding maximum energy efficiency for a wide range 

of applications, a smooth mode switching algorithm that minimizes losses and allows 

good motion tracking is proposed. The mode switching algorithm is validated in simula-

tion and on a test stand. 

KEYWORDS: independent metering, mode switching, energy efficiency 

1. Introduction 

Valve-controlled hydraulic cylinder drives are a wide-spread technology whenever high 

loads are manipulated in linear motion along with challenging requirements in terms of 

precision and dynamics. However, by the nature of its physical effect, valve metering is 

always accompanied by dissipative pressure loss, and thus energy dissipation.  

Metering valves eliminate the difference between the system pressure and the load 

pressure level which is demanded by the load. A common approach to improving effi-

ciency with conventional directional valves is adapting the system pressure to the high-

est load pressure in the system. This increases system efficiency if the current highest 

load is significantly lower than the maximum nominal load, yet axes with low load and 

especially overrunning loads still cause substantial losses. Figure 1 exemplarily shows 

the minimal losses with the use of conventional directional valves in a system with 

three cylinders driven by a single pump. 
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Figure 1: Losses in a throttle-controlled system with conventional directional valves 

Primary controlled cylinder drives are a means of delivering load-specific pressure and 

load-specific flow to the displacement volumes /1/, /2/. Here, speed-variable or dis-

placement-variable pumps are used to control the cylinder speed. The major drawback 

compared to valve control is a significant increase in component effort: each cylinder 

needs to be coupled with a high dynamic variable pump unit. 

When using throttle control, energy efficiency can be significantly improved by applying 

independent metering (IM) edges. A conventional directional valve features metering-in 

and metering-out edges with mechanical coupling through the valve spool. In contrast, 

independent metering edges is a general term that comprises a class of valve architec-

tures which allow the individual control of meter-in and meter-out edges. This concept 

allows individual fluid flow paths (modes), such as regeneration, and flexible overlap 

characteristics for specific control targets. Furthermore, by offering a greater degree of 

freedom in terms of command variables, multiple target-variables can be controlled 

independently, such as cylinder position and pressure level. 

Extensive research has been carried out on the field of independent metering. Funda-

mental structural investigations for independent metering architectures with a focus on 

mobile applications were conducted by Sitte /3/, /4/. His work analyses the solution 

space for independent metering structures, assesses the solutions and outlines a con-

trol strategy for a selected subset of valve structures. Shenouda /5/ gives a compre-

hensive overview of energy saving potentials of independent metering approaches in 

distinctive load scenarios and proposes mode switching strategies based on analytical 

switching procedures in open-loop control, using four 2/2-directional valves. The find-

ings are validated in exemplary cycles of construction machinery. Eriksson /6/ intro-

duces a control strategy and system structure using four piloted poppet-type valves 

(“Valvistor”) that allow load compensation and optimal mode detection with minimal 
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need of sensors. Linjama /7/ systematically investigates feasible switching modes 

when using five 2/2-directional valves. Mode switching algorithms are proposed and 

implemented by means of digital-hydraulic system design. Further examples of inde-

pendent metering approaches in the context of mobile applications and their specific 

requirements are given in /8/, /9/, /10/, /11/. 

In the aforementioned literature, mobile applications in which human operators close 

the control loops are targeted. Few publications aim at the specific requirements and 

conditions given in industrial hydraulic applications in terms of tolerated sensor equip-

ment and required accuracy. Closed-loop control approaches that take the opportunity 

of controlling multiple output variables by means of multiple-input-multiple-output 

(MIMO) control are summarized in the following. Meyer et al. /12/ implement a linear 

state-feedback controller in order to control both cylinder position and pressure level 

via two 4/3-directional valves and one continuous short-circuit valve. A linear-quadratic 

optimization algorithm is chosen for determination of the feedback matrix. No general 

method for online generation of the specific working-point feedback matrix is given, 

however. Mattila and Virvalo /13/ realize a pressure control through input/output feed-

back linearization for an experimental manipulator. The pressure-responses of a cylin-

der controlled by two 4/3-directional valves are linearized and decoupled by a nonlinear 

feedback law. Two independent pressure control paths are thus created and closed via 

PI-controllers. Bindel /14/ controls the same valve architecture with a flatness-based 

approach for large-scale manipulators. Both cylinder position and pressure level are 

controlled and stabilized along predefined target trajectories. 

Despite the diversity of research on the field of independent metering, no methodology 

exists that offers both a universal assessment of the expected energy saving potential 

compared to conventional valves, and a control strategy to be able to attain the sav-

ings. This paper introduces the Modiciency method that comprises the assessment of 

minimal energy demand, an outer-layer control and mode switching strategy and a 

suitable inner-layer closed-loop controller, capable of smooth and efficient mode 

switching.  

2. Assessing energy saving potentials of independent metering edges 

By means of variable circuitry, independent metering structures in general allow for 

individual fluid flow paths, such as regeneration on low or high pressure side. That 

means, the conventional power flow path from high pressure supply to the expanding 

displacement volume, and from the contracting displacement volume to the low pres-

sure return line can be suspended. Load-dependent circuitry modes can be applied in 
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order to decrease the energy demand for a required cylinder movement at a given 

load. These potentials are summarized under the term volumetric potentials. General 

circuitry modes using independent metering structures with two pressure levels (supply 

and reservoir) are depicted in Figure 2. 

 

Figure 2: General circuitry modes with a valve controlled differential cylinder 

In normal mode the expanding displacement volume receives oil from the supply pres-

sure level and oil from the contracting volume is conveyed to the reservoir line, analo-

gous to conventional 4/3-directional valves. As a standard mode with the widest opera-

tion range, normal mode does not provide volumetric potentials for energy saving. 

In low pressure regeneration mode, filling and discharge of both displacement volumes 

takes place via the reservoir. It is only possible at the existence of an overrunning load, 

since the system is decoupled from the high pressure supply. Therefore, no external 

hydraulic power is needed to drive the actuator – it is driven by the load. Low pressure 

regeneration can be aided by a direct regeneration path, see the lower icon in Figure 2. 

With a direct regeneration path, cylinder filling of the rod side chamber during cylinder 

retraction takes place at a higher pressure than reservoir level, which helps avoid cavi-

tation. In any other case, low pressure regeneration involves very low pressure in the 

expanding displacement volume, since oil is drawn from the reservoir. 

As opposed to low pressure regeneration, high pressure regeneration mode accom-

plishes filling and discharging of displacement volumes via the supply pressure line. 

Again, a direct regeneration path can be used to expand the operation range. High 

pressure regeneration acts as a hydro-transformer of load pressure and volume flow 

with respect to the supply line. Flow is decreased and pressure is increased by the 

interaction of the differential piston areas. During cylinder extension, high pressure re-

Normal mode Low pressure
regeneration

High pressure
regeneration

Reverse mode
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generation can be used to reduce the volumetric flow from the supply line if the load is 

low with respect to supply pressure. Cylinder retraction in this mode requires an over-

running load. The increase of load pressure through the hydro-transformer principle 

helps exceed the supply pressure level. If the supply level is exceeded, high-pressure 

oil is conveyed to the supply line and thus energy is recuperated. This requires either a 

flow demand by another actuator in the system or the capability of recuperation by the 

supply system. 

Reverse mode is, in terms of flow circuitry, equal to normal mode, yet the cylinder 

movement occurs in the reverse direction. This mode is only possible at a high over-

running load whose load pressure exceeds the supply load pressure. Oil is drawn from 

the reservoir and ejected into the supply line by the load. The magnitude of load re-

quired for reverse mode does not allow cylinder movement against the load direction. 

In this mode, energy is fed back to the supply system, involving the same requirements 

as described for retraction in high pressure regeneration mode. 

 

Figure 3: Energy saving mechanisms using circuitry modes 

Energy saving potentials using the aforementioned circuitry modes are summarized in 

Figure 3, assuming constant supply pressure. The hydraulic working points in the p-Q-
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plane at the system interfaces between supply line and the valve’s supply port are 

compared for a conventional valve and independent metering valves in different modes 

and their characteristic load cases. Mechanical power transferred by the load and hy-

draulic losses are represented by areas. Overlapping regions indicate that hydraulic 

losses are covered by an overrunning load. Operating points in the first and third quad-

rant represent hydraulic power to be provided to the actuator-valve-system. Operating 

points in the second and fourth quadrant mean that energy can be regenerated. 

Additional energetic potentials, that are not subject of this paper, exist for load sensing 

structures in mobile hydraulics, where pressure drop over the load-leading metering-in 

valves are held constant by the supply pump control. Further potentials, when facing 

high overrunning loads, lie in the ability to reduce the supply pressure level that is criti-

cal for cavitation, by opening the meter-in valve /4/. Beyond that, the ability to decrease 

the supply pressure level while maintaining the system accuracy is discussed in /13/. 

In order to analyse the energetic potentials that emerge through independent metering 

by flexible circuitry, a general system structure featuring a maximum degree of freedom 

is chosen, see Figure 4, right. It features two variable orifices per cylinder displace-

ment volume: one high-pressure valve and one low-pressure valve each. Additionally, 

a direct regeneration path is considered by means of a short-circuit valve between both 

cylinder work ports. In total, five 2/2-directional valves control the cylinder. Feasible 

regeneration modes can be differentiated by the availability of a short-circuit valve (suf-

fix “sc”). In modes that require suction from the reservoir, cavitation can be avoided by 

additional high pressure feeding from the supply line (suffix “+f”). A total of nine control 

modes are defined for the extension of a differential cylinder. During retraction, low 

pressure regeneration using a short-circuit valve does not involve suction from the res-

ervoir. Therefore, no high pressure feeding is taken into consideration in this case, re-

sulting in one mode less for retraction than for extension. 
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Figure 4: A general valve architecture and physically feasible control modes 

The operation range of the control modes can be calculated analytically. Operation 

limits emerge either through cavitation, defined by a minimal pressure threshold, or by 

valve stroke limitation. Applied models for force equilibrium and orifice flow characteris-

tics are 

  (1) 

. (2) 

Friction is included in the load force . Based on these equations and the respective 

flow path, operation ranges for each control mode can be determined depending on the 

cylinder geometry, the nominal maximum valve flow rates, the supply pressure , the 

reservoir pressure  and the minimal pressure threshold defining cavitation limits. Fur-

thermore, the required hydraulic power at the supply port of the actuator-valve-system 

is determined as 

. (3) 

Figure 5 shows efficiency gains with IM for a differential cylinder with area ratio of 

 both with and without a short-circuit valve over conventional valve technology. In 

every operating point that is feasible with a reference 4/3-directional valve, the most 

efficient circuitry mode is chosen and the efficiency ratio  of required 

hydraulic power with separate metering over the reference valve is calculated. Col-

oured areas indicate the operation range of a directional valve with an edge ratio of 0.5, 

adapted to the differential area of the cylinder. The dotted line indicates the operation 

range using a symmetric reference valve. Operation ranges of control modes are indi-

cated by black lines.  
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Figure 5:  Maps of efficiency ratio  against force and cylinder speed for 

an asymmetric reference valve ( ). . For 

system layout, refer to Figure 3, left. 

Based on the described model, a method has been developed that calculates the min-

imum energy demand of a system with separate metering edges. A discrete optimiza-

tion algorithm assigns optimal modes to an arbitrary multi-axes system at a predefined 

supply pressure trajectory. This method has been applied to a typical duty cycle of a 

universal testing machine by simulation, see Figure 6. 

 

Figure 6: Minimum energy demand with IM for a duty cycle of testing machines 

A pre-stressed specimen is subjected to a swelling, sinusoidal load cycle. The load on 

the cylinder is contracting throughout the entire cycle. At the beginning of the extension 

movement, the load is low enough to allow high pressure regeneration mode (a). Soon 

the mode limitation is reached and normal mode has to be engaged (b). On return, the 
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load is high enough to allow contraction under high pressure regeneration (c). This can 

only be performed if the system allows recuperation or the return flow is needed for 

another consumer. Otherwise only low pressure regeneration is feasible (e), which will 

decouple the actuator from the supply system. As soon as the load falls below a certain 

threshold, high pressure regeneration is no longer possible on retraction and low pres-

sure regeneration (d) will take its place. From the inner return point, extension can be 

performed by high pressure regeneration (f,g). If the supply system can recuperate or 

use the high pressure return flow, a total maximum energy saving of 68 % can be 

found. In case the system does not allow return flow, 60 % can be saved at maximum. 

These considerable energy savings can be found because the load is low with respect 

to the supply pressure over a large portion of the depicted duty cycle. Only in about 

one quarter of the cycle time, the load force exceeds 50 % of the static maximum force. 

However, precise position control requires a surplus of supply pressure, thus giving the 

shown example a realistic degree of utilized force capacity of a vast field of applica-

tions. 

3. Smooth mode switching 

Taking Figure 6 into consideration, it is clear that for general minimization of energy 

demand, switching of different modes during the cylinder movement is required. In /5/, 

Shenouda has proven that discrete switching between different control modes invokes 

substantial disturbances and pressure peaks in the cylinder. His continuous mode 

switching algorithm, however, induces losses that partly cancel the energetic gains. In 

the work at hand, a smooth mode switching strategy will be proposed that allows per-

manent control of cylinder speed and low energy demand by means of pressure con-

trolled switching. This enables constant tracking of the desired position in the most effi-

cient operational mode. 

During mode switching, cylinder velocity and pressure level are constantly controlled by 

two valves in a closed loop using a MIMO-controller. The remaining three valves of the 

setup are either held at constant values or follow predefined trajectories to reach their 

target state. The benefit of pressure-controlled switching is that at all times 

· cylinder speed can be maintained, 

· no discontinuities in flow, pressure or valve spool positions occur and 

· parasitic flow directly from the supply to the reservoir is prevented. 

The last aspect mentioned means that energy losses are minimized. For example, 

while continuously switching from normal mode (NM) to high pressure regeneration 

(hpREG) during extension, low pressure and high pressure valves on the cylinder rod 
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side have to be open at the same time. To ensure that no flow from the supply to the 

rod-side chamber and from the rod-side chamber to the reservoir occur simultaneously, 

in this case the pressure in this chamber needs to be higher than the supply pressure. 

Mode switching passes closed loop control to the valves which control the target mode. 

In each elementary mode transition, one valve, subsequently called switching valve, 

switches to fully open or closed state. If it formerly was a controlling valve, it passes 

control to another valve. Three valves are actively involved in each mode transition. 

Feasible mode transitions that satisfy the previously given requirements are shown in 

Figure 7. The selection of efficient modes is performed by an outer layer machine con-

troller based on calculated load force and desired cylinder speed. Given the current 

load and cylinder speed, minimum and maximum feasible cylinder pressure levels at a 

given supply pressure can be calculated for all modes. 

 

Figure 7: Mode transitions that allow continuous mode switching 

The switching algorithm is described in Figure 8 as an activity diagram. Mode switch-

ing basically performs three tasks: Calculating the pressure set-point on the cylinder 

side where switching is carried out, assigning of control valves and creating a com-

mand signal trajectory for the switching valve. The pressure set-point can be chosen in 

a range depending on the initial mode, the target mode and the current operating point 

of the cylinder drive. In the investigations carried out here, the pressure was set at 5 

bar above the minimum overlap pressure of target and initial mode. During all these 

W
it

h
s

h
o

rt
-c

ir
c

u
it

v
a

lv
e

W
it

h
o

u
t

s
h

o
rt

-
c

ir
c

u
it

v
a

lv
e

b
o
th

d
ir
e

ct
io

n
s

NM lpREGsc hpREGsc

hpREG XM+f XM

NM hpREGsc lpREGsc+f

XM+f XM

lpREGsc

NM lpREG+f lpREG

hpREG XM+f XM

114 10th International Fluid Power Conference | Dresden 2016



steps, the MIMO controller ensures tracking of the current pressure set-point and cylin-

der speed. 

 

Figure 8: General switching algorithm for mode transitions given in Figure 7 

4. Implementation using a flatness-based control approach 

The described method of continuous mode switching requires an inner layer control 

strategy that allows the manipulation of cylinder speed and pressure level independent-

ly. Based on a literature and simulation study, a flatness-based control algorithm is 

chosen as a means of nonlinear MIMO closed-loop control. Feasibility and capability of 

this control approach has been proven in /14/ and, furthermore, it does not require ex-

tensive parametrisation effort to cover the whole operation range, as opposed to linear 

control approaches. Theory and application are comprehensively described in /15/, 

/16/. 

Control input of the system are the command-signals of the two valves currently in con-

trol. As a flat system output, cylinder speed and pressure on one side of the cylinder is 

selected. Measured cylinder pressure levels and spool positions of all valves are fed to 

the controller as state variables. The process-model for derivation of control laws is 

described by second-order valve dynamics, nonlinear orifice flow characteristics, a 

constant oil compressibility and the force equilibrium using Newton’s Second Law. 

NM

hpREG

Nomenclature example 1 ( ):

initial control
mode

target control
mode

switching valve

Closed

Open

Controlling valve

[pressure-level 
compatible with
target mode]

[else]

Remain in initial 
control mode

[valve switching
complete]

Close/open 
switching valve by
smooth trajectory

Engage target
control mode

[else]

Choose set-pressure in 
overlap of feasible ranges
of initial and target mode

Nomenclature example 2 ( ):

hpREGsc

lpREGsc+f
initial control
mode

target control
mode

switching valve
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For validation of the switching strategy and control approach, a simulation model is set 

up. While the controller is implemented in MATLAB/Simulink®, the process model is 

created in Modelica-based ITI SimulationX® for convenient modelling of non-constant 

fluid compressibility  and density . The process model for validation features 

valves with an eigenfrequency of  and a rate limiter that limits the valve spool 

velocity to . 

 

Figure 9:  Simulation results of optimal modes using a complex plant model with a 

flatness based controller. For cycle information and modes, see Figure 6 

Dynamic simulation results of the testing machine process described in Figure 6 are 

depicted in Figure 9, assuming a supply structure that allows recuperation flow. The 

pressures in both displacement volumes and the set pressure which feeds as an input 

to close-loop control are shown. It becomes clear that during mode switching, depend-

ing on the mode transition, pressure control is passed from one cylinder side to the 

other. Also shown are the set cylinder speed and the control error. Evidence is given 

that mode switching during cylinder movement can be performed without significant 

disturbances on the controlled cylinder speed. However, during standstill in reverse 

points, significant deviations in speed occur. This is due to a force step induced by 

Coulomb’s friction and an instable control strategy in case of reversion of motion. In 

order to overcome this issue, improved position control at low cylinder speed will be 

implemented in future strategies. Otherwise, very good motion tracking can be ob-

served. Finally, the resulting energy consumption is compared to the theoretical as-

sessment which considers infinitely fast valves and infinite fluid stiffness. In total, a plus 

of energy consumption of 13 % in relation to the reference directional valve can be 

seen. This is a result of three main causes: First, the switching delay into more efficient 

modes ( ) or necessary premature switching into less efficient modes ( ) 

due to limited valve speed, second, the control error in standstill (  and 
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), and third, compression effects of oil in case of pressure increase and low cylin-

der speed ( ). 

In addition to simulation, validation is carried out in an experimental environment. Five 

direct-actuated servo valves are used as proportional edges for motion control of a 

differential cylinder with a piston diameter  and rod diameter 

 at a supply pressure of . First validation is carried out without ex-

ternal load, thus mode switching is restricted to modes which do not require overrun-

ning loads. In Figure 10, measurement data of mode switching between normal mode 

(NM) and high pressure regeneration (hpREG) during extension at constant cylinder 

speed and at no additional load are shown. At the beginning of the measurement, the 

cylinder is controlled by valves 1 and 4 (compare Figure 4) in closed-loop. Pressure on 

the rod side is controlled at a set-point of 180 bar. At the beginning of the switching 

process, the pressure is reduced to supply pressure plus an offset of 5 bar. As soon as 

this level is reached, control is passed from valve 4 to 5 and valve 4 is closed by a pre-

defined trajectory. After the switching process, the pressure level is increased to the 

initial set value. 

 

Figure 10: Experimental validation of mode switching NM à hpREG 

The potential of the proposed control approach is proven by the fact, that despite a 

premature state of the control algorithm, good motion tracking can be obtained during 

mode switching. Yet at the beginning of the switching process, a short deviation from 

the set trajectory is recorded. This is due to measurement noise and its impact on state 

initialization while passing control between different valves. Possible optimization can 
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be carried out by improving controller initialization strategy and manipulation of the Ei-

genvalues in the flatness-based controller setup, which have been chosen heuristically. 

Furthermore, timing of the switching process can be optimized. 

5. Conclusion 

This work provides a methodology for independent metering edges that assesses the 

technological minimum of energy demand for a given load cycle under the assumption 

of idealised valves and given supply pressure. A control approach is proposed which 

yields the minimum energy demand by a margin of 13 % in a demanding duty cycle 

with good motion tracking in a simulation environment. Measurement data show that 

the proposed control approach is capable of switching modes smoothly in experiment 

using high-precision control valves. 
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8. Nomenclature 

 differential cylinder area ratio  

 oil density  

 cylinder piston area  

 valve flow coefficient  

 diameter  

 load force  

 hydraulic power  

 supply pressure  

 reservoir pressure  

 cylinder head side pressure  

 cylinder rod side pressure  

 volume flow  

 volume flow with independent metering  

 time  

 cylinder position  

 valve spool position  
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Abstract 

This paper deals with the application of speed variable pumps in industrial hydraulic 

systems. The benefit of the natural feedback of the load torque is investigated for the 

issue of condition monitoring as the development of losses can be taken as evidence of 

faults. A new approach is proposed to improve the fault detection capabilities by tracking 

the changes via machine learning techniques. The presented algorithm is an art of 

adaptive modeling of the torque balance over a range of steady operation in fault free 

behavior. The aim thereby is to form a numeric reference with acceptable accuracy of 

the unit used in particular, taking into consideration the manufacturing tolerances and 

other operation conditions differences. The learned model gives baseline for 

identification of major possible abnormalities and offers a fundament for fault isolation by 

continuously estimating and analyzing the deviations.  

KEYWORDS: Condition Monitoring; Pump losses; Speed variable drives; Machine 

learning algorithms; Neural Networks;  

1. Introduction 

The utilization of servo AC electric motors to drive hydraulic pumps for control tasks by 

varying the speed, has proven advances for better energy efficiency in comparison to 

valve controlled schemes. Besides energy efficiency, reliability is a much more important 

criteria /5/. The motivation of this work is the demand of more profitability and efficiency 

without increasing the costs or the complexity of the drives. 
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Fig. (1) Overview of the drive unit 

The condition monitoring strategies in the recent research are divided, in general, into 

two main categories: 

1. Model based techniques 

2. Signal processing based techniques 

The idea of the first category is based on generating analytical redundancy by using a 

mathematical description of the drives as a system component and estimate the 

deviations between calculated and real outputs as residual signals. Some studies  

followed the way of mathematically estimating system parameters as a derivation from 

the known input and output signals  /2/. The residual signal in this case is the deviation 

in the estimated parameter. An accurate model of the system or the working fluid is 

mostly unknown. A description of the healthy operation by estimating the efficiency of 

the drive and monitoring the changes in it as evidence of faults, seems more applicable, 

if a suitable model about the losses of the drive is available. The authors in /12/ had 

established an overview about physical, analytical and numeric modelling of the pump 

losses and concluded that physical methods are almost impossible to establish, due to 

the complex physical effects inside the hydrostatic pump and the effects of the 

manufacturing tolerances. Numeric methods can be generally applied /12/, the 

POLYMOD fitting method was found to be the most accurate, but it’s a pure numeric 

description of curves and doesn’t consider all effects, for ex. temperature changes of the 

fluid. Furthermore, the numeric methods demand high number of measurements. Due to 

those requirements, the method is hard to apply for each single manufactured unit. 

The second category’s principle is to study the relationships between specific features 

of the measured signals to mechanical or hydraulic faults. This strategy offers more 

robustness in the application area but it was mostly combined with the use of extra 

sensors and additional analysis hardware. Another drawback is the lack of aspects of 
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automation and adaptability. We propose the technique of machine learning as it implies 

online adaption and requires no prior information about the hydraulic system. 

The paper is organized as follows. Chapter 2 illustrates a mathematical model of the unit, 

Chapter 3 shows the related feasibility analysis, Chapter 4 outlines the monitoring 

framework and Chapter 5 depicts a test of the proposed approach.     

2. Mathematical Description 

The case studied in this research is an internal gear pump  (IGP) of fixed displacement   

/1/. Due to the effect of the compensation elements, the volumetric losses at given oil 

temperature are assumed to be constant, and negligibly small. The input pressure is 

maintained at atmospheric ( ). Typical faults in the operation arise because of oil 

conditions that leads to excessive friction and causes mechanical wear. 

The permanent magnet synchronous motor (PMSM) used to drive the pump is controlled 

by the field oriented control method. The -current component  is directly proportional 

to the output air gap torque . 

           (1) 

By assuming symmetrical motor construction and sine wave input stator alternating 

current, the dynamics of the PMSM could be represented as a first order system /9/, if 

no field weakening is applied  

 ,        (2) 

The iron power losses explained in /3/  forms an opposite torque proportional to speed  

           (3) 

And the mechanical friction torque: 

  ,           (4)  

Thus, the output motor torque is then  

         (5) 

The mechanical coupling between the pump and the motor is assumed to be rigid, 

therefore the rotor angle and the IGP pinion position are considered to be identical. The 

mathematical model of pump in steady state operation is explained in /6/ : 
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The volumetric losses,         (6) 

The effective flowrate,        (7) 

Sum of moment losses,      (8) 

          (9) 

         (10) 

is the total torque needed to drive the pump. Clearly,  is dependent on speed, 

pressure and the working fluid, whose viscosity has a large influence on the values of 

both volumetric and mechanical efficiency. The effect of manufacturing tolerances is 

apparent in ,Eq.(8).   

The linearized model of the hydraulic operation considering all losses as control loop 

disturbances: 

  ,         (11) 

       (12) 

And the observation: 

   ,       (13) 

In the formulation above,  contains nonlinear terms and it’s instantaneously dependent 

on the states vector  .  

3. Feasibility Analysis 

To make a fundamental analysis without   a quantitative localization of the each physical 

quantity, the pressure controlled system was simulated as depicted in Fig. (2). The aim 

of this simulation is to evaluate the dynamics of the motor output torque in compensating 

the disturbances due to mechanical defects, or pressure pulsations. The closed loop 

model parameters are listed in table (1). 
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Fig. (2) Ideal pressure control loop in s-domain  

           

       

 34.9      

       

 667     - 

       

       

Table (1) Model parameters 

The frequency response of the transfer Function   is depicted in Fig. (3). Under 

linearized conditions and neglecting the volumetric losses. 

 

Fig. (3) Disturbance transfer function 

The development of the torque losses due to changes in the fluid properties results in 

changes in the magnitude of the torque. For other dynamic disturbances due to for ex. 

pressure pulsations or mechanical defects, the bandwidth in Fig. (3), . shows 

limited dynamic observability. Thereby, for the IGP under study, the torque pulsations 

due to the pressure wave could be used as a possible fault evidence. The detection 

capability limit is up to speed  

        (14) 
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4. Condition Monitoring of the Drive 

The field of computational intelligence had introduced many methodologies of applying 

Neural Network (NN) as nonlinear black box model. NN can operate simultaneously on 

qualitative and quantitative data and can be readily applicable to multivariable systems 

and they have the ability to make intelligent decisions in cases of noisy or corrupted data 

/2/. On the other hand, NN will not overcome the disadvantage of having no insight to 

the physics just as any type of numeric modeling. The proposed approach uses NN to 

build a description of the fault free operation through “Learning phase”. The output is 

taken as reference for comparisons to recognize deviations as abnormalities in the 

“Detection phase” during operation. The algorithm estimates the thresholds of normal 

deviations and is able to adapt the learned reference during operation while memorizing 

what already learned. An overview of the framework is depicted in Fig. (4).  

 

Fig. (4) The monitoring framework 

This approach makes use of the fact that most of the target systems such as injection 

moulding, pressure casting and blow moulding machines operate repeatedly for millions 

of cycles. A self-learning model would enable auto supervision and minimize the need of 

expert operators. 

4.1. Introduction 

Kohonen Neural Networks (KNN) has many advantages for the aim of condition 

monitoring. The unsupervised way of learning, online adaptability and the excellent 

capability to map highly nonlinear data in multidimensional space make it a proper choice 

for our purpose. The basic idea is to map the available information about operation states 

to finite nodes (neurons) and track the changes through the process. 

From the mathematical point of view, KNN is an art of projection from a set of given data 

items  onto a regular, usually two-dimensional grid /7/. A model  is associated 

with each grid node as depicted in Fig. (5). Those models are computed by the KNN 

algorithm. A data item will be mapped into the node whose model is most similar to it, 

i.e. has the smallest Euclidean distance from the data item in some metric /8/. 
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Fig. (5) The array of nodes in a 2D grid  

Consider input vector  of  variables: 

       (15) 

And let  be the model that belongs to the node of a map of size  and it’s arbitrary 

initialized as: 

      (16) 

The structure of is kept constant for all nodes whereas the parameters for each node 

are to be adapted. The training of the KNN performs an iterative adaption in the form: 

      (17) 

As  is a correction factor and the subscript  indicates the node that has the minimal 

Euclidean distance  to the input vector . 

  

          (18) 

The node  is called the winning neuron, whose model will be updated to be closer to 

the input vector. Other map nodes in the neighborhood of  would be updated by a 

function  as a kind of smoothing kernel /8/. A typical use of the neighborhood 

function is the Gaussian. The training is performed unsupervised in a sequential or batch 

way. After training is complete, the map is used to estimate the winning node, named 

then as the best match unit (BMU), whose response alone will define the map’s reaction. 

The BMU is thus the output of the cost function that minimizes the quantization error Qe   

imtxQe -= )(          (19) 

The author in /13/ had basically investigated the usage of KNN (also known as Self 

Organizing Maps) for condition monitoring by classification and parameter estimation, 

and in /4/, two maps structure was designed to assess the prediction of maintenance 

requirements of valves. 

Group B - Intelligent Control | Paper B-3 127



4.2. Learning and Detection 

As stated in chapter 3, the torque losses can be considered as a health indicator at each 

operational state. The resulting built KNN map is in fact a quantized description of the 

behavior with no extrapolation or interpolation capability. The algorithm of the classical 

KNN algorithm does not give any further information about the nature/ properties of the 

fault  /7/. We aim to extend this algorithm by injecting two matrices  to enable fault 

localization. 

The learning phase is divided into 2 stages as depicted in Fig. (6). The first stage is 

identical to the usual KNN, where the nodes are clustered to model all similar input 

vectors and build the optimal code book matrix as outlined in Eq.(15-19).The second 

learning stage builds recursively a matrix  which registers the nearest input in the 

Euclidean space that each node optimally models, . The matrix  assess the 

localization of symptoms and the last vector  assigns the normalized fault free 

deviation in each element of  . A further matrix  is constructed to track the sequence 

of the matching nodes at each state during the process. 
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Fig. (6) Learning phase (example) 

Fig. (6) shows the learning for a 5-states process.  A map 13x7 is used in stage 1 to 

learn possible operation points and in stage 2, the black dots depict the BMUs for target 

process. The color scheme is considered as similarity indicator between the nodes. 

Vector  is depicted graphically on the right side. 
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In the detection phase, the matched nodes for each steady state are determined using 

the cost function of minimizing . Thereafter, the activated nodes and the order of 

activation are compared to vector  in order to detect the abnormalities in the process. 

The symptoms are recognized by comparing the deviation of each element   in  to  

 . Faults can be related to symptoms by diagnostics algorithm such as fuzzy inference 

system. Various symptoms of rotary machines are introduced in /14/. This is a focus for 

future work and is mentioned here to get an overview of the method.  

4.3. Input Variables Space 

For the case of study, the input vector  contains statistical properties of the discharge 

pressure, motor speed, torque and in addition, the spectrum of torque signal in low band 

< 300 Hz. That’s to limit the analysis to the readily available signals and dynamic 

capability of the control loop.  

It should be here notified that vibration measurement is mainly suitable for detecting 

mechanical failures and especially in the case of bearings faults but in recent years, it 

has been attempted to use in fluid power systems but with weak success /11/. In addition, 

the frequency analysis of vibration or audio emissions demands the installation of extra 

sensors and suitable acquisition system which again would be not economic.  

4.4. Benefits and Drawbacks 

The proposed approach constructs a low dimensioned space of normality about the 

healthy operation and has many advantages, among these: 

· Semi unsupervised way of learning 

· Scalability for any number of available variables, as the length of is not set 

as constant  

· Fusion of human expert knowledge in the fault isolation 

· Online adaption capability  

· Able to map new processes without losing the experience about the states 

learned 

· Automatically set the threshold of variables fluctuations statistically 

On the other side, the healthy operation must be clearly defined by human operators in 

order to activate the learning. A typical choice is the first operation hours of the machine. 

Any faults in this phase would be unfortunately learned as healthy. Further major 

drawbacks: 
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· Need of new initialization in case of component replacements or after changing 

the control parameters 

· Suitable only for bounded stable control loops 

· High number of arithmetic operations 

· No interpolation or extrapolation capabilities  

5. Fundamental Test 

Using the simulation model described in chapter 2 and 3, a test scenario is done by 

increasing only, Eq. (8). A constant load flowrate  is assumed. Thereby 

the drive reaches the same pressure at the same speed but by exhibiting more torque. 

In practical sense, this depicts friction increase in bearing.  

     

Fig. (7) Test process 

The steady state operation is defined as : . The 

observations vector is limited to . The model map is a 6x6 grid using 

the toolbox available in /10/. We set  and the test cycle comprises 2 steady 

states, Fig. (7). The BMUs found are the nodes 9 and 22. Therefore, the matrix  

contains only 3 nonzero columns. The results are depicted in Fig. (8). 

    

Fig. (8) Steady state at various kp 

Note that, because of the absence of noise and other practical uncertainties,   are 

estimated  in the simulation. By the abnormality detection of the non-learned case 

( , the matching nodes remain the same at the presence of fault but with 
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an increment in . The symptom is localized as the normalized deviation = 0.108 is 

greater than the learned, 0.023, which indicates the change in the bearing friction. 

6. Summary and outlook 

The application of recent condition monitoring methods, involves many difficulties, either 

because of the lack of a reference about the healthy behavior of the drive or because of 

unavailability of accurate information about the system components. Due to economic 

drawback, the utilization of extensive sensors is not possible. This paper mainly contains 

two topics. The first one is a feasibility analysis of using motor torque measurements as 

possible evidence of faults, besides pressure and speed signals. For that aim, it has 

been found that the torque dynamics can be beneficial especially at low speeds. In the 

second topic, the paper proposes a new condition monitoring approach based on 

machine learning technology. The approach benefits from the fact that the target process 

would be repeated frequently for many times in typical industrial applications. A new 

algorithm is proposed to learn the normal variations in the torque demands of the 

hydraulic drive during the first operation in the target machine and track the losses for 

each state thereafter. The approach is based on Kohonen neural networks and it 

comprises an extension for identifying the fault symptoms quantitatively. To ensure the 

effectiveness and demonstrate the idea, a simple test case with simulation software 

shows positive results for the cases of increase in the bearing friction.  

Future works are to be done on real units as the algorithm can be implemented for a 

microcontroller. The case studied was focused on internal gear pumps driven by a servo 

synchronous motor. In fact, the technique is a general concept and can be used for other 

pump types and for tracking other losses and it can be scaled to cover any available 

evidences of faults. The diagnostics part is left for future work to relate the symptoms to 

mechanical or hydraulic faults.  

7. Nomenclature 

 Observation  vector   

 Quantization error  

 Input motor voltages and actual current  in  coordinate 
respectively 

 

 Stator inductance and resistance in  coordinate 
respectively 

 

 Total rotary inertia  
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 Rotor rotational speed and position   

,  Air gap generated and output mechanical torque 
respectively 

 

 Torque losses in the motor due to friction and iron losses 
respectively 

 

 Motor torque constant  

 Iron losses, torque factor  

 Motor mechanical friction factor  

 Discharge pressure  

 Total and leakage flowrates respectively  

 Pump displaced volume per revolution  

 Empirical factors to estimate the volumetric losses  

 Pressure and losses torque in the pump respectively  

 Total torque needed to drive the pump  

 Fluid dynamic and kinematic viscosity  

 Fluid absolute density  

 Empirical parameters to calculate the torque losses in the 
pump 

 

 Clearance between mechanical components  

 Hydraulic circuit volume  

 Fluid Bulk modulus  

 Configuration parameters of the pressure loop controller  

 Configuration parameters of the speed loop controller  

 Configuration parameters of the current loop controller  
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Abstract 

An industrial control valve has been designed by Eaton (AxisPro® valve). The servo 

performance valve has onboard electronics that features external and internal sensor 

interfaces, advanced control modes and network capability. Advanced control modes 

are implement in the valves firmware. With the help of the white space it is possilbe to 

execute custom code directly on the valve that interact with these controls. Small OEM 

applications, like rubber moulding machines, benefit from the comination of build in 

controls and custom code, to provide adaptations for their special machines.   

KEYWORDS: Servo Valve Control, White Space, IEC 61131-3, Distributed Control, 

Rubber Moulding Injection Process, Cia DS 408 Device Profile 

1. Valve Architecture and Software Overview 

The valve is a standard zero lap spool and sleeve design, direct acting in a CETOP 3 

and CETOP 5 configuration. A fast solenoid with digital electronic control and position 

feedback gives state of the art hydraulic performance. There is a sensor interface with 

internal pressure sensors on the P, A, B and T port, oil temperature and external 

sensor interfaces for pressure, position and speed sensors. The software can close the 

outer loop with pressure, speed, position control and a PQ control. Setup and 

calibration is done via CANbus using the ProFx graphical user interface. The product 

uses the industrial standard of the CANbus, CANopen for the connection to the 

machine controller. With these options many typical hydraulics applications can be 

solved just with the Axispro valve by itself, without any external control hardware, see 

Figure 1. In a 2 stage configuration it uses a CETOP 3 pilot with a CETOP 5 to CETOP 

10 mainstage body.  

The controller structure for the implemented PID controllers follows the Profile Fluid 

Power Technology VDMA proposal /1/. The CANOPEN DS408 /2/ further defines the 
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address and data types for the paramters. It features cylinder position control (DPC 

Digital position control), pressure or force control with one or two pressure sensors 

(DFC digital force control) and a combined PQ control, typical in press or molding 

applications.   

 

Figure 1: Advanced Servo Valve Control Structure with White Space 

2. White Space Interface Design and Options 

The term white space is used describe the ability for the user of the valve to execute 

their own software. In addition to changing parameters, setting up control loops, there 

is the ability to execute custom code on the valve. As a standardized platform to 

support custom code we chose the IEC 61131-3 PLC programing language. This 

standard is widely accepted and assures that users of the white space do not need to 

learn a new programming language. Commercial implementations also provide the 

user interface for the code development suite and maintain it for the all current PC 

operating systems, Figure 2 shows the screen outline. A version of the IEC 61131-3 
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PLC development environment pre-packaged with libraries for Eaton products is 

available and called ‘ProFX control’.  

 

Figure 2: Environment for IEC 61131-3 PLC Software Development 

In the white space the user can create code that has access to all usual PLC functions, 

like timers and variables, and can access all the valve functions: 

· Analog sensor inputs (4mA to 20mA inputs) 

· Digital sensor inputs (speed sensor and SSI sensor) 

· Internal sensors (LVDT, electronic and oil temperature) 

· Valve command input and monitor output (4mA to 20mA and +/-10V) 

· Internal pressure sensors (P, A, B, T ports)  

· Network access (CANOpen Master and slave) 

· Memory access (Flash, EEPROM, RAM) 

· Drive functions, Control Modes, Set Points, Feedbacks  

Central to the organization of the data access is the CANopen object dictionary in 

Figure 3. With having full access to the internal valve and controller function, the white 

space is ideal for sequencing, executing automated functions in a NC machine 

operation.  

Variables 

Code Space Project 

Object 

structure 
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Figure 3: Data Architecture for equal access via CANbus, White Space and Firmware 

3. Rubber moulding application 

In this application, a high dynamic proportional valve, often with a special ‘PQ’ spool, 

controls the injection cylinder see Figure 4. The rubber will be liquefied in the screw 

chamber, than with a precisely defined velocity profile, the rubber material will be 

injected into the mould. When the rubber cools down a pressure profile ensures best 

tolerances of the part.  

The build-in control modes for position and pressure can close the loop for pressure 

and position. The problem is, that for the injection cycle, the build-in position controller 

only offers one speed. In our application 4 different injection speeds, depending on the 

position of the injection cylinder are needed.  
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Example how to access the same information: 

White Space: Device.device_control_word 
Canopen: Index 6021 SUB 01 
Firmware: device_control_word 

White Space CANopen Master Stack 

140 10th International Fluid Power Conference | Dresden 2016



 

Figure 4: Injection Moulding Axis Schematic and Speed Profile 

The situation for the pressure control is similar. Because pressure spikes can happen 

during the injection process, the switch over from position control to pressure control 

should be only possible in the last portion of the injection cylinder stroke. Then the 

pressure should be controlled with a predefined pressure over time profile and then 

transition into a hold pressure profile. The standard pressure controller offers only on 

pressure.  

The plasticising part of the process, when the injection cylinder retracted to it filled with 

plastic material again, need a specific back pressure control.  

3.1. Implementation 

A relative small IEC 61131-3 PLC application has been develop to implement the 

injection function on the valve. In the beginning the valve is initialized and waits for the 

start command from the machine control Figure 5.  To begin the injection cycle, the 

IEC 61131-3 PLC program sets up the position controller to move to the final position, 

the ramp time is calculated so that the cylinder accelerates to the first speed setting in 

the speed profile.  After the cylinder starts to move, the state machine step monitors 

the actual cylinder position. As soon as the actual position is greater that P2, the speed 

is set to the S2, the second speed in the profile from Figure 5. Then the state machine 

jumps to the next steps and waits for the cylinder to pass position P3. This process is 

repeated until the last step in the velocity profile, where the transition to pressure 
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control is enabled. The cylinder fills the mould until the pressure rises to the point to 

start the pressure hold cycle.  

 

Figure 5: State Machine Rubber Moulding Process 

Where the injection cycle was transitioning by the cylinder position, the hold pressure 

phases are defined by a time duration. When the first hold time is passed, the state 

machine move to the next phase and sets the pressure controller command to the next 

pressure.  This is repeated for all phases of the hold pressure cycle. After that the 

injection cycle is completed. The injection cylinder has to be refilled with material, 

plasticising it from the extruder. To support that the cylinder is returned to the origin 

position, driven by the force of the extruder screw. The valve supports this by keeping a 

constant back pressure on the cylinder to allow for consistent filling of the injection 

cylinder. The IEC 61131-3 PLC software sets the pressure control mode and applies 

the relative low back pressure. It constantly monitors the cylinder position, once it is 

back to the original position, the valve is closed, ending the cycle and waiting for the 

next injection process to start.  
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3.2. Communication with the machine controller 

There are two methods possible for communicating with the upper level controller, the 

machine control, or PLC. For the first method uses a set of free network variables. The 

range from CANopen parameter index 2087 to indes2086 can be written from the 

controller and are used to store command, like stop, go, reset to the state machine. A 

second range of CANopen parameters from index 2087 to 208D can be written by the 

white space and provide information about the current status of the state machine. 

Sensor data can always be streamed via custom PDOs or simply accessed as data 

from the object dictionary. In this method IEC 61131-3 PLC does not use its own 

CANbus CANopen stack, it simply accesses the CANbus via the object dictionary of 

the valve, which runs its own CANopen stack in the firmware.  

In the second method, the white space uses its own stack and all the data is shared 

with the network is held in its own object dictionary linked to a custom EDS file. It does 

not conform to DS408 anymore, the injection axis becomes its own profile. This takes 

extra work to design and implement, but allows to encapsulate the valve and control 

function from the network. This can lead to a simpler and easier to use network 

interface.  

3.3. Visualisation 

It is possible to create a visualisation inside of the IEC 61131-3 PLC development 

environment. The performance of the injection function can be debugged and 

optimized, see Figure 6 for a screen shot. 

 

Figure 6: Visualisation in Development Environment 
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It is only available during the development process, when the PC is connected for 

programming and debugging. If the visualization is helpful in the production 

environment, it can be ported to a HMI (human machine interface) and be part of the 

machine control interface. As an alternative the user interface of the valve (ProFX 

configure) can be used for calibration and data logging, Figure 7. 

 

Figure 7: Access Control Data in  Valve User Interface 

4. Results 

The software written for this paper on the intended use on a rubber moulding machine 

took about 2 weeks. The code size was 120 lines of code, the task was set to a 5ms 

loop time, execution time was about 120us. This was sufficient, since all the control 

loops were executed in the firmware at a rate of 1ms.  The data was taken on a small 

hydraulic axis simulator. For the presentation the results on the actual customer 

machine will be available and shared.  
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Abstract 

Poppet valves are popular components of hydraulic systems, but they sometimes 

induce vibration in these systems. In particular, the vibration phenomenon of a poppet 

valve in a cavitation state is a troublesome problem in hydraulic systems, because the 

dynamic effects of cavitation on the poppet valve are difficult to predict. In this research, 

we investigated the vibration phenomenon of the poppet valve in the cavitation state in 

a visualization experiment and numerical simulation. We found in numerical simulation 

that it is possible to predict the tendency of the vibration by assuming that the bulk 

modulus of hydraulic oil is affected by the ratio of cavitation bubbles mixed in the oil. 

Additionally, we proposed a simple method of estimating the quantity of cavitation 

bubbles through visualization experiments and image processing. We then improved 

the prediction accuracy of the poppet valve behavior by applying the bubble mixing 

ratio obtained using the method in the numerical simulation model. The described 

methods not only avoid the sensor effect on the flow field but also save the additional 

measurement cost, and they are easy to apply to hydraulics systems. 

KEYWORDS: Poppet valve, Vibration, Cavitation, Visualization, Numerical 

simulation 

Group C - Valves | Paper C-2 145



1. Introduction 

Poppet valves are popular components in hydraulic systems, but they sometimes 

induce vibration in a system. The problem has been well studied, and explanations of 

the induced vibration are the combined relation of fluid compressibility /1/, the motion of 

other equipment /2/, the pipe properties /3/, the flow force /4/, and the collision between 

the poppet and valve seat /5/. Many cases of system vibration have thus been 

explained, but it is difficult to explain the specific vibration under certain conditions. 

Our previous experimental and numerical investigations revealed that a specific 

vibration will occur under low back pressure conditions with cavitation /6/. In response 

to this result, we attempt to predict the poppet valve vibration in a cavitation state in a 

visualization experiment and numerical simulation in this paper. We find in the 

numerical simulation that it is possible to predict the tendency of the vibration by 

assuming that the bulk modulus of hydraulic oil changes with the ratio of cavitation 

bubbles mixed in the oil. Additionally, we construct a simple method of determining the 

bubble volume mixing ratio of oil through visualization experiments and image 

processing. We then improve the prediction accuracy of the poppet valve behavior in 

numerical simulation by applying the bubble volume mixing ratio. 

2. Experiment Procedure 

The experimental system and tested valve are shown in Figures 1 and 2. The basic 

configuration of the experimental system and the tested valve was the same as in our 

previous report /6/. However, the mechanism of the tested valve was an adjustable 

poppet displacement by a bolt (22). Additionally, pressure transducers (FISO 

Technologies Inc., FOP-M-BA) for measuring downstream pressures , , , and 

, were set at the positions  = 2.5, 7.5, 12.5, and 17.5 mm toward the downstream 

from the valve seat. 

A high-speed camera (16) and a metal halide light (17) were used to measure the 

poppet valve movement and cavitation state. The imaging conditions were a frame rate 

of 6000 fps and shutter speed of 1/16000 ms, and images were recorded with a 

monochrome lens. These were arranged as shown in Figure 1. 

The experimental conditions are given in Table 1. In the cavitation state measurement, 

we changed  from 0 to 55 L/min at intervals of 5 L/min by adjusting the poppet 

displacement with a bolt (22), and adjusted  to about 0.05 MPa using the throttle 

valve (3). 
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Figure 1: Experimental system                      Figure 2: Tested poppet valve 

Quantity Symbol Value Units 
Differential pressure of valve 1.75E+6 Pa 
Average downstream pressure  0.05 Pa(gauge) 
Pump flow rate  0 ~ 55 L/min 
Oil temperature  30, 40, 50 ± 2 °C 
Kinetic Viscosity  45.47E-6 m2/s@40°C 
Oil density  868.9 kg/m3 

Table 1: Experimental conditions 

3. Numerical Simulation 

The simulation model is sketched in Figure 3. The basic configuration and 

specifications are the same as in our previous report /6/. The motion equation of the 

poppet valve is  

, (1) 

where  is the mass of the poppet,  is the poppet displacement,  is time,  is the 

force of pressure acting on the poppet,  is the force of the spring,  is the static flow 

force, and  is the viscosity resistance force. Since the equation used to calculate 

these forces and the elements used in the calculation are the same as in our previous 

report /6/, the equation is omitted in this paper. 

Furthermore, in this paper, two types of bulk modulus are used for the equations as in 

our previous report /6/: the bulk modulus of the hydraulic oil  and the effective bulk 

modulus when bubbles are mixed into the oil .  is a constant (  = 1 GPa) while 

 is given by  

, (2) 
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, (3) 

where  (= ) is the bulk modulus of gas in the bubbles,  is the gauge pressure, 

 is the absolute pressure,  is the bubble volume mixing ratio of oil,  is the 

bubble volume mixing ratio of oil at atmospheric pressure, and  is the specific heat 

ratio. In this paper, the specific heat ratio is defined as  = 1.4 by assuming that the gas 

in bubbles has the same physical properties as air. 

In the numerical simulation performed in this paper,  is applied to the calculation of 

the pressure of the upstream hose and the upstream chamber  because 

compressibility of the hydraulic fluid is a dominant by high pressure. Additionally,  

is applied to the calculation of the pressure of the downstream chamber , the spring 

chamber  ,and the downstream hose, where it is expected that the compressibility of 

the oil is affected by the mixing of the cavitation bubbles /7/. 

 

Figure 3: Simulation model 

4. Method of Determining the Bubble Volume Mixing Ratio 

When light irradiates the cavitation, small bubbles reflect the light. The reflection 

amount thus increases with the quantity of cavitation bubbles /6/. We therefore 

considered that the bubble volume mixing ratio can be obtained from a numerical value 

of this relationship. We identified the bubble volume mixing ratio of oil at atmospheric 

pressure  through visualization experiments and image processing. The specifics 

of the method are described below. 

1) As shown in Figure 4, the data recorded by the high-speed camera are divided into 

still images using video editing software (PEGASYS Inc., TMPGEnc plus 2.5). The 

divided images are synthesized into one image by superposition processing, which 

involves averaging processing. In addition, to correct for the difference in the ambient 
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brightness of each image, the average image is adjusted in terms of brightness  (0 ≤ 

 ≤ 255); the index of the darkest part V is  = 0 while the index of the brightest part W 

is  = 255. 

 

Figure 4: Creating the average image 

2) A region is defined for extracting the brightness from the averaged image. Figure 5 

shows the downstream pressure , , , and  at the position  of each 

pressure transducer at flow rates  = 10, 20, 30, 40, and 50 L/min and oil 

temperature  = 40 °C. It is found that , , and  are affected by  and  

is largely unaffected by . This means that the position  = 17.5 mm is suitable for 

extracting the brightness because the state of flow and bubbles is relatively stable at 

this position. Therefore, the extraction region A is defined around  = 17.5 mm as 

shown in Figure 6. 

 

Figure 5: Downstream pressure at the position of each pressure transducer 
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Figure 6: Definition of extraction region A 

3) The average brightness  in the  direction is calculated from the brightness 

 of the extraction region A. The relationship between the radial direction  of the 

oil passage and  is shown in Figure 7. We find that  has a maximum 

value at  = 0 mm and a minimum value at  = −9 and 9 mm. The cause of the change 

in  is the thickness  of the oil passage for each . The influence was thus 

removed using 

, (4) 

where  is the average brightness of removed the influence of  from 

, which is shown in red in Figure 7.  is approximately constant in 

the range C (−3 ≤  ≤ 3mm) because the effect of the refraction of light by the 

cylindrical oil passage is weaker. From this result, the average of  in the 

range C is defined as the average brightness  in this paper, and it was used in 

determining the bubble volume mixing ratio. 

 

Figure 7: Definition of extraction region A 

4) Average brightness  is obtained from the experimental results under the 

conditions  = 0 55 L/min and  = 30, 40, and 50 °C; it is shown in Figure 8.  

was zero in absence of cavitation bubbles in the downstream (  = 0 L/min),  
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increased with  under all temperature conditions, and  tended to be below 26 

at  = 25 55 l/min and  = 40 and 50 °C. The results reveal that  = 13 is 

equivalent to the bubble volume mixing ratio  = 0%, and  increases with  and 

. In addition, it is revealed that the liquid is completely clouded by the mixing of micro-

bubbles (  ≈ 1%) /8/. This means that a change in light with respect to the quantity of 

bubbles is difficult to measure at  ≥ 1%. We thus assumed that  ≈ 26 is equivalent 

to  ≥ 1% in this paper. 

 

Figure 8: Average brightness . 

5) The bubble volume mixing ratio of oil  is obtained from the findings in 4); it is shown 

in Figure 9. The proposed method can obtain changes in  in the range of 0 % ≤  ≤ 

1 %, but  cannot be measured at  ≥ 1 % because the oil is completely cloudy. 

Additionally, the bubble volume mixing ratio of oil at atmospheric pressure  is 

calculated according to a transformation of Equation (3) written as 

, (5) 

where  is the value of .  is shown in Figure 10. The range F is the range of 

 calculated for the range of 0 % ≤  ≤ 1 %; the data within this range are 

considered to be reliable. 

 

Figure 9: Bubble volume mixing ratio of oil  
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Figure 10: Bubble volume mixing ratio of oil at atmospheric pressure  

Employing the procedure described above in steps 1)–5), the bubble volume mixing 

ratio of oil at atmospheric pressure  is obtained. However, when using this method, 

it is possible that there are measurement errors due to changes in the light source and 

ambient light during shooting. Therefore,  in this paper is not a strict physical 

quantity, but an estimate from the image data. 

5. Prediction of Valve Vibration in the Cavitation State 

5.1. Effect of the Bulk Modulus in the Cavitation State 

We investigated the effect of cavitation acting on poppet valve vibration in a numerical 

simulation. In this simulation, the effective bulk modulus when bubbles were mixed into 

the oil  is set for the downstream chamber, spring chamber, and downstream hose, 

and the bubble volume mixing ratio of oil at atmospheric pressure  is assigned 

systematically values (  = 0 %, 0.01 %, 0.1 %, and 1 %). 

Figure 11 (a) and (b) compares the upstream pressure between simulation results and 

experiment results reported in our previous paper /6/ at  = 0 % and 0.1 %, flow 

rate  = 30 L/min and oil temperature  = 40 °C. The simulation and experimental 

results differ appreciably at  = 0 %, while the waveforms substantially coincide at 

 = 0.1 %. 

Figure 12 (a) and (b) shows the amplitude of upstream pressure  and the 

dominant frequency  obtained from simulation at  = 0%, 0.01%, 0.1%, and 1%, 

 = 10–55 L/min, and  = 40 °C, and compares the results with experiment results 

reported in our previous paper /6/.  tends to increase with , and the 

tendency strengthens with increasing . In addition, under the conditions of  = 

0.01 %, 0.1 %, and 1 %, the simulation results are similar to the experimental values at 

a particular flow rate. The simulation results of  are more similar to experimental 

results when considering  than when not considering . 
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The results show that it is possible to predict the tendency of the vibration in numerical 

simulation by assuming that the bulk modulus of hydraulic oil is affected by the ratio of 

cavitation bubbles mixed in the oil. 

  

(a)  = 0 %                                            (b)  = 0.1 % 

Figure 11: Comparison of simulation and experiment /6/ results for the upstream 

pressure. 

  

(a) Amplitude of upstream pressure                   (b) Dominant frequency  

Figure 12: Effect of the bubble volume mixing ratio of oil at atmospheric pressure 

5.2. Improvement of prediction accuracy 

The results in section 5.1 reveal that poppet valve vibration in a cavitation state can be 

predicted with high accuracy in numerical simulation by the accurate input of the 

bubble volume mixing ratio for oil . We therefore apply  obtained from 

experimental results using the method proposed in section 4 to the numerical 

simulation model, to improve prediction accuracy. 

Figure 13 (a) and (b) shows the amplitude of upstream pressure  and dominant 

frequency  obtained from simulation at  = 10–50 L/min,  = 0.13 % @ 10 
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L/min, 0.35 % @ 20 L/min, 0.74 % @ 30 L/min, 1.5 % @ 40 L/min, and 1.6 % @ 50 

L/min, and  = 40 °C, and compares the simulation results with experimental results 

reported in our previous paper /6/.  obtained in simulation is in good agreement 

with the experimental results and  obtained in simulation shows a qualitative 

agreement with the experimental results. The poppet valve vibration in a cavitation 

state can thus be predicted in numerical simulation using the  equivalent of actual 

conditions. 

  

Figure 13: Improvement of prediction accuracy using the bubble volume mixing ratio of 

equivalent actual conditions 

6. Conclusion 

In this research, to predict the vibration phenomenon of the poppet valve in a cavitation 

state in numerical simulation, a simple method of determining the bubble volume 

mixing ratio of oil was proposed, employing a visualization experiment and image 

processing. It was found that the poppet valve vibration phonomenon in a cavitation 

state can be predicted in numerical simulation by considering the bubble volume mixing 

ratio for oil at atmospheric pressure. Further accuracy can be achieved using the 

bubble volume mixing ratio of equivalent actual conditions. The proposed method is 

effective for engineering because it can evaluate the behavior of a valve under the 

effect of the complex cavitation phenomenon from the bulk modulus, and the 

determiniation of the bubble volume mixing ratio does not require expensive equipment 

or advanced technology. 
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8. Nomenclature 

,  Brightness and average brightness of image - 

 Average brightness for each  - 

 Average brightness after removing the effect of  - 

 Thickness of oil passage in each  m 

 Static flow force N 

 Force of spring N 

 Force of pressure acting on the poppet N 

Group C - Valves | Paper C-2 155



 Viscosity resistance force N 

 Dominant frequency of upstream pressure Hz 

 Effective bulk modulus Pa 

,  Bulk modulus of gas in bubble and oil Pa 

 Mass of poppet kg 

,  Gauge pressure, Absolute pressure Pa 

, ,  Pressure of spring chamber, downstream and upstream Pa 

 Downstream pressure near valve seat Pa 

,  Average pressure downstream and upstream Pa 

 Amplitude of upstream pressure Pa 

 Pump flow rate L/min 

 Radius of oil passage m 

 Oil temperature °C 

 Time s 

 Bubble volume mixing ratio of oil % 

  at atomospheric pressure % 

 Poppet displacement m 

 Position of pressure transducer downstream m 

 Specific heat ratio - 

 Differential pressure of valve Pa 

 Kinetic viscosity m2/s@40 °C 

 Oil density kg/m3 

 

156 10th International Fluid Power Conference | Dresden 2016



!

Characteristics of Proportional Flow Control Poppet Valve with 

Pilot Pressure Compensation 

Dr.-Ing. Jiahai Huang, Professor Dr.-Ing. Long Quan 

Key Laboratory of Advance Transducers and Intelligent Control System, Ministry of Education, 

Taiyuan University of Technology, Taiyuan 030024, China, email: huangjiahai@tyut.edu.cn, 

quanlong@tyut.edu.cn 

Professor Dr.-Ing. Youshan Gao 

School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 

030024, China, E-Mail: tygys@sina.com 

Abstract

Electro-hydraulic proportional flow valves are widely used in hydraulic industry. There 

are several different structures and working principles. However, flow valves based on 

the existing principles usually have some shortcomings such as the complexity of the 

system and additional energy losses. A concept for a two-stage poppet flow valve with 

pilot pressure drop – pilot spool opening compensation is presented, and the linear 

relationship between the pilot stage and main stage, the semi-empirical flow equation 

are used in the electronic flow controller. To achieve the accurate control of the outlet 

flow, the actual input voltage of the pilot spool valve is regulated according to the actual 

pilot pressure drop, the desired flow rate and the given input voltage. The results show 

that the pilot pressure drop – pilot spool opening compensation method is feasible, and 

the proposed proportional flow control valve with this compensation method has a good 

static and dynamic performance.  

KEYWORDS: Proportional flow control valve, Poppet valve, Pressure compensator 

1. Introduction 

Proportional flow control valves are widely used in actuators motion and speed control. 

This kind of valve can be divided into proportional throttle valve and flow valve. As for 

the throttle valve, only the valve opening is precisely controlled, and its outlet flow can 

be easily affected by the variation of pressure drop across the valve metering orifice. 

By contrast, the outlet flow of the proportional flow valve can be precisely controlled.  

Broadly speaking, there are generally two types of proportional flow control valves 

according to the different operating principle, that is, pressure difference compensation 
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and flow feedback /1/. The former is made up of a throttle valve and a pressure 

compensator, in which the compensator is in parallel or in series with the throttle valve. 

The compensator is used to keep the pressure drop across the throttle valve metering 

orifice to a constant value. This method can ensure the outlet flow approximately 

constant, and has been deeply studied by many researchers /2, 3/. The shortcomings 

of this type valve are low accuracy, high flow overshoot in its opening moments or the 

step change in the load pressure. Sometimes the overshoot even reaches more than 

100% of the given value. Another one is the flow feedback type valve, which regards 

the outlet flow as testing and feedback object. For example, in the early 1980s, Lu 

invented a two-way proportional flow valve based on the flow-displacement-force 

feedback principle /4/. The shortcoming of the type valve is that the detection and 

feedback of the dynamic flow is difficult. In addition, traditional pressure compensator 

or dynamic flow sensor are usually installed in the main circuits, on one hand this 

layout produces additional throttling losses, on the other hand it is easy to increase the 

valve size and the system complexity. These shortcomings will be more serious in the 

large flow occasions. 

In this paper, a two stages cartridge proportional flow valve based on the pilot pressure 

difference-displacement compensation scheme is presented. Two pressure sensors 

and a electronic controller are integrated in the valve. To achieve the accurate control 

of the flow rate, the approximate liner relation between the steady outlet flow of the 

main stage and that of the pilot stage, and the semi-empirical flow equation are used in 

the controller to fulfill the correction and compensation scheme. Compared with the 

traditional pressure compensation or flow feedback type proportional flow valve, the 

throttling loss of the proposed scheme is lower because there is no mechanical 

pressure difference compensator or flow sensor. As a result, this scheme can also be 

used in the control of large flow conditions. 

2. Configuration and Mathematical Modeling 

2.1. Configuration of the Proposed Flow Valve 

As shown in Figure 1, the proposed flow valve is a two-stage one, the main stage is a 

Valvistor valve and the pilot stage is a single-stage servo proportional direction valve 

based on displacement- electrical feedback. The Valvistor valve is firstly put forward by 

Andersson /5/. It is a poppet valve, and a longitudinal slot is machined in its cylindrical 

surface to form an internal position feedback channel. Researchers have studied the 

performance of the Valvistor valve /6-9/. As illustrated in Figure 1, the inlet of pilot 

stage is connected with the control chamber of the main stage, and the outlet of the 
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pilot stage is connected with the outlet of the main stage. When the input voltage of the 

pilot valve changes, the pilot flow Qp changes as well, and then the control chamber 

pressure pc changes accordingly. As a result, the balance of the poppet is destroyed, 

the poppet will move upward or downward. It will not stop until the flow rate through the 

feedback channel Qs is equal to the QP. During this process, the poppet displacement 

xm as well as the feedback channel opening (xm+x0) will change accordingly. 

 

Figure 1: Configuration of the Proposed Valve 

In the electronic controller, the pilot outlet flow at 1 MPa pressure drop is designed as 

the reference flow. The pilot pressure drop is detected by two pressure sensors and 

then transferred to the controller. If it is less than 1 MPa, the compensation scheme 

does not work, namely, the actual input voltage of the pilot stage is equal to the given 

one; else if the actual pilot pressure drop is equal to or higher than 1 MPa, the 

correction and compensation method will conduct, and the electronic controller will 

calculate the actual input voltage of the pilot stage according to the actual pilot 

pressure difference, the given input voltage, and the desired flow rate. Then the 

electronic controller generates an appropriate control signal to adjust the pilot spool 

opening. 
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2.2.  Mathematical Modeling 

The movement of the pilot valve can be written as follows, 

! "v
2 cos

e p p p p p p d p p c o
F m x B x k x C C w x p p #$ % % % &!! !  (1) 

If the pilot stage adopts displacement-electrical feedback scheme, the input force Fe 

can be written as, 

! "e e i f p
F k u k x'$ &  (2) 

The movement of the poppet valve can be written as, 

! " ! "d v
2 cos

m m i o c c a i c a o m m m m
C C w x p p A p A p A A p Mx B x kx#& & & % % & $ % %!! !  (3) 

The flow continuity equation of the control chamber between the main stage and the 

pilot valve is, 

! "c e
s c m p

c

dp
Q A x Q

dt V

(
$ % &!  (4) 

The flow rate through the pilot valve is written by, 

! "2
p d p p c oQ C w x p p

)
$ &  (5) 

The opening of the variable orifice on the side surface of the poppet is determined by 

the main poppet position xm and the underlap x0. The flow through the slot is, 

! " ! "0

2
s d s m i c

Q C w x x p p
)

$ % &  (6) 

The flow through the poppet valve Qm is written by, 

! "2
m d m m i oQ C w x p p

)
$ &  (7) 

sin =2.22
2 4 2

m m
m m m

x x
w D D

*
* + , + ,$ & &- . - .
/ 0 / 0

 (8) 

The total outlet flow of the proposed valve is expressed as, 

t m p
Q Q Q$ %  (9) 

The dynamic response of the pilot stage is faster than that of the main stage. Assuming 

the flow force is neglected, equation (1) and equation (2) can be simplified as, 

e

p i

p e f

k
x u

k k k
'$

%
 (10) 
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Equation (3) can be simplified as equation (11) when the poppet valve is steady, both 

the spring and flow force of the main stage are neglected. 

! " 0
c c a i c a o

A p A p A A p& % % & 1  (11) 

If there exists Ac=2Aa, then equation (11) can be simplified as, 

2

i o

c

p p
p

%
1  (12) 

Then the pressure difference of the pilot stage is written as, 

2
s c o

p
p p p

2
2 $ & $  (13) 

It can be found from equation (13) that the pressure difference of the pilot stage is 

proportional to that of the main stage when the valve is steady. In addition, there exists 

Qp=Qs. Then equations (10), (12) and (13) are substituted into equations (5) and (6), 

there exists, 

! " 0

p e

m i

s p e f

w k
x u x

w k k k
'$ &

%
 (14) 

It can be easily found from equation (14) there is a linear relationship between the 

poppet displacement xm and the actual input voltage of the pilot valve ui’. When 

1MPa
s

p2 3 , the compensation mechanism does not work, there exists, 

i i
u u' $  (15) 

When 1MPa
s

p2 4 , there exists, 

! " ! "0 0
2 2 1

2 2
1 1

m p e f m p e f

i i

m m

e p e p

s s

s

w x k k k w x k k k
u u

pw w
k w k w

w w

% %
' $ % &

2
% %

+ ,
- .
- .
- .+ , + ,
- .- . - .- .

/ 0 / 0/ 0

 (16) 

Because there exists 
2

1m

s

w

w
"  in equation (8), equation (16) can be simplified as, 

! " ! "0 0 1s p e f s p e f

i i

e p e p s

w x k k k w x k k k
u u

k w k w p

% %
' $ &

2

+ ,
% - .- .
/ 0

 (17) 

 

3. Simulation and Experiment  

3.1. Simulation model  
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The simulation model is established in software SimulationX. It contains the controller, 

pilot valve, main valve, oil sources and load et al. In the simulation model, a user-

defined proportional valve module is used to define the pilot valve 4WRPEH6 

integrated in the proportional flow valve. The comparison of the simulation results and 

measured results of the 4WRPEH 6 are respectively shown in Figure 2 and Figure 3. 

It can be seen from Figure 2 that the test values and simulation results of the step 

outlet flow of 4WRPEH 6 are basically the same. The static characteristic of the outlet 

flow rate is shown in Figure 3, the simulation results and experiment results are also 

basically the same. But it should be pointed out that the tested results completely 

deviate from the simulation results in Figure 3 when the input voltage is less than 1.5V. 

This is because that the flow meter used in the test rig has a dead zone. As a result, 

the output of the flow meter does not change when the flow is less than a certain value. 

From Figure 2 and Figure 3, it can be concluded that the user-defined proportional 

valve module of the 4WRPEH 6 in the simulation model is feasible. 
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Figure 2: Step Response of Pilot Valve   Figure 3: Static Characteristic of Pilot Valve 

3.2. Experimental Verification  

Experimental rig is established, in which the rated flow rate of Valvistor valve is 175 

L/min at 1 Mpa pressure difference, and the pilot stage is REXROTH 4WRPEH 6. The 

inlet, outlet pressures of the Valvistor valve; and the pressure of the control chamber 

are respectively measured by pressure sensors; and the total outlet flow is measured 

by Parker gear flow meter (0-150L/min). The oil source is offered by variable 

displacement piston pump SYDFEE-11/71RN00. The poppet displacement is 

measured by linear displacement sensor. Flow controller is designed by means of 

dSPACE unit. 
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Figure 4 shows the comparison of simulation results and experiment results of the 

proposed valve with compensation scheme when the inlet pressure of main stage 

takes a step change. In Figure 4, the measured inlet pressure pi of main valve is 

imported into the simulation model to calculate for the Qt, and it can be found that the 

oscillation amplitude and adjustment transition time of simulation results are smaller 

than measured results, but the experimental results are in agreement with the 

simulation results from the trend of change. 

Figure 4: Comparison of Simulation Result and Test Result of the Proposed Valve with 

Compensation Scheme under Step Change of the Input Pressure 
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Figure 5: Comparison of the Simulation and Tested Results of the Proposed Valve 

with Compensation Scheme in the Steady State 
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Figure 5(a) and Figure 5(b) respectively show the comparisons of the total outlet flow 

Qt and poppet displacement xm between simulation and experiment results of the 

proposed valve with compensation scheme when the load is steady. It can be found 

that the experimental results are in agreement with the simulation results. All in all, the 

above simulation and experimental results show that the theoretical derivation in 

section 2.2 and simulation model of the proposed valve with compensation scheme are 

reliable. 

3.3. The Simulation Analysis of Steady State Characteristics 

Figure 6(a) and Figure 6(b) respectively show the steady state control characteristic of 

the proportional throttle valve and the proposed valve. These figures show that both the 

xm and Qt have dead zones when the pilot input voltage ui is less than 1.2 V, which is 

related to the flow capacity of the pilot valve, underlap x0 and gradient flow area ws. In 

addition, Figure 6(a) and Figure 6(b) also show that both xm and Qt of the proposed 

valve are less than that of the throttle valve under the same working condition; and the 

linearity of xm and Qt of the former are better than that of the latter. Accordingly, on one 

hand the proposed scheme can contribute to the improvement of the steady control 

performance of the flow valve, one the other hand the range of outlet flow will be 

reduced relatively. 
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Figure 6: The Steady Control Performance of the Proposed Flow Valve and the 

Proportional Throttle Valve 

3.4. The simulation analysis of dynamic characteristics 

Figure 7(a) shows the Qt step response of the proposed proportional flow valve with 

compensation scheme. It can be found that the adjustment time of Qt is about 160 ms 
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without overshoot and oscillation during the ascending stage; and the adjustment time 

is about 82.8 ms during the falling stage of the input signal, which is only about the half 

of the adjustment time when the valve is in the opening phase. As a result, it can be 

concluded that the proposed proportional valve possesses the ability to quickly cut off 

the outlet flow. This phenomenon is related to the structure of the Valvistor valve. 

When the pilot valve is closed, the control chamber pressure pc of the Valvistor valve 

rise rapidly, until it is equal to the inlet pressure pi; and due to the control chamber area 

is larger than the inlet chamber area, thus the poppet closes quickly. 
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Figure 7: Dynamic response of the proposed valve with the compensation scheme 

Figure 7(b) shows the Qt of the proposed flow valve and that of the proportional throttle 

valve when the load changes dynamically. It can be found that the Qt of the proposed 

valve is roughly constant and the fluctuation range is about 5 L/min when the pressure 

difference periodically changes and the amplitude is 10MPa. But the Qt of the 

proportional throttle valve will fluctuate periodically with the periodical change of 

pressure difference, and the range is up to 260 L/min. Therefore, the proposed flow 

valve possesses the high flow control accuracy under the condition of dynamic load. 

4. Conclusion 

Both the simulation and experimental results show the proposed proportional flow valve 

is feasible, and can realize the precise control of the outlet flow. In addition, it 

possesses good static and dynamic characteristics. 

The proposed flow valve can be applied to the large flow control condition because it 

achieves flow control without a mechanical component to adjust the pressure drop 

across the metering orifice. As a result, the additional energy losses resulting from the 
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pressure compensator is almost zero. In addition, the sensors will improve the 

intelligence and performance of the valve. 
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6. Nomenclature 

k Spring constant of the poppet valve N/mm 

ke Electronic gain the proportional solenoid N/V 

kf Displacement Sensor Gain Mm/V 

kp Spring constant of pilot valve N/mm 

mp Mass of the pilot spool kg 

pc Pressure of the control chamber N/mm2 

pi Inlet pressure of the poppet valve N/mm2 

po Outlet pressure of the pilot valve N/mm2 

t Time s 

ui! Actual input voltage of the pilot valve V 

wm Gradient flow area of poppet orifice mm 

wp Gradient flow area of pilot valve orifice mm 

ws Gradient area of the feedback slot mm 

x0 Underlap of feedbcak slot on the poppet mm 

xp Displacement of the pilot spool mm 

xm Displacement of the poppet mm 

Aa Cross-sectional area of poppet (small side) mm2 

Ac Cross-sectional area of poppet (large side) mm2 

Bm Damping coefficient of poppet N.s.mm-1 

Bp Damping coefficient of pilot valve N.s.mm-1 
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Cd Discharge coefficient of the pilot valve orifice  

Cv Flow velocity coefficient  

Dm Diameter of the poppet valve (large side) mm 

Fe Force produced by proportional solenoid N 

Qm Flow rate of the poppet mm3/s 

Qp Pilot flow rate mm3/s 

Vc Volume of the pilot circuit mm3 

" Jet angle of the orifice ° 

e(  Fluid bulk modulus N/mm2 

# Oil destiny kg/mm3 
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Abstract 

The paper describes the comparison and the difference of modern hydraulic fluids 

compared to conventional hydraulic fluids. A comparison of different base oil groups, 

solvent neutrals, group I and comparison with hydrotreated/hydroprocessed group II 

and/or group III base oils is presented. The influence on oxidation stability, elastomer 

compatibility, carbon distribution and physical properties is outlined. 

KEYWORDS: API base oil classification, group I, group II, group III, hydrotreated 

base oils, modern hydraulic fluids, temperature stability, hydraulic 

fluid market. 

1. Introduction 

Hydraulic fluids count for about 14% (e.g. 130,000 tons/year in Germany [1]) of total 

lubricant consumption in industrial countries. The main fluid group are mineral oil-

based hydraulic fluids. These fluid groups can be monograde fluids which are normally 

used in stationary industrial application (machine tools, hydraulic presses, plastic 

injection machines etc.) or multigrade, so-called HVI fluids in mobile hydraulic systems 

(e.g. excavators). Minimum viscosity index of multigrade hydraulic fluids has to be 

VI � 140.  
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Nowadays there is a clear trend to reduce tank capacity, volume of the total hydraulic 

system, increase of circulation ratio, increase pressure and temperature. All these 

parameters will increase the stress to hydraulic fluids in general which lead to reduce 

lifetime expectations and reduced service intervals. Because these "new" hydraulic 

systems apply highest stress to the fluid modern formulations should be used to 

guarantee trouble-free energy transfer via the fluid.  

2. Base oils for hydraulic fluids 

In general the traditional base oils for hydraulic fluids are so-called solvent neutrals 

which are obtained from base oil refineries which use atmospheric and vacuum 

distillation processes in combination with a solvent treatment to generate suitable so-

called group I base stocks for hydraulic fluids. According to the fraction they are called 

SN plus the corresponding SUS viscosity, e.g. SN 150 – SN = Solvent Neutral, (which 

represents ISO VG 32 cut).  

These SN base oil refineries are predominantly old units. Solvent treatment is no 

longer a very economic and ecological process and, therefore, there is a clear trend to 

shut down base oil capacities of solvent neutral producing base oil refineries in Europe, 

in Asia and in the US. At the same time new base oil units are built up which can 

produce more advanced hydroprocessed and dewaxed base stocks. These semi-

synthetic hydroprocessed base oils are also called group II or group III base oils. 

Compared to SN base oils they exhibit a heavily reduced sulfur content and a higher VI 

and a higher grade of saturation in the molecular structure. Figure 1 shows the API 

classification of base oil types according to API 1509 appendix E and Figure 2 shows 

the base oil capacity during the years 2005 – 2012 [3].  

Figure 1: API classification of base oil types 
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Figure 2: Base oils: Nameplate Capacity Variance, Base Oil Group 2005:2015 

3. Composition of base oils 

Base oils for lubricants are mixtures of hydrocarbons which are connected in paraffinic 

structures, naphthenic structures or in aromatic structures. The paraffinic structures are 

mainly linear structures whereas the aromatic and naphthenic structures are ring 

structures. The distribution of carbon in paraffinic, naphthenic and aromatic structures 

defines the type of base oils. The group I base oil consists mainly of paraffinic 

structures with a significant content of naphthenic and aromatic structures. The 

naphthenic and especially the aromatic content contributes to fluid polarity and, 

therefore, to solubility properties of this type of base oils. The group II and the group III 

are predominantly paraffinic base oils without carbons in aromatic structures but with 

naphthenic structures in the oil. Figure 3 shows the carbon distribution of group I base 

oil versus group II and group III base oils. 
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Figure 3: Carbon distribution and sulfur content – base oil for HLP 46 hydraulic fluids 

There is also a special naphthenic type of base oils existing which has a high content 

of aromatics and naphthenics. These naphthenic base oils have a low VI, low oxidation 

stability, but offer a low pourpoint. Therefore, this type of base oils is especially used 

for low temperature hydraulic fluid specialties [2].  

Figure 4 shows also the difference of base oils regarding the sulfur content. Group I 

base oils typically have a sulfur content between 7000 and 8000 ppm, whereas group II 

and group III typically have a sulfur content < 10 ppm. This sulfur is the so-called base 

oil sulfur.  

Figure 4: Hydraulic fluids, ISO VG 46 – Comparison data (typical values) 
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4. Properties of different types of base oils 

The viscosity temperature properties are different with regard to different types of base 

oils. The low temperature properties, the viscosity index and the pour point are related 

to the addition of a pour point depressant and VI improver to the base oil. Figure 5 

shows the viscosity at -20 °C and -10 °C, the typical VI and the pour point of different 

types of base oils. 

Figure 5: Viscosity at -20/-10 °C, VI and pourpoint – hydraulic fluids 

The big advantage of group II and group III base oils which have improved low 

temperature viscosity, good cold flow properties, a shear-stable high viscosity index 

(especially group III base oils) and low pour points is demonstrated. The main 

advantage of group III base products is the shear stability in combination with the high 

VI of approximately 130.  

5. Temperature stability of different types of base oils 

The temperature stability of the different types of base oils is tested in a so-called roller 

test at a temperature of 135 °C. Figure 6 shows the difference in the thermal stability of 

these base oils.  
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Figure 6: Fuchs roller test (135 °C), sludge formation at the bottom of the beaker 
                  - hydraulic fluids 

As you can see, group II and group III based products offer higher thermal stability, 

lower sludge formation compared to conventional group I based hydraulic fluids (e.g. 

type SN based HLP 46. In the FUCHS roller test the sludge formation can be 

effectively reduced by using group II and group III base oils with selected additives to 

improve fluid properties.  

6. Compatibility of new types of base oils to elastomers and sealing 

materials  

Hydraulic systems should be leakage-free. Static and dynamic sealing is of great 

importance under the influence of the used hydraulic fluid. In the DIN 51524 "Minimum 

requirements for hydraulic fluids" there are specified values for the interaction of 

hydraulic fluids with sealing materials. The volume change for HLP 46 should be in a 

ratio between 0 up to +12% swelling with SRE NBR (Standard Reference Elastomer, 

Nitrilo Butadiene Rubber) materials (test conditions are 168 hours and 100 °C, SRE 

NBR 1). The test is conducted according to DIN 53538, part 1. Figure 7 shows the 

change in volume and hardness of the standard reference elastomer NBR 1 with 

different types of HLP 46 hydraulic fluids. 
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Figure 7: Change in volume and hardness (SRE NBR1 / 100 °C / 168 h) 

The new base oil types, group II and group III, show different properties compared to 

group I. The swelling of the elastomer compound is reduced. This can be compensated 

in fully formulated hydraulic fluids, if needed, with special swelling agents and/or 

additives to generate more or less the same change in volume than usually expected 

from group I based fluids.  

In general zinc-containing hydraulic fluids are very popular in use. The RENOLIN B 15 

VG 46 is a typical robust monograde hydraulic fluid based on zincdialkyldithio-

phosphate, based on group I base oil. The same additive technology has been 

transferred to group II base stock which is in use in Asia and in the US. The product is 

called RENOLIN B 46 PLUS which is the same additive composition with advanced 

base oils. Figure 8 shows the typical values of a group I based formulation compared to 

group II based formulation. 
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Figure 8: Comparison RENOLIN B 15 / RENOLIN B 46 PLUS 
 HLP 46 – in contrary 

The extremely good performance can be observed in the TOST (Turbine Oxidation 

Stability Test) of the 2 fluids. By using modern hydroprocessed group II based products 

the TOST lifetime can be doubled or more. In general good results in field can be 

achieved by changing from group I to group II base oils. The different density, the 

different solubility of additives and oxidation products, the different additive response in 

these base oils should be kept in mind when formulating these modern types of fluids 

[4].  

7. Experience from the field 

Especially in Asia and in the US the usage of advanced base oil compositions is very 

popular due to the availability of these base stocks in these regions. In general there is 

good experience by using and transferring formulations from group I to group II. This 

applies for zinc-containing fluids as well as for zinc and ash-free types of fluids. The 

reduced sulfur content of group II and group III base oils improves oxidation stability, 

reduced sludge formation and improves lifetime of the fluids. Viscosity-temperature 

properties of these modern types of fluids superior to group I base oils. The price level 

of modern group I, group II and group III base oils is higher compared to standard 

group I based fluids. The trend to modern hydroprocessed group II and group III based 

fluids is ongoing, especially in closed systems with reduced volume and high circulation 

ratio [4]. This leads also to the development of new hydraulic fluids for hydraulic press 
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systems. The new developed RENOLIN ZAF D 46 HT PLUS combines excellent 

antiwear/ extreme pressure performance with defined Brugger antiwear performance 

and excellent oxidation stability. RENOLIN ZAF D 46 HT PLUS is a modern hydraulic 

fluid based on hydroprocessed base oils. 

8. Conclusion 

The composition and structure of hydraulic fluids will change in the future to fulfill the 

customer expectations with regard to long lifetime, robustness and reduction in service. 

There is a clear trend in using hydroprocessed low sulfur base oils instead of the 

conventional group I socalled solvent neutral (SN) base oils. Products based on 

hydroprocessed base oils represent the newest generation of modern hydraulic fluids, 

e.g. RENOLIN B 46 PLUS, RENOLIN ZAF D 46 HT PLUS. These fluids have a 

balanced additive system and fulfill the newest requirements of component and 

machine manufacturers.  
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Abstract 

The dynamic of cavitation in hydraulic components cannot be computed accurately yet 

and therefore cavitation is hard to predict. The cavitation phenomenon can be divided 

in three sub-phenomenona: Pseudo-cavitation, Gas-cavitation and Vapour-cavitation. 

Pseudo-cavitation discribes the enlargement of an air bubble due to a pressure drop. 

Gas-cavitation refers to bubble growth which is driven by diffusion of dissolved air from 

the surrounding fluid into the bubble, when the solubility of air in the fluid is lowered by 

a pressure drop. Vapor-cavitation is the evaporation of the liquid phase on the bubble 

surface. Usually all three sub-phenomenona occur simultaneously when the pressure 

decreases and are summarised as cavitation in general.  

To implement the physics of gas-cavitation in a dynamic mathematical model it is 

necessary to know the diffusion coefficient of air in the hydraulic liquid and the 

maximum amount of air which can be dissolved in the liquid. The calculation can be 

accomplished by using the Bunsen coefficient. In this paper both coefficients for three 

different hydraulic oils are calculated based on experimental results. 

KEYWORDS: Cavitation, Bunsen coefficient, diffusion coefficient, Oil hydraulic 

1. Introduction 

Any liquid can dissolve a specific amount of air, which is proportional to the pressure in  

liquid and air phase. In hydraulic systems local pressure can vary from mbar to kbar 

inducing large fluctuations in the solubility of air. A pressure drop reduces the solubility 

of dissolved air and causes air to outgas into air-filled bubbles within the hydraulic 
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system. The collapse of these bubbles leads to heavy damages of the hydraulic system 

and is known as cavitation. To calculate the growth or shrinking velocity of an air-filled 

bubble two parameters are needed: the pressure dependent solubility of air and the 

diffusion coefficient. In the field of hydraulics the Bunsen coefficient is used to express 

the solubility of air. There are a few studies carried out on the Bunsen coefficient in 

hydraulic liquids within the last three decades. The diffusion coefficient is rarely 

investigated. 

In the recent paper three hydraulic oils are investigated on the diffusion and the 

Bunsen coefficient. The outline of the paper is as follows: Section 2 contains the 

presentation of a test rig and the experimental procedure. In Section 3 and 4 equations 

are derived to calculate both coefficients. In the final section a conclusion is drawn and 

an outlook is made for future works. 

2. Test rig and experimental procedure  

The experimental scheme is shown in Figure 1. The main component of the test rig is 

a chamber (3) which is filled with hydraulic oil and air. Its volume can be compressed 

by a piston of a pressure booster (2) which is operated via one 4/3-way-control valve 

(1). Two sensors are used to measure the temperature (5) and the pressure (4) within 

the chamber. Due to compression the pressure within the chamber rises and the 

solubility of air in oil is increased. The pressure increase therefore forces the air to 

dissolve into the oil. Thus, the diminishing air mass causes the pressure to drop 

continuously, which leads to a reduction of solubility. Hence, a new equilibrium 

between pressure and dissolved air is reached after a certain period of time  

 

Figure 1: Test rig operation  
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Since the dissolving process is based on diffusion and is expected to be very slow the 

pressure is measured for nine days. During this period the pressure booster piston has 

to be clamped against the chamber pressure when the pressure supply is switched off, 

which is achieved using a clamping shell (6). A Picture of the test chamber is shown in 

Figure 2. 

 

Figure 2: Test chamber 

Three different hydraulic oils are tested: a standard HLP 46, sunflower oil and a 

biodegradable synthetic ester. For the initial state in the test chamber air saturated oils 

are taken from barrels which were stored at ambient conditions ( , ).  

Figure 3 shows the pressure over time for the three oils mentioned before. 

 

Figure 3: Pressure over time  
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The slight periodic fluctuation in the pressure curves is caused by temperature 

fluctuation between day and night. It is remarkable that all three oil types reach the 

same pressure equilibrium . In the following chapters equations are derived 

to calculate the Bunsen and the diffusion coefficients using the measured pressure 

data. 

3. Bunsen coefficient 

In this chapter the first part deals with deriving equations to calculate the Bunsen 

coefficient using the measured pressure data. In the second part results are presented 

and compared to literature values. In chapter four the Bunsen coefficient is used to 

estimate the diffusion coefficient. 

3.1. Mathematical model 

The Bunsen coefficient  is defined as follows: An oil volume  dissolves a specific 

amount of air. If this amount of air molecules was completely extracted from the oil, it 

would fill the volume  at standard conditions ( , ). The 

proportionality parameter between the oil volume  and the air volume  is 

called the Bunsen coefficient. Since the solubility of air increases with higher pressure 

, the amount of dissolved air and therefore the air volume  increases, too. The 

described relation is given in Equation (1) /9/.  

 (1) 

Using the ideal gas equation the dissolved air mass at the initial state is expressed by 

equation (2). 

  (2) 

Due to pressure increase the new dissolved air mass at equilibrium state is expressed 

by equation (3). Since the temperature during the experimental period is approximately 

constant and roughly ,  equals . 

 (3) 

The difference in mass between the initial condition and the new equilibrium is given by 

equation (4). Further the oil volume is considered to be pressure independent, because 

the pressure scale is fairly low ( ). 

 (4) 
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Since the volume, temperature and pressure of the air above the oil phase are known 

at the initial condition and after the compression, the mass of the air phase at both 

conditions can be calculated and, therefore, the mass difference in the air phase is 

given by equation (5). 

  (5) 

The mass taken from the air phase has to be exactly the same as the mass dissolved 

by the oil. Hence, equation (4) and equation (5) can be equalized which allows to 

calculate the Bunsen coefficient  by (6). 

 (6) 

3.2. Results for the Bunsen coefficient 

After nine days the pressure is considered to be roughly constant due to limited 

experimental time, although the pressure curves’ slope is evidently not zero. As stated 

in the previous chapter it is remarkable to note, that for the three oil types used in the 

experiment the pressure reaches a value of . Hence, for all oil types the 

pressure  in equation (6) is the same and, thence, the Bunsen coefficient has the 

same value of . Several Bunsen coefficients taken from literature are 

presented in Figure 4. A comparison is drawn between the examined oils and the 

literature values wherein HLP 46 is compared to mineral oils and sunflower oil with 

other HETG oils. The measured Bunsen coefficient values agree with values taken 

from literature to an accuracy of 11%. 

 

Figure 4: Bunsen coefficients taken from literature 
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4. Diffusion coefficient 

In the first part of this chapter a differential equation for the time dependent pressure in 

the test chamber is derived and solved. In the second part this equation is used to 

calculate the diffusion coefficient regarding the measured pressure distribution. 

4.1. Derivation of the pressure equation  

In order to evaluate the diffusion coefficient using measured data, it is necessary to 

apply the law of transient mass conversion and diffusion theory on the given system. 

The air mass flux which enters the oil has to be the same which leaves the air phase 

(7). Figure 5 shows a model of the given system. 

 (7) 

  

Figure 5: Sketch of the diffusion process between air and oil   

Assuming an isothermal process the change of mass within the air phase is expressed 

by differentiating the ideal gas equation with respect to time (8). 

 (8) 

The transient diffusion mass flux through a surface  is given by equation (9), wherein 

 is the diffusion coefficient,  is the mass fraction of air at the oil’s surface, is the 

mass fraction of air far away from the surface.  

 (9) 

It is assumed that the air at the oil surface dissolves immediately and, thus, the mass 

fraction  can be expressed using the Bunsen coefficient. Furthermore the mass of 

dissolved air in oil can be neglected compared to the oil mass leading to equation (10). 

 can be calculated using the same equation inserting pressure  instead of . 
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  ;  (10) 

Applying the ideal gas equation to eliminate the density  in equation (9) and using 

equation (10) the dissolving mass flux is expressed by equation (11). 

 (11) 

Since no air mass leaves the test chamber,  has to be equal to  and (8) is 

equalized with (11) leading to equation (12). 

  (12) 

This differential equation is solved with the method of separation of variables by 

integrating the left side with respect to  and the right side with respect to . Its solution 

is presented in equation (13), wherein  is the pressure at the end of the compression 

process. Finally the diffusion coefficient is calculated by equation (14)  

 (13) 

 (14) 

Equation (13) can also be expressed as shown in (15) to get the pressure distribution 

over time. If  becomes infinite, the pressure asymptotically reaches  and at  the 

pressure is exactly . 

 (15) 

This relationship holds true only if the mass fraction far away from the surface  is 

constant which cannot be achieved for an infinite period of time, because the oil 

volume has a finite length. To verify if that assumption is justified for nine days it is 

necessary to estimate the maximum deviation of  conservatively. This can be 

achieved by computing a time dependent concentration profile within the oil assuming 

the pressure above the oil phase and consequently the concentration to be constant. 

Two problems arise: The concentration profile cannot be calculated analytically and the 

diffusion coefficient which is needed to calculate it is unknown. 
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4.1.1. Concentration profile 

Regarding the first problem it is necessary to solve Fick’s Second Law (16) numerically 

within the boundaries 0 and L, wherein L is the length of the oil volume. 

  (16) 

An implicit numerical scheme is chosen to solve the equation above. Hence, the partial 

differential equation (16) is converted into a difference equation (17), wherein time 

derivatives are approximated by forward difference quotients and spatial derivatives 

are replaced by a central difference quotient. The length L is discretized in  

equidistant parts  and time is discretized in  equidistant time periods  

 (17) 

This is one equation for the three unknowns ,  and  , i.e. for the entire 

length  equations with  unknowns have to be solved. Since the mass fraction 

values at the boundaries  and  are defined, the number of unknowns is 

reduced to  and the mass fraction distribution for the next time step  can be 

calculated solving a system of  coupled equations. It remains to define the 

boundary values.  

As stated before the mass fraction at  is constant and proportional to pressure  

and the Bunsen coefficient. The time dependent mass fraction  is unknown yet, but 

it can be defined applying Fick’s First Law (18) which says that a mass flow rate 

induced by diffusion is given if the mass fraction derivative is not zero. At the position 

, the mass flow rate has to be zero, because air cannot penetrate the test 

chamber’s wall. Hence the mass fraction derivative in space has to be zero. 

Numerically that is equal to , thus the system of  equations is 

solvable and the mass fraction distribution can be calculated if the diffusion coefficient 

is known. 

 (18) 

4.1.2. Approximation of the diffusion coefficient 

The diffusion coefficient has to be approximated by an analytical approach using the 

Einstein-Stokes-Equation (19) /8/. Herein  is the Boltzmann constant,  is the 

temperature,  is viscosity of the fluid and  is the hydrodynamic radius of the 

molecules diffusing through the liquid.  
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 (19) 

Assuming ,  and  to be constant, diffusion coefficients of two different 

substances can be compared with respect to their viscosity relation. Considering the 

diffusion coefficient of air in water is known the diffusion coefficient of air in oil is to be 

estimated by equation (20). 

 (20) 

By means of a conservative approximation it is estimated to be , because a 

greater diffusion coefficient induces a faster mass fraction increase. Figure 4 shows 

the relative mass fraction  along the volume length L after nine days. Even with 

regard of conservative assumptions the concentration at the position  remains the 

same and therefore equation (12) holds true for the duration of the experiments.  

 

Figure 6: Calculated RMF in the oil after nine days 

4.2. Results for the diffusion coefficient 

Table 1 shows equation (14) evaluated at the given points for HLP46. Firstly, the 

calculated diffusion coefficient values are not constant. Secondly, the analytical value 

for the diffusion coefficient calculated by equation (20) is , i.e. the 

measured value is 300 million times greater than the analytical one. 
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time [h] pressure[bar] diffusion coefficient[m2/s] 
1 13.18 0.0135 
2 12.84 0.0087 
5 12.23 0.0042 

24 9.13 0.0030 

Table 1: Calculated diffusion coefficient for HLP46 

5. Conclusion and outlook 

In this paper a test rig and a method to calculate the diffusion and the Bunsen 

coefficient are presented. The measured Bunsen coefficient values agree with values 

taken from literature to an accuracy of 11%. Remarkably all three types of oil have the 

same Bunsen coefficient. The diffusion coefficient values are compared with an 

analytical approach, since the diffusion coefficient for hydraulic oils has not been 

measured yet. The measured value deviates from the analytical approach by a factor of 

300 million. There are two possible reasons for the large deviation:  

1. In the given test rig air dissolves into the oil by diffusion and convection, which 

may be caused by little temperature differences between the upper and lower 

part of the oil volume. Consequently air dissolves much faster than predicted by 

the diffusion theory and the mathematical model has to be reworked. 

2. The Bunsen coefficient of the given oils is greater than expected which causes 

a faster pressure drop according to equation (20). 

To verify these two theses it is necessary to implement a stirrer into the test chamber. 

This would accelerate the dissolving process and reduce the time needed to achieve a 

new equilibrium state after the compression. Hence, the Bunsen coefficient could be 

measured more precisely. The temperature invoked convection can be minimized if the 

test chamber’s volume is reduced. 
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7. Nomenclature 

 Surface m2 

 Diffusion coefficient  m2/s 

 Diffusion coefficient of water/oil m2/s 

 Boltzmann constant J/K 

 Length m 

 Mass of air/ Mass of dissolved air at standard conditions kg 

 Mass difference kg 

 Mass flow rate of air/ Mass flow rate of oil kg/s 

  Pressure/ Pressure at standard conditions bar 

 Pressure at the end of the compression process bar 
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 Gas constant J/mol K 

 Hydrodynamic radius m 

 Time s 

 Temperature/ Temperature at standard conditions K 

 Volume of air/ Volume of dissolved air at standard condition  m3 

 Volume of oil m3 

 Length m 

 Bunsen coefficient - 

 Viscosity kg/ms 

 Viscosity of water/ Viscosity of oil kg/ms 

 Mass fraction - 

 Mass fraction of air at the oil’s surface/far away from the 

surface 

- 

 Density kg/m3 

 Density of air/ Density of oil kg/m3 
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Abstract

Bulk modulus of hydraulic oil represents the resistance of hydraulic oil to compression 

and is the reciprocal of compressibility. The bulk modulus is a basic thermodynamic 

property of hydraulic oil that has a very important influence on work efficiency and 

dynamic characteristics of hydraulic systems, especially for the hydraulic systems at 

ultra-high pressure or ultra-high temperature. In this study, a bulk modulus 

experimental equipment for hydraulic oil was designed and manufactured, two types of 

hydraulic oil were selected and its isothermal secant bulk modulus were measured at 

pressures to 140MPa and temperatures of 20~180°C. Compared the experimental 

results with the calculated results from the prediction equations of liquid bulk modulus 

that proposed by Klaus, Hayward, and Song, it is found that the experimental results 

are not completely identical with the calculated results. 

KEYWORDS: Bulk modulus of hydraulic oil, Experimental equipment, Ultra-high 

pressure, Ultra-high temperature, Prediction equations of bulk 

modulus

1. Introduction 

For a conventional hydraulic system, when the working pressure is less than 40MPa 

and temperature is less than 80ºC, the hydraulic oil is usually considered as 

incompressible. Although this is only an approximation to the truth, it is near enough to 

satisfy the needs of design for most conventional hydraulic systems. When the working 

pressure or temperature is much higher than that described above, the change in 

volume of hydraulic oil due to compressibility amounts to several per sent, which can 

not be ignored and needs to be allowed for design calculations. The compressibility of 

hydraulic oil working at high pressure or high temperature will significantly affect the 

Group D - Fundamentals | Paper D-3 193



characteristics of hydraulic systems, such as the response time, the control accuracy of 

the hydraulic system, the efficiency of pumps and motors, and so on /1/. According to 

the definitions of the compressibility and bulk modulus of fluids, the bulk modulus is the 

reciprocal of compressibility. It represents the resistance of a fluid to compression, and 

the greater its numerical value is, the stronger its ability to resist compression is. So the 

bulk modulus becomes a basic thermodynamic property of hydraulic oil for the design 

calculations and characteristics analyses of hydraulic components and systems in 

recent years.

There are admittedly four definitions about bulk modulus, they are respectively called 

as isothermal secant bulk modulus, isothermal tangent bulk modulus, isentropic secant 

bulk modulus and isentropic tangent bulk modulus. For one hydraulic oil, at the same 

pressure and temperature, the bulk modulus values of four definitions are different, but 

they are very relevant with each other /2/. In this study, the isothermal secant bulk 

modulus of hydraulic oil is adopted and discussed, its definition is as following: 

!" # $
%&'()(&*

%+)%
,"#-./01 (1) 

Our project team has come up against a challenge in developing a hydraulic system 

that will work in wellbore detecting instruments, such as in the Ultrasonic Borehole 

Imager. The pressure of mud in wellhole should be up to 140MPa and the temperature 

of mud in wellhole will be up to 180°C /3/. Which is very typical working condition of 

ultra-high pressure and ultra-temperature. That is to say, the hydraulic system in 

wellbore detecting instruments must reliably work under the condition of pressure of up 

to 140MPa and temperature of up to 180°C. Two types of hydraulic oil, Mobil Jet Oil II 

and UNIVIS HVI 26 supplied by Exxon Mobil Corporation were selected, they have 

good viscosity-pressure characteristics and viscosity-temperature characteristics, and 

can work at ultra-high pressure and ultra-high temperature. But there are no bulk 

modulus data of the two types of hydraulic oil for the wide range of pressure and 

temperature mentioned above. Which makes it hard to do design calculations and 

characteristics analyses of the hydraulic system. 

Exhilaratingly, there have some empirical prediction equations which can be used to 

predict the bulk modulus of hydraulic fluids with the changes of pressure and 

temperature. In 1964, after measuring the bulk modulus of some hydraulic fluids and 

lubricants at pressures of 0~70MPa and temperatures of 0~176°C, Klaus  found that 

the slope of the isothermal secant bulk modulus versus pressure curve is constant, and 

the bulk modulus decreases logarithmically with the increase of temperature, then 

Klaus proposed his prediction equations /4/. In 1971, based on a mass of experimental 
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measurements for the compressibility of hydraulic fluids at pressures of 0~70MPa and 

temperature of 20ºC, Hayward thought that the isothermal secant bulk modulus of any 

normal mineral hydraulic oil is related with its kinematic viscosity at atmospheric 

pressure and 20ºC, with it  Hayward also proposed his prediction equations /5/. In 

1991, base on the previous experiment data of bulk modulus for hydraulic fluids at 

pressures of 0~210MPa and temperatures of 0~100ºC, Song developed the equations 

that the isothermal secant bulk modulus of mineral oils and non-polymeric pure 

hydrocarbons at atmospheric pressure is related with its viscosity, and the slope of bulk 

modulus versus pressure curve has a linear relationship at a certain temperature /6/. 

Unfortunately, the hydraulic system, which is designed and calculated with the bulk 

modulus derived by above prediction equations, is still with troubles. Perhaps the 

application coverage of the prediction equations proposed by Klaus, Hayward, and 

Song is not suitable for the condition in wellbore. So we have attempted to measure the 

bulk modulus of the two types of hydraulic oil selected by means of much more close to 

its working conditions. 

In this paper, an experimental equipment for measuring the bulk modulus of hydraulic 

oil under ultra-high pressure and ultra-high temperature is introduced. The bulk 

modulus of two types of hydraulic oil at pressures to 140MPa and temperatures of 

20~180°C are measured by experiment, and then the experimental results are showed 

and compared with the calculated results from the prediction equations by Klaus, 

Hayward, and Song. It is expected that it can effectually solve the difficulty about the 

design calculations and characteristics analyses of hydraulic systems in the wellbore 

detecting instruments, and provides a chance to discuss some academic questions 

with savants in hydraulics. 

2. Experiment 

2.1. Experimental equipment 

Figure 1 is the schematic diagram of the experimental equipment, which consists of 

the working condition simulator and the experimental device. The working condition 

simulator includes an upper sealing block (1), a screw cover (2), a pressure vessel (3), 

a sleeve (5), a lower sealing block (6), a screw plug (7), a relief valve (10), a water 

pressurizing system and a circulating oil system. There are two full separate chambers: 

the circulating oil chamber (8) and the water chamber (9), and the water chamber is 

enveloped in the circulating oil chamber. The water chamber is a pressure vessel, 

which can withstand ultra-high pressure and ultra-high temperature, and fills with 

filtrated fresh water. The pressure of the water chamber can be adjusted by the water 

Group D - Fundamentals | Paper D-3 195



pressurizing system and the relief valve from 0 to 200MPa, and the temperature of the 

water chamber can be adjusted by the circulating oil system from ambient temperature 

to 240°C. The circulating oil system includes a heater and a cooler that can regulate 

the temperature of the circulating oil. Therefore the adjustable ranges of pressure and 

temperature in the water chamber of the working condition simulator can meet the 

experiment needs. 

Figure 1:The schematic diagram of experimental equipment                                            

(1) upper sealing block, (2) screw cover, (3) pressure vessel,                              

(4) experimental device, (5) sleeve, (6) lower sealing block, (7) screw plug,                       

(8) circulating oil chamber, (9) water chamber, (10) relief valve

The structure diagram of the experimental device is shown in Figure 2. The 

experimental device includes a piston (1), a seal ring (2), a cylinder (3), a sensor holder 

(4), a body (6), an oil filler plug (7), a multicore connector (8), a screw sealing block (9), 

a spring (12), a guide sleeve (15), a plug (16), and so on. A displacement sensor (5) 

and a pressure & temperature sensor (11) are attached to the sensor holder. By the 

screw sealing block of the experimental device screwing in the upper sealing block of 

the working condition simulator, the experimental device can be installed in the water 

chamber of the working condition simulator. There is a multicore connector that can not 

only seal the test hydraulic oil with ultra-high pressure in the test hydraulic oil chamber 
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(13), but also elicit the sensor signal lines (10), so as to output signals of the piston 

displacement, the pressure and temperature in the test hydraulic oil chamber to 

instruments or computer outside the experiment equipment. The telescopic rod of the 

displacement sensor (Subminiature Instruments Corporation, Model 100-1060) is 

connected with the piston, it detects the displacement of the piston that can infer the 

volume change of the test hydraulic oil. The pressure & temperature sensor (Paine 

Corporation, Model 310-38-520-06, 0-172MPa, 23-176°C) is directly installed in the test 

hydraulic oil chamber. 

Figure 2: The structure diagram of experimental device 

(1) piston, (2) seal ring, (3) cylinder, (4) sensor holder, (5) displacement sensor, 

 (6) body, (7) oil filler plug, (8) multicore connector, (9) screw sealing block,  

(10) sensor signal lines, (11) pressure & temperature sensor, (12) spring, 

 (13) test hydraulic oil chamber, (14) water chamber, (15) guide sleeve, (16) plug 

The main advantages of this experimental equipment are followings: 

Because the experimental device fully submerges into the water in the working 

condition simulator, and the force to the piston from the side of the test hydraulic oil is 

nearly equal to that from the side of the water, so the pressure and temperature of the 

test hydraulic oil is almost equal to that of the water. That is to say, both the pressure 

and the temperature of the test hydraulic oil can be adjusted, and the isothermal secant 

bulk modulus of the test hydraulic oil at the pressure of 0~140MPa and temperature of 

20~180°C may be obtained by experiment. 

The pressure & temperature sensor is installed in the test hydraulic oil chamber, which 

directly detects the pressure and temperature of the test hydraulic oil. The pressure 

inside the experimental device is almost equal to that outside, so the deformations of 

the cylinder and body can be ignored and has no effect on the volume of the test 

hydraulic oil. And the test hydraulic oil chamber designed can fill with test hydraulic oil 

about 2.8 litres, which means that the changes in volume of the test hydraulic oil with 

the changes of pressure and temperature will be more obvious. That all will make for 

improving the measurement accuracy. 
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Of course, there are also disadvantages with this experimental equipment, for example, 

the experimental equipment is big and expensive, and it is time-consuming for 

experiment, so it is difficult for commercial use. 

2.2. Experimental procedure 

Before experiment, on the condition of atmospheric pressure and ambient temperature, 

the test hydraulic oil selected is filled into the test hydraulic oil chamber of the 

experimental device using an evacuation circulation device, the undissolved air in the 

test hydraulic oil should be eliminated as far as possible. By weighing the experimental 

device that is empty and filled, the original volume of the test hydraulic oil will be 

derived.

The experimental procedure is designed as followings: 

(a) Keeping the temperature of the water in the working condition simulator as ambient 

temperature, then adjusting the pressure of the water in the working condition 

simulator up gradually from atmospheric pressure to 140MPa in accordance with a 

step of 20MPa, and then adjusting the pressure of the water down gradually from 

140MPa to atmospheric pressure also in accordance with a step of 20MPa. 

Keeping each pressure of the water steady about 20 minutes, and recording the 

data of the pressure and temperature of the test hydraulic oil and the displacement 

of the piston from sensors, and the pressure and temperature of the water. 

(b) Adjusting the temperature of the water up gradually to 40°C and making it remain 

constant, then adjusting the pressure of the water up and down according to the 

procedure described above, and recording the data for each pressure and the 

temperature of 40°C. 

(c) Adjusting the temperature of the water up gradually from 40°C to 180°C in 

accordance with a step of 20°C, and keeping each temperature of the water steady 

for enough time, then adjusting the pressure of the water up and down according to 

the procedure described above, and recording the data for each pressure and each 

temperature.

According to this procedure, there are at least 126 adjusting steps or test points for the 

experiment of one test hydraulic oil. 
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3. Experimental  results 

3.1. Results 

By adjusting the pressure and temperature of the water in the working condition 

simulator, the pressure, the temperature and the volume of the test hydraulic oil for 

each test point will be obtained. Because it is difficult to precisely control the pressure, 

especially the temperature of the water during experiment, there are a slight difference 

between the experimental data of the test hydraulic oil and that designed in 

experimental procedure. By data processing, there are 7 actually measured 

temperature points of 46.9°C, 78.7°C, 94.6°C, 114.2°C, 134.2°C, 154.5°C and 173.0°C 

for Mobil Jet Oil II, and 5 actually measured temperature points of 48.9°C, 75.7°C, 

97.1°C, 116.0°C, and 135.3°C for UNIVIS HVI 26. Eventually the isothermal secant 

bulk modulus of Mobil Jet Oil II and UNIVIS HVI 26 can be derived from the 

experimental data by formula (2) that from the standard ASTM D6793-02 /7/, the dots 

of isothermal secant bulk modulus versus pressure at different temperatures for the two 

test hydraulic oils are separately plotted and shown in Figure 3 and Figure 4, the 

curves of isothermal secant bulk modulus versus pressure at the corresponding 

temperature points through least square fitting method are synchronously plotted. 

!234 #
%5+'(6)(+*

%5+)%56
7  (2) 

Figure 3: The graph of 89 vs : for

Mobil Jet Oil II

Figure 4: The graph of 89 vs :7for UNIVIS 

HVI 26

From Figure 3 and Figure 4, it can be summarized as followings: 

(a) The isothermal secant bulk modulus increases as the pressure rising or the 

temperature falling, and when the temperature is constant, there is nearly a linear 
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relationship between the isothermal secant bulk modulus and the pressure. This 

trend coincides with the known laws of bulk modulus for liquids. 

(b) The isothermal secant bulk modulus curves of Mobil Jet Oil II are very similar to 

that of UNIVIS HVI 26. Within the scope of experimental data, the maximal value of 

the isothermal secant bulk modulus of Mobil Jet Oil II is about 1.88GPa at the 

pressure of 140MPa and temperature of 46.9°C, the minimal value is about 

0.88GPa at the pressure of 20MPa and temperature of 173°C. For UNIVIS HVI 26, 

the maximal value is about 1.88GPa at the pressure of 140MPa and temperature 

of 48.9°C, the minimal value is about 0.87GPa at the pressure of 20MPa and 

temperature of 135.3°C. 

(c) At the pressure of 20~140MPa and temperature of 46.9~173°C, the maximal value 

of the isothermal secant bulk modulus is more than 2 times of the minimal value, 

this change is very big. So the changes of the bulk modulus of hydraulic oil that 

varies with the pressure and temperature must be carefully considered when the 

hydraulic systems are designed for applications in wellbores, as well as in the 

fields with ultra-high pressure or ultra-high temperature. 

(d) With the experimental values, the isothermal secant bulk modulus of Mobil Jet Oil 

II and UNIVIS HVI 26 at any pressure of 20~140MPa and any temperature of 

46.9~173°C (for Mobil Jet Oil II, and 48.9~135.3°C for UNIVIS HVI 26) can be 

derived through interpolation method. 

3.2. Comparisons 

For comparison, the isothermal secant bulk modulus of Mobil Jet Oil II and UNIVIS HVI 

26 at the experimental range of pressure and temperature are calculated according to 

the three group prediction equations that proposed respectively by Klaus, Hayward, 

and Song. The calculated results are shown in Figure 5 with the relevant experimental 

results, only two temperature points are selected to plot for each test hydraulic oils, so 

as to clearly show the results and also save the length of the paper. 

The Figure 5(a) shows the experimental results and the three kinds of calculated 

results at the temperature of 46.9°C for Mobil Jet Oil II. The slope of the four lines of !2

is very close with each other, and the experimental results are near to the calculated 

results from the prediction equations of Klaus, but it has a visible difference with that of 

Hayward and Song, and the values of experimental results are less than that of 

Hayward about 24%. 
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The Figure 5(b) shows the experimental results and the three kinds of calculated 

results at the temperature of 173°C for Mobil Jet Oil II. The slope of the four lines of !2

is a little different with each other, and the experimental results are near to the 

calculated results from the prediction equations of Hayward and Song, but it has a 

visible difference with that of Klaus, and the values of experimental results are more 

than that of Klaus about 26%. 

Combining Figure 5(a) and (b), the experimental results of Mobil Jet Oil II do not go 

beyond the scope of all calculated results. 

(a) (b) 

(c) (d) 

Figure5: Comparisons of prediction results with experimental results 

The Figure 5(c) shows the experimental results and the three kinds of calculated 

results at the temperature of 48.9°C for UNIVIS HVI 26. The slope of the four lines of 

!2  is very close with each other, but the values of experimental results are less than 
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the calculated results from the prediction equations of Klaus about 8.8%, and less than 

that of Hayward and song about 17.6%. 

The Figure 5(d) shows the experimental results and the three kinds of calculated 

results at the temperature of 135.3°C for UNIVIS HVI 26. The slope of the experimental   

!9 line is equal to that of song, but is a little less than that of Klaus and Hayward. The 

values of experimental results are a little less than the calculated results from the 

prediction equations of Klaus, but less than that of Hayward about 17% and less than 

that of song about 45%. 

Combining Figure 5(c) and (d), the experimental values of !9  for UNIVIS HVI 26 are 

less than that of all calculated results. 

On the whole, the experimental results are not completely identical with the calculated 

results, maybe it is because the different experimental conditions or hypotheses bring 

those differences. 

4. Conclusions 

(a) An experimental equipment for measuring the isothermal secant bulk modulus of 

hydraulic oil has been developed, and its experimental pressure can be controlled 

from 0 to 140MPa, its experimental temperature can be controlled from ambient 

temperature to 180°C.

(b) The isothermal secant bulk modulus of Mobil Jet Oil II and UNIVIS HVI 26 from 

Exxon Mobil Corporation are measured at the pressure of 0~140MPa and 

temperature of 20~180°C, and the experimental results are shown with graphs. 

(c) By comparison, it is found that the experimental results are not completely identical 

with the calculated results that from the prediction equations by Klaus, Hayward, 

and Song. The causes of differences between the experimental results and the 

calculated results need to be investigated later. 

Although this experimental equipment is big and expensive, the experiment is time-

consuming, attempting to obtain the experimental data of bulk modulus of hydraulic oils 

at ultra-high pressure or ultra-high temperature is considered as very valuable. So the 

further experimental studies are being arranged. 
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Nomenclature

i The sequence number of experimental temperature   

j The sequence number of experimental pressure   

TK The isothermal secant bulk modulus of hydraulic oil at 

the pressure of P and temperature of T

 MPa 

TijK The isothermal secant bulk modulus of the test 
hydraulic oil at the pressure of 

jP and temperature of 

iT

 MPa 

P The pressure of hydraulic oil  MPa 

0P The atmospheric pressure  MPa 
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jP The pressure of the test hydraulic oil to the 

experimental pressure sequence number j

 MPa 

T The temperature of hydraulic oil  °C 

iT The temperature of the test hydraulic oil to the 

experimental temperature sequence number i

 °C 

V The volume of hydraulic oil at the pressure of P and 

temperature of T

 mm3

0V The original volume of hydraulic oil at the atmospheric 

pressure and the ambient temperature 

 mm3

0iV The original volume of the test hydraulic oil at the 
pressureof 0P and temperature of 

jT

 mm3

ijV The volume of the test hydraulic oil at the pressure of 

jP and temperature of
jT

 mm3
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Abstract – Innovative Duplex Filter for Industrial Applications 

For decades, duplex filters have been put to use virtually unmodified. Technologies, 

handling and use of materials show enormous potential for improvement.  

Filter element removal/replacement is performed according to a complex process 

sequence. 

With the newly developed Duplex Filter, the market demands concerning simple filter 

element removal/replacement, as well as weight and pressure loss reduction are fully 

met. 

KEYWORDS: Duplex filter, weight and pressure loss reduction, fully automatic 

change-over process, automatic ventilation, industrial applications 

1. Introduction 

Duplex filters are filtration systems in which two filter elements are installed, yet the 

hydraulic medium flows through only one of the elements at any one time. The second 

element is inactive. As soon as the permitted pressure loss of the first element is reached 

due to particle build-up, the operator changes over without interruption from the dirty to 

the new, clean filter element. This ensures continuous operation of the system without 

interruptions or downtime. 

2. State of the Art 

Filter element removal is performed in accordance with a complex process sequence 

(Figure 1), which involves substantial operational risks. For instance, vent and pressure 

compensating valves need to be opened and closed before and after the change-over 

process in order for the change-over lever to be moved and the serviced filter bowl to be 

filled again. 
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Figure 1: Existing Duplex Filters 

3. A New Approach 

With the help of modern software tools, such as FEM and CFD, a completely novel 

housing and change-over concept could be realized. 

 

Figure 2: Newly Developed Duplex Filter 

Venting screw 

Pressure 
compensation valve 

Change-over lever 
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3.1. New Change-Over Concept 

The objective in creating a new change-over concept was to reduce the change-over 

process to a single operational step, which automatically includes and performs the 

functions: 

· pressure compensation, 

· ventilation and 

· filling of the serviced filter bowl. 

The entire process sequence should be characterized by maximum safety and absolutely 

fool-proof execution. 

3.1.1. Change-Over Sleeve  

The change-over sleeve (Figure 3) can be described as the central part of the new 

change-over technology. It separates the pre-filtration side from the filtered side and 

controls the flow between the two filter bowls. The high transmission ratio (Figure 4) 

between change-over lever and change-over sleeve allows for low change-over forces; 

the operator can move the lever quite effortlessly. 

a)  b)  

Figure 3: Change-Over Sleeve. a) Right filter housing closed, b) Right filter housing 

opened. 

 

Figure 4: Change-Over Mechanism 
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3.1.2. Pressure Compensation during Change-Over Process 

Once the change-over process starts the pressure compensation valve (Figure 5) is 

opened, without causing the change-over sleeve to move. This leads to immediate 

pressure compensation between the inner and outer side of the sealing areas at the 

change-over sleeve.  

The change-over lever (Figure 5) can be rotated by 20° without any twisting of the 

change-over sleeve. 

 

Figure 5: Duplex Filter Change-Over Lever 

 

Figure 6: Automatic Pressure Compensation 

Pressure Compensation 
Valve 
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3.1.3. Automatic Ventilation System  

Aeration 

Once the draining screw is opened or the filter bowl is removed, the drained oil opens 

the vent valve (Figure 7) and the system is aerated.  

 

Figure 7: Automatic Aeration 

Ventilation 

Once the serviced filter bowl is filled with oil from the filtered side with a defined oil 

quantity of about 50-100 ml/min, the air in the filter bowl escapes (Figure 8a) through 

the opened vent valve. Once oil comes in contact with the vent valve (Figure 8b), the 

valve pin is pressed into the sealing area due to oil friction in the radial sealing gap. 

a)  b)  

Figure 8: Automatic Ventilation. a) Vent Valve Opened, b) Vent Valve Closed 

  

Oil 
Closed vent 
valve 

Air 

Air 

Air 

Vent valve  
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3.2. Pressure Drop Optimization 

The volume flow from the pre-filtration side to the filtered side is controlled by large cross 

sections with only a few deflections.  

The filter element is positioned eccentrically in the filter bowl (Figure 9); this leads to a 

reduction in pressure drop in the flow-gap by 2.5 times compared to a centrically 

positioned filter element.  

 

Figure 9: Filter Element Eccentrically Positioned inside the Filter Bowl /1/ 

3.3. Optimized Housing Structure 

In order to reach a low total weight, FEM analyses (Figure 10b) are necessary. A 

reduced wall thickness can be achieved with the help of a housing design that mainly 

consists of cylindrical and spherical shapes (Figure 10a). Additional outer ribs add 

further stiffness to the housing.  

a)    b)  

Figures 10: a) Optimized Housing Structure, b) FEM Calculation 
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4. Calculation and Validation 

4.1. Ventilation 

4.1.1. Calculation of the Ventilation 

The pressure Force  (5) is a result of the pressure loss (3) in the gap at the sealing pin 

and was calculated with the help of the Bernoulli equation (3). 

The weight force FG (8) is calculated from the volume (7) of the sealing pin and the 

specific weight. 

          (1) 

          (2) 

          (3) 

          (4) 

           (5) 

           (6) 

        (7) 

       (8) 

a)    b)   

Figures 11: a) Forces At The Vent Valve, b) Sealing Pin 

r

sD

h

d
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a)  

  

b)  

Figures 12: a) Gravity Force Dependent On The Wall Thickness Of The Sealing Pin,   

       b) Pressure Force Dependent On The Gap Width 

In consideration of the relation between lifting force and gravity force  in unfavorable 

conditions (low viscosity and low flow rate), the sealing element was designed with a 

safety factor of about 2: 

Gap between sealing element and outer cylinder:  s = 0.2 mm 

Wall thickness of the sealing element:  sD = 1 mm 

The following forces are in effect: 

Lifting force: Fp (0.2 mm) = 0.017 N 

Gravity force: FG (1 mm) = 0.0072 N 
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4.1.2. Validation of the Ventilation 

Test setup 

Evidence of the automatic aeration and ventilation function was found with the help of a 

prototype (see Figure 13). Boring hole and sealing cone were drilled. The sealing 

cylinder with spheroidal face was turned. Aeration and ventilation were tested with 

maximum sealing gap between boring and sealing cylinder. 

Test procedure 

It was the objective of the test to determine the basic conditions in which the aeration 

and ventilation unit functions reliably. In order to do so, the following parameters were 

varied:  

· system pressure (high, low), 

· oil and air flow rate and 

· viscosity of the oil. 

Test Results 

The valve closes under two conditions:  

1. once an air flow of 1750 ml/min is reached, 

2. once oil enters the sealing gap. 

Oil viscosity was between 5 and 850 mm2/min. The valve closed reliably at an oil flow of 

12 ml/min.  

Aeration function was affirmed after 96 h at 500 bar.  

The valve’s inertia is so low that it follows the pulsation of a gear pump. Leak tightness 

is 100 % guaranteed in these load conditions. 
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Figure 13: Aeration and Ventilation Unit 

4.2. Validation of the Change-Over Process 

Test Setup and Procedure 

The change-over function was tested with a prototype (Figure 14). The general design 

and setup of the components involved in the change-over process were simulated in a 

simplified assembly. The change-over sleeve and the transfer elements were turned and 

milled. 

The objective of the test was to simulate the change-over process as similar to series 

production as possible. The automatic pressure compensation between the sealing 

segments of the change-over sleeve and the ‘inactive’ filter bowl was simulated, as well 

as change-over forces in dependence of the differential pressure between the pre-

filtration side and the filtered side.  

Test Result 

The pressure compensation via the pressure compensation bore which is opened 

automatically during the change-over process was accomplished. It was tested in the 

pressure range of 5 to 250 bar. Once the change-over process is complete the pressure 

compensation valve closes absolutely leak-tight. After pressure compensation, the 
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change-over torque at the change-over shaft was below 40 Nm, at a differential pressure 

of 10 bar and a system pressure of 300 bar. 

 

Figure 14: Pressure Compensation Test Unit 

 

5. Summary 

Filter element removal for today’s Duplex filters involves a rather complex service 

procedure. Moreover, the pressure resistance - weight ratio is high. With the newly 

developed Duplex filter, all the processes that typically have to be carried out separately, 

such as pressure compensation, ventilation and refilling of the serviced filter bowl, are 

performed automatically as the change-over lever is operated. The pressure resistance 

– weight ratio could be lowered by combining cylindrical and spherical shapes with 

additional outer ribs.  

The newly developed Duplex Filter is a trendsetter regarding filter element service, 

reduced pressure loss and a high power-to-weight ratio. The fool-proof filter element 

service is one highlight. It combines automatic pressure compensation and an automatic 

ventilation system. Thanks to the high transmission ratio only low change-over forces 

are necessary. 
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7. Nomenclature 

 area (sealing element)  

 gap area  

 outer diameter  

 hydraulic diameter   

 mean diameter   

 gravity force  

 pressure force  

 gravitational constant  

 height of the cylinder part  

 gap length  

 flow rate  

 radius  

 Reynolds number  

 gap width  

 wall thickness  

 velocity  

 volume  

 pressure drop  

 density (sealing element)  

 density of oil  

ν kinematic viscosity  
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Abstract 

Fuel cost represents a significant operating expense for owners and fleet managers of 

hydraulic off-highway vehicles.  Further, the upcoming Tier IV compliance for off-highway 

applications will create further expense for after-treatment and cooling. Solutions that 

help address these factors motivate fleet operators to consider and pursue more fuel-

efficient hydraulic energy recovery systems. Electrical hybridization schemes are 

typically complex,  expensive, and often do not satisfy customer payback expectations. 

This paper presents a hydraulic energy recovery architecture to realize energy recovery 

and utilization through a hydraulic hydro-mechanical  transformer. The proposed system 

can significantly reduce hydraulic metering losses and recover energy from multiple 

services. The transformer enables recovered energy to be stored in a high-pressure 

accumulator, maximizing energy density. It can also provide system power management, 

potentially allowing for engine downsizing. A hydraulic test stand is used in the 

development of the transformer system. The test stand is easily adaptable to simulate 

transformer operations on an excavator by enabling selected mode valves. The 

transformer’s basic operations include shaft speed control, pressure transformation 

control, and output flow control. This paper presents the test results of the transformer’s 

basic operations on the test stand, which will enable a transformer’s full function on an 

excavator. 

KEYWORDS: hydraulic transformer, fluid power control, off-highway vehicle 
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1. Introduction 

Fuel costs have become a major issue in today’s economy, and fuel efficiency 

improvements for off-highway vehicles have become a top priority for equipment 

manufacturers and end users alike. A hydraulic excavator for example, consumes a 

substantial amount of fuel during operation. However. less than 10% of the fuel energy 

actually is utilized for conducting productive work. A significant portion of an excavator’s 

operational losses  occur in the directional control valve with throttling/control losses 

across the proportional valves for each service. To improve the excavator’s fuel economy 

a hydraulic energy recovery system is proposed, which is capable of achieving the 

baseline productivity without compromising the functionality and performance of the 

baseline machine. The energy is typically recovered into three formats. Hydraulic energy 

stored into an accumulator [1-5], electrical energy stored in a battery [6], and mechanical 

energy stored in a fly-wheel [7]. Depending on the energy storage forms, a key 

component to transform and deliver energy between the storage device and the baseline 

system should be developed, such as a motor generator set, a continuous variable 

transmission, etc. The key enabling technology for the hydraulic energy recover system 

is a hydraulic transformer. Innas has developed an Innas Hydraulic Transformer (IHT) 

[8]. The IHT is a three-port transformer based on a novel floating cup technology. 

Besides IHT, traditional hydraulic transformers are created with over center 

pump/motors. Eaton proposed a novel transformer architecture, which comprises a 

tandem over center pump/motors with the mechanical connection extended to the final 

drive. 

Implementing the transformer system directly into the excavator while developing the 

system control algorithm is deemed too challenging. In order to reduce this risk, the    

transformer’s control development was conducted on  a custom hydraulic test bench.  

The bench was designed to  replicate all of the major operations of the transformer on 

the excavator while in a controlled environment. For a traditional hydraulic transformer 

composed of over center pump/motors, various system modeling, state estimator, 

control, and optimization approaches have been exploited, with solid simulation 

verifications[9-11]. One contribution of our work is to provide the experimental validation 

of the operation of a hydraulic transformer. Different hydraulic configurations on the test 

bench can be achieved by enabling selected flow paths via on/off mode valves. For each 

configuration, the control strategies of the transformer is specified. The common 

operations for the transformer across various hydraulic configurations are summarized 

as: transformer shaft speed control, pressure transformation control, and transformer 
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output flow control. The experimental demonstration of the basic operational modules is 

investigated. 

The outline of the paper is as follows. In section 2, the transformer system and its 

operation will be introduced.  In section 3,  the machine functionality diagram and the 

corresponding test bench configurations will be presented. The control logic for each 

hydraulic configuration will be explained. In section 4, we will present the experimental 

results collected from the test bench. Finally, a conclusion will be presented. 

2. Transformer System 

In this design, one tandem transformer is in communication with the main pump, the 

boom cylinders, and the swing function of the excavator. The transformer can achieve 

system power (energy) management by manipulate the energy among the main pump’s 

output, the boom’s overrunning kinematic energy, the swing’s kinematic energy.  This 

energy can be utilized instantaneously among those functions or the energy is stored in 

a hydraulic accumulator. In addition, the transformer, together with the service 

proportional valve, can control the boom motion and the swing motion. 

 

Figure 1: Transformer implemented on an excavator 

Figure 1 shows the architecture of the transformer integrated into the excavator. For 

boom operation, the boom cylinder can be supplied from the main pump via the stock 

Directional Control Valves (DCV), or from the accumulator via  the transformer, or a 

mixture of both. In the case of the stock DCV, flow can be directly supplied from the main 

pump’s output via the DCV. In the second scenario, the boom can be supplied by the 

accumulator via the transformer alone, where the system controller determines the boom 

supply pressure from cylinder pressure sensors and flow based on a map of pressure, 
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flow, and sensed pilot pressure. The transformer is commanded to match the pressure 

and flow requirements and supplies the boom directly. The third scenario is a mixture of 

boom flow from the DCV and the transformer.  The transformer supplies or sinks flow 

from the boom and the DCV provides the make-up flow depending on the energy status 

of the hydraulic hybrid work circuit HHWC system. When utilizing the transformer, the 

energy can be stored in the accumulator or used to provide torque to the swing.  

For the swing service, the inertia is driven directly from the hydraulic transformer with a 

clutch/brake connected between the motor and the inertia. During vehicle operation the 

clutch is active during swinging operations and the brake is active only when the upper 

structure is stationary. The swing circuit can be operated via the main pumps, 

overrunning boom flow, or stored energy in the accumulator. When the swing is operated 

in the first case, the main pumps are commanded from the system controller with a pilot 

control valve to supply the lower unit of the transformer. The lower unit operates as a 

motor and sends torque to the upper structure of the machine to swing.  In this case 

torque can also be sent to the upper unit to store energy in the accumulator. In the 

second case, the boom is in an overrunning state, and the output flow from the boom 

can supply the lower transformer unit and supply torque to the swing or store energy as 

stated previously.  In the last case, the accumulator has sufficient energy, and the upper 

unit of the transformer can act as a motor supplying torque through the lower unit to the 

upper structure. In this case, it is also feasible to supply the boom when swinging 

because the lower unit of the transformer can act as a pump.  

The transformer hardware consists of a tandem pump assembly modified to allow each 

unit to operate as a pump or as a motor independent of the other. The baseline assembly 

consists of two 135cc closed-loop pumps mounted in tandem. The transformer’s 

arrangement and test bench are shown in Figure 2 and Figure 3. 

 

Figure 2: Transformer full view 

Displacement sensor Charge pressure 

Output shaft High pressure ports 
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Figure 3: Full test stand 

3. Test stand configuration and transformer control strategy 

A test stand was developed to test the full operation of the transformer before it is 

implemented on a real vehicle to reduce the development cycle time. The hydraulic 

circuit of the test stand is shown in Fig. 4. The test stand configurations are easily 

controlled by two-way, two-position mode valves 13 – 17. The flow path and the control 

strategy for each configuration will be described respectively. The test stand was initially 

implemented without an accumulator. The accumulator flow was simulated by a supply 

flow from the main test stand pump at a pressure determined by a main relief. In the next 

phase, the accumulator was installed, and the flow routing path varies from the previous 

case in the same testing scenario. The inertia connected to the output shaft of the 

transformer can be switched between low and high. The low inertia tests simulate the 

scenarios where the swing inertia is disconnected from the transformer, and the high 

inertia tests simulate the inertia of the upper structure during swing operation. 

 

Figure 4: Hydraulic schematic of the test bench 
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3.1. Case 1 

For this trail, the transformer pressure/flow transformation capability will be determined. 

In this test, one pump/motor unit operates as a hydraulic motor, while the other one 

operates as a pump. Different configurations were selected with or without the 

accumulator installed on the test bench. Enabling different pair of mode valves (valve 10 

– 13) simulates the scenarios which reflect the transformer as implemented on an 

excavator. 

To imitate the scenario of boom up assist with the energy from the accumulator on an 

excavator, the configuration on the test is shown on Figure 5. Without the accumulator 

installed on the test stand, the bench pump is regulated at a constant pressure to 

resemble the accumulator, and the load valve imitates the resistance from the boom-

head side. Valve 11 and valve 13 are open when the lower pump/motor is operated as 

the hydraulic pump, and the upper pump/motor as the motor. In comparison, by opening 

valve 12 and valve 10, we can replicate the same scenario with the upper pump/motor 

served as a hydraulic pump, and the lower unit as the motor. The control goal is to 

achieve speed tracking on the transformer shaft while tracking the flow demand to assist 

a load pressure. 
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Figure 5: Emulate boom assist without the accumulator 

The hydraulic configuration with an accumulator installed on the test bench is shown in 

Figure 6. The boom assist energy is directly channeled from the accumulator through 

the transformer. Valve 11 is open to drive the load valve. Valve 13 can be open or close 

depending on whether the boom raising flow is provided purely by the accumulator, or it 

is a flow combination of both the main pump and the accumulator. The control goal is to 

achieve transformer shaft speed tracking while tracking the boom assist flow Q_x 

provided by the accumulator. 
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Figure 6 : Imitating boom assist with an accumulator 
 

The third scenario is to recover the boom overrunning down kinetic energy into the 

accumulator. In this scenario, the hydraulic configuration without an accumulator 

installed on the test bench is shown in Figure 7. The bench pump emulates the flow 

coming out of the boom head side when it travels over-running down, and the load valve 

emulates the accumulator by providing some load resistance. The control goal is to 

achieve speed tracking on the transformer shaft while tracking the flow sink demand    

to dissipate energy over the load valve. 

With the accumulator installed back onto the test bench, the “boom” over-running energy 

(provided from the bench pump) can directly charge the accumulator through the 

transformer. The hydraulic configuration of this scenario is shown in Figure 8. The 

control goal is to achieve transformer shaft speed tracking while tracking the boom 

recovery flow  provided to the accumulator. 
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Figure 7: Imitating boom overrunning down energy recovery without an accumulator 
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3.2. Case 2 

This case explores directly charging the accumulator via the transformer to realize 

engine power management. Fluid from the main pump is supplied to the lower unit 

through valve 10, which acts as a hydraulic motor and the upper unit acts as a pump. 

The fluid charges an accumulator when valves 11, 12 and 13 are closed and valve 14 is 

open.   

3.3. Case 3 

This case studies an operation where two power sources (main pump and the 

accumulator) supply a single load simultaneously. The baseline operation of the 

excavator is done via a directional control valve. On the test bench, a sectional valve 

was incorporated to supplement the flow coming from the transformer when it is operated 

by the accumulator. Flow from the transformer via valve 11 is combined with the flow 

from the main pump through valve 16 before it goes to the load valve 17. 

3.4. Case 4 

In this case, the high inertia is installed onto the transformer, which imitates the swing-

only operation. The  swing acceleration can be driven by the accumulator via the upper 

pump/motor with all the mode valves closed, or by the main bench pump via the lower 

pump/motor with mode valve 10 open. To decelerate the swing, all the mode valves (10 

– 13) are closed, and the resisting torque is provided by regulating the displacement of 

the upper pump/motor as it charges the accumulator. 
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Figure 8: Boom over-running down, recovering energy with an accumulator 
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4. Test stand experimental results 

The fundamental operation of the transformer includes the shaft speed control, the 

pressure transformation control, and the output flow control.  

The transformer shaft speed control test was implemented first. The swing inertia was 

connected to the output shaft of the transformer and the output pressure of the main 

pump was regulated at 100 bar. Figure 9, shows the transformer speed response to a 

step command is 1.9 seconds. The response time can be tuned to be faster or slower 

via the controller gains. For the same controller parameters, the response is faster by 

increasing the circuit’s supply pressure. 

 
 

Figure 9: Transformer speed step response 

In the next case the pressure transformation control was examined. The test stand main 

pump was used to supply flow to the transformer through mode valve 10 (in Fig 4). The 

transformer’s shaft was controlled to track a constant speed using displacement control 

of the lower pump/motor. The upper pump/motor was set at a fixed displacement and 

supplied flow through mode valve 13 to the load 17. Load valve 17 was in pressure 

control mode to emulate the load pressure. The load pressure was controlled starting 

from 260 bar down to 10 bar in 10 bar decrements as shown in Figure 10. The 

transformer can perform pressure transformation ratios ranging from 1/7 to 4. Lower 

transformation ratios are limited by the ability to precisely control the swash plate at very 

low displacements. Higher transformation ratios are limited by the maximum torque 

provided by the driving system (pump or accumulator). At a given pressure, the torque 

is limited by the saturation of the swash plate displacement. 

The third test focused on the flow control operation of the transformer. This test emulated 

the  pure boom down motion with flow is channeled through the transformer. The swing 

was connected, but the speed was not constrained by the swing. A stepped desired flow 

profile with 10 seconds at each step is specified. The result is shown in Figure 11. It can 
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be clearly observed that the calculated flow tracks the demanded flow very well. Since 

the transformer’s shaft speed is not controlled, the speed reaches over 1000rpm for only 

40 lpm. Therefore, speed regulation should be incorporated with the flow control. 

Finally, the transformer flow control with the shaft speed regulated was completed. The 

test results in Figure 12 show the transformer can accurately track the speed command 

while the flow passes through the upper pump motor and the pump motor shaft speed 

can be stabilized at 50 lpm. The flow tracking is off after 55sec, which is caused by the 

saturation of the pump/motor’s displacement. 

 

 

Figure 10: Transformation 260-70 bar 

load pressure in steps of 10 bars 

Figure 11: Flow demand tracking for 

bottom pump motor 
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5. Conclusion 

This paper describes a hydraulic transformer unit test stand, which is designed to be 

easily configured so that it can model different operation modes as if it were installed on 

an excavator. Various hydraulic configurations are achieved via enabling on/off mode 

valves. The test stand can significantly shorten the development cycle and mitigated 

many risks during development  of the transformer. The test stand also provides 

experimental data of the transformer’s basic operations, including transformer shaft 

speed regulation, pressure transformation, and output flow control. These basic 

operations can further be manipulated with a supervisory controller to provide the full 

control spectrum for the excavator’s operation. 

Figure 12: Transformer flow control with speed regulate 
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Abstract 

This contribution presents an operating strategy for a novel valve structure for mobile 

machines’ working hydraulics which combines the flexibility and energetic benefits of 

individual metering with the functionality of common primary pressure compensation 

(IPC). The aim is to set up a system that uses a minimal amount of sensors and simple 

control algorithms. A control strategy theoretically described in /1/ is modified to 

facilitate the practical implementation on a mini excavator implement as a test rig. This 

test rig consists only of components that are currently available off-the-shelf to show 

that it is possible to develop an individual metering system under these economic 

restrictions. The novel is more energy efficient than common flow sharing systems but 

provides the same functionality. The control algorithm is experimentally evaluated in 

terms of functionality and energy consumption. Simulations show potential for further 

improvements.  

KEYWORDS: independent metering, mobile working machines, electrohydraulic 

systems, control strategy 

1. Introduction 

Manufacturers of mobile machinery as well as suppliers find themselves persistently 

confronted with increasing requirements regarding energy efficiency, safety and 

operator-comfort. This demands for continuous development of control and system 

architectures. Control systems in mobile machinery provide hydraulic power to 

numerous parallelly operated actuators. For small and medium sized machines 

typically one single pump supplies several actuators. This inherently leads to throttling 

losses in the inlet paths of the lower loaded actuators. The mechanical coupling of inlet 

and outlet throttling edge causes further avoidable losses. Requirements on 

controllability of pulling loads and energy consumption lead to a design conflict 

regarding the valve spools. For systems with individual metering of the inlet and outlet 

this conflict is avoided. Furthermore individual metering opens up for enhanced 
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operation modes like high pressure regeneration. This reduces the energy losses at 

lower loaded consumers. To increase acceptance in industry the production costs must 

be kept low and the control algorithm as simple as possible. Therefore a control 

strategy using only one pressure sensor in the common supply pipe and spool stroke 

sensors at the IPC is developed and implemented on a test rig that consists only of 

commercially available components. Many other approaches to individual metering use 

two pressure sensors per cylinder /2–5/, which negatively effects system availability 

because the increased risk of failure. The pressure compensator’s operation point 

(spool position or pressure drop) gives indication about a consumer’s load situation 

using just one sensor /1; 6/. In this paper measurement of the IPC position is favoured. 

The used valve structure is the outcome of preliminary works at the IFD and will be 

briefly described in section 2. A basic control strategy, that mirrors the IPC’s function 

with the meter out throttle edge, has also been developed at the IFD. Theoretical 

investigations of the valve system’s behaviour in section 3 show that this strategy 

needs to be modified to facilitate the practical implementation. A control algorithm is 

derived from the modified strategy and implemented on an ECU. In section 4 

functionality and energy consumption are evaluated in simulation and experiment on a 

mini excavator implement test rig.  

2. Design of hydraulic system and test rig setup 

The valve structure shown in Figure 1 is used to actuate the boom and stick cylinder of 

an excavator implement. Individual metering systems are multiple input-multiple output 

systems (MIMO). Usually these require complex multi-variable control strategies. 

Previous research at the IFD has shown that an individual pressure compensator (IPC) 

in the inlet flow path is advantageous to decouple piston load force and velocity. This 

enables single-variable control approaches /1; 7/.  

The resulting valve arrangement consists of two proportional 2/2 way valves for 

throttling and four 2/2 way switching valves to set the flow paths. The individual 

pressure compensator and the throttling valves are equipped with displacement 

encoders. The structure depicted in Figure 1 allows individual throttling of both cylinder 

chambers and their connection either to high or to low pressure. The IPC always 

throttles the flow from the pump in order to regulate the flow through the inlet throttle 

edge into the inlet cylinder chamber. An ECU commonly used in mobile applications 

actuates the electrohydraulic components. The measurement signals are delivered to 

the ECU and captured by a data acquisition system. The user operates the excavator 

implement with two joysticks transmitting their data to the ECU via CAN.  
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Figure 1: hydraulic circuit for one consumer 

3. Theoretical analysis and control strategy 

The first part of this section is dedicated to a theoretical analysis of the proposed valve 

arrangement’s static behaviour. Afterwards the control strategy given in /1/ will be 

briefly explained and refined based on the system analysis given before. This leads to 

the development and implementation of the control algorithm. 

3.1. Static behaviour of independent metering circuit with primary 

pressure compensator 

The static behaviour of the controlled system - a double acting differential cylinder 

actuated with individual throttling edges and a primary IPC in the inlet path - is 

theoretically investigated. For this analysis the circuit can be simplified according to 

Figure 2.  

 

Figure 2: Simplified hydraulic circuit 
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To design a suitable controller it is necessary to know the relation  

 (1) 

between the openings of the three throttling edges involved in the hydraulic circuit.  

 summarizes the valve flow constants according to the turbulent throttle equation for a 

proportional valve:  

 (2) 

The following equations depict the relevant behaviour of the interacting components. 

The pressure compensator is described with 

 (3) 

while the volume flow through the inlet throttling edge is given by 

  . (4) 

Assuming that the IPC operates within its control range the pressure drop over the inlet 

throttling edge  matches 

  (5) 

which is set with the spring adjustment in the IPC valve. The flow equation for the outlet 

throttling edge is similar to the inlet edge: 

    (6) 

The cylinder delivers the piston’s force balance 

    (7) 

and the relation between inlet and outlet volume flow: 

 (8) 
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Putting equations (3) to (8) together results in: 

 
(9) 

3.2. Basic control strategy and refinement 

This section is started with the description of a basic control strategy that was 

theoretically developed at the IFD in previous research. Obstacles to a practical 

implementation of this strategy will be pointed out and circumvented with the help of a 

refinement. 

Basic strategy. The basic idea of the approach described in /1/ is to set the 

consumers velocity with the inlet throttling edge  in an open-loop manner while 

controlling the outlet edge  in a closed loop in such a way that the IPC is nearly fully 

open regardless of velocity and load force, thus shifting the inlet pressures of all 

consumers to the same level. This simple concept has numerous benefits: 

· The strategy uses the IPC as a sensor for detecting the load situation and does 

not need any pressure sensors.  

· With the IPC almost completely open the inlet chamber pressure is almost as 

high as the supply pressure regardless of the load situation. With a reasonably 

high supply pressure a pulling load can be moved securely at the desired 

velocity without causing cavitation in the inlet chamber. Energy inefficient 

counterbalance valves are not necessary. 

· There is no need to detect the load force direction. 

System behaviour and obstacles. The diagram at the top of Figure 3 shows the 

IPCs opening  depending on the outlet throttling edge’s opening  for a 

movement of the test rig’s boom cylinder at 50 % of maximum speed against different 

load forces at a supply pressure level of 100 bar as a specific example, resulting from 

equation (9).  
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Figure 3: Operation ranges for IPC and inlet pressure control 

A smaller outlet edge opening  leads to a wider IPC opening , since closing the 

outlet throttle raises the pressure levels  and  in the cylinder chambers. This 

decreases the pressure difference between inlet pressure  and supply pressure , 

causing the IPC to open its throttle further. The relation between  and  is 

extremely nonlinear with the IPC being almost closed over a wide range of the outlet 

throttle  and opening rapidly in a very small band of  (i.e. 0,12-0,13  for  = 

0), when the pressure  in front of the inlet throttle gets close to supply pressure 

level . Furthermore the threshold at which the IPC fully opens heavily depends on the 

load force . The nonlinear characteristic of  varies the controlled system’s 

amplification  over a large range depending on  and . Without 

measurement of the load force  this amplification is unknown. Therefore its variation 

cannot be compensated by adapting the controller gain. 
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The left diagram in Figure 3 shows the IPCs opening  depending on outlet throttling 

edge opening  and load force  for the described example scenario. The isolines 

mark the operation points  at which the IPC is fully open and half open. Both 

isolines bound the narrow operation range within which the outlet throttle opening  

must be set to open the IPC between half and full way (“IPC control”). This requires 

throttle valves with high resolution. 

This demand and the varying system amplification are obstacles to a practical 

implementation of the proposed control strategy.  

Refinement of the control strategy. To overcome the revealed problems the range 

within which IPC and outlet throttle can be set without compromising the control 

strategy’s benefits shall be enlarged to reduce the requirements on the valves’ 

resolution. Furthermore the controlled system will be linearized to obtain a constant 

amplification. 

Instead of a specific IPC opening  the inlet chamber pressure  is now used as 

the reference variable for the control circuit which actuates the outlet throttling edge . 

The IPC opening is now used to determine the pressure drop over the IPC in order to 

calculate the inlet pressure  without using an individual pressure sensor at the 

consumer. Knowing  and allowing values down to a certain margin against cavitation 

(i.e. 10 bar, see Figure 3 right diagram) smaller IPC openings are acceptable without 

compromising the control strategy’s benefits mentioned before. The operation range 

(“pressure control”) of the outlet edge is enlarged considerably compared to IPC control 

thus reducing the requirements on controller performance and proportional valves. 

The controlled system is linearized by using the chamber pressures as the input and 

output variables instead of the valve spool positions (Figure 4). The control circuit 

(highlighted) is constructed around the control variable  with its reference value  

and the outlet chamber pressure  as the manipulated variable (back pressure 

manipulation, /8/). In steady state these both values have a linear correlation according 

to equation (7) with the constant piston area ratio as the controlled system’s 

amplification and the load force  as the disturbance variable. An ordinary linear PI 

controller is sufficient to fulfil this control task. 
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Figure 4: Linearized drive system and pressure control loop (highlighted) 

3.3. Development and implementation of the control algorithm 

A lumped parameter simulation model was used to develop and test the control 

algorithm using the software-in-the-loop method (SIL). The model provides an interface 

including all signals of actuators and sensors at the test rig. The control algorithm was 

primarily run on a virtual ECU which controlled the simulation model via the Open 

Platform Communication System (OPC). Afterwards the algorithm has been verified on 

the real test rig.  

There are five subtasks the control algorithm has to fulfil in order to move the actuators 

boom and stick cylinder energy efficiently at the desired velocities. These are 

determination of the current chamber pressures, selection of the optimal operation 

mode, calculation of the common desired inlet chamber pressure, setting the valves 

and actuating the pump. 

The inlet chamber pressure  is calculated with the supply pressure  and the valve 

spool positions of IPC and inlet throttle: 

 (10) 

The current inlet volume flow  is obtained from the inlet throttle’s flow map 

 using the inlet valve opening  and the assumed pressure drop  over 

the inlet throttle edge which is determined by the IPC. With the IPC’s spool position 

 and the inlet flow  the pressure drop  is calculated with the IPC’s flow map 

, while the supply pressure  is measured with one single sensor in 
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the common supply line. This method neglects further pressure losses that occur in the 

pipe between pump and valve block, the hoses between block and cylinders and 

throttling losses in the channels of the blocks and the switching valves. These 

simplifications lead to an overestimation of , which will have the largest relative 

impact at high velocities and a widely opened IPC. 

The outlet pressure  is estimated to match with its desired value . 

If the condition for high pressure regeneration 

   (11) 

is fulfilled the operation mode is set to high pressure regeneration, otherwise normal 

operation. In the former mode the outlet flow from the rod side chamber (R) is 

redirected to the piston side chamber (P) between IPC and meter in edge during piston 

extension thus reducing the required pump flow.  

With both chamber pressures the load force  and the least required inlet pressure  

to move the load are estimated for each actuator. The highest required pressure is the 

common desired inlet pressure  for all actuators. 

The PI pressure controller sets a desired outlet pressure  in accordance to the 

control deviation between current inlet pressure  and desired pressure . While 

the inlet throttle position  is set with the required volume flow corresponding to the 

desired velocity  and the constant pressure drop  controlled by the IPC the 

outlet throttle position  depends on  and the desired outlet chamber pressure .  

The pump is controlled in an open loop manner utilizing the flow matching algorithm as 

described in /9/ and suggested by /1/ to deliver the overall required volume flow. The 

proportional valves are actuated by a feed forward signal combined with a PI-based 

closed loop spool stroke control. 

4. Measurement and simulation results 

The described valve system and control algorithm are evaluated in terms of the 

proposed pressure control, dynamic handling performance and energy consumption at 

the mini excavator implement test rig and in simulation. As an example movement the 

levelling (Figure 5) has been chosen because it contains all relevant operation points 

to demonstrate the system’s functionality. These operation points are resistive and 

overrunning loads , both time-varying (Figure 5, centre and right), different required 
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pressure levels  of both consumers and the ability to regenerate at the lower load 

consumer.  

The levelling movement is driven in manual control with the bucket “in the air”, which 

means that the implement is only loaded with inertial and gravitational forces, but not 

with digging forces. On a construction site this kind of movement will occur regularly 

when the operator transports material from the dug hole to a dump truck.  

 

Figure 5: Operation points during a levelling movement 

Pressure control. The measurement results in terms of the proposed pressure 

calculation and control are shown in Figure 6. The diagrams display the velocity 

commands for boom and stick cylinder, the measured chamber pressures (“meas.”) as 

well as the reconstructed pressures (“rec.”, see chapter 3.3) and the relative IPC spool 

positions.  

 

Figure 6: Measured pressures and IPC strokes for a levelling movement 

The boom cylinder moves a resistive load in normal operation. The inlet chamber is the 

rod side (R). The minimal pressure  the controller shall maintain in each chamber 
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is set to 10 bar. The outlet flow (P) is throttled slightly to obtain this pressure (bright, 

brown graphs). This and the load force yield to an inlet pressure of approx. 60 bar 

(dark, blue graphs), which is the common desired inlet pressure  for both 

consumers.  

At the same time the stick cylinder lowers an overrunning load in regeneration mode. 

The load is balanced by the almost closed outlet throttle (chamber R), which shall also 

increase the inlet chamber pressure (P) to the level of the higher load consumer 

(boom, 60 bar). This leads to an outlet pressure level at the rod side of approx. 

100 bar. The desired inlet pressure has settled at around t = 8 s.  

For both cylinders the inlet chamber pressure is slightly underestimated during most of 

the time, which was not expected according to the simplifications made in equation 

(10). The reason is found in the undersupply condition, characterized by a very wide 

IPC opening. In this case the real pressure drop over the inlet throttle is lower than the 

estimated value  which is subtracted from the measured pump pressure . 

The deviations between measured and reconstructed chamber pressures are much 

higher at the stick cylinder which experiences the overrunning load. This is caused by 

the high sensitivity of the pressure drop  of a throttle edge to variations in the spool 

position  at small openings. Measurement errors in flow map and spool position are 

amplified much more than at wider openings, well observable at the stick cylinder’s 

inlet pressure (P) at t = 9 s while the IPC is almost closed and its pressure drop  

highly overestimated. The pressure deviations in the outlet chamber are due to the high 

controller activity which was necessary to raise the inlet pressure to the desired 60 bar. 

Since the cylinder drive has a hydraulic capacity the real outlet pressure (Rmeas) 

follows the desired value  (Rrec) set by the pressure controller with a certain delay 

which becomes evident when  changes. 

Dynamic performance and potential for improvement. The shown levelling 

movement is very slow compared to common operation of an excavator at a 

construction site. Faster movements at the test rig lead to unstable behavior because 

the proportional valves act slower than the operator, due to hysteresis effects and a 

slow stroke controller tuning to prevent unacceptable overshoots. For practically 

satisfying and safe operation characteristics the valves need to be significantly faster 

than the operator. A simulation with fast and precise servo valves, shown in Figure 7, 

reveals potential for improvements. The faster valve dynamics allow a more dynamic 

pressure controller tuning which shortens the settling time for the inlet chamber 
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pressure to around 50 % (P, stick, phase between 0,5-2 s, compared to the time 

interval between 5-8 s in reality, Figure 6). 

 

Figure 7: Simulated fast levelling with servo valves 

Energy consumption. Energetic aspects have also been investigated, Figure 8. The 

figure depicts the results for the separate metering strategy without regeneration (SPM) 

and with regeneration (SPMR). For reference purposes a conventional coupled 

metering strategy (CPM) has also been implemented. In this mode the inlet and outlet 

flow cross section area always stay in the same relation as the cylinders piston areas, 

analogue to a mechanical coupling of both throttle edges on one single valve spool. 

This comparison test has been performed with the simulation model using the desired 

velocities from the real levelling experiment depicted in Figure 6, top left.  

 

Figure 8: pump pressure and volume flow for different operation strategies (Sim.) 
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The consumed hydraulic power  is the product of supply pressure  and volume 

flow . In comparison to coupled metering (CPM) the separate metering strategy 

without regeneration (SPM) shows no energy saving potential in the investigated 

scenario, since pressure level  and volume flow  are roughly the same. For the 

stick cylinder as the lower load consumer energy can be saved with regeneration 

(SPMR). In this mode the volume flow to the stick cylinder is reduced by 66 % 

according to the piston area ratio. This leads to a considerable overall energy saving of 

43 % between SPM and SPMR (see Table 1). 

 

 

Table 1: hydraulic energy consumption for a levelling movement 

This comparison has also been performed on the test rig, where the hydraulic energy 

consumption can be estimated with the supply pressure and pump angle, neglecting 

the volumetric losses of the pump. Since the energy consumption heavily depends on 

the operator even the displayed average values only give a rough indication about the 

energetic relation between the discussed operation modes. Nevertheless, the tendency 

found with the simulations can also be seen at the test rig. The deviations between 

simulation and measurement are probably primarily caused by the fine tuning between 

pump and consumer at the test rig, which is negatively influenced by the proportional 

valves’ slow dynamics. These have not been modelled completely for the simulation. 

5. Summary and outlook 

The developed system, using only one common supply pressure sensor and the 

positions of the IPCs and for valve control purposes the proportional valves’ spool 

positions, is capable of actuating a mini excavator implement with load compensation 

up to certain low dynamics. The high pressure regeneration enables energy savings up 

to 48 % in case of a levelling movement without digging forces. More energy saving 

potential can be exploited by fine tuning minimal chamber pressure level and pump 

actuation, which requires a faster and more precise throttle valve response and 

possibly a closed loop pump control. 

Currently the desired relation between inlet and outlet flow cross section area is lost 

due to insufficient valve dynamics during dynamic movements, which has a great 

impact on the consumers’ pressure level. This results in unintended pressure peaks or 

 CPM [%] SPM [%] SPMR [%] 
Simulation 100 110 57 

Measurement  100 90 45 
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cavitation. This problem cannot occur with common mechanically coupled metering 

where the flow cross section area relation is set by the valve spool geometry. For 

independent metering the need for a precise tuning between inlet and outlet throttling 

edge leads to much higher requirements on the valves’ controllability compared to 

mechanically coupled metering. 

Simulation results with metering edges featuring the characteristics of high 

performance servo valves show that the dynamic stability and handling characteristics 

of the proposed valve structure and control strategy can be improved significantly by 

using suitable components. Continuing research will address the handling performance 

by refining the control strategy for the used proportional valves. First experiments show 

that their dynamic performance greatly improves by applying a suitable dither signal to 

overcome the hysteresis. Special attention should be paid to mode switching events 

during ongoing movements. Furthermore the strategy will be adapted to altered sensor 

setups (i.e. pressure behind IPC instead of IPC spool position) to reduce investment 

costs and possibly improve handling performance. 
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Abstract 

Drive requirements of tractors and communal vehicles are demanding and varied. 

Energy efficiency and the different requirements in off-road and on-road operation are 

the basis for a powerful drive. Combinations with the so-called hydrostatic wide angle 

technology are often used.  

The article deals with a hydraulic drive with wide angle technology (45°) and an 

integrated, quick-shift, single stage transmission. A particularly large conversion range 

can be realized with this. Special shift elements, sensors and an adjustment developed 

for this purpose enable a fast, quiet and low-wear gear change. This new gearbox 

development will in future be implemented at RIGITRAC in cooperation with SAUER 

BIBUS. 

1. Introduction  

The RIGITRAC mountain tractor is distinguished by a special vehicle chassis with a 

centrally arranged swivel joint. As a result the front attachments are optimally adapted to 

the ground. The standard four-wheel steering enables precise maneuvering and has a 

soil-conserving effect. 
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Figure 1: RIGITRAC works image 

The development of the transmissions for agricultural- and construction machinery is 

significantly determined by the demand for increased energy-, cost- and working 

efficiency. If one compares the drives available on the market, major differences soon 

become apparent. 

 

Figure 2: COMPACT DRIVE Automatic Shift from SAUER BIBUS 

Defined driving strategies and the associated electro-hydraulic control play a major role. 

In the practical realization the combination with the hydrostatic wide-angle technology 
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attracts particular attention. Continuously, consumption- and performance-optimized is 

the current standard and requires a complex management of transmission and engine. 

Here gearboxes with wide-angle hydrostatics of 45° have proven reliable. 

2. State of Technology 

The conversion range is restricted by the limiting speeds of the axial piston engine and 

by the power loss in the minimum pivoting angle. For high driving speeds and 

performance classes one finds a series of different technologies. One possible variant is 

the hydrostatic drive with an electronically synchronized 3-gear power shift transmission. 

The gear change takes place almost without any interruption to traction and the 

hydrostatic conversion range increases through the implementation of the wide angle 

technology. 

 

Figure 3: The wide angle hydrostatic 

3. Modern Electronics control the Hydrostatics 

In the last few decades the use of electronics in passenger vehicles has experienced a 

fast-paced drive for innovation (Figure 4). A mid-range passenger car already requires 

between 20 and 70 networked control units. This trend can also be seen on a different 

scale in the utility vehicle branch. Distance sensors combined with high-resolution 

cameras, precise telemetry data and intelligent, networked electronics support the driver 

in all driving situations. In addition the operator is kept permanently informed about the 
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status of the machine by displays or other indicator elements. Advanced safety functions 

or even autonomous driving are realistic visions. 

 

Figure 4: Development of the Automotive Embedded Systems   /3/ 

4. Simple Speed Reduction 

In order to fulfil the significantly stricter emission limits, energy-efficient drives gain even 

more importance. The hydrostatics is activated by a so-called low-pressure control, with 

a setting pressure of 25-30 bar. The combination of redundant angle sensor and 3-way 

pressure reducer enables exact pivoting angle control. By means of the reliable sensors 

and the networking of components, with the assistance of modern electronics the drive 

is able to quickly adjust to every situation. Comfort and energy conservation in proven 

technology, with a view to the emission legislation, is the basis of the development 

presented. The combination with a fast, low-wear and simple shifting again increases the 

conversion range significantly. 

To be able to describe the optimum drive, an analysis of the efficiency of the complete 

system must be carried out. Diesel engine characteristics, the transmission stage 

mentioned above as well as the ideal drive pump are essential features of such an 

analysis. For example the choice of the correct drive pump size is an important 

contribution for the overall efficiency (Figure 5). 
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Figure 5: Influence of the drive pump on the efficiency 

On the other hand the ideal transmission ratio is also considered with corresponding 

diesel speed reduction and constant drive pump. Significant improvements in efficiency 

can be achieved through comprehensive analyses of the system (Figure 6).  

 

Figure 6: Influence of the transmission stage on the efficiency 
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5. Outlook 

In combinations with simple transmission solutions the development of the "Automotive 

Embedded Systems" and the networking of sensors and decentralized control units that 

this necessitates, satisfies the current requirements on the drive technology. Taking the 

load cycles into consideration, the overall efficiency of the drive train can be increased 

significantly through the correct choice of components. 
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Abstract

In spite of their high technical maturity, load sensing systems (LS) have system-inherent 

energy losses that are largely due to the operation of parallel actuators with different 

loads at the same pressure level. Hereby, the pressure compensators of the system are 

crucial. So far, excessive hydraulic energy has been throttled at these compensators and 

been discharged as heat via the oil. The research project “Reduction of System Inherent 

Pressure Losses at Pressure Compensators of Hydraulic Load Sensing Systems” aims 

to investigate a novel solution of reducing such energy losses. The pressure of particular 

sections can be increased by means of a novel hydraulic circuit. Therefore, a recovery 

unit is connected in series with a hydraulic accumulator via a special valve in the reflux 

of the actuators. The artificially increased pressure level of the section reduces the 

amount of hydraulic power to be throttled at the pressure compensators. As long as a 

section fulfills the switching condition of the valve, pressure losses at the respective 

pressure compensator can be reduced. Thus, via a suitable recovery unit excessive 

energy can be regenerated and can be directed to other process steps eventually.  

KEYWORDS: Efficiency Improvement, Load Sensing, Pressure Compensators, 

Energy Losses, Energy Recuperation 

1. Motivation and Basic Principles 

At low energy losses, load sensing (LS) systems enable the simultaneous use of 

actuators connected in parallel. The system pressure always adjusts to the pressure of 

the actuator with the highest load level plus the LS pressure difference !"#$. All further 
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actuators are fed at system pressure level as well. In each section, hence, the system 

pressure must be throttled down to the respective sectional pressure /1/.  

The pressure compensators (PC) of each section, serving as hydraulic resistors in the 

respective flow paths, are the central components. The main functions of (upstream) 

pressure compensators are to adjust system and section pressures and to establish a 

constant pressure difference at the section valves. Especially when system pressure is 

much higher than section pressure, considerable energy losses may be caused. This 

typically occurs whenever differing loads are operated simultaneously /2/. 

Figure 1: Power loss of a conventional LS system without (left) and with (right) 

accumulator series-connected to two actuators.

By way of example, Figure 1 shows the power requirement of three actuators. The left 

part of the figure shows the situation for a conventional LS system. In the magnitude of 

the LS pressure difference, the system pressure level "% is above the pressure level of 

the actuator with the highest load "#$. Actuators 2 and 3 require the lower pressure levels 

"& and "'. The right part of the figure shows these actuators to be connected in series 

with an accumulator of the pressure "$(, which leads to increased section pressures 

causing reduced pressure differences at the pressure compensators and thus reduced 

losses.  

Within the research project “Reduction of System Inherent Pressure Losses at Pressure 

Compensators of Hydraulic Load Sensing Systems” that is funded by the VDMA Fluid 

Technology Research Fund, such a circuit is being developed /3/. The target applications 

feature single-circuit LS systems with multiple simultaneously operating hydraulic 

actuators, which are state of the art in all kinds of compact machines, mid-range 

hydraulic excavators, agricultural and forestry equipment or municipal vehicles.  
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During the project, the basic circuit parameters are determined and preliminary 

examinations are conducted by means of simulations. Based on the results, a prototype 

of the developed circuit is being set up on a test rig and being tested. For details, see /4/. 

2. Mode of Operation and Implementation of Circuit

Figure 2 shows the LS system of a mobile machine with upstream pressure 

compensators in the investigated efficiency-improved configuration. 

Figure 2: LS system with increased efficiency. 

The diagram depicts the actuator sections (C1 – C3) and the hydraulic LS pressure 

supply. Whereas C1 is the actuator with the highest load, C2 and C3 currently operate 

at low loads and are thus connected to the recovery section (RS). The left part of the 

picture shows the recovery section of the system, consisting of an accumulator and the 

recovery unit (RU). The development of the recovery unit is not part of the current project. 

However, a variable displacement motor, which is connected to the combustion engine 

via a (switchable) clutch could be used for recuperation (see also /5/). 

3. Circuit Design 

Figure 3 shows the design of the circuit of a particular actuator section in detail. The 

central component is the tank/accumulator logic valve (T/A-LV) which is integrated in the 

reflux pipe of each section. The function of the valve is to differentiate between actuators 

of low and high load pressure. Depending on the load level, the valve switches the reflux 
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of the actuator either to the tank or to the recovery unit. Thereby a sufficient pressure 

loss at the pressure compensators must be guaranteed for correct functionality of the LS 

principal. 

Figure 3: Design of the circuit (conservative principle).

The valve works according to the following switching condition:  

)*+ , - . )+) , - , /- 0 )*+12 , - 0 3+)425677789:;7<= > =?@ABCD
=E@DF  , (1) 

"#$77is the LS system pressure, "$( is the pressure in the recovery section or accumulator, 

"#$1G is the section pressure of a actuator i, <= is the surface ratio of a differential cylinder, 

and H$(IGJK is a spring force which additionally acts on the spool of the valve. From (1) 

three load cases can be derived for the individual actuators:  

LMNO7PQ77777)*+ R )+) , /- 0 )*+12 0 3+)4256
-  (2) 

When an actuator fulfills this condition, lost energy cannot be recovered (i.e. at the 

actuator with the highest load). To ensure that the overall energy consumption of the 

system does not increase, the reflux of the actuator with the highest load is generally 

directed to the tank completely. However, the T/A-LV throttles the reflux of all other 

actuators, which fulfill the above condition but do not define the LS pressure level. 

LMNO7SQ7777)*+ > )+) , /- 0 )*+12 0 3+)4256
-  (3) 

Case 2 defines the threshold switching condition. Theoretically, this case represents the 

situation in which the metering edge of the tank is fully closed, while the metering edge 

of the accumulator is fully opened.  
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LMNO7TQ7777)*+ . )+) , /- 0 )*+12 0 3+)4256
-  (4) 

When an actuator of lower load satisfies this condition, lost energy can be recuperated. 

The T/A-LV tank edge is closed so that the reflux of the actuator is fed into the recovery 

unit. The pressure in the recovery section now directly counteracts the supply pressure 

of the connected actuator(s), thus increasing the section pressure.  

Within the present project, the increase of the section pressure level is simulated by 

means of a proportional pressure-limiting valve. Suitable methods for refeeding the 

recovered energy will be investigated in a following project.  

Two different circuit principles, the conservative and the adaptive one (Figure 4), are 

being examined, which differ in the way of taking the pressure translation properties of 

differential cylinders into account. However, this has no influence on rotatory actuators 

or double-rod cylinders.  

Figure 4: Design of the circuit (adaptive principle). 

The pressure of the recovery section is applied to the piston surface corresponding to 

the reflux, i.e. to the piston side during instroke and to the ring side during outstroke. 

Hence, the pressure increase in the cylinder inlet also depends on the direction of 

motion. For example, in case of a cylinder with a surface ratio of <= > S, the pressure in 

the reflux line is doubled during instroke and reduced by half during outstroke (Figure

5).

Figure 5: Differential cylinder as pressure translator. 
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Since the inlet pressure equals the LS pressure "#$1G, the direction of motion affects the 

pressure difference which is necessary at the pressure compensator to establish a 

connection of the actuator with the recovery unit. Compared to the conservative principle, 

the T/A-LV of the adaptive principle has one additional hydraulic control surface, which 

is connected either to the pressure level of the recovery section or to the tank. The 

connection is established by an additional switching valve in dependence on the direction 

of motion. Thus, during outstroke, when the additional control surface is connected to 

the recovery unit, the recovery pressure induces different forces on the opposite sides 

of the valve spool. By using the left control surface with a size of U<= V W
XYZ , [, where A 

equals the size of the right surface (ref. to Figure 6), the sum of both forces equals a 

force applied on the left side with an effective surface of 
W
XY , [.

According to (1), "$( is part of the switching condition. Furthermore, "$( has a direct 

influence on "#$1G. For a differential cylinder with passive load, "#$1G can be defined ideal 

as:

"#$1G > "#\]^ 0 "$( , <=_` 77789:;7N > aVP7bcd9ef7gc:N:dhiO0P7bcd9ef7jeN:dhiO  (5) 

For the conservative principle, equation (1) can be transformed with (5) to: 

"#$ , [ . "#\]^ , [ 0 "$( , [ , U<= 0 <=_Z 0 H$(IGJK7 (6) 

For the adaptive principal, equation (1) can be transformed with (5) to:  

"#$ , [ . "#\]^ , [ 0 "$( , [ , S , <=_ 0 H$(IGJK (7) 

Both equations (6), (7) differ in the terms concerning <=_ and "$(:

U<= 0 <=_Z k S , <=_17777lhd7Mmm7<= k P17777N > aVP7bcd9ef7gc:N:dhiO0P7bcd9ef7jeN:dhiO  (8) 

Therefore, the switching condition of the adaptive principle allows for a higher external 

load during outstroke than the switching condition of the conservative principle. Thus, 

the adaptive principle has a higher efficiency improvement potential during outstroke 

(compare /4/). However, the complexity of the adaptive T/S-LV and of its circuit is higher.  

4. Losses in Different Operating Cycles 

Within the research project, different mobile machines are investigated with regard to the 

applicability of the circuit by analyzing both the system architecture and the typical 

operating cycles. Application of the circuit is conceivable and practicable in machines 
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with one-circuit LS-system (of any configuration) and in machines with multiple 

simultaneously operated actuators at different load levels in one LS circuit. For the 

current research project, a hydraulic excavator is used as reference system. Typical 

operating cycles were taken from /6/. Table 1 shows the results of cycle loss analyses. 

Cycle 90°-work cycle Plane
Total energy consumption 1480 kJ 227 kJ 
System-inherent losses: 294 kJ 27 kJ

! Arm section 57 kJ 5 kJ 

! Boom section 5 kJ 22 kJ

! Bucket section 176 kJ not specified 

! Swing drive section 54 kJ not specified 

Table 1: Energy loss analysis of Cycles from /6/, operator A 

The investigation has shown that approximately 10% – 20% of the input energy is lost at 

the pressure compensators of the machine. Further losses in the system are e.g. due to 

leakage and are therefore not considered.  

5. Tank/Accumulator Logic Valve 

The tank/accumulator logic valve (T/A-LV) is a central component of the novel circuit. 

For easy integration of the circuit into existing systems, the valve comprises hydraulic

actuation. The integrated design must be compact to fit the typically very limited 

installation space of mobile machines. In addition, the valve must have vibration-damping 

properties. The flow parameters are shown in Figure 6.

Figure 6: T/A-LV, adaptive principle (with control surface no. 3). 

Depending on the respective design (conservative or adaptive circuit principle), the valve 

requires three or four hydraulic control surfaces. Switching valves could principally be 
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used in the circuit, but so far no satisfying parameter setting could be found. Because of 

that, the switching operation causes vibrations in the entire system, which lead to a 

reduced performance. Therefore, the T/A-LV is designed as a proportional valve in the 

present project. Further damping can be achieved by integrating orifices into the control 

ports.  

Within this project, the conceptional design of the T/A-LV has been developed. The left 

side of Figure 7 shows the valve characteristics determined for the metering edges P/T 

(red, reflux to tank) and P/A (blue, reflux to recovery unit). The valve-characteristics can 

be obtained by axially displaced triangular notches in the spool (ref. to Figure 7, right).  

Figure 7: T/A-LV spool geometry.

Due to the high complexity of the design, in the present project the T/A-LV is represented 

by means of separate metering edges (ref. to Figure 11) instead of an integrated valve. 

The hardware valve will be developed further in a following project.  

6. Simulation Results  

Characteristic results of the simulations carried out within this project are presented 

below. These results were determined by means of two different models or degrees of 

model details, respectively:  

! Model 1: Simplified test rig simulation model  

! Model 2: Hydraulic excavator simulation model with multi-body model in 

co-simulation 

The software DSHplus 3.9 by Fluidon was used for hydraulic simulations. For co-

simulation, the programs Matlab / Simulink by Mathworks as well as the multi-body 

simulation program SIMPACK 9.5.1 by SIMPACK were used in addition.  
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6.1. Model 1: Comparison Between Conventional and Optimized LS 

Systems

In the following figure, the optimized (adaptive) system is compared to a conventional 

LS system. A ramp-type external load acting on the actuator has been selected such that 

the actuator, a cylinder during outstroke, allows for recuperation at the beginning but 

exceeds the recuperation limit towards the end of the load cycle. The first diagram of 

Figure 8 shows the position x and the velocity v of the piston rod during outstroke for the 

conventional (dashed) and the optimized LS-System. Figure 8, middle shows the 

pressure in the cylinder and the corresponding external load. In Figure 8 bottom, the 

position of the T/A-LV spool can be seen. In all diagrams, the x-axis shows the simulation 

time during the load cycle.

Figure 8: Circuit effect on actuator movements.
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The rod movements of the conventional and optimized LS are almost identical (ref. to 

Figure 8, top). In the range of 3 s to approximately 7 s, the section pressure of the 

actuator is increased by the amount of the pressure in the recovery section (about 50 

bar, ref. to Figure 8, middle). At about 5.3 s and above, the external load reaches the 

threshold of the switching condition i.e., the T/A-LV closes the accumulator pipe because 

the pressure of the actuator approaches the LS pressure. In the range of about 6 s to 

7 s, vibrations at the T/A-LV occur (Figure 8, bottom) because damping of the valve has 

not yet been optimally adjusted. Nevertheless, the vibrations in the reflux circuit do not 

have any significant effect on the actuator considered or on other actuators in the 

investigated system.  

6.2. Model 1: Efficiency Improvement in an LS System  

The efficiency improvement potential was investigated by means of another synthetic 

load case. Table 2 shows the results obtained. 

conventional LS optimized LS
Actuator 1: highest load p = 320 bar, Q = 38 l/min

Actuator 2: constant force, 

F = 100 kN 

Outstroke: p = 124 bar, Q = 103 l/min 

Instroke: p = 60 bar ; Q = 74 l/min 

Total of consumed energy, system 875 kJ 877 kJ 

Total of recuperated energy 0 kJ 91 kJ 

Possible efficiency improvement 0 % 10 % 

Table 2: Efficiency improvement simulation.

By means of the circuit, the energy consumption of the system could be reduced by 

10 %, depending on the efficiency rate of all components of the recovery section. 

Figure 9: Influence of the circuit on a sectional pressure compensator.

Figure 9 depicts the influence of the pressure increase on the deflection of the pressure 

compensator of section 2. It is evident that in the optimized case, the pressure 

compensator is more widely open so that lower pressure losses occur. 
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6.3. Model 2: Performance of Optimized System (Adaptive) in Co-

simulation  

To evaluate the performance of the optimized system, a hydraulic model was combined 

with the multi-body model of a hydraulic excavator. Suitable cycle data was taken 

from /6/. Figure 10 shows selected simulation results. 

Figure 10: Comparison of arm cylinder movements by motion and velocity. 

The first diagram shows the motion of the arm cylinder in the conventional LS as well as 

in the optimized LS with and without dampening. The second diagram shows the velocity 

of the arm cylinder in the same way. Simulation results show that vibrations are strongest 

in the arm section. This is evident from the deviations of the cylinder movement (red line) 

from the nominal curve (black line) in the period from about 4 s to 7 s. With adequate 

T/A-LV adjustment and especially when using additional damping orifices in the control 

ports of the valve, vibrations were considerably reduced so that the performance level of 

both systems (conventional and optimized) were almost identical, which can be seen in 

the reduced velocity vibrations of the cylinder. 
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7. T/A-LV Prototype 

Figure 11 shows the draft of the T/A-LV functional prototype for the test rig. Since 

development and manufacturing of a spool valve with three or four control surfaces is 

quite complex and costly, the functional prototype is provided with separate metering 

edges by using two electrohydraulic proportional throttle valves. In addition, a pressure 

control valve is integrated for maximum pressure control in case of malfunctions. The 

different pressure levels in the system are being monitored by pressure transducers, 

while the evaluation of the switching condition is achieved by the valve control.  

Figure 11: T/A-LV functional prototype for test rig. 

In spite of the deviation of the functional prototype from the initially planned valve, the 

suggested design has clear advantages for test rigs. Valve control enables a simple and 

flexible parameterization of the functional prototype and, thus allows for parametric 

studies, e.g. with variable valve characteristics. To carry out such investigations using 

integrated hydraulic valves would only be practicable at considerable material expense 

and extraordinary costs. Due to the separate metering edges, the prototype moreover 

can be integrated easily into the test rig. All necessary parameters are already being 

monitored by several sensors.  

The setup is highly demanding for the valve control and its ability to compensate the 

rather slow proportional throttle valves. Therefore, in order to determine whether the 

behavior of the functional prototype matches that of an integrated valve, simulations are 

being carried out and the results are being validated at the test rig.  
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8. Summary 

The suggested approach can increase the efficiency of mobile machines with hydraulic 

LS systems, in accordance with the required boundary conditions, by reducing the 

system inherent pressure losses. The circuit is designed with hydraulic actuation and 

hence, as an advantage, does not require any additional sensors. Therefore, in order to 

upgrade an existing machine only few components are necessary. Each LS section must 

be provided with a T/A-LV and a check valve, i.e. combined in a compact module. 

Furthermore, each machine must be equipped with a hydraulic accumulator, a recovery 

unit and appropriate piping. 

However, when applying the circuit to a conventional system available on the market, 

compatibility with the system architecture must be guaranteed. Any negative impact on 

the performance of the system, e.g. by switching operations, must be avoided. In 

addition, a cost-benefit evaluation of the efficiency improvement potential considering 

the machine architecture and its application scenarios or typical operating cycles should 

be conducted. 

9. Outlook  

The results obtained through simulation will be validated on the project test rig, which 

will be designed like an LS system of an excavator, equipped with three actuators (for 

further information refer to /4/). At first, synthetic simulation cycles will be used to verify 

the function and the performance of the circuit as well as to identify critical parameters 

and to optimize the circuit. Then, cycle data from /6/ will be used to validate the 

performance of the efficiency improved system under realistic conditions.  

Problems that have not yet been solved in the present project, e.g. the design of an 

appropriate recovery unit and the integrated T/A-LV, shall be investigated in a following 

project. Subsequently, the overall system will be applied to a test vehicle and be tested 

in practice. 
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11. Nomenclature 

"X! Pressure 1 bar 

n! Volumetric flow l/min 

<=! Ratio of effective surfaces of a cylinder 1 

HX! Load or force kN 

[X! Surface area e.g. at valves or in cylinders mm² 

<G ! Position mm 

oG! Velocity mm/s 
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Abstract

Overall losses in swash plate type axial piston machines are mainly defined by three 

tribological interfaces. These are swash plate/slipper, piston/cylinder and cylinder 

block/valve plate. Within a research project, funded by the German Research 

Foundation, a combined approach of experimental research and simulation is chosen 

to acquire further knowledge on the cylinder block/valve plate contact. The 

experimental investigations focus on the friction torque within the contact and the 

measurement of the cylinder block movement in all six degrees of freedom. 

Simultaneously a simulation model is created focusing on the main physical effects. By 

considering the results of the experimental investigations significant physical effects for 

the simulation model are assessed. Within this paper a first comparison between 

experimental results and the simulation is presented, showing that for a qualitative 

match the implemented effects (mainly the fluid film, solid body movement, solid body 

contact, surface deformation) are sufficient to model the general behaviour of the 

investigated pump. 

KEYWORDS: Axial piston machine, cylinder block, valve plate, fluid film, simulation, 

experiment 
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1. Introduction 

The cylinder block/valve plate contact has been subject to several investigations in the 

past (/1/, /2/, /3/, /4/, /5/). Experiments in these publications mainly focus on the gap 

height rather than the total movement of the cylinder block, which also includes the gap 

height information. Detailed simulation models, e.g., by Zecchi /6/, have been created 

including thermo elastic behaviour and have been validated by temperature 

measurements. Ivantysynova and Baker compared micro structured waved surfaces 

and assessed the influence on viscous friction and leakage /7/.  

This paper describes the validation process of a project focusing on the combination of 

experimental and simulative investigations aiming on the identification of loss affecting 

parameters and their optimization. Therefore, previously, a test rig was built allowing 

measurements of the cylinder block movement and the friction within the contact /8/. 

Simultaneously a simulation model was created and is subject to validation.  

Compared to the presented simulation model a simplified version was created /9/. This 

version was limited to a flat interface, the cylinder block movement was coupled to the 

central spring stiffness and the solid contact model was limited to a linear proportional 

factor coupling the contact pressure to a virtual penetration of the parts. The gained 

knowledge of this simulation model and the analysis of other models lead to a new 

program code base allowing the use of nonlinear equations with strong retroacting 

effects between the two surfaces and the fluid film in between. An implicit calculation 

approach is used in which all effects are mathematically described within one single 

system of equations during one time step. Compared to an explicit approach this 

results in a very good stability. Especially the implementation of solid body contact 

which has a very strong reactive effect on the cylinder block movement creates a very 

stiff system making this approach necessary.  

2. Test rig 

The test rig is described in detail in /8/ and is only briefly explained here. A 140 cm³ 

pump is the basis of the test rig. The functionality is maintained and the housing is 

modified to measure both the cylinder block movement and the friction torque between 

cylinder block and valve plate as depicted in Figure 1. 
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Figure 1: Left: test rig side view without housing; right: hydrostatic bearing

A hydrostatic bearing replaces the end cap system of the pump and supports the valve 

plate, giving it a rotational degree of freedom supported by a force sensor which allows 

the measurement of the friction torque. Eddy current sensors measure the distance 

between the valve plate support and the cylinder block at different positions (Figure 2). 

The recorded data is used to calculate the cylinder block movement in all degrees of 

freedom. 

 

Figure 2: Eddy current sensors 

3. Simulation 

Measurements of the cylinder block movement and the friction torque have been 

assessed to identify the physical effects ought to be included into the simulation model. 

The main implementation stages are briefly presented in this section. 

3.1. Mesh and geometry 

The simulation of the interface requires a discretization of the interface surface. Inner 

and outer diameter of the valve plate as well as the sphere’s radius constitute the basis 

for the grid generation. Resolution parameters in radial and circumferential directions 

are used to generate a basic mesh. Objects, such as valve plate and cylinder block 

kidneys or commutation grooves and bores, are defined on the surface and nodes are 

added on the borders of these objects. A fixed time step pattern is introduced and the 

grid generation is finalized by a refinement step performing one revolution of the 

cylinder block to add nodes on the object edges for every time step. 

!  
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3.2. Reynolds equation 

A simplified version of the Reynolds equation for the fluid film calculation is 

implemented (1). Because the cylinder block movement in radial direction is very small, 

the shear flow in this direction is neglected. 

!"
!# $ % & '

"
( )* +

",
-(. %/0 1 2        (1) 

Using a finite volume approach the equation is integrated over each node’s area on a 

discrete grid in polar coordinates.   

The implementation of the Reynolds equation on a discrete grid allows the calculation 

of the pressure field while the node’s gap heights have to be supplied as boundary 

values. A simple example is shown in Figure 3 for a sphere on sphere contact (radius 

150 mm) with a fixed sphere center distance of 10 µm in z and 15 µm in y-direction and 

a rotational speed of 1250 rpm. 

 

Figure 3: Mesh and simulation example of sphere on sphere contact

The hydrodynamic pressure build up resulting from the convergent gap and the 

rotational speed is clearly visible. The large area of negative pressure occurs because 

no cavitation model is implemented. In reality the fluid density would decrease to the 

point of cavitation. Because in the final simulations of the investigated interface 

negative pressure areas rarely occur, no cavitation model is implemented. 

3.3. Rigid body movement, fluid structure interaction and solid contact 

For the axial piston machine the gap height of the contact is equal to the distance 

between the valve plate’s and the cylinder block’s surfaces. Assuming a stationary 

valve plate, the distance is defined by the rigid body movement of the cylinder block 

and the elastic material deformation. Newton’s law is used to calculate the lateral rigid 

body movement by summing all external forces (mainly defined by the pressure within 

the cylinders), the fluid film forces (resulting from the pressure field calculated by the 

Reynolds equation) and the forces resulting from solid contact. Therefore the gap 

height calculation represents the implementation of a fluid structure interaction.  

Solid contact is implemented in the simulation because friction torque values gained 
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from test rig measurements cannot be explained by solely considering viscous friction. 

Axial piston machines are designed to support the cylinder block through the valve 

plate. Pressure forces in the cylinders act in the direction of the valve plate, pressing 

the cylinder block against the valve plate. The interface is designed to compensate the 

majority of these forces through the fluid film due to hydrostatic pressure. The interface 

sealing is realized by a compensation value below 100%, ensuring a remaining force to 

be present in all operating points. In reality these uncompensated forces are supported 

by solid contact. In the simulation an uncompensated remaining force in the direction of 

the valve plate would result in a continuous acceleration of the cylinder block, 

eventually leading to negative gap heights in case a solid contact model is not 

implemented. Finding parameters for a stable simulation would be difficult because the 

setup would have to ensure a fully separated contact. For real surface geometries this 

condition could only be satisfied with unrealistically high rotational speeds.   

The contact pressure calculation is based on Greenwood and Tripp’s solid contact 

model /10/. Patir and Cheng used the model to calculate the contact pressure between 

two surfaces /11/. Their approximation of the model is widely used in tribologic 

simulations and is also implemented in the model presented in this paper using 

equation (2). 
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Newton’s law is implemented for the calculation of the center of gravity acceleration of 

the cylinder block (3). External forces and the integral of fluid and contact pressure 

over the cylinder block’s sphere surface are considered. 

I 7JKLM#LNOPQO
JRE $ S T/UQVJW $ /3XO#P3#YT+Z[*Y\]^ 1 _`ab`a    (3) 

The Euler equation (4) is used to calculate the rotational movement. 

cde $ d f TcdY 1 I ghJ f 7JKLM#LNOPQiO
JRE $ S h f T+Z[*YT/UQVJW $ /3XO#P3#Y\]^   (4)

Figure 4 shows three stages of a simulation similar to Figure 3 with a translational 

degree of freedom in z-direction calculated with (3) and 5000 N applied on the cylinder 

block in negative z-direction. 
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Figure 4: Sphere on sphere contact 

The simulation starts at a distance of the spheres of 10 µm, while the mass of the 

cylinder block is set to 5 kg. Within the first time steps the pressure build up due to the 

convergent gap is very small because of the high gap height. The applied force 

accelerates the cylinder block and in turn the squeeze film effect produces the pressure 

build up across the whole surface. In the second time step (t = 0.15 s) the gap height is 

small enough to create a significant hydrodynamic pressure build up resulting from the 

shear flow. Simultaneously the squeeze film effect decreases because the cylinder 

block’s velocity decreases. Finally a significant load share is carried by contact 

pressure in a steady state shown in the third row (t = 0.38 s).  

3.4. Geometry objects 

Kidneys, commutation grooves and bores are defined parametrically as objects on the 

valve plate or on the rotating cylinder block. Pressure and volume boundary values are 

defined and assigned to each object. Prior to the calculation of the fluid film a 1D 

simulation of the geometry object pressures is performed automatically in each time 

step which allows the calculation of the reversal process between the high and low 

pressure kidney. By combining all described parts of the simulation the interface can be 

simulated as shown in Figure 5. 

 

Figure 5: Results for one simulation time step 
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3.5. Calculation 

Accelerations and velocities are integrated with the backward Euler method. The fluid 

structure interaction in terms of solid body movement and deformation is directly 

calculated within the system of equations (monolithic approach). A partitioned 

approach in which the cylinder block movement is calculated separately from the fluid 

film and contact pressure, coupled by iteration loops, is difficult to realize due to the 

exponential operations in (1) and (2). The monolithic approach can be used because 

the simulation model is not dependent on external calculations. It results in a stable 

simulation model working with a large set of starting conditions as long as these are 

physically sound. 

3.6. Neglected effects 

At the current stage thermal effects are neglected. The deformation model is limited to 

a simple deformation factor, coupling the pressure and contact pressure to an 

additional term which is added to the gap height. This gives a linear deformation 

depending on the local pressure, but is limited to a stiffness independent from the solid 

body geometry. Within the presented results flow factors modifying the Reynolds 

equation depending on the gap height are not considered. 

4. Simulation parameters 

Results of tribologic simulations are strongly dependent on the input parameters 

defining the contact partners. Aim of this project is to use experimentally governed data 

for a parameterization of the simulation and therefore test rig results will eventually be 

used to find parameters for the simulation. Because the current validation stage 

focuses on the general behaviour of the simulation this transfer is avoided in order to 

enable an independent validation. 

4.1. External forces 

Forces resulting from the pressurized cylinders are gained by analyzing the reaction 

forces and torques of a pressure applied FEA model. Lateral forces from the inclined 

swash plate on the slippers and centrifugal forces of the piston/slipper assembly are 

calculated analytically. The central spring is represented by a constant force.  

The shaft force from the cylinder block’s spline shaft connection is estimated to be in 

the center of the spline and shaft and the bearing stiffness are taken into account. 

However the contact within the spline connection itself is neglected due to its undefined 

character and is assumed to be a frictionless contact without tolerances.  

Influences of piston/bushing friction, acceleration forces of the piston/slipper assembly 
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on the hold down device and friction of the slipper/swash plate contact have been 

assessed by analytical calculations for several operating points and added to the 

simulation temporarily. Because the effect is negligible for the comparison of the 

general behaviour which is presented in this paper, the forces are not included in the 

presented simulations as well as forces creating an oscillation of the swash plate. 

4.2. General parameters 

The solid contact model uses Young’s modulus and the Poisson number from each 

contact partner (ECB = 1.0e5 N/mm², !CB = 0.37, EVP = 2.1e5 N/mm², !VP = 0.285) and 

the combined standard deviation of the surface roughness (" = 1 µm). The operating 

conditions are shown in Table 1. 

Parameter Value  Parameter Value 
Actual displacement 100 cm³ (0.72 j Vmax) Oil HLP 46 

Speed 1250 rpm  Tank temperature in test rig 40°C 
Pressure 25 MPa  Viscosity in simulation 12 cSt 

Table 1: Operating conditions 

5. Comparison 

The comparison of experimental and simulative results is conducted to validate the 

general functionality of the simulation model. If all significant physical effects are 

implemented a comparison of the cylinder block movement, the gap height distribution 

and the friction torque is expected to result in a common trend under a variation of the 

operating conditions. Because the simulation parameters are determined on the basis 

of literature and analytical calculations, a quantitative match is not expected. However 

an assessment of the deviations should be within the expected tolerances of the input 

parameters. This paper focuses on the cylinder block movement and the gap height. 

5.1. Cylinder block movement 

Using measurements of the cylinder block movement the implementation of the rigid 

body movement is validated. A projection of the sphere center and the spline center is 

used according to Figure 6 to visualize the measurement results. 

 

Figure 6: Projection of the cylinder block’s sphere center (C) and the spline shaft 

center (S) on the x-y plane
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For each full rotation of the cylinder block 360 positions are calculated from the 

measured data. By plotting the positions of the points S and C during one revolution, 

two point clouds are created representing the overall movement of the cylinder block. 

Figure 7 shows measurement and simulation results for different pressure levels at the 

same speed. Crosses represent measurement results (S in blue, C in red) while the 

black shape represents the corresponding simulation results. 

Figure 7: Cylinder block’s movement 

Measurements show a large scattering while as expected simulation results are much 

smoother. The movement of the simulated position of point C is not noticeable within 

this magnification and therefore reduced to a single point. Both measurement and 

simulation show a significantly larger movement of the spline shaft point compared to 

the sphere center. This implies that the main movement of the cylinder block is a 

sliding motion over the valve plate’s surface.  

The pressure influence is mainly visible through three effects: 

1. Total shift of the spline shaft (S) in negative x and y-direction resulting from the 

tilting torque. It is mainly applied through the pressurized cylinders and 

supporting forces from the slippers. 

2. A more distinct relative movement of the spline shaft (S) in y-direction resulting 

from higher force differences when the number of pressure applied cylinders 

changes due to the reversal process. 

3. The cylinder block’s sphere center (C) is shifted in positive x and negative y 

direction due to the same reasons as explained in 1. 

The trend of the first two effects is represented by the simulation whereas the pressure 

shows a greater influence on the real system than on the simulation.  
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To validate the last effect a magnification of the simulated cylinder block’s center point 

area is shown in Figure 8. The shift in x and y direction is only visible on a very small 

scale but follows the trend of the experimental results. 

 

Figure 8: Cylinder block’s sphere center movement (point C) 

5.2. Orientation of minimum and maximum gap height 

In opposition to the previous section where the cylinder block movement was reduced 

to point clouds in two dimensions, the investigation of the gap height distribution 

considers the full movement in all degrees of freedom and also the spherical geometry 

of the interface. By looking into distinct time steps (i.e. specific angular positions) the 

gap height distribution over the valve plate’s sphere surface can be calculated. 

Locations of the minimum and maximum gap height are of great importance to 

understand friction and wear within the contact and are used for comparison. 

Measurement results are processed to show the distribution frequency of the minimum 

gap height (Figure 9). Although the test rig is designed with focus on small 

deformations, the acting pressure still deforms the valve plate. This effects is not 

considered in the results. The size of the red highlighted areas represents the 

occurrence frequency of the minimum gap height at the particular angular position for 

one revolution. 

 

Figure 9: Minimum gap height occurrence (measurement results) 

On average the minimum gap height is located at 130 degrees. A comparison with 

simulation results is easily possible because the gap height distribution can be 

visualized as shown in Figure 10. Pressure and gap height distribution are depicted for 
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angular positions with four and five pressure applied pistons. The depicted positions 

represent the outer limits for the position of the minimum gap height matching the main 

direction of the measured results. The location of the minimum gap height is between 

130 and 150 degrees. The range in which the minimum gap height appears is very 

small within the simulation and the relative angular shift resulting from the reversal 

process is below 20°. Within the real system this range is wider (Figure 9 shows a 

range from approx. 90 to 240°) but also includes measurement inaccuracies. It should 

also be noted that commutation bores and kidneys as well as several friction forces 

(piston/bushing, slipper/swash plate) are neglected in the simulation. 

 

Figure 10: Simulation of pressure and gap height distribution

6. Conclusion 

In this work a simulation model for the cylinder block/valve plate contact and steps of 

the validation process are presented. The aim of the validation is to decide if either the 

selection and implementation of the physical effects was correct or if a major part has 

been neglected or missed. Therefore simulation parameters have been chosen from 

literature and analytical calculations to get an independent comparison between 

experimental and simulative results.   

The comparison shows a good match in the general behaviour for different operating 

points and the results are within the same magnitude. Therefore the effects are 

expected to be the main influencing for this contact and the investigated pump and are 

correctly implemented in the simulation.   

Effects like a temperature depending viscosity and thermal material expansion are 

subject to current implementation. The results of the cylinder block movement are not 

expected to be greatly influenced by these implementations because the force and 

torque equilibrium are the main factors for the movement. Gap height and pressure 

field will be affected. High temperatures will occur where the gap height is currently 

very small. This leads to a lower viscosity in this area and an expansion of the material. 

Therefore the gap becomes even smaller until a new equilibrium is reached, so that 

these effects are also not expected to change the general behaviour. 
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9. Nomenclature 

] Area m² 

bk Acceleration m/s² 

65k Combined Young's modulus N/m² 

7 Force N 

lk Gap height m 

c! Intertia tensor kg m² 

_! Mass kg 

Z Surface normal  

/! Pressure, contact pressure Pa 

m! Time s 

n! Viscosity Pa s 

d,!de ! Angular velocity, angular acceleration rad/s, rad/s² 

ok Combined standard deviation (surface roughness) m 

!
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Abstract

The cylinder block/valve plate interface is a critical design element of axial piston 

machines. In the past, extensive work has been done at Maha Fluid Power Research 

center to model this interface were a novel fluid structure thermal interaction model was 

developed which accounts for thermal and elasto-hydrodynamic effects and has been 

proven to give an accurate prediction of the fluid film thickness. This paper presents an 

in-depth investigation of the impact of the elastic deformation due to pressure and 

thermal loadings of the end case/housing on the performance of the cylinder 

block/valve plate interface. This research seeks to understand in a systematic manner 

the sensitivity of the cylinder block/valve plate interface to the structural design and 

material properties. A comparison between simulations results is done by utilizing 

different end case designs and material compositions, both in the valveplate and end 

case solids. 

KEYWORDS: Cylinder block, valve plate, fluid structure, axial piston machine  

1. Introduction 

Axial piston machines of swash plate type have three main lubricating interfaces the 

piston/cylinder, slipper/swash plate and the cylinder block/valve plate interface. These 

are of critical importance since they represent the main source of energy dissipation in 

axial piston machines. The main sources of power losses in this type of machines 

come from viscous dissipation and leakage flow in these lubricating interfaces. Through 

a better understanding of the different effects taking place in lubricating interfaces 

improved designs and reliability can be achieved which will push towards higher 

efficiency. The authors’ research revealed that the elastic deformation of the solid 

bodies has a large impact on the overall performance of the fluid film. This paper 

focuses on the cylinder block/valve plate interface. 
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1.1. Cylinder block/valve plate interface 

The cylinder block/valve plate interface is a critical design feature in axial piston 

machines since it is responsible of fulfilling three main functions; bearing of the external 

loads applied on the cylinder block sealing of the displacement chambers, and  

connecting the displacement chambers with suction and delivery ports. The sealing 

and bearing functions have opposite requirements; in order to bear the external loads a 

sufficiently thick fluid film is necessary while a low fluid film thickness improves the 

sealing function. The external loads applied to the cylinder block are dependent on the 

operating conditions (pressure, rotational speed and swash plate angle) and are of 

dynamic nature due to the machine kinematics and oscillating pressures in the 

displacement chambers as described in /1/. The displacement chamber pressure is 

highly depends on design of the valve plate openings (kidneys) connecting chambers 

to the suction and delivery ports. Figure 1 shows the cylinder block on top of the valve 

plate/end case assembly with the lubricating film between cylinder block and valve 

plate. Also, an example for a single displacement chamber pressure profile is shown in 

Figure 1. The cylinder block (CB) rotates on top of the valve plate (VP) about the shaft 

axis (z-axis) continuously changing the geometrical features of the interface. Figure 1 

shows on the bottom the surfaces which define the fluid film area, which continuously 

changes with the rotating angle !.  

 

Figure 1: Cylinder block/valve plate lubricating interface
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The cylinder block/valve plate interface bearing function depends on the pressure 

generated in the fluid film between the cylinder block and the valve plate. The fluid film 

pressure is generated due to hydrostatic and hydrodynamic pressure. The 

hydrodynamic pressure is built due to the inclination of the cylinder block bottom 

surface relative to the valve plate surface with a continuously changing inclination 

angle while rotating, the squeeze motion of the two surfaces, and elastic deformation of 

the cylinder block and valve plate/end case assembly due to pressure and thermal 

loadings of these parts. The purpose of this paper is to analyse the effects of the elastic 

deformations of the valve plate/end case assembly on the lubricating film behaviour. 

1.2. Previous research 

A lot of research has been accomplished on the cylinder block valve plate interface in 

the last four decades. The previous research can be divided into experimental and 

theoretical work. Analytical and numerical models were developed using rather simple 

approaches /1-4/. These models provided a better understanding of the working 

principles of axial piston machines. Yamaguchi /2/ studied the impact of different valve 

plate designs on leakage flow through the interface. Kim et al /5-6/ and Bergada et al 

/7/ attempted to measure the fluid film thickness by measuring the relative position of 

the cylinder block to the valve plate undeformed surface and from there deriving the 

gap height. Bergada’s research found in some situations negative values of the 

measured relative fluid film thickness and concluded that deformation effects have to 

be present. 

Wieczorek and Ivantysynova /9/ developed for the very first time a numerical model 

which attempted to predict the fluid film thickness based on the balance between the 

external and fluid forces exerted on the cylinder block by describing the non-isothermal 

flow in the interface through an iterative method. Although, it was a step in the right 

direction, the model lacked of many physical phenomena such as elastohydrodynamic 

(EHD) deformations. Huang and Ivantysynova /10/ developed the previous model 

further and added the elastic deformation of the cylinder block due to pressure by 

coupling the model with commercial software ANSYS /9/. Achten and Schellekens /12/ 

investigated deformation effects in an analytical manner. Jouini and Ivantysynova /11/ 

improved Huang’s model through adding a heat transfer module. A comparison of 

predicted surface temperature distribution of the valve plate with measurements 

conducted by the same authors showed that the model could only partly capture the 

measurement trends, leaving much room for further model improvement. 
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In 2012 Zecchi and Ivantysynova /14,15/ presented a novel thermo-

elastohydrodynamic model for the cylinder block valve plate interface which for the first 

time accounts for the elastic deformations due to pressure and thermal loadings, 

considers the heat transfer to all the solid bodies and updates the non-isothermal fluid 

flow calculations accordingly. Zecchi /16/ repeated measurements of surface 

temperature of the valve plate of a stock axial piston machine and demonstrated that 

the novel model matches measurements very well. 

2. Thermo-elastohydrodynamic model 

The thermo-elastohydrodynamic (TEHD) model developed by Zecchi /13-16/ was used 

to study the effects of elastic deformations of solid bodies forming the CB/VP interface 

as well as the effects of the end case design. The model consists of four main 

modules, as shown in Figure 2. The fluid flow module models the non-isothermal fluid 

flow in the interface by solving the Reynolds and energy equations with a finite volume 

method approach in a sequential form. The solution of Reynolds equation accounts for 

any possible shape of the lubricating interface due to relative inclination, elastic 

deformations, micro-surface shaping and micro-motion. A Newton-Raphson iterating 

method is utilized to vary the micro-motion of the CB until the pressure generated in the 

gap balances the external loads applied on the CB, for more details refer to /16/.  

The second module is the FEM module for the elastic deformations due to pressure on 

solid bodies. The influence matrix method is utilized which is based on the linear super-

imposition principle. The deformations of the solids are calculated off-line to save 

computational time. Each face is loaded with a reference pressure and the 

corresponding deformation of the running surface is calculated and stored. Later in the 

simulation this influence matrix is utilized online to calculate the corresponding 

deformation of the solid. The calculated deformations are returned to the fluid flow 

module to update the fluid film thickness.  

The third module is the heat transfer module where the governing equation is the 

steady state, conductive form of the energy equation shown in Eq. (1) with thermal 

conductivity " and temperature T. The temperature calculation in the solid bodies is 

performed via a Galerkin formulation of the finite elements method. The heat transfer 

module uses the heat fluxes from the fluid flow module as boundary conditions for the 

calculation. The calculated solid body temperatures are used to update the boundary 

conditions for the gap module and FEM thermal module.  

! " #$!%& ' ( (1) 
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Figure 2: Overview of the cylinder block/valve plate interface TEHD model 

Finally, the fourth module is the corresponding FEM module which calculates the 

thermal deflections of the solid bodies. This module receives the information from the 

heat transfer module which calculated the temperature distribution in the solid bodies 

and can then calculate the thermal loadings. The FEM module is similar to the one 

used for pressure deformations. Linear tetrahedral elements are used for the 

discretization and a Finite Element Method approach to solve the equation.  The FEM 

module thermal analysis takes place once per shaft revolution. The calculated 

deflection is used consequently to update the fluid film thickness after each calculated 

shaft revolution. 

3. Elastic deformations of the cylinder block/valve plate  

Figure 3 shows the boundary surfaces of the cylinder block and valve plate interface to 

which different boundary conditions are applied. On the top, the pressure boundary 

sets are shown for both the cylinder block (left) and valve plate (right). The pressure 

boundaries in the cylinder block are defined by the different pressure regions the solids 

are going to be exposed to. The suction and delivery ports and displacement chambers 

are subjected to uniform pressure. The fluid film in the gap is subjected to the predicted 

pressure field by solving the Reynolds equation in the non-isothermal fluid flow module. 

The thermal surface boundaries are composed of three different boundary conditions; 

Dirichlet, Neumann and mixed boundary conditions. The Dirichlet boundary condition 
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Figure 3: Boundary surfaces for the pressure and thermal deformation problem (left) 

and pressure and thermal deformation of the bodies (right) 

imposes a fixed uniform or field temperature. The Neumann boundary condition 

imposes a heat flux directly to the boundary surface. Finally, the mixed boundary 

condition applies an indirect heat flux, q, through Newton’s law of cooling (2).  

)* ' +#,- . ,/& (2) 

In Eq. (2) ! is the convection coefficient, ,- is the wall temperature and ,/ is the fluid 

temperature.

4. Film thickness and temperature prediction and comparison to 

measurements 

The influence of surface deformation due to pressure and thermal loadings on the fluid 

film thickness and resulting surface temperature distribution of the valve plate was 

studied using the TEHD model. A 130 cc swash plate type axial piston unit was used 

for this study and simulation results were compared to valve plate surface temperature 

measurements made for the same unit /16/.  

Figure 4 shows a comparison of measured temperature on the left with predicted 

temperature distribution on the right while considering surface deformation due to 

pressure and thermal loading of the cylinder block, valve plate and end case. The 

operating condition is 2800 rpm 200 bar at 50% displacement. The temperature 

boundary conditions were obtained from measurement with Tin = 52.6 °C, Tout = 56.6 °C 

and Tcase = 82.3 °C. One can see that the model prediction is very good. Please note 

that in total 22 k-type thermocouples were embedded in the valve plate to measure 

temperature distribution approximately 5 mm below the running surface. 
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Figure 4: Measured (a) and predicted temperature field on the valve plate (b)  

One of the 22 thermocouples failed during measurements and therefore the figure on 

the left of Figure 4 shows 0.0 °C at its place close to the outer dead point of the piston. 

The measured temperature field shown in Figure 4 was interpolated from the 21 

measured points whereas the temperature field predicted with the model as shown on 

the right side of Figure 4 was calculated for the entire surface. The temperature 

distribution shown in Figure 4b and Figure 5 obtained from the simulation are shown for 

the cross section of the valve plate made at the same depth of material as that of the 

location of the tips of the thermocouples. For a more direct comparison with 

measurements the temperatures predicted in simulations at points where the 

thermocouples were placed are shown in values °C. Another set of simulations for the 

same unit under the same operating conditions was made using the TEHD model to 

study how the fluid film thickness and temperature distribution due to different energy 

dissipation in the fluid film changes when deformation due to thermal loading of the 

solid bodies (cylinder block, valve plate and end case) are not considered. For these 

simulations the thermal deformation of the model was turned off and only the surface 

deformation due to pressure were considered. The results are shown in Figure 5. The 

figure on the left of Figure 5 shows predicted surface temperatures where the change 

of film thickness due to surface deformation caused by the pressure loading of the 

cylinder block were considered while the valve plate/end case assembly is considered 

as rigid. The figure on the right of Figure 5 shows the temperature distribution predicted 

with the TEHD model with surface deformation due to pressure considered for all parts.  

When comparing all these simulation cases (Figure 4b, Figure 5a and Figure 5b) with 

the measured surface temperatures it is clearly shown that the model considering 

surface deformation due to pressure and thermal loadings for all parts comes closest to 

the measurements. 
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Figure 5: Predicted temperature, EHD only on the cylinder block (a) and EHD on all (b) 

5. Case study of end case design 

From the previous simulation study the authors observed that different end case 

designs can influence the behaviour of the cylinder block/valve plate interface even 

when cylinder block and valve plate remain unchanged. To further investigate this, a 

case study was conducted by analysing results from different designs. Because of the 

limited length of this paper only two different designs will be compared. The case study 

was realized on a 24 cc axial piston machine swash plate type. Figure 6 shows the 

valveplate volume and the suction and discharge ports surfaces for both designs. The 

first end case design has no ribs on the end case structure. The second has an 

additional rib on the end case with ~8.6 mm in depth.  

 

Figure 6: Valveplate and end case suction and discharge ports 
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Figure 7: Valve plate total surface deformation  

Figure 7 shows the total elastic deformation of the valve plate running surface in z-

direction due to pressure and thermal effects for a single operating condition (2500 rpm 

350 bar at full displacement). On the left (a) for the design 1 and on the right (b) for the 

design 2. The zoom region for design 1 and design 2 are also shown. The deformation 

of the valve plate surface for design 2 is similar in the other areas, i.e. changes are only 

in the zoom area. Figure 8 shows the resulting 3D fluid film between cylinder block and 

valve plate for one selected angle of rotation for the same operating condition for 

design 1 (a) and 2 (b). Design 2 shows an overall thicker fluid film than design 1. 

Figure 8: 3D Representation of the fluid film thickness, design 1 (a) and 2 (b) 

Figure 9: Fluid film thickness design 1 (left) and design 2 (right) 
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Figure 9 displays the position of the cylinder block throughout a full revolution with 

respect to the x-y plane for three reference points, P1, P2 and P3 as shown in Figure 1. 

The position of the block shows that the performance of the cylinder block/valve plate 

interface is unstable for design 1, on the left of Figure 9. The unstable condition of the 

fluid film is due to the imbalance of external loads and fluid forces. The inability of the 

fluid film to bear the external loads is also shown in Figure 8a where these areas have 

been circled showing extremely low film thickness regions.The imbalance surges from 

a larger component of hydrodynamic pressure from the wedge effect  due to larger 

relative surface deformation (~2 µm). Figure 7a shows a larger deformation  on the 

high pressure side of the valveplate which corresponds to the unstability of the fluid 

film. The low fluid film thickness could also lead to metal-to-metal contact and 

excessive wear on the valve plate and cylinder block surfaces. 

Figure 10 shows the simulation results for the calculated leakage flow, power loss due 

to viscous friction and total energy dissipation for the cylinder block/valve plate 

interface for both studied designs. The values reflected in the graph were normalized 

with respect to the not shown baseline design. The graph shows major differences 

between the two new designs in terms of leakage flow and torque loss, where leakage 

flow for the second design decreased ~20% with respect the first and torque loss is 

increased by ~7%. The decrease in leakage flow corresponds to the reduction in 

regions of high fluid film thickness shown in Figure 8b. Although leakage and torque 

loss changes by a large magnitude the total energy dissipation remains about the 

same. These simulation results point towards completely different performance of the 

lubricating film.  

 

Figure 10: Leakage energy, friction and energy dissipation of the cylinder block/valve 

plate interface 
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6. Conclusion 

An advanced thermo-elastohydrodynamic model for the cylinder block/valve plate 

interface was used to study the impact of the surface deformation of solid bodies on the 

fluid film behavior between cylinder block and valve plate. The same simulation model 

was utilized to analyze the impact of elastic deformations due to pressure and 

temperature of the valve plate/end case assembly. The simulation results showed 

better performance for design 2 in terms of fluid film stability and a thicker fluid film 

overall which ensures full fluid film lubrication therefore avoiding possible metal-to-

metal contact leading to wear or machine failure. Structural designs and material 

properties on the valve plate/end case assembly which lead to a high stiffness are 

desired to allow for stable and reliable performance of the cylinder block/valve plate 

interface. 
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Abstract 

Markets show a clear trend towards an ever more extensive electronic networking in 

mobile and stationary applications. This requires a certain degree of electronic 

integration of hydraulic components such as axial piston pumps. Beside some well-

known approaches, the transmission of axial piston units still is relatively unexplored 

regarding electronification. Nonetheless there is a quite high potential to be optimized by 

electronic. In view of this fact, the present paper deals with the tribological contacts of 

pumps based on a demand driven hydrostatic relief. The contact areas at cylinder - 

distributor plate, cradle bearing and slipper - swash plate will be investigated in detail 

and it will be shown how the pump behavior can be improved considerably through a 

higher level of relief and a central remaining force ratio. The potential of optimization is 

to improve the efficiency, especially in partial loaded operation, power range, also for 

multi quadrant operation, precision and stability. A stable lubricating film for slow-speed 

running and for very high speeds at different pressures is ensured as well. 

KEYWORDS: Electronification; axial piston pump; demand-driven relief; efficiency 

1. Introduction 

Highly integrative and ever more networked systems, which are also referred to as 

electronification, are a clear trend in hydraulic applications. This development is due to 

higher demands on energy efficiency, precision, usability and low-maintenance systems. 

This leads to the increased use of electronically controlled hydraulic units in stationary 

applications. In addition, there is a high interest in networking the different system 

components. /1/ 
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This trend is similar for mobile applications. Bus and sensor systems are indispensable 

in modern tractors. Research projects, dedicated to extensive system networking or 

electronification, are well-known from agricultural and construction machines. /2/ /3/ /4/ 

Electronic pump control is the main approach used for hydrostatic displacement units 

like axial piston units. Furthermore, electronic-based research deals with condition 

monitoring subjects and with different approaches to optimize pressure transition 

processes. /5/ /6/ 

Early failures are mostly due to units’ highly stressed tribological contacts. This lack of 

reliability is nearly always caused by insufficient thickness of lubricating films.  

For geometric-design reasons, the power range of axial piston units is limited to a certain 

range of operation. The most relevant factor to be taken into account is the hydrostatic 

force of relief i.e. the resulting force because of the pressurized field, which is built up in 

the lubrication gap. The relief is to largely compensate the contact forces that are applied 

to the relatively moving parts. Due to the geometric dependence of the level of relief (κ) 

as a quotient of the relief force and contact force, the latter can only be designed with a 

certain pressure dependence for the operating range of axial piston units. Since the 

system, however, is operated at different drive speeds and swivel angles, shear and 

centrifugal forces as well as hydrodynamic effects all influence the equilibrium of forces 

and moments in addition. The level of relief hence is only a compromise enabling 

operativeness over the entire operating range. Since the hydrodynamic and hydrostatic 

effects interfere with each other, the issues above become evident during slow-speed 

running and at very high drive speeds. But the biggest problems are caused by the multi-

quadrant operation, as a pump or a motor. This leads to an inversion of direction of the 

frictional forces between piston and cylinder barrel. The relation between stress and relief 

forces changes.  

In spite of an increasing cost pressure, the efficiency-specific optimization of hydrostats 

still is highly relevant. Mobile machines are required to meet ever stricter environmental 

and energy efficiency criteria. Those are prescribed by the EU emission standards /7/. 

In the case of stationary applications, there is a continuous trend towards fully-electric 

driven production machines /8/, due to maintenance and energy efficiency advantages. 

To be able to compete, the efficiency of the displacement units must be increased.  

An evaluation of diverse load spectra of agricultural, forestry and construction machines 

and of a tractor shown in particular, revealed that mobile applications are often operated 

in the partial load range.  
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The specifics of the tractors’ operating conditions make it very difficult to derive 

generalized load spectra. The DLG (Deutsche Landwirtschafts-Gesellschaft), for 

example, offers the possibility to evaluate different vehicles on basis of customers 

individual needs /9/. According to /10/, a significant trend can be derived (Figure 1, left).  

In the case only for working hydraulics, one can differentiate between heavy pulling 

tasks, power take-off, hydraulic work and transportation (see Figure 1, right).  

 

Figure 1 load spectrum of a tractor 

Considering the load of the hydrostatic pump (figure 2), which supplies the working 

hydraulics, one finds that particularly the increases in partial load and standby conditions 

must be considered in spite of the lower total power.  

 

Figure 2 characteristic operation points of a tractor 

The efficiency of the axial piston pump is defined essentially by its tribological contacts. 

In the corner power range, modern axial piston pumps achieve efficiencies of more than 

90 %, which, however, are much lower in the partial-load range. This is due to the fact 

that the losses do not only depend on the power and that the relief, which is essentially 

responsible for friction and volumetric losses, is designed for corner power for reasons 

of robustness /11/. 

As is evident of the individual losses according to /12/, the tribological contacts slipper 

pad - swash plate, cylinder barrel - distributor plate and the cradle bearing, are the main 

points of loss beside the cylinder barrel – piston contact of the axial piston unit.  
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2. Demand-driven Relief  

Electronification intends to combine the advantages of both technologies: The 

robustness and power density of hydraulics and the energy efficiency and networkability 

of electronics.  

One approach to solve the problems referred to above consists in the demand-driven 

relief of the tribological contacts. For that purpose, the relief forces, which counteract the 

contact pressure in the plain bearings, are controlled. Control is intended to keep the 

residual contact pressure as low as possible and locate the position vector of the latter 

as centrally as possible in order to realize a continuous and at the same time minimum 

gap. The resulting additional benefit is a minimum friction loss, which also minimizes 

unnecessary wear. Moreover, the volumetric losses depend on the gap height very 

much. 

2.1. Cradle Bearing Approach  

The cradle bearing is among the three contact areas dealt with above. In axial piston 

pumps, cradle bearings are mostly of the plain-bearing type and are relieved 

hydrostatically to minimize the losses. The swash plate obviously deforms due to 

positioning forces, transmission forces and the resulting bending moments (Figure 3). 

This creates increased gaps, especially on the outer side of the cradle bearing. In 

contrast to that, the inner side gap is zero. This is responsible for high volumetric 

losses and losses of friction at the same time. 

 

Figure 3 deformation of a swash plate axial piston unit 

The compromise to be found between the relief of the cradle bearing and the resulting 

friction is between dynamics and stability of the control system. This influence has been 

regarded in a sensitivity analysis. 
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By means of a suitable control system, demand-driven relief aims to adjust the pressures 

of the fields of relief to positively influence both the losses and the dynamics of the control 

system.  

In terms of pressure the curve of the level of relief (Figure 4) reveals the potential of 

relief in accordance with the operating point due to the irregular characteristic of the 

remaining force. On the one hand, it is obvious that, due to spring preload, the level of 

relief decreases considerably in the case of low pressures. Moreover the cylinder barrel 

position, which defines how many pistons are pressurized, has a high relevance. This 

leads to temporary over relief and hence to sealing gap.  

 

Figure 4 swash plate bearing relief of a swash plate piston pump 

Based on the demand-driven relief, the level of relief can be adjusted optimally. In 

addition, demand-driven relief provides the considerable additional benefit of providing 

relief only when there is a need for swiveling. This considerably reduces the losses and 

vibrations. 

The functional principle shown in Figure 5, is currently applied to validate the theoretical 

additional value.  

 

Figure 5 circuit diagram of valve controlled relief fields of the swash plate 
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The control of the fields contains information about the current operating point and 

compares it to data in a specific characteristic map. In doing so, the pressures in the 

individual pockets are controlled and adapted to the operating points  

The additional benefit of this approach, on the one hand, is evaluated considering the 

swivel dynamics and transmission stability out of the swivel angle signal and, at the same 

time, through gap measurement devices and volume flow sensors in the high pressure 

fields.  

Especially for applications e.g. mobile applications that are not swiveled over long 

periods of time the losses can be reduced considerable. 

2.2. Cylinder Barrel – Distributor Plate Approach 

The tribological pair cylinder barrel – distributor plate is another contact area whose 

losses have a significant impact on the efficiency. /12/  

Also here, the basic problem is that a geometry-determined level of relief occurs at 

different operating points. The cylinder barrel is pressed onto the distributor plate mainly 

through action of the compressive force. Besides, there are centrifugal forces, shear 

forces at the pistons of transmission and speed-dependent hydrodynamic effects. The 

frictional forces whose direction, as explained above, depend on the operating mode, 

mainly occur at the pressurized pistons of the transmission unit. During pump operation, 

the oncoming pistons are subjected to high pressure, which creates a compressive force. 

During motor operation, this force is reversed and acts as an additional relieving force. 

The precise characteristics of the frictional force can be calculated by means of the 

simulation tool SiKoBu /13/. 

Another problem consists in the above-mentioned centrifugal forces and shear forces. 

These affect the center of gravity of the residual compression of the two contact partners 

in addition. The decentralized position results in cylinder tilting and, hence, inconsistent 

dimension of the lubrication gap, which causes increased friction and volumetric losses.  

The resultant relief field can be determined by the two dimensional Reynolds equation. 

/14/ Expressed in polar coordinates reveals the resulting formula: 

The equation (1) can be simplified by insertion the boundary conditions of velocity (2). 

 &  (2) 
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 (3) 

Since the intended parallel gap is the aim of the optimization, the right side of the 

Reynolds equation, with the “wedge” and “squeeze effect”, can be neglected:  

 (4) 

The unit’s possible operating range depends on the extent of the residual pressure and 

the behavior of the relevant position vector. If the level of relief increases or the 

characteristics of the residual force decentralizes too much, the lubrication gap widens. 

This multiple widening is referred to as transmission lifting. If this case occurs, the unit 

does no longer operate correctly.  

Figure 6 shows the relief field (left) at nominal speed and maximum pressure for a 

swiveled-out condition. Whereas the yellow (bright) area is pressurized, the blue (dark) 

one represents the surrounding or suction pressure. In the graphic on the right, the center 

of the loading force is shown in blue (dark grey), whereas the relief is represented in 

green (bright grey) and the residual force is marked red (grey).  

 

Figure 6 series relief and center of force curves of the distributor 

By means of demand-driven relief, both the position and the amount of the residual 

contact pressure can be influenced. The approach applied is a reduced basic relief, 

which about corresponds to that of a motor unit, as well as additional relief fields that can 

be demand-triggered. 

The valve actuation concept shown in Figure 7 depicts a three-field implementation. 

Equivalently to the cradle bearing, the operating point is measured and the relevant 

pressure applications to the fields are read out from a characteristic map.  
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Figure 7 circuit diagram of valve controlled relief fields of the distributor  

As shown in Figure 8, simulation can prove that the level of relief can be optimized 

towards full relief while, at the same time, the position of the vector of the residual force 

orients itself more in the direction of the center. 

 

Figure 8 optimized relief and center of force curves between of the distributor 

Comparing the calculated additional value of the optimized unit during pump operation 

with a unit designed especially for pumping, it becomes clear (Figure 9) that the level of 

relief is increased during partial-load operation and stays constant at high speeds. The 

lifting problem can be shifted to speeds more than double as high as those of current 

series products.  

 

Figure 9 κ difference and center of residual force in pump mode 
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Figure 10 shows that also during motor operation, compared to the original system, the 

level of relief is more uniform in the case of a more centralized characteristic of the 

residual force and, hence, lower volumetric losses.  

 

Figure 10 κ difference and center of residual force in motor mode 

2.3. Sliding-disk Approach 

The losses at the tribological contact slipper pad – swash plate have approximately the 

same level than those at the distributor plate.  

This tribocontact is also relieved depending on the pressure and based on its geometric 

design. However, as already explained in /15/, also other pressure-independent forces, 

which cannot be compensated merely geometrically, have an influence.  

The centrifugal force plays a particular role because the slipper pad experiences a torque 

that leads to tilting due to the rotation around the drive shaft and the fact that the center 

of mass is not in its own pivot point. At the same time, hydrodynamic effects act on the 

slipper pad, causing additional tilting in the direction of rotation. In addition, this has an 

influence on the relief force as a function of the speed. The operation either as a pump 

or motor also affects the extent of the contact pressure.  

As in the case of the above contacts, these problems can be approached through 

demand-driven relief. Based on a sliding disk, which is designed rotationally symmetric 

to the drive shaft, the hydrostatic field can be controlled, lifting problems on the suction 

side can be solved and centrifugal forces and hydrodynamic effects can be reduced 

considerably.  

By controlling the relief, the system can be relieved uniformly both in the motor and pump 

modes. 

The functional principle shown in Figure 11 left, takes account into a rotatory relative 

movement between the swash plate and the sliding disk, which rotates along with the 

pistons of transmission. The radial movement, which is required due to the elliptic circular 
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path of the swiveled-out swash plate units, is realized separately between the sliding disk 

and the individual pistons of transmission. 

Due to the above, the resulting contact pair sliding disk – swash plate is relatively 

equivalent to the contact pair cylinder barrel – distributor and can be relieved accordingly 

through demand-driven relief of kidney-shaped pressure fields (Figure 11 right).  

 

Figure 11 design and circuit diagram of the relief fields of the sliding disk 

In turn, the relevant relief field can be adjusted such that the relief force counteracts the 

contact pressure in the best possible way and the eccentricity and size of the residual 

contact pressure are kept as low as possible.  

For the swiveled-out condition, Figure 12 shows the relief field at nominal speed and 

maximum pressure. Whereas the blue curve (dark grey) represents the loading force, 

green (bright grey) represents the relief and red (grey) stands for the residual force. The 

pressurized area is marked yellow (bright) and the surrounding or suction pressure is 

marked blue (dark) 

 

Figure 12 relief and center of force curves between of the sliding disk 
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3. Summary and Outlook 

The results discussed hereunder provide an approach to obtaining an optimized design 

and control of the critical lubrication gaps in an axial piston unit. By way of simulation, a 

considerable additional benefit was derived, which apart from enabling an increase in 

efficiency over the entire operating range allows an increase in stability and an extension 

of the power range. In that way, axial piston units can be operated easily in the multi-

quadrant mode and, based on electronification, can solve diverse challenges which will 

arise in the future for hydraulic displacement units for mobile and stationary applications. 

To be able to prove the real additional value, the approach is currently realized by a 

prototype and the theoretical thesis will be validated.  
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5. Nomenclature 

κ level of relief  

h gap height  

η dynamic viscosity  

r radial coordination of the gap  

p pressure  

ϑ circumferential coordinates  

t time  

ur radial surface velocity  

uϑ surface velocity in circumferential direction  

ω angular velocity  

 

306 10th International Fluid Power Conference | Dresden 2016



 

Active Fluid Borne Noise Reduction for Aviation Hydraulic 

Pumps 

Dipl.-Ing. Arne Waitschat 

Institute of Aircraft Systems Engineering (FST), Hamburg University of Technology (TUHH),         

Neßpriel 5, D-21129 Hamburg, E-mail: arne.waitschat@tuhh.de 

Prof. Dr.-Ing. Frank Thielecke 

Institute of Aircraft Systems Engineering (FST), Hamburg University of Technology (TUHH),         

Neßpriel 5, D-21129 Hamburg, E-mail: frank.thielecke@tuhh.de 

Dipl.-Ing. Robert M. Behr 

Airbus Operations GmbH, Hydraulic Performance & Integrity, Airbus Allee 1, D-28199 Bremen, 

Email: RobertMarinus.Behr@airbus.com 

Dipl.-Ing. Ulrich Heise 

Airbus Operations GmbH, Interior & Near Field Noise, Kreetslag 10, D-21129 Hamburg, 

Ulrich.Heise@airbus.com 

 

Abstract 

The aviation environment holds challenging application constraints for efficient 

hydraulic system noise reduction devices. Besides strong limits on component weight 

and size, high safety and reliability standards demand simple solutions. Hence, basic 

silencers like inline expansion chambers and Helmholtz-Resonators are state-of-the-art 

aboard commercial aircrafts. Unfortunately, they do not meet today’s noise attenuation 

aims regarding passenger comfort and equipment durability. Significant attenuation 

performance is expected from active concepts that generate anti-phase noise. 

However, such concepts remain a long term approach unless related costs, e.g. due to 

additional power allocation and real-time control equipment can be avoided. In this 

paper an active fluid borne noise attenuation concept is discussed that accounts for the 

mentioned constraints. An aircraft hydraulic pump is considered as main noise source. 

The active attenuator is an in-house rotary valve design. The basic feature is a known 

direct shaft coupling principle of pump and rotary valve, so no speed/ frequency control 

of the valve and no separate power supply are required. The common-shaft principle is 

further simplified here and proposed as integral feature of future “smart pumps”. 

KEYWORDS: Aircraft Hydraulic System, Hydraulic System Noise, Fluid Borne 

Noise, Pump Flow Ripple, Pump Impedance, Active Attenuation, 

Direct Drain Principle, Rotary Valve, Common Shaft Principle 
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1. Introduction 

The potential & feasibility to reduce flow/pressure ripple – fluid borne noise (FBN) – of 

hydraulic pumps by a rotary valve in common shaft application was presented by 

Goenechea, see e.g. /1/. Taking the common shaft principle as starting point, further 

modifications are discussed in the concept-section, chapter 2, in order to satisfy the 

aviation constraints. Related design parameters and a simulation model are presented 

in chapter 3 and 4. The model is built using the time domain FBN analysis capabilities 

of the software DSHplus v3.9. In chapter 5, a laboratory demonstrator for experimental 

validation is shown. It uses the pump test circuit of a dedicated FBN test rig at TUHH. 

Relevant issues are listed below. Due to paper space only 1 to 3 are further discussed: 

1. The attenuation performance in terms of pump flow ripple (source flow ripple) 

reduction in the pump discharge line for anechoic (reflection-free) conditions.  

2. The attenuator impact on the pumps suction line, because todays passive 

reference silencers at pump discharge port tend to induce suction flow ripple. 

3. The attenuator impact on the pump power balance in terms of a decreased 

stationary pressure/ flow or increased power consumption of the electric motor.  

4. The attenuator impact on the apparent pump impedance (source impedance), 

which is a critical characteristic for interaction with (reflected) system ripples.  

2. Concept 

Active attenuators tend to be an attractive alternative to passive silencers regarding 

piston pump FBN reduction, especially for the fundamental and first harmonic pumping 

frequency. These carry most of the ripple power and passive solutions usually require 

large capacitance or inductance for lower frequencies, increasing silencer size/ weight.  

In /1/ & /2/ some active attenuator concepts were compared, e.g. a Direct Principle 

draining dynamic flow to a lower pressure level, and an Active Resistance Principle, 

storing/releasing dynamic flow in/out a capacitance. Their use in aviation hydraulic 

systems was considered by Kohlberg et al. in /3/. One of the considered attenuator 

concepts was built and tested using a piezo-driven membrane actuator and is 

discussed in more detail in /4/. A high attenuation performance was achieved but came 

with many efforts.  A realization by a rotary valve with pump shaft coupling enables to 

spare many efforts like a separate power supply and a speed/ frequency control.  

A rotary valve (RV) can be designed compact and robust. However, a realistic aviation 

application would also demand to spare/ minimize any other onboard hardware and 

software for RV amplitude and phase control. Hence, a knowledge-based (pre-) design 
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of the pump-attenuator-assembly is required that only allows for simple adaptation 

functionalities, e.g. during maintenance on ground. Starting from typical state-of-the-art 

silencer solutions on aircrafts – in Figure 1 shown with the proposed alternative 

concept – two technical realizations of the concept are given in Figure 2. 

 

Figure 1: Fluid borne noise (FBN) reduction for aviation hydraulic pumps 

The two technical realizations – Figure 2 – of the proposed active attenuator concept 

represent promising baseline candidates for an aviation specific application. That 

means a safety critical application where also failure cases of the RV are taken into 

account, like a stationary pressure drop due to RV sealing wear-out or burst. In that 

case, one or multiple switching valves (see SW or SW1/2) would have to disconnect 

the RV from the pump discharge line. The remaining components of the assembly 

would have to provide a minimum FBN attenuation performance until the next aircraft 

maintenance. E.g. for the shown Direct (Drain) Principle, the connection line length (L1) 

has to be designed such, that the connection line itself acts like a passive side branch 

resonator (SW is closed) for the desired pumping frequencies during RV failure.  
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Figure 2: Considered technical realizations of the Silent Pump Concept and primary 

effect of dedicated tuning parameters on FBN (bold arrows) 

3. Design 

It is assumed that the RV ripple amplitude and phase are adjustable parameters acc. to 

Figure 2 during aircraft ground service. So the RV connection line length (L1/2 or LA/B) 

to Point “A” – and also the pump line length to Point “A” – become key preliminary 

design parameters of the assembly. This is not only for above mentioned RV failure 

cases. During normal operation, these lengths have great influence on the ripple phase 

of the respective ripple sources at Point “A”. This fact will remain for any active 

attenuator assembly acc. to Figure 2, where the RV is assumed as an add-on feature 
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for existing pumps and not yet as an integrated feature inside the housing of future 

“smart pumps” (negligible lengths). The relevant relations can be taken from a general 

solution of the Helmholtz equations /5/:   

 (1) 

 =   (2) 

In eq. (1),  denotes a flow wave along a line,  a pressure wave in positive 

x-direction (progressive) and  in negative x-direction (regressive), all travel with 

speed of sound  in the fluid.  &  represent phase shifts increasing with 

distance and hence wave motion along the line.  &  are complex numbers for the 

line end boundary conditions, e.g. for pump & rotary valve.  is the characteristic pipe 

impedance. In eq. (2), the progressive part of eq. (1) is shown in detail. It is an 

important design equation for the proposed concepts: If of pump & RV have 

the same amplitudes but are in anti-phase at intersection point A, than no progressive 

wave remains in a common discharge line and also no regressive (reflected) wave.  

4. Simulation Model 

The simulation models were built using the software DSHplus v3.9, see e.g. Figure 3.  

 

Figure 3: Model for Direct Drain Principle in DSHplus acc. to test rig setup (Figure 6/7) 

Group F - Pumps | Paper F-4 311



Simulation and test results are limited here to the Direct Drain Principle, Figure 2, due 

to limited paper space. Besides, it was considered to be the most simple & compact 

technical realization, and hence to be most attractive one for an aviation application.  

The Distributed Parameter Hydraulic Toolbox was applied which allows for ripple/wave 

investigation in time domain. The element discretization (discharge line pipe elements), 

Fig.3, is chosen acc. to a test rig to account for its sensor spacing, pipe diameters etc. 

The noise sources can be represented in multiple ways. The pump can be given by 

Function Generators to build sinusoidal signals. They form the flow ripple input of an 

open-ended pipe model ( ). Such flow ripple sources were also 

built from Pump Characteristic Models (look up tables, e.g. test data). Figure 4 gives 

simulation results for the connection line length of pump ( ) & rotary valve ( ). The 

three markers in Figure 4 (O, L1, L2) are related to the experimental setup below. 

 

Figure 4: Simulation results for 0(/1). order ripple frequency in the discharge test line 

Starting from a reference amplitude of approx. 3 bar (pump acting alone), attenuation is 

achieved in the blue marked areas as function of the connection line lengths. Of 

course, suitable lengths depend on the desired tuning frequency (see qualitatively the 

impact of the 1. order instead of the 0. order, Fig 2). Note the studied aviation pump is 

a constant speed pump, which helps to find suitable connection pipe lengths via simple 

optimization algorithms (e.g. MATLAB pattern search). Fluid parameters have a minor 

impact on the lengths, because the mean pressure is constant & temperature variation 

is small. Here, the fluid Skydrol 500B4 is applied with .  
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5. Experimental Setup 

The utilized noise test rig at TUHH follows dedicated ISO- standards, ISO 15086-1/2/3 

& ISO 10767-1/2/3. Procedures in /7/, /8/ & /9/ are also included. The key equipment 

features (1.) test pipes with multiple dynamic pressure transducers for progressive/ 

regressive wave detection & (2.) test ripple sources, here rotary valves (RV), Figure 5.  

 

Figure 5: In-house rotary valve design at TUHH, more details available in /6/ 

The RV shaft speed controls the RV ripple fundamental frequency. The sleeve angle 

adjusts the ripple phase. The ripple shape is adjusted by the sleeve axial position (e). 

The amplitude is set by a needle valve that sets the lower pressure level for the RV. In 

the presented study, the RV is part of the component under test (EMP+RV), Figure 6 

and Figure 7. The needle valve is located in Load Block 2. As mentioned before, 

simulation and test results are limited here to the Direct Drain Principle, Figure 2, due 

to limited paper space. Besides, this principle is the most simple & compact technical 

realization, and hence assumed to be more attractive for an aviation application.  

6. Study Cases 

6.1. Flow Ripple in Discharge Line 

In Figure 4, marker O shows an optimal line combination. The test rig geometry did not 

allow this. If the pump line is minimal, , than   is the 

shortest RV length, marker L1. It provides fair attenuation for 0. & 1. order, Fig. 4, while 

 increases ripple. These expectations match test results for L1 & 

L2, Figure 8. Here, flow ripple are shown and the influence of RV angles is given. 

Noticeable attenuation is achieved even with none-optimal connection line lengths. The 

pump alone would have amplitudes of 1.5 L/min for 0. Order and 1.0 L/min for 1. Order. 
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Figure 6: Hydraulic Diagram of the experimental setup for Direct Drain Principle 

 

 

Figure 7: Picture of the experimental setup; pump test circuit of noise test rig at TUHH  
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Figure 8: Experimental source flow ripple results for different RV connection line 

lengths (L1/ L2) and RV phase angels – Results for pump discharge line 

Under the assumption of zero phase difference between pump and RV, the influence of 

phase changes due to the line lengths is shown in Figure 9 for 1. Order acc. to eq. (2). 

It can be seen that L1 would be an almost optimal RV line length, if . Because 

this is not the case, the optimal lengths for RV are O1/2/3 to cancel the pump ripple. 

 

Figure 9: Analytical discussion of the source flow ripple results for a given/fixed pump 

pipe length (LP) and a variable rotary valve connection pipe length (LRV)  
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6.2. Flow Ripple in Suction Line 

From typical passive silencers in the pump discharge line it is known that their blocked/ 

reflected ripples travel partially back to the pump and into the pumps suction line. 

Hence, passive silencers increase the pumps vibration load and cavitation risk at its 

suction port. Both reduce life time & reliability. So, an investigation of suction line ripple 

is introduced as indicator for pump (+ RV) suffering from its own fluid borne noise. 

Corresponding to Figure 8, suction line test results are given in Figure 10. Similar to 

passive silencers, the main impact is at lowest frequency order(s), for both, connection 

line lengths & RV phase. The RV phase has the greater impact but with opposing trend 

to the results in Figure 8. So “L1, RVphase=270deg” tends to be the best in the 

discharge line, but the worst in the suction line. In case of L2 it is quite similar. This has 

multiple reasons related to the pump impedance and the lower pressure level of 3 bars 

in the suction line (different fluid properties). This should always be taken into account. 

 

Figure 10: Experimental source flow ripple results for different RV connection line 

lengths (L1/ L2) and RV phase angels – Results for pump suction line 

6.3. Overall Power Balance 

For the Direct Drain Principle the RV ripple power is taken from the fluid. A separate 

power supply is spared, but means a small decrease of hydraulic power regarding 

pump mean pressure/flow characteristic. The mechanical power to drive the RV shaft & 

the change of electrical input power are negligible. In cruise condition – mean pressure 

~200 bar & consumer flow ~5 L/min – the RV drain flow is ~3 L/min to achieve required 

amplitudes. This is ~10% of the pump nominal flow, ~30 L/min, and is tolerable up to a 

consumer flow of 25 L/min. Beyond, the mean pressure will drop below required limits.  
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7. Discussion 

The connection line lengths of pump and RV to an intersection point A were highlighted 

as key (pre-) design parameters for the proposed active noise attenuation. The line 

lengths have strong impact on the noise phase at point A & hence on the attenuation 

performance. Although other parameters impact the phase, e.g. shaft speed & fluid 

properties, their impact is minor: A constant pressure hydraulic system – with means of 

temperature control – keeps the fluid properties in small limits. Besides, a constant 

speed electric motor pump was studied. If a variable speed pump/motor is intended, 

e.g. an engine driven pump, length-tuning to a major operating point, is recommended. 

Safety valves (SW) can reduce the RV impact outside this operating point, so passive 

side branch attenuation would remain of the connection line, Fig. 2, L1. Phase issues 

due to connection line lengths will vanish if active attenuation is integrated in future 

smart pumps. The concept here can serve as add-on for existing pumps, Figure 11. 

 

Figure 11: CAD assembly of a more compact laboratory prototype, moving the 

proposed attenuation concept towards an add-on feature for existing pumps  

8. Conclusion 

Active attenuation is known for high fluid borne noise reduction performance. It is 

considered for the fundamental & first harmonic frequency of pumps. These carry most 

of the noise power, and passive silencers require large capacitance/ inductance in the 

lower frequency range, increasing silencer size/ weight. This is an impact on aircraft 

production/ operation costs. Constraints related to flight performance & safety demand 

compact, robust & low-cost equipment. Hence, the paper focused challenges to get 

active attenuation drastically simple, but competitive in performance to passive 

silencers. Realistic concepts were discussed by simulation & test. The feasibility was 

shown. Control equipment is minimized by knowledge-based pre-design. It is referred 

to e.g. /10/ if RT-control (with FIR-filters, LMS-analysis, etc.) is required & e.g. to /11/ if 

time domain FBN modelling of pumps is desired including the pump impedance. 
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Abstract 

The contribution compares results of Large Eddy Simulations of the cavitating flow in a 

model oil hydraulic spool valve using an Euler-Euler and a one-way coupled Euler-

Lagrange model. The impact of the choice of the empirical constants in the Kunz 

cavitation model is demonstrated. Provided these are chosen appropriately the 

approach can yield reasonable agreement with the corresponding experiment. The 

one-way Euler-Lagrange model yields less agreement. It is demonstrated that this is 

due to the lack of realistic volumetric coupling, rarely accounted for in this type of 

method. First results of such an algorithm are presented featuring substantially more 

realism.  

KEYWORDS: Cavitation, oil hydraulics, spool valve, Large-Eddy Simulation, Euler-

Lagrange model, Euler-Euler model 

1. Introduction 

Cavitation is a physical phenomenon that occurs in liquid flows when the liquid 

pressure falls below a critical pressure, generally of the order of the vapour pressure 

vp  /1/. As a consequence, vapour bubbles are formed and convected by the flow. 

They collapse in regions where the pressure rises again above the critical pressure. 

Cavitation denotes the whole process of vaporization, convection and collapse and 

occurs in many industrial applications such as valves, pumps, hydrofoils, chemical 

homogenizers and industrial cleaning. Additionally, diffusion of dissolved non-

condensable gas from the liquid to the cavitation bubble can occur, the so-called gas 

cavitation which, however, is not addressed here. In many cases cavitation is an 

undesired phenomenon since it is often associated with a substantial loss of efficiency, 
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as well as noise and wear. This also holds for oil hydraulic spool valves considered 

here. Although it is not possible to avoid cavitation in such components, it is, however, 

desirable to make statements about the cavitation intensity in an early design phase 

with the purpose to reduce it to a minimum. Due to the high effort needed for 

experiments the accurate prediction of cavitation by simulations becomes more and 

more important for the design of oil hydraulic devices. Common numerical cavitation 

models can be divided into three different approaches: a) models based on an equation 

of state for the homogenized fluid /2/, b) Euler-Euler models/3/ and c) Euler-Lagrange 

models/4/. The second approach considers the multiphase flow only in a statistical 

sense based on effective material properties of the liquid-vapour mixture and is state of 

the art in industrial applications and commercial flow solvers. In contrast, the Euler-

Lagrange model describes the vapour phase by discrete spherical bubbles treated in a 

Lagrangian manner thus offering new possibilities for the fundamental understanding of 

cavitation /5/. The representation of microbubbles as cavitation nuclei allows a safe 

modelling of cavitation inception, for instance. Properties of nuclei, such as the nuclei 

size spectrum and hence the liquid quality, can be taken into account directly with such 

a model. Furthermore, the Euler-Lagrange model is free of numerical diffusion for the 

dispersed vapour phase. It also allows direct modelling of gas cavitation which plays an 

important role for oil hydraulic flow. Moreover, it also offers very detailed temporal 

information for individual bubbles that can be used to calculate other physical 

properties such as erosion intensity or sound pressure level. Besides that, another 

advantage of the Euler-Lagrange approach is that it does not contain empirical 

constants, except coefficients for the momentum transfer, such as the drag coefficient, 

which are general and not cavitation specific, though. Hence, no calibration of the 

model for a specific configuration is necessary, as it is in the case of models based on 

the Euler-Euler approach. The present contribution compares results of Large Eddy 

Simulation (LES) of the cavitating flow in a model oil hydraulic spool valve using an 

Euler-Euler model and an own one-way coupled Euler-Lagrange model. The aim of this 

contribution is to compare the capabilities of the Euler-Euler approach and the Euler-

Lagrange approach for the simulation of cavitation. Using the results to optimize the 

valve geometry will be part of future work. 

2. Numerical modelling of cavitating flows 

In the Euler-Euler model the multiphase flow is described as a liquid-vapour mixture 

where the effective material properties linearly depend on the liquid volume fraction
la . 

For the density r , this ready 
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The pure phases are treated incompressible with constant densities lr  and 
vr for the 

liquid and the vapour phase, respectively. The mixture is governed by the compressible 

Navier-Stokes equations for a Newtonian fluid 
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to close the equation system. Here, u  is the velocity vector, p the pressure, 
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mt  the shear stress tensor and m  the dynamic viscosity. 

Note that a non-conservative form of the continuity equation is used that expresses the 

divergence of the velocity field in terms of the source term in (3) and is very important 

for the stability of the flow solver. The source term S models condensation and 

evaporation and depends on the cavitation model used. Here, the Kunz model /3/ 

without accounting for non-condensable gases is applied 
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where vp  denotes the vapour pressure,
¥

u  and 
¥

t  are characteristic velocity and time 

related to the bulk inflow. The necessity to calibrate the empirical constants evapC  and 

condC  is a major drawback of the model as this needs to be done for each specific 

configuration. 

With the Euler-Lagrange approach the two phases are described in different frames of 

reference. The continuous liquid phase, index l , is represented in an Eulerian frame 

employing the incompressible Navier-Stokes equations 
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The trajectories of the discrete bubbles are described in the Lagrangian frame by 

Newton’s equations of motion 
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where bx  denotes the bubble coordinate vector, bu  the bubble velocity vector, 

3

bbb )3/4( rm pr=  the bubble mass, br  the bubble radius, and br  the bubble density. 

The drag coefficient DC is used as given in /8/. Other interfacial forces such as lift force 

or the force due to the far field pressure gradient are neglected in the present study. 

The variation of bubble volume is modelled by the Rayleigh-Plesset equation /9/ 
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where s  is the surface tension coefficient, g0p  the initial gas pressure, and b0r  the 

initial bubble radius. The second term on the right-hand side of (7) is the partial 

pressure due contaminant gas in the bubble which expands or contracts according to 

the polytropic index n . Bubble expansion is modelled as isothermal and compression 

as adiabatic. The initial gas pressure is obtained from the condition that the bubble 

needs to be at equilibrium in the initial state. 

3. Computational setup and testcase 

The models described in the previous sections were implemented in the in-house finite-

volume code LESOCC2 /10/. Details can be found in /11,12/. In the present 

contribution the cavitating flow in a model of a typical hydraulic spool valve is simulated 

(Figure 1, left). It was developed and experimentally investigated at IFD, Dresden, and 

consists of a supply channel followed by an orifice with 0,95mm gap width and a 

downstream valve chamber ending in a discharge channel. To ensure good optical 

access the model has a plain geometry. The velocity field and bubble distribution were 

obtained at the same instant in time via combined PIV/LIV/Shadowgraphy /5/. The 

computational domain was chosen as shown in Figure 1, right. The spool valve is 

operated with HLP46 hydraulic oil at a working temperature of 41.5 °C. The operating 

point considered here is characterized by a pressure loss of bar 10=Dp  which 

corresponds to a flow rate of l/min 10 . The pressure at the outlet is 4.7 bar. 
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Figure 1: Technical drawing of the experimental setup (left) and the computational 

domain (right). Distances are in mm. 

The flow was simulated by LES using a mesh with 10.3 million cells. Due to the high 

kinematic viscosity of the hydraulic oil the Reynolds number based on the bulk inflow 

velocity and the height of the supply channel is 856Rein = which is very untypical for 

LES. Indeed, the turbulence of the flow is very weak and the simulation effectively is a 

Direct Numerical Simulation, apart from the wall modelling as shown in /12/. The WALE 

model /13/ was used as subgrid-scale model with the model constant 21.0W =C , but 

due to the low Reynolds number had a little impact. The vapour pressure was assumed 

to be 0.2 bar. In the Euler-Lagrange model cavitation nuclei were continuously supplied 

at the inlet with an initial bubble radius b0r  of m 5m . Coalescence and break up of 

bubbles are not considered here and will be part of future work. The vapour phase 

consists of oil vapour and air where the material properties of the mixture are assumed 

to be that of air at standard conditions. 

4. Results 

As a reference, the incompressible single phase flow is examined first. In Figure 2 the 

averaged velocity field in the centre of the valve chamber is shown together with the 

instantaneous velocity field for an arbitrarily chosen instant of time. 
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Figure 2: Simulation of non-cavitating flow in the centre plane. Left: average velocity 

magnitude, right: instantaneous velocity magnitude. 

As can be seen the flow through the small orifice leads to the development of an 

unsteady internal jet in the valve chamber. It is laminar in the region of the orifice and 

remains laminar over a substantial distance until it becomes unstable at about one third 

of the chamber height. Disturbances in the shear layer of the jet grow leading to the 

development of Kelvin-Helmholtz (KH) vortices on each side of the jet. Transition takes 

place before the jet hits the upper part of the chamber. As shown in /11/, the 

occurrence of cavitation in the spool valve investigated here cannot be explained by 

the mean flow features and is only a result of the unsteady nature of the flow. The 

pressure drops significantly under the critical pressure at the centres of the KH vortices 

in the shear layers. These unsteady pressure minima are mainly responsible for the 

initial growth of the cavitation nuclei into large cavitation bubbles, while turbulent 

pressure fluctuations affect the subsequent behaviour of the bubbles. 

First, the Kunz model was applied to simulate the cavitating flow in the context of an 

Euler-Euler model. Four different sets for the empirical constants evapC  and condC were 

used: 1) 100 for both of them as in /3/, 2) 4100 and 455 as found to be the optimum for 

the flow investigated in /6/, 3) 9e5 and 3e4 /7/ and 4) 1000 and 10, respectively. The 

comparison of the instantaneous fields is not reasonable for unsteady, turbulent flows, 

so that the time-averaged vapour volume fraction is shown in Figure 3. It can be 

compared to the experimental result in Figure 4, left. 
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Figure 3: Averaged vapour volume fraction of the cavitating flow in simulations with 

Euler-Euler Kunz model for different sets of empirical constants. 

Obviously, the amount of vapour as well as the vapour distribution is strongly affected 

by the choice of the model constants. Of the cases considered, the best agreement 

with the experiment is found for case 1 (top left in Figure 3).The result in this case is 

obtained by averaging over all cavitation events in time and hence not normalized. 

Local maxima can be observed in the shear layers of the jet for both the experiment as 

well as the simulations. In the experiment the bubble grows earlier than in the 

simulations and also collapse earlier.  

The same result obtained with the Euler-Lagrange method is depicted in Figure 4, right, 

and typical instantaneous bubble distributions from experiment and the Euler-Lagrange 

simulation are shown in Figure 5. The void fraction distribution looks somewhat similar 

to case 4 with the Euler-Euler-Kunz model shown in Figure 3, bottom left, with a higher 

bubble concentration is observed in the upper part of the valve chamber, though. In 

both, experiment and simulation, relatively few but large bubbles are observed, with 

diameter of about 20% of the height of the valve chamber. Occasionally, even larger 

bubbles of up to twice of this diameter are observed in the simulation. This, however, is 

an artefact resulting from the neglected volumetric coupling and will be significantly 

improved when the effect is accounted for. This issue is addressed in the next section. 
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Figure 4: Qualitative comparison of cavitation bubble distribution by averaging of 

gray-scale plots. Left: Experiment, right: simulation with Euler-Lagrange 

model. 

                                                                      

Figure 5: Snapshot of bubble distribution for an arbitrary instant in time.             

Left: Experiment, right: Euler-Lagrange model. 

 

5. Influence of volumetric coupling in the Euler-Lagrange approach 

As mentioned in the previous section neglecting in the Euler-Lagrange model the 

displacement of liquid due to variations of the bubble volume, the so-called volumetric 

coupling, leads to an overestimation of cavitation in the simulation compared to 

experimental observations. Unfortunately, the development of a robust solution 

algorithm accounting for volumetric coupling is very challenging due to the strong 

pressure-velocity-density coupling and the treatment of the different phases in different 

frames of reference. To the best of the author’s knowledge the only method for 

unsteady simulations of cavitation with an Euler-Lagrange model that accounts for 

volumetric coupling was proposed by Shams et al. /4/ employing a Low-Mach number 

pressure-based algorithm.  

To investigate the influence of the volumetric coupling, simulations of a single 

cavitating bubble in a nozzle flow were conducted in the present project. Figure 6 

shows the temporal history of the bubble radius of an initial cavitation nucleus without 

and with consideration of volumetric coupling (label 1-way and 2-way, respectively). 
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Figure 6: Evolution of a cavitating bubble in a nozzle flow. Left: Configuration and 

trajectory of the bubble with representation of the bubble at several instants of 

time for the case without volumetric coupling. The contour plot shows the 

pressure field. Right: Temporal Evolution of the bubble radius without 

volumetric coupling (label 1-way), with volumetric coupling according to /4/ (2-

way (Low-Mach)), as well as with stable solver developed by the authors 

(2-way (own)). 

The pressure rises in the vicinity of a growing bubble due to liquid displacement leading 

to an obvious decrease of the bubble growth compared to the case without volumetric 

coupling (label 1-way).The Low-Mach number solver proposed in /4/ was implemented 

as well, but it leads to an early unphysical bubble collapse with a subsequent bubble 

rebound. This behaviour originates from the insufficient coupling between the flow 

solver and the bubble dynamics for large rates of bubble growth and hence yields an 

unstable simulation. From a principle point of view, a solution algorithm based on a 

Low-Mach number approach cannot be promising since it is based on the 

independence of pressure and density and seems to be applicable only for very small 

bubble growth rates. Hence, this method is found unsuitable for the simulations of 

cavitation in the spool valve under the operating conditions investigated here. In order 

to cope with this issue, a new stable solution method was developed for arbitrary large 

bubble growth rates (label 2-way (own) in Figure 6). As can be seen the bubble 

behaviour seems physically reasonable and the bubble life time as well as the 

maximum bubble radius are both affected by the volumetric coupling. 

6. Conclusions 

The cavitating flow in a model hydraulic spool valve was simulated by means of Large-

Eddy Simulation in conjunction with an Euler-Euler and a one-way coupled Euler-

Lagrange model. The result obtained by the Euler-Euler Kunz model strongly depends 

on the choice of the empirical constants. Both approaches can lead to similar results 
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that are in reasonable agreement with experiments in terms of bubble locations and 

bubble size. For the Euler-Lagrange model the importance of the volumetric coupling 

for the bubble dynamics, disregarded in other methods, was demonstrated. Work in 

this direction is under way. 
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9. Nomenclature 

a  Volume fraction - 

condC  Empirical model constant in the Kunz model  - 

DC  Drag coefficient - 

evapC  Empirical model constant in the Kunz model - 

WC  Model constant of the WALE model - 

pD  Pressure loss Pa 

I  Identity matrix - 
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k  Adiabatic index - 

m  mass kg 

m  Dynamic viscosity Pa s 

n  Polytropic index - 

p  Pressure Pa 

g0p  Initial gas pressure Pa 

r  Radius m 

inRe  Reynolds number related to the bulk inflow - 

r  Density kg/m3 

S  Source term 1/s 

s  Surface tension coefficient N/m 

t  time s 

t  Shear stress tensor Pa 

u  Velocity magnitude m/s 

u  Velocity vector m/s 

x  Spatial coordinate vector m 

 

Subscripts (denoted for an arbitrary quantity f ) 

bf  Physical quantity related to a discrete bubble 

b0f  Physical quantity related to the initial state of a discrete bubble 

lf  Physical quantity related to the liquid phase  

vf  Physical quantity related to the vapour phase  
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Abstract 

Avoiding cavitation and especially cavitation erosion are tasks, which have to be 

considered when working with hydraulics. State of the art is the assessment of the risk 

of erosion by component testing or to completely avoid cavitation by means of CFD. 

Another reliable method to assess the risk of cavitation erosion is until now not 

available. This paper deals with this problem and delivers comparative values for a 

later method development. In a first step the cavitation of a poppet valve, which 

controls a methanol flow, is visualized. The resulting three cavitation appearances are 

deeply examined. After that the results of long-term tests at different operation 

conditions are presented. A poppet surface analysis following each experiment has 

shown different types of surface attacks. As a result of this work it is shown that both 

cavitation appearance and surface attack are strongly influenced by the temperature 

dependent air solubility of the liquid. 

KEYWORDS: Cavitation visualization, cavitation erosion, poppet valve, methanol 

1. Introduction 

Cavitation is a process which can be expected in many hydraulic components. A local 

pressure drop causes evaporation and/or degassing of the liquid. This process can be 

accompanied by mostly unwanted effects such as noise, vibrations, efficiency losses 

and erosion. Especially cavitation erosion has to be avoided, because it can cause 

damage of components. Not every occurrence of cavitation causes cavitation erosion 

and it is mostly not possible or not efficient to avoid cavitation in hydraulic components. 

Thus it is interesting for the design of components to know under which conditions 

erosion can occur with the absence of cavitation. It is also desirable for component 
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manufacturers to have a tool or a model, that makes a prediction of erosion probability 

and erosion position possible. This allows an optimization of components in the early 

development stage. 

This paper addresses the problem of cavitation erosion prediction. To reach the overall 

objective of a predictive tool experiments are necessary in a first step. These should 

clarify required conditions for cavitation erosion. The investigation of the erosion will be 

done using a typical poppet valve. This valve type has a simple structure and 

functionality, which makes the investigation and interpretation easier. Poppet valves 

are also often used with a variety of liquids with some of them showing a high 

cavitation tendency and thus higher risk of cavitation erosion. 

To find the necessary conditions for cavitation erosion the first step of this work is the 

visualization of cavitation under different operating conditions. In literature some 

possibilities can be found to make cavitation visible. A good overview of three of them 

is given by Mauger et al. /1/. The easiest possibilities are the shadowgraph-like imaging 

methods, which can be split into the standard shadowgraph technique and the 

shadowgraph-like arrangement. The very often used shadowgraph-like arrangements 

let cavities appear dark as shown in /2/ and /3/. This technique can also be combined 

with other optical flow measurement techniques as shown by Müller et al. with the 

example of a combined PIV/LIF/Shadowgraphy measurement in a valve chamber /4/. 

Other possibilities are the schlieren and interferometry techniques presented by 

Mauger, which make density gradients and thus cavitation visible. After identifying 

different cavitation intensities through visualization, long-term tests of cavitation erosion 

at selected operating points will be presented. Different methods can be used to 

assess the aggressiveness of cavitation erosion. Two methods requiring small effort 

are weighing the mass loss as it was used by Chahine /5/ or to observe the eroded 

surface, for example by a pit count as executed by Franc /6/. In a last step the results 

of the erosion tests will be compared to the visualized cavitation appearances and 

possible explanations for the effects will be given. 

2. Basics of cavitation and cavitation erosion 

2.1. Cavitation basics 

Cavitation is a phenomenon known for over 100 years, which is due to its complexity 

still a topic of research. In general cavitation is a dynamic process of formation and 

collapse of cavities in liquids. This cavities can contain, depending on the operation 

conditions, gas and/or vapour. Depending on the expansion mechanism, three 
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cavitation types can be distinguished: vapour-, gas- and pseudo-cavitation. For the 

development of vapour cavitation, where the liquid is locally evaporating, a pressure 

reduction to the temperature dependent vapour pressure is necessary. Caused by an 

ensuing pressure increase the vapour condenses and the process is ending. The 

whole vapour cavitation event is extremely transient and typically happens in the range 

of microseconds /7/. Negative consequences such as pressure shocks, erosion, noise 

or efficiency losses can occur due to vapour cavitation. Gas cavitation is also induced 

by a pressure reduction. Based on the pressure drop the solubility of gas in the liquid is 

reduced according to Henrys law. The resulting supersaturation leads to a diffusion of 

gas out of the liquid. Gas cavitation is happening clearly slower than vapour cavitation. 

The necessary pressure for gas cavitation can be, depending on the liquids history, 

much higher than the vapour pressure. Pseudo cavitation is the pure expansion of 

existing gas bubbles without diffusion. According to Schade, gas and pseudo cavitation 

do not have such negative consequences as vapour cavitation, which can lead to a 

failure of components. But noise and efficiency losses are also typical for them /8/. In 

hydraulic systems a coexistence of all cavitation types is usual. Besides pressure 

reduction the presence of cavitation nuclei is a basic requirement for all cavitation 

types. The pressure reduction can be reached by high liquid velocities due to the 

narrowing of the flow area. An estimation of the pressure drop at different positions is 

possible by means of Bernoulli´s law for frictionless, incompressible flow: 

 (1) 

Thus an increase of the velocity  causes a smaller static pressure  at the considered 

position, which depends on liquid density . An estimation of the vapour cavitation risk 

is possible using the cavitation number , which can be derived by equation (1): 

 (2) 

The vapour pressure  depends on the used liquid, but is also strongly influenced by 

the temperature. At  a cavitation inception must be expected. A cavitation number 

 stands for a high probability of vapour cavitation. The cavitation number may 

not be used as only indicator for cavitation, because in reality there are many other 

unconsidered influencing factors. 
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2.2. Cavitation erosion basics 

In general erosion is a strength problem. Thus both sides, material and load, have to 

be considered, where the load is the cavitating liquid whose aggressiveness can be 

described by quantities such as pressure, temperature, vapour fraction etc. More in 

detail, a vapour bubble collapse close to wall can cause the formation of a micro jet. 

This high velocity liquid jet, which is directed towards the wall, causes a pressure shock 

in the moment of impingement. This water hammer pressure stresses the wall and in 

case of a low cavitation erosion resistance, the wall can be damaged. The cavitation 

resistance can´t be described directly by typical material properties such as tensile 

strength, because the strain rate is more than seven orders higher in case of cavitation 

stress than in the tensile test /5/. Thus these values are not valid for such a load. 

Furthermore, the time behaviour of cavitation erosion is varying depending on a brittle 

or ductile material behaviour /5/. The presented short overview of the cavitation erosion 

basics should illustrate the complexity of this topic. 

3. Poppet valve model and test rig 

This section presents the design of the selected valve and an overview of the test rig. 

One first specialty of the presented work is the usage of methanol as test liquid. It is a 

liquid often used in process technology, which has a significant higher vapour pressure 

compared to the typical hydraulic liquids water and oil. Thus it is well suited for 

cavitation and cavitation erosion investigations. 

3.1. Poppet valve model 

In Figure 1 an overview of the poppet valve model and the detailed cross section are 

shown. The design of the valve model was subjected to the following requirements: 

· Model of a typical process technology poppet valve 

· Visual accessibility for cavitation visualization 

· Possibilities of fast erosion tests and easy change of eroded components 

· Measurement of flow variables suited for validation 

· Exact gap adjustment with high spatial resolution 

The chosen nominal diameter of the poppet valve model is dn=1 mm. The poppet and 

the valve seat are made of grey cast iron EN-GJL-250. This group of materials is 

known for the very low cavitation erosion resistance /9/. Thus fast erosion results can 

be expected. Furthermore it is possible to screw the two cast iron components in. 

Hence there is the opportunity to change eroded parts or to investigate modified 
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designs. A direct connection between poppet and a moveable stem allows to vary the 

gap height. For exact gap adjustment the step is connected to a linear stage, which is 

moved by a high resolution micrometer screw. To meet the last requirement of the 

valve model, which is the visual accessibility, the cuboid shaped cavitation chamber 

has two parallel windows for optical examination. 

 

Figure 1: Valve Model a) Overview; b) detailed cross section  

3.2. Test rig 

As described in chapter 1, there are different possibilities to make cavitation visible. An 

easy way for cavitation visualization is the back light imaging, also called “shadow-

graph-like arrangement” /1/. When using this technique, the valve model is positioned 

between a light source and a camera. This setup is shown in the top of Figure 2. A 

lens system is used to parallelize the light of a light-emitting diode (LED). In case of a 

fully liquid filled cavitation chamber the whole light passes the valve model in a parallel 

manner. Thus the complete fluid area appears equally illuminated. If cavitation occurs 

in the chamber the light must pass the interfaces between liquid and gas or vapour. 

This transition causes various effects on the interface passing light. Besides the 

reflection and refraction of the light, in particular a ray deflection at the crooked 

cavitation interface causes a dark appearance of the cavitation regions. In order to 

capture these effects, a camera lens is focused onto the flow. For very fast events, as 

typical for cavitation, it is recommended to use a high-speed camera. This enables high 

capturing frame rates, for tracking the fast change of the cavitation regions, and allows 
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extremely small exposure times for sharp snapshots. One drawback of this easy 

method, which makes cavitation visible, is that it is not possible to distinguish between 

gas and vapour cavitation. 

 

Figure 2: Test rig  

Besides the optical system, Figure 2 also shows the hydraulic circuit. A variable speed 

pump, which consists of the gear pump P1 and a variable speed motor M1, delivers the 

desired volume flow. This flow rate is close-coupled controlled. The actual volume flow 

rate Q can be calculated with the help of a high-precision Coriolis mass flow sensor S2. 

Between pump and valve model V4 a 15 µm pore sized filter is positioned. In the valve 

model a temperature sensor S4 and two pressure sensors, for inlet S3 and chamber 

pressure S5 measurements, are integrated.  
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By means of a temperature conditioning system it is possible to control the fluid 

temperature of the main reservoir and thus the inlet temperature of the valve model. 

The system consists of a separate open circuit, because a direct heating of the used 

test-liquid methanol is too dangerous. Water, which is used as thermal fluid, is pumped 

by the combination of a fixed displacement pump P2 and a constant speed motor M2. 

The water temperature is controlled by a cooler and a heater. The heat transfer from 

water to methanol takes place in the main reservoir through an integrated corrugated 

pipe. The actual main reservoir temperature is measured by a temperature sensor S1. 

For security reasons it is possible to connect the valve model to a nitrogen pressure 

source via valve V3, which is controlled by the pressure-reducing valve V2. This makes 

a flushing of the circuit with nitrogen possible to prevent the development of an 

explosive methanol-oxygen mixture. Another safety measure, which is necessary due 

to the risk of explosion and health hazard of methanol, is a positioning of the test rig in 

a safety workbench with an included extraction system. In the workbench a gas 

detector is located, which turns off the whole test rig in case of a risk. Last but not least 

a pressure relief valve V1 and a stop valve V5 are installed. 

4. Experimental procedure 

The presented test rig allows a variation of the three operating variables gap height g, 

volume flow Q and methanol temperature . An overview of their possible operating 

range is shown in Table 1. The desired inlet pressure p1 can be mainly adjusted by the 

combination of gap height g and volume flow Q. A variation of the cavitation chamber 

pressure p2 is not necessary for the first tests. It is sufficient to influence the cavitation 

aggressiveness by varying the other conditions.  

variable operating range 
gap height g 0 …150 µm 

volume flow Q 0 … 20 l/h 
methanol temperature   10 … 50 °C 

inlet pressure p1 1 … 8 bar 
cavitation chamber pressure p2 ≈ 1 bar 

Table 1: Operating variables of the test rig 

4.1. Cavitation visualization 

After first measurements of the valve flow characteristics, which are necessary for a 

later comparison between experiments and CFD, it was the task to define a couple of 

operating points for execution of cavitation erosion tests. The idea was to find at least 

three different points with varying cavitation aggressiveness. Point one was intended to 
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be reference point without aggressiveness. The two remaining operating points should 

be typical for medium and high cavitation aggressiveness. A good possibility to judge 

the cavitation aggressiveness is to observe the cavitation chamber by means of the 

installed high speed camera.  

 

Figure 3: Visible types of cavitation in the valve model a) no visible cavitation 

b) visible sheet cavitation c) visible cloud cavitation 

During the search for possible operating points recurrent types of cavitation have been 

observed. These were the sheet cavitation and cloud cavitation. An overview of typical 

examples can be seen in Figure 3. To make a comparison of these randomly chosen 

points possible, the calculated cavitation numbers are given. Typical for high cavitation 

numbers was the “no visible cavitation” state, but was also frequently observed at 

cavitation numbers far below 1. One example of the “visible sheet cavitation” state is 

also shown in Figure 3. In this state the number, size and position of the individual 

sheets varied depending on the operation point, but also randomly at constant points. 
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Overall the sheet cavitation can be considered as quasi-stationary state. The cavitation 

number was also scattered over a wide range. Visible cloud cavitation, which was the 

third observed state, has a very unsteady appearance. Although partially recorded with 

very high frame rates of up to 88,000 frames per second, allowing a time difference of 

only 11 µs between two images, no one looks like the other. The cavitation number of 

this third state was typically very low.  

Looking at the cavitation numbers of the three randomly chosen operation points the 

trend is obvious, that at cavitation numbers below 1 there is always cloud cavitation, 

between 1 and 2 sheet cavitation occurs and above 2 there is no cavitation. But in 

reality it is not so easy to describe. Operation points, which show a very high cloud 

cavitation intensity over a long time are in the next moment completely free of visible 

cavitation. This happens without changing any conditions and is then also stable over a 

certain period. A comparable behaviour has been observed for sheet cavitation. A 

possible hypothesis to describe this behaviour is a varying cavitation nuclei intensity. 

As described in chapter 2.1, the development of cavitation is only possible with the 

presence of cavitation nuclei. 

4.2. Analysis of cavitation appearance 

Caused by this overlap of the different types and thus no reliable prediction of the 

appearance in the valve model depending on the operation point, the next step was to 

analyse the dependence of the type of cavitation on different physical quantities for all 

recordings. In this process over forty operation points at varying gap heights, volume 

flows and temperatures were evaluated. A varying cavitation nuclei intensity is also 

very probable, because the evaluated measurements were scattered over weeks. A 

meaningful chart to describe the probability of reaching a certain cavitation appearance 

is presented in Figure 4. There are the three occurring cavitation types plotted over the 

temperature  and cavitation number  of the evaluated operation points. Most obvious 

is the occurrence of cloud cavitation, which is observed in the presented valve model 

only at low cavitation numbers. In the analysed recordings cloud cavitation was only 

possible over the whole temperature range by dropping below a cavitation number 

=0.25. It seems that the cavitation number limit of cloud cavitation decreases with 

increasing temperature, but for a reliable statement more measurements are 

necessary.  
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Figure 4: Occurring types of cavitation depending on temperature 

and cavitation number 

A next obvious point is, that the state of “no cavitation” is spread over the whole chart. 

Especially at low cavitation numbers this is not the expected behaviour. But the 

appearance of this fact at several points shows, that this is not untypical for valves. 

Thus there is no operation point of the valve, where a continuous cloud cavitation is 

presented. But at points with cavitation number below , there is a high 

probability. Furthermore, the points where “sheet cavitation” occurs show a strong 

dependency on temperature. At temperatures above round 30 °C there is no operation 

point with this state, although there have been many measurementpoints.  

A possible explanation of this phenomenon is the air solubility, which is not only 

changing with the pressure, but also with the temperature. At room temperature and 

ambient pressure methanol is able to solute 17 vol% of air /10/. This value is nearly ten 

times higher than the solubility of air in water, thus it is not recommended to neglect 

gas cavitation. In case of water, the air solubility decreases by increasing temperature. 

Increasing from 20 to 40 °C causes air-solubility losses of round 24 % /11/. The 

influence of temperature changes in case of methanol is not known, but a decreasing 

solubility by increasing temperature is probable. Hence, at measurements above 

ambient temperature the stationary air solubility in the main reservoir is lower than at 

other points of the test rig. This is caused by the highest temperature in the main 

reservoir, which is a result of the temperature losses between reservoir and valve 

model. The liquid is degassing in the reservoir until the equilibrium solubility of air is 

reached. Caused by the lower temperature in the pipe, the pumped liquid is an 

undersaturated solution. To make further degassing possible a very low static pressure 
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is necessary, which can locally only be reached by high liquid velocities according to 

Bernoulli´s law (see chapter 2.1). High liquid velocities, which reach a maximum in the 

valve model gap, stand for high Reynolds numbers and thus for turbulent flows. A 

consequence of this high degree of turbulence is the appearance of cloud cavitation at 

the presence of air and/or vapour. At high temperatures cloud cavitation occurs at 

relatively constant cavitation numbers. Since the cavitation number does not refer to 

gas cavitation, this indicates the presence of pure vapour cavitation. Thus at higher 

temperatures the liquid evaporates in the gap before a further degassing is possible, 

because the vapour pressure is higher than the required gas equilibrium pressure. The 

described hypothesis of the phenomenon is confirmed by the fact, that sheet cavitation 

is also possible at lower temperatures combined with cavitation numbers far above 1. 

Thus this appearance especially at high cavitation numbers is solely gas cavitation. At 

lower cavitation numbers and near room temperature a mix of gas and vapour 

cavitation probably occurs. Caused by the associated high velocity and thus higher 

turbulence, a decreasing cavitation number leads to a transition from sheet to cloud 

cavitation.  

5. Long-term tests and investigation of cavitation erosion 

After visualization and analysis of cavitation appearance, it was the task to provoke 

cavitation erosion. To define promising operation points, the insights of the prior 

chapter are used. Since the erosion behaviour and thus the required duration was 

unknown, a duration of around one week was arbitrarily defined for each long-term test. 

After each test the valve model was disassembled and the surfaces of valve seat and 

poppet were examined under microscope. A detailed investigation of the erosion 

especially of the poppet surface is possible, because the flat surface allows a level 

illumination and a sharp illustration of the whole area. The resulting poppet surfaces of 

the first three long-term tests are shown in Figure 5. For comparison, Figure 5 a) 

shows the surface of the new poppet. The dark spots are graphite elements of the grey 

cast iron. For a better orientation, the position of the valve models nominal diameter dn 

is marked in all images. The first long-term test was executed at room temperature in 

the field of typical sheet cavitation. A surface comparison shows no visible change. 

Thus, this type of cavitation seems to have no erosive potential within the test duration. 

In the next test the main reservoir was heated up to a temperature of 55 °C, which lies 

10 K below the boiling temperature of methanol. Due to heat losses this results in a 

liquid temperature at the valve inlet of 45 °C at the chosen volume flow. The cavitation 

number was adjusted to a comparable dimension of test 1. 
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Figure 5: Poppet surfaces after several long-term tests a) new surface b) - d) surface 

after long-term test 

A check of the surface after this second test clearly shows a change of the surface. 

Over the whole area small pits can be identified, which are indicators for a surface 

attack due to cavitation. This beginning process of damaging has its highest intensity 

near the gap, as highlighted in Figure 5. Furthermore there are some locations with 

circular annealing colours at the surface. These are distributed without apparent 

structure. Annealing colours of metals are a consequence of an oxidation of the 

surface. For these, high temperatures, typically above 200 °C, and the presence of 

oxygen are necessary /12/. Since the required temperature lies far above the 

measured liquid temperature, a local acting event must cause this temperature 

increase. A possible explanation for this increase delivers the so called “micro-diesel 

effect”, which is well known from cavitating oil /13/. Thereby a local rapid pressure 

increase, which can be caused by a collapse of vapour bubbles, compresses small gas 

bubbles. These are filled with a mixture of gas and flammable components. The bubble 

temperature increases caused by the gas compression. By reaching the ignition 
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temperature, combustion of the bubble mixture happens. This phenomenon is also very 

probable for cavitating methanol, since the mixture of methanol and oxygen has a very 

low ignition temperature of 470 °C. Reaching it within one single bubble can cause a 

chain reaction of self ignition in other bubbles filled with a flammable mixture. These 

events producing local high temperatures and causing annealing colours are possible. 

The necessary oxygen can be delivered through degassing of dissolved air within the 

methanol. 

Figure 5 d) shows the result of the poppet surface after the third long-term test. In this 

test the influence of small volume flow combined with high temperature was examined. 

The inlet pressure was unchanged compared to the test before. Caused by the smaller 

flow rate and thus higher temperature losses, the liquid temperature at the valve 

models inlet reached only 35 °C. Nevertheless, the resulting poppet surface shows a 

clear pattern. Around the valve models gap an annealing colours ring was arising. 

Compared to the tests before, this is the first operation point with a not randomly 

distributed surface attack. In comparison to the local small annealing colours of test 2, 

a recurring “micro-diesel effect” was necessary to reach such a ring. In general 

annealing colours should be avoided, because they weaken the surface. It is 

conceivable that a further attack of the surface in the annealing ring area through the 

“micro-diesel effect” can cause fatigue of the surface. A breakout of surface particles 

and thus cavitation erosion of the surface will be the results. Erosion is especially 

dangerous near the gap, because it influences the valve functions negatively. 

A comparison of the three long-term tests, which were conducted at comparable 

cavitation numbers shows the influence of air in the valve model. In test 1 a high 

amount of free air through gas cavitation is probable (see also chapter 4.2), which is 

possible damping vapour bubble collapses and thus prevents cavitation erosion. This 

damping behaviour is also known from water /14/. Test 3 has no or a small amount of 

free gas. Thus there is no damping effect and the surface is spread by pits caused by 

“hard” vapour bubble collapses. A small amount of gas, as it is probable in long-term 

test 2 can lead to the “micro-diesel effect”. This is a mainly thermal attack of the valve 

material, which can result in a weakness of the surface and makes a further damage 

more likely. 
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6. Conclusion and Outlook 

The investigated poppet valve shows three recurrently appearing types of cavitation in 

combination with methanol. The analysis of these cavitation types reveals a coupled 

dependency of the appearances on temperature and cavitation number. As main 

reason for this dependency the behaviour of air solubility in methanol is suspected, 

which decreases with increasing temperature. The investigation of the cavitation 

erosion of the valve by means of long-term tests shows three states of surface attack. 

These are besides no surface attack, a pit-spread surface and a thermal attack. These 

types of attack seem to be also depending on the amount of air. Thus this work shows 

the high influence of air solubility on cavitation appearance and the resulting surface 

attack in case of methanol. Future works will be focused on simulation of the visualized 

effects by means of CFD. This simulation, which should consider gas and vapour 

cavitation, will later be used to make an assessment of cavitation erosion possible. 
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Abstract 

In this paper numerical flow calculations with respect to the annular gaps with added 

radial grooves normaly used on the spools of directional control valves were carried out. 

The impact of various annular gap geometries and radial grooves during variable 

pressure conditions, and while using different hydraulic fluids, on the flows through 

annular gaps were investigated for different flow regimes. Samples with different 

geometries and numbers of radial groves on the spool of the directional control valve 

were also made for the purpose of carrying out flow measurements. The two different 

hydraulic fluids that were used in the numerical simulations and for the flow 

measurements were a hydraulic mineral oil and tap water. The results of the numerical 

calculations for the different models of the radial grooves with axially symmetric 

geometries show their impact on the internal leakage with respect to three different 

regimes of flow. The results of the numerical calculations based on the use of a hydraulic 

oil show a trend that was established by the experimental investigation.  

KEYWORDS: Hydraulics. radial gaps. labyrinth sealing. directional control valve. 

spool. leakage. hydraulic mineral oil. tap water. numerical calculations. 

measurements 

1. Introduction 

Inside hydraulic components, for example, valves, pumps and motors, there are moving 

parts that are normally sealed by small annular gaps without any additional elastic seals. 

These gaps are typically in the size range between one and ten micrometres in the 

centric position of the spool in the hole. It is generally known that radial grooves reduce 

the friction between the spool and the hole, but little is known about their influence on 

the internal leakage through the gap. Nowadays, an ecological approach is very 

important and the use of water as a hydraulic fluid can protect the environment. However, 

tap water as a hydraulic pressure medium still poses a lot of unanswered questions /1. 

2. 3/. This paper will attempt to answer some of those questions. 
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Three different types of flow are known:  

· Turbulent flow, where the Reynolds number is higher than 2320. 

· Laminar flow, where the Reynolds number is between 1 and 2320. 

· Stokes flow, where the Reynolds number is lower than 1. 

2. Radial grooves and gaps in hydraulic components 

The radial gap is the basic element in hydrostatics; it is a channel added to the gap. The 

literature /4, 5/ describes the triple function of the grooves in hydraulics. The first function 

of these radial grooves is the normalisation of the pressure in each groove, where the 

step pressure drop and the centric position of the spool are the consequences. The 

second function is reducing the radial force on the spool to hole surface. Figure 1 shows 

the reduction of the contact force depending on the number of radial grooves. Here, the 

width of the grooves is always greater than the height. This function is mostly used by 

the sliding type of directional control valve, where a rapid response without stopping the 

spool is required. 

 

Figure 1: Reduction of the contact force depending on the number of grooves /4/ 

The third function of the groove /4/ is to reduce the leakage from the gap. It is generally 

believed that the turbulence flow in a radial groove (Fig. 2) can cause a pressure drop 

from the inlet to the outlet of the groove. In this way the radial grooves simply present a 

labyrinth sealing /4, 5/. Figure 3 shows the pressure drop during the flow through four 

radial grooves /5/. 

 
Figure 2: Turbulence of the fluid flow in the radial groove /4/   
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Figure 3: Pressure drop of the fluid flow through three radial grooves /4/   
 

The flow through a smooth radial gap without grooves can be calculated using equation 

(1), where a Hagen-Poiseuiller laminar flow is considered /6/. This flow through the gap 

is normally referred to as leakage flow (QL). 

 (1) 

where pr [Pa] is the pressure difference, Dsr [m] is the middle diameter in the gap, s [m] 

is the height of the gap where the spool is centred in the hole,  [kg/m3] is the density, 

is the kinematic viscosity of the hydraulic fluid, L [m] is the overlap of the spool in 

the hole channel and feksc [/] is a factor of eccentricity for the spool in the hole. For the 

maximum eccentricity it is 2.5, and 1 for a totally centric position of the spool in the hole.  

3. Numerical investigations  

First, the numerical investigations will be presented. These are followed by an 

experimental study of the impact of radial grooves on the leakage in the gap.  

3.1. Parameters for the numerical investigations 

The presented numerical study investigated the impact of three different groove shapes 

(Fig. 4), three different groove widths, four different numbers of grooves, for five different 

inlet pressures, three different spool diameters, three different gap heights and two 

different fluids. 
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Figure 4: Properties of the numerically and experimentally tested labyrinth groves 

Table 1 shows all the parameters employed in the numerical and experimental 

investigations. All these parameters were first investigated in the numerical study, while 

the highlighted parameters were additionally verified in the experimental part of this work. 

      Groove shape 

Parameter 

Square Triangular Semicircular     

Groove width (a) [mm] 0.3 0.5 1   

Number of grooves (n) [/] 3 5 7 9  

Input pressure (p1) [bar] 150 200 250 300 350 

Spool diameter (Di) [mm] 8 12 20   

Gap height (s) [mm] 0.1 0.01 0.005   

Used hydraulic fluid Tap water ISO VG46    

Table 1: Parameters used in the numerical (all) and experimental (shaded) 

investigations 

Figure 5 shows an example of the dimensional arrangement of five square grooves, 

where the spool diameter is 12 mm, the groove width is 0.3 mm, its depth is 0.3 mm, the 

distance between the grooves is 2 mm, the gap height is 0.1 mm and total researched 

length is 13.5 mm. 

 

Figure 5: Dimensional arrangement of the five square grooves. 
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The determination of the mesh on the researched cross-section is the next step in the 

numerical investigation. Two different types of mesh were used, depending on the 

geometrical shape of the groove. For the circular type of grooves a structural mesh was 

used, and for all the angular types (square, triangular) of grooves a non-structural mesh 

was used, with the aim being to achieve the best results (Fig. 6). Numerical 

investigations were done by software Ansys. 

       

a.                                                               b. 
Figure 6: a) Circular and b) angular mesh for the numerical analyses 

3.2. Results of the numerical investigations 

Figure 7 shows the results of the numerical calculations of the flow through the square 

groove with the gap height of 0.1 mm, with the use of water in the turbulent flow regime. 

The maximum axial flow velocity (Fig. 7. a) of 134 m/s was observed in the 0.1 mm height 

of the radial gap; the minimum flow velocity was observed in the middle of the square 

groove; and the maximum negative flow velocity of -42 m/s was observed at the bottom 

part of the groove. The maximum positive radial flow velocity was found on the middle 

inlet side of the groove and the maximum negative radial flow velocity of -61 m/s was 

found on the opposite side of the groove. The highest turbulence kinetic energy of 696 

m2/s2 was found near both sharp edges of the square groove. 
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Figure 7: Numerical results for the groove: 0.3 mm (a) and 0.1 mm (s) with water; a) Axial 

flow velocity. b) Radial flow velocity c) Velocity magnitude. d) Turbulence kinetic energy 

Figure 8 shows the results of the numerical calculations of the flow through a square 

grove with a gap height of 0.1 mm using a hydraulic mineral oil in the laminar flow regime.  

 

Figure 8: Numerical results for groove: 0.3 mm (a) and 0.1 mm (s) with mineral oil;     

a) Axial flow velocity. b) Radial flow velocity. c) Velocity magnitude 
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The maximum axial flow velocity (Fig. 8. a) of 57 m/s was observed in the 0.1 mm height 

of the radial gap; the minimum flow velocity was observed in the middle of the square 

groove; and the maximum negative flow velocity of -5 m/s was observed at the bottom 

part of the groove. The maximum positive radial flow velocity of 13 m/s was found on the 

outlet edge of the groove and the maximum negative radial flow velocity of -11 m/s was 

found on the right-hand side of the groove. In the case of the mineral oil a laminar flow 

was observed, so there are no calculations of the turbulence kinetic energy. 

Figure 9 shows the results of the numerical simulations for the water turbulent flow 

regime for three different shapes of groove with a dimension of 0.3 mm (a) with a gap 

height of 0.1 mm. It is obvious that the streamlines in the square and semicircular 

grooves are symmetrical and the streamlines in the triangular groove are in two circles. 

Figure 9: Numerical simulation of the water turbulent streamlines for different shapes 

of groove 0.3 mm (a) and gap 0.1 mm (s) 

Figure 10 shows the results of the numerical simulations for the hydraulic mineral oil’s 

laminar flow regime for the same conditions as in the case of the water. It is obvious that 

the streamlines in all three different shapes are non-symmetrical.  

Figure 10: Numerical simulation of the hydraulic mineral oil laminar 

streamlines for different shapes of groove 0.3 mm (a) and gap 0.1 mm (s) 

The results of the numerical calculations show that the shape of the grooves has no 

influence on the pressure drop, the same for the water and for the hydraulic mineral oil.  
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4. Experimental studies 

4.1. Test rig 

Two different hydraulic fluids demand two different hydraulic test rigs for water and oil. 

Figure 11 shows the water hydraulic circuit of the test rig. The high-pressure water piston 

type of pump (pos. 2) sucks tap water from the reservoir (pos. 1) and pushes it through 

the high-pressure water filter (pos. 6) using the hydraulic accumulator (pos. 7) through 

the open ball valve (pos. 8) to the specimen (pos. 9). The leakage flow through the 

specimen with different types of spools was measured with a measuring cylinder, timer, 

pressure and temperature gauge. Figure 12 shows the employed water hydraulic test 

rig in the Laboratory for Fluid Power and Controls. 

  

Figure 11: Circuit of the water hydraulic test rig 

   
a                                b 

Figure 12: Water hydraulic test rig. a) power pack. b) tested valve 

The oil hydraulic test rig was functionally similar to the presented water hydraulic rig. 
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4.2. Parameters and procedure 

The highlighted parameters in Table 1 show those used in the experimental 

investigations. Figure 13 shows ten different customized spools for the standard oil 

hydraulic directional control valve. The spools were fixed in position in the hole of the 

directional control valve. The leakage flow was measured at different pressures for a 

constant temperature. Table 2 shows the dimensions and their deviations for the tested, 

customized spools from Figure 13.  

 
Figure 13: Ten different tested customized spools 

Spool 
Nr. 

Di [mm] Deviation from cylindricity [μm] Rz [μm] 

1 12.035 1.33 0.63 
Spools with 

radial grooves 

 

2 12.035 0.84 0.524 

3 12.035 1.27 0.608 

4 12.035 1.09 1.536 

5 12.035 1.25 0.802 

6 12.035 1.26 0.671 
Spools without 
radial grooves 

 

7 12.035 0.94 0.733 

8 12.035 2.36 0.627 

9 12.035 2.56 0.63 

10 12.035 1.39 0.668 

Table 2: Measured dimensions of the tested customized spools 

4.3. Measurement results 

Figure 14 shows the results of the measurements for ten different customized spools 

with tap-water laminar flow. The highest water leakage flow was observed for spool 7 

(0.27 l/min) and with spool 2 (0.25 l/min) and with spool 4 (0.23 l/min) at a pressure of 

120 bar. The lowest water leakage was observed with spool 1 (0.07 l/min) and with spool 

5 (0.09 l/min) and with spool 3 (0.12 l/min) at 120 bar.  
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Figure 14: Experimental results for water laminar flow: spool 1–5: Re = 40–270.                    

v = 2.5–16 [m/s]; spool 6–10: Re = 70–300. v = 4–18 [m/s] 

Figure 15 shows the results of the measurements for ten different customized spools 

with hydraulic mineral oil Stokes flow. The maximum mineral oil leakage flow was 

observed with spool 2 (0.021 l/min) and spool 1 (0.018 l/min) at a pressure of 200 bar. 

The lowest mineral oil leakage was observed with spool 6 (0.007 l/min) and with spool 9 

(0.008 l/min) and spool 7 (0.009 l/min) at 200 bar.  

 

Figure 15: Experimental results for oil – Stokes flow. spool 1–5: Re = 0.01–0.2.                     

v = 0.15–1.4 [m/s]; spool 6–10: Re = 0.01–0.14 . v = 0.07–0.9 [m/s] 

The measurement results for the leakage with hydraulic mineral oil show the same trend 

as the results of the numerical calculations. At low velocities the Stokes flow radial 

grooves impact on increasing the mineral oil leakage flow. 
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5. Conclusions 

The decrease of the leakage flow in the sliding contact with the radial groves was only 

observed in the case where a turbulent flow was present. This only happened in the case 

of the water hydraulic sliding contact with an uncommon height gap. 

The flow swirling observed in the numerical simulations for laminar flow does not cause 

a decrease of the leakage flow through the gap with radial groves. 

In hydraulic oil directional sliding type of valves was, due to the higher viscosity of the 

hydraulic mineral oil, observed as very slow Stokes flow. In this case for the numerical 

simulations no flow swirling was observed. The consequence was leakage flow through 

the gaps with the radial groves that was higher than in the case of the smooth gap without 

radial groves. 

The presented work shows that the radial groves in the sliding contact gap increase the 

leakage, so that their use in order to decrease the leakage is not applicable. The main 

functions of the radial groves are the pressure relief along the sealing side of the spool 

and, consequently, centering the spool in the hole to decrease its sliding friction. 
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Velocity of the flow streamlines  

Pa. bar 
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m 

m 

m 
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/ 

m 

m 

/ 
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/ 

m3. cm3  
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m 
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Abstract 

The aim of this paper is to evaluate the effects of the dissolution time – time for the 

liquid to absorb the gas till the saturation state - on the behaviour of positive-

displacement vane pumps, in terms of pressure peaks within internal chambers and 

forces applied to the stator ring. The chamber pressurization depends on the volume 

variation and fluid Bulk modulus in the pre-compression phase during which the volume 

is trapped between the suction and the delivery port rims. If the dissolution time is 

short, then the entrained air is quickly absorbed and the fluid Bulk modulus sharply 

increases just before opening the connection to the outlet; as a consequence, pressure 

peaks may appear thus degrading the NVH characteristics of the pump. Moreover the 

pressure within internal chambers generate i) a torque demand to the driver (the 

combustion engine or an electrical motor) and ii) a total force applied to the stator ring. 

In case of fixed displacement designs, the resultant pressure force simply represents a 

load for support bearings; while in case of variable designs, it contributes to the 

displacement regulation. Simulation results show that the pump behaviour is very 

sensitive to the dissolution time when it is quite close to the duration of the trapped 

period. 

KEYWORDS: pump, pressure peaks, aeration, dissolution, displacement regulation 

1. Introduction 

A hydraulic fluid always includes some gas (mostly air) which is either dissolved or 

entrained (or undissolved). Depending on the system’s evolution, air changes from one 

form to the other one. Indeed if the pressure level increases in the hydraulic circuit, the 

dissolution phenomenon occurs and gas bubbles - previously existing in equilibrium 
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with the saturated liquid - tend to collapse and to dissolve in the liquid. Conversely if 

the pressure decreases, the aeration phenomenon occurs thus gas bubbles tends to 

be released from the liquid and to grow. 

It is well established in /1/ and /2/ that only the entrained air within the liquid modifies 

the fluid properties. Figure 1 shows the effect of entrained air on the bulk modulus for 

an hydraulic oil considering different constant total gas mass fractions. 

Henry’s law gives the amount of air which is dissolved in the liquid as a function of the 

pressure; however it assumes that aeration and dissolution are instantaneous 

phenomena. This implicitly means that the amount of dissolved air is always in 

equilibrium within the liquid. 

If the pressure dynamics within the hydraulic system is slow enough with respect to 

aeration and dissolution dynamics, Henry’s law can be reasonably applied. However, 

for fast-acting systems - such as hydraulic pumps or motors - the high pressure rate 

does not let enough time to the air for reaching its corresponding equilibrium value. 

Then the amount of entrained air is not solely barotropic anymore but also dependent 

on time, with a significant impact on the system’s behaviour. 

 

Figure 1: isothermal fluid bulk modulus as a function of pressure and entrained air. 

Zhou et al. /3/ have shown the impact of the aeration and dissolution dynamics on the 

fluid properties during the compression and decompression of a volume. 

In the LMS Imagine.Lab Amesim 1D simulation platform, three options are available in 

the thermal-hydraulics libraries to represent the aeration and dissolution phenomena: 

1. The option “constant gas content” assumes a constant total amount of gas in 

the hydraulic circuit. Henry’s law is then applied to evaluate the undissolved gas 

quantity only depending on the pressure level, thus assuming that aeration and 

dissolution are instantaneous phenomena. 
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2. The option “gas transport” allows having variable amounts of gas within the 

hydraulic circuit. Once again Henry’s law is applied to compute the undissolved 

gas amount, because aeration and dissolution are still instantaneous. 

3. The most complex option “gas transport with dynamics” allows having variable 

amounts of gas and dynamics for air release and dissolution. The complex 

processes of bubbles formation, growth and collapse are simplified by a first 

order response characterized by the time constant. Until now the experimental 

evidence has shown that dynamics involved in air release and dissolution differ 

by several orders of magnitude, aeration being much faster. 

The first two options are well adapted for slow-acting systems whereas the last option 

should be selected in case of fast pressure evolutions in a system. 

2. Fluid model: aeration and dissolution options 

In this section, the aeration and dissolution models available in the LMS Imagine.Lab 

Amesim simulation platform are described. 

The mass fraction of a quantity is defined as the ratio of the mass of this quantity over 

the total mass:  

 (1) 

2.1. Constant gas content 

The total amount of gas is constant for the complete system. The undissolved gas 

mass is at equilibrium conditions with the liquid and computed with Henry’s law 

depending on the pressure level. 

2.2. Gas transport 

Contrary to the “constant gas content” option, in this case the gas content within the 

hydraulic circuit is variable. Within a hydraulic volume, the total gas mass fraction  

(dissolved and entrained) is obtained from its mass balance in the volume: 

 (2) 

The undissolved gas mass fraction is determined by Henry’s law. 

This option is suitable to represent the transport of gas mass fractions along the circuit 

due to variable inputs or heterogeneous initial conditions.  
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Figure 2 considers an academic example with three volumes in series initially filled 

with pure liquid (no gas) and connected to a source of aerated fluid at constant 

pressure, temperature and total gas mass fraction. 

Once the orifice opens, the fluid starts flowing in each volume and consequently the 

amount of total gas gradually increases in all volumes even though the farthest 

capacity from the inlet presents a lower slope. 

 

Figure 2: LMS Amesim sketch for the transport of gas fractions from left to right. 

2.3. Gas transport with dynamics 

With this option, the total and undissolved amounts of gas are independent variables 

and hydraulic volumes can have undissolved gas fractions not in equilibrium 

conditions. 

The evolution of the total gas mass fraction is given by equation (2); while the 

undissolved gas mass fraction is computed with its mass conservation equation 

associated with a first order lag for the dynamics of aeration or dissolution: 

 (3) 

The time constant  can be different for dissolution and aeration: 

· if the current undissolved fraction is greater than the equilibrium value given by 

Henry’s law (  ), the gas progressively dissolves within the liquid to 

reach the equilibrium state. 

· on the contrary, if the current undissolved fraction is lower than the equilibrium 

value ( ), the gas is released in the liquid in form of bubbles. 

For most gases and liquids, aeration is a much faster phenomenon than dissolution 

and consequently the time constant for dissolution is much greater than for aeration. 
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Figure 3 shows the LMS Amesim model for a piston acting on a closed volume, 

including some information on the geometry, fluid and test conditions and with some 

post-processing blocks (in grey) to get the full fluid composition (pure liquid, dissolved 

and entrained air). The LMS Amesim thermal-hydraulic libraries allow representing 

different thermodynamic evolutions within the circuit: 1) full energy balance 

corresponds to solving the energy conservation for the temperature computation in 

each volume, 2) isentropic implies the computation of temperature from pressure and 

fluid properties and finally 3) isothermal represents the simplest case of constant 

temperature along the simulation. For simplification purposes, in the following 

paragraphs an isothermal simulation is considered without impact on further 

conclusions. Hereafter the simulation results refer to a compression and 

decompression step applied to a chamber with the following initial conditions: pressure 

1 barA, temperature 20 °C, total gas fraction xg 404 mg/kg. The saturation pressure to 

completely dissolve the above air amount into the liquid can be obtained from Henry’s 

law and the Bunsen coefficient, in the specific case it is about 3 barA. Figure 4 also 

depicts the undissolved gas fraction, comparing the instantaneous value (in blue) 

considering aeration and dissolution dynamics with the equilibrium conditions (in red), 

where the time constants are set to 1 ms for aeration and 0.1 s for dissolution. 

 

Figure 3: LMS Amesim model for compression / decompression step in a closed 

volume. 

In the coming paragraphs, the aeration time constant is always set to 1 ms in the fluid 

properties model. 
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3. Compression and decompression cycle in a closed volume 

This paragraph deals more in details with the compression and decompression cycle 

applied to a closed volume, as shown in Figure 3, highlighting the effect of air release 

and dissolution dynamics on the pressure evolution. 

In case of a closed variable volume (such as an internal chamber of volumetric pumps 

during the pre-compression phase), the pressure evolution is derived from the fluid 

mass conservation equation hereafter: 

 (4) 

Notice that the pressure evolution is dependent on both the volume variation and the 

amount of undissolved gas in the volume. 

The simulation model is the same as Figure 3, except for the piston displacement 

which is now a linear compression and decompression as reported in Figure 4. 

 

Figure 4: linear compression and decompression cycle 

Batch simulations have been run using the same initial conditions for the fluid within the 

volume (1 barA, 20 °C and xg 404 mg/kg), while changing the dissolution time from 

negligible values (1e-5 s) up to 1 s (corresponding to the duration of the cycle). 

Figure 5 depicts the evolution of the gas mass entrained in the liquid during the 

compression and decompression cycle depending on the dissolution time: longer 

dissolution times lead to higher amounts of gas still remaining in the liquid in form of 

bubbles during the compression phase and also at the beginning of the 

decompression. Figure 6 shows that the dissolution and aeration phases correspond 

to the piston compression (from 0 to 0.5 s) and extension (from 0.5 to 1 s) only if 

aeration and dissolution time constants are tiny. Indeed dissolution and aeration occur 

when the current undissolved gas amount is respectively higher and lower than the 

equilibrium value from Henry’s law; with longer dynamics the dissolution also extends 

to the piston’s decompression period. 
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Considering the same piston position, shorter dynamics imply a smaller mass and 

volume occupied by the entrained air and consequently a bigger volume filled by the 

liquid embedding some dissolved air. The consequence is that the pressurization level 

is lower with shorter dynamics, as explained and shown in Figures 7 and 8. 

Figure 8 also highlights that hysteresis cycles appear on variables such as pressure, 

undissolved gas amounts and others due to different dynamics considered for aeration 

and dissolution. 

 

Figure 5: undissolved gas mass fractions with different dissolution times 

 

Figure 6: dissolution and aeration periods 
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Figure 7: reduced liquid volume and higher pressure levels                                       

with longer dissolution times 

 

Figure 8: chamber pressures function of the piston stroke 

4. Effects of air release and dissolution dynamics on vane pumps 

After having introduced the theory on the transport of gas fractions within liquids and 

simple examples showing the effects of air release and dissolution dynamics, this 

paragraph considers a hydraulic vane pump as application example. Figure 9 shows 

the LMS Amesim 3D animation of a variable displacement pump, having a stator ring 

reducing the displacement with a translation along the line connecting the rotor and 

stator centers. The stator ring equilibrium depends on external forces (delivery and 

regukated pressure acting on opposite surfaces, spring force) and internal forces in 

particular pressure forces within internal chambers (five pressure forces, in this case). 

The control valve reduces the pressure in the left chamber (spring side) to an 

intermediate value between the delivery and the tank level in order to regulate the 

pump displacement keeping an almost constant pressure at the pump delivery (about 

12 bar). 
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Figure 9: 3D animation of a variable displacement vane pump 

The corresponding LMS Amesim model is reported in Figure 10; it includes specific 

submodels as described in /4/ and /5/ for the analytical computation of 1) volume and 

volume variations and 2) flow areas connecting each chamber to the suction or delivery 

rims on the ports’ plate; moreover some blocks (grey color) are introduced to access to 

the full fluid composition in a representative chamber. 

Figure 11 reports simulation results fixing 1) the stator eccentricity at 3 mm 

corresponding to the maximum pump displacement, 2) the angular speed at 1500 rpm 

and 3) the temperature at 50 °C; while different dissolution times are considered to 

investigate the effects on the pump behaviour. As expected, longer dissolution times 

lead to higher entrained air levels within the chambers, in particular when the volume is 

isolated from both the suction and delivery (trapped volume). During a time-period of 

about 1 ms, the trapped volume slightly decreases (pre-compression before connecting 

to the delivery) and consequently the pressure starts raising depending on the fluid 

Bulk modulus. High levels of entrained air correspond to lower fluid Bulk modulus and 

consequently to a slower chamber pressurization. Quite high pressure peaks appear in 

case of low aeration levels with fast dissolution dynamics. The above pressure peaks 

determine the NVH characteristics of the pump, and they also affect the equilibrium of 

the stator ring (in case of free motion) and consequently the delivery flow due to 

eccentricity variations. 

The pressure peak and the mean internal pressure force acting on the stator ring are 

plotted in Figure 12 as a function of the dissolution time.  
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Figure 10: LMS Amesim model of a variable displacement pump 

 

Figure 11: simulation results – chamber volume and opening areas, entrained air, 

pressure and Bulk modulus vs dissolution time (maximum displacement) 
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Figure 12: pressure peaks and mean pressure force function of dissolution time 

The behaviour presents two saturations corresponding to tiny or conversely long 

dissolution times, while the sensitivity to the dissolution time is significant only within a 

certain range between 1 ms and 0.1 s. Mainly, the dissolution time strongly affects 

pressure peaks when it is not too far from the “characteristic time” of the system (1 ms 

for the above vane pump at 1500 rpm).  

5. Conclusions 

This paper has presented new fluid properties models available in the LMS Amesim 

commercial tool to represent variable gas amounts in hydraulic circuits, with the 

possibility to take air release and dissolution dynamics into account by first order lags. 

The fluid model used to analyse the compression and decompression cycle of a closed 

volume has highlighted a strong impact of the absorption rate on the chamber 

pressurization due to air quantities entrained in the liquid affecting the main fluid 

properties. Furthermore, aeration and absorption processes typically occur with very 

different dynamics; consequently hysteresis cycles are visible on main variables such 

as entrained air, Bulk modulus, pressure and others. The same fluid model used for 

high dynamics systems, such as positive displacement vane pumps, allowed to 

recognize high pressure peaks within internal hydraulic chambers in case of low 

aeration levels and fast dissolution dynamics with respect to the period during which 

the volume is trapped (pre-compression). The above pressure peaks determine the 

NVH characteristics of the pump; moreover they represent a force contribution to the 

equilibrium of the stator ring in case of vane pumps, or swash plate in case of a piston 

pump. The consequence of unexpected forces acting on the stator ring is a possible 

risk of wrong displacement regulation. 

As a consequence, experiments to determine typical dissolution times have a great 

importance to obtain reliable simulation models for pump’s design optimization with 

respect to the requirements in terms of NVH performances and flow regulation. 
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7. Nomenclature 

 Isothermal fluid bulk modulus bar 

 Mass flow rate kg/s 

 Total gas mass flow rate kg/s 

 Undissolved gas mass flow rate kg/s 

 pressure barA 

 Volume  m3 

 Total gas mass fraction g/g 

 Undissolved gas mass fraction g/g 

 Equilibrium undissolved gas mass fraction g/g 

 Fluid density  kg/m3 

 Aeration/dissolution time constant S 
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Abstract 

Hydrostatic steering systems are used in construction and agricultural machines alike. 

Because of their high power density, hydraulic drives are qualified for the use in vehicles 

with high steering loads. Conventional hydrostatic steering systems are limited in terms 

of steering comfort and driver assistance. For realisation of appropriate steering 

functions, electro-hydraulic solutions are necessary. This paper provides an overview on 

existing implementations and introduces a novel steering system. The presented active 

steering system with independent meter-in and meter-out valves fills the gap between 

existing active steering systems and steer-by-wire solutions. An appropriate control and 

safety concept provides advanced steering functions for on-road usage without the fully 

redundant structure of steer-by-wire systems. 

KEYWORDS: active steering system, steering function, functional safety, test vehicle 

1. Overview and system introduction 

Hydrostatic steering systems of various designs are used in construction and agricultural 

machines alike. The increasing complexity of workflows requires driver-assisted steering 
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or even an automation of steering-functions. Therefore electronically controlled 

components are necessary, which could be integrated to the steering system in several 

ways. Thereby two basic concepts of active steering systems may be identified: 

superimposed steering systems and pure steer-by-wire systems (see Table 1). 

 

Table 1: hydraulic steering systems in mobile machines 

Superimposed steering systems still use a conventional steering unit (LAG). An 

additional hydraulic path superimposes a volume flow, thus a variable steering ratio is 

realised. Through the avoidance of the rigid ratio between steering wheel and steering 

cylinder, several comfort and assistance functions can be implemented. In case of 

failure, the superimposition can be separated from the steering system. The vehicle is 
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still manoeuvrable, through the conventional hydrostatic steering unit. Furthermore, the 

properties of emergency steering are preserved. 

One possibility to realise a superimposed steering system is to mount a summation 

gearbox at the steering linkage. The rotational speed of the steering wheel and of an 

additional electric motor are added at the planetary gear. Therefore, the rotational 

speeds influence the conveyed volume flow of the steering unit. An electronic control unit 

(ECU), dependent on driver input and the implemented steering functions, controls the 

electric motor. Comparable implementations are applied in automotive industry /1/. In 

case the steering volume flow is to be superimposed instead of rotational speed, 

electrohydraulic proportional valves can be used in addition to the steering unit. The 

control of the valve is realised by means of different sensor signals. An available active 

steering system is the OSPE from Danfoss Power Solutions /2/. In case of on-road use, 

the electrohydraulic valve section must be deactivated, because failures in the electro-

hydraulic part cause safety-critical states and a time-critical deactivation is necessary. 

Then steering is possible using the conventional steering unit. 

If the mechanical linkage between steering wheel and steering valve is completely 

eliminated, the system is called steer-by-wire system (SBW-system). This solution is 

done without a hydraulic-mechanical backup. An ECU processes the sensor data and 

generates actuating values. Two different structures can be found: 

The first one is a displacement-controlled system comparable to /3/ or /4/.The second 

approach are valve-controlled steer-by-wire systems, based on electrohydraulic 

proportional valves. Such concepts are presented in /5/ or in /6/. For a roadworthy SBW-

system an extensive safety concept and an entirely redundant structure is necessary to 

avoid a dangerous machine behaviour in case of failure. Steer-by-wire systems without 

redundancy are usually equipped with a superimposed, prioritised conventional 

hydrostatic steering unit. In case of high velocities and on-road use, the conventional 

system is activated. The utilisation of the electrohydraulic steering is permitted only at 

lower speeds. The structure layout corresponds to the superimposed steering system, 

but the hydrostatic and electrohydraulic steering are not active at the same time. There 

is no superposition of volume flow (/7/, /8/). 

The proposed approach to implement an electrohydraulic active steering system is the 

realisation of a superposed valve structure with independent meter-in and meter-out 

valves (see Figure 1). One main advantage is use qualification for on-road applications 

without the entirely redundant implementation of SBW-systems. Appropriate valve 

control strategies open this opportunity, because it is possible to compensate single 
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failures inside the configuration and reduce their adverse effects. The valve structure 

consists of four separate 2/2 proportional way valves, which allow an extended control 

intervention. Through independent actuation, faulty states become tolerable in a wide 

operation range. Thus, the safety level is significantly increased. A time-critical 

deactivation is not necessary anymore. In accordance with conventional superimposed 

steering systems, the conventional steering unit is preserved. Due to the internal 

hydraulic-mechanical follow-up control of the steering unit, an oil flow is adjusted 

proportionally to the rotational speed of the steering wheel. In addition to an ECU, two 

angle sensors (steering wheel and wheel) are functionally necessary. By means of a 

permanent nominal-actual value comparison, the superimposed valve structure is 

controlled. Different steering functions are enabled through various set-point 

specifications. The electrohydraulic steering system can be deactivated through a switch 

valve. An additional switch valve allows for changing the operation mode between 

reaction and non-reaction behaviour. 

 

Figure 1: system structure of the novel active steering system 

2. Features of active steering system with independent metering 

The increasing utilisation of active steering systems serves the realisation of various 

driver-assisting functions. Possible applications range from influencing the steering ratio, 

steering interventions for driving stability to fully automatic steering manoeuvres. The 

functional requirements of the novel superimposition steering system are limited to the 
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two aspects mentioned first. However, automatic steering functions can be realised as 

well with the introduced system. Precondition is the availability of appropriate sensor 

signals and corresponding control values. 

The steering functions listed below are implemented: 

· Directional stability and leakage compensation 

· Variable steering ratio 

· Defined centre position of steering wheel („12 o´clock position”) 

· Ability to switch between reaction and non-reaction behaviour 

In purely hydrostatic steering systems, high external loads result in a slight displacement 

of the steering cylinder due to leakage, although no steering is intended. This results in 

a continuous correction of the vehicle´s trajectory by the driver on inclined lanes. The 

implementation of a leakage compensation enables the directional stability of the 

machine. 

In order to adjust the needed steering effort to different driving situations it is necessary 

to adapt the steering ratio. This is realised by means of several constant steering ratios 

for each driving range and mode or by a variable steering ratio, which continuously 

adapts to the driving state. The implemented variable steering ratio depends on the 

vehicle´s speed. Thus, a good directional stability at high velocities and comfortable 

handling for slow driving is possible. 

In agricultural and construction machines, usually there is no defined neutral position of 

the steering wheel. This is due to the already mentioned leakage in conventional steering 

units or to a variable steering ratio depending on the driving state. Therefore, the steering 

wheel of such vehicles cannot be equipped with several control elements, as it is the 

case in commercial vehicles and passenger cars. An integration of various control 

elements would offer new possibilities in cabin design an increases the ease of 

operation. 

By the use of fully automatic driving functions, the vehicle performs a defined steering 

motion without any driver-induced steering wheel rotation. During autonomous driving 

manoeuvres, there should be no noticeable reactions at the steering wheel. Therefore, 

a non-reaction behaviour of the conventional steering unit is required. Additionally, there 

is sometimes a demand for automotive driving experience. This includes noticeable 

steering forces at the steering wheel and wheels, which lead to automatic centring of the 
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wheels. To satisfy those opposing requirements a changeable operating state is 

necessary. 

3. Development and realisation of the active steering system 

The design, implementation and testing of the active steering system with independent 

valves and the implemented steering functions was conducted in a multi stage 

development process. In the first step, the novel steering system was analysed in a 

system simulation. The built simulation model based on (1) a complex, physical model 

of the steering system, (2) the machine periphery and (3) the surrounding process 

conditions. Due to the detailed modelling, verifiable and application-specific statements 

can be derived. 

Besides the simulative considerations, a test rig was built at the IFD (Institute for Fluid 

Power Dresden). Realistic testing conditions are achieved by integrating the steering 

system into the actual hydraulic and mechanical machine periphery. Therefore, the 

whole steerable front axle of the vehicle and the hydraulic steering circuit were 

implemented at the test rig. Furthermore, an electro-hydraulic cylinder drive generates 

operating point dependent loads. Various calculation models and presettings are 

available for a provided load set-point. The test rig´s control as well as the acquisition of 

measured data is done by an integral monitoring and control system. The test rig is 

shown in Figure 2. 

 

Figure 2: steering system test rig at the IFD 
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Additionally to the test rig, the steering system was implemented into a demonstrator 

vehicle (Fendt 927 Vario) for testing the system and the steering functions under realistic 

operating conditions. 

Figure 3 shows the demonstrator driving straight ahead under permanent exposure to 

an external load. This load state appears while driving on inclined lanes or under 

operating conditions with inhomogeneous wheel load distribution. As the measurement 

shows, a continuous steering motion is necessary to keep the vehicle on track. If the 

leakage compensation for directional stability is activated, the operator intervention can 

be omitted. The cylinder directly follows the demand of the driver, because of the steering 

wheel- and wheel-dependent control of the superimposed steering system. The cylinder 

drive is working in a closed loop manner. 

 

Figure 3: vehicle measurement with deactivated and activated directional stability 

To additionally increase driving comfort, a steering ratio depending on the vehicle speed 

is implemented. This variable steering ratio usually results in different steering effort for 

steering motions in an arbitrary driving cycle. Accordingly, the neutral position of the 

steering wheel is manipulated. The system characteristics with activated and deactivated 

“12 o´clock position”-function are compared in Figure 4. An exemplary test track is 

driven. A steering manoeuvre at the beginning of the measurement causes the loss of 

steering wheel´s centre position. In this initial state the angle of the steering wheel  is 

200° at centred wheels (  = 0°). Without activated steering function, which adjusts the 

defined neutral position, this deviation changes depending on the driving state. This may 

0 100 200 300

t [s]

0

5

10

-5

-10

φ
w

 [
°]

0

200

400

600

-200

φ
sw

 [
°]

0 100 200 300

t [s]

0

5

10

-5

-10

φ
w

 [
°]

0

200

400

600

-200

φ
sw

 [
°]

steering system without directional stability steering system with directional stability

ext. load

-

+

-

+

ext. load

-

+

-

+

Group H - Mobile Hydraulics | Paper H-1 381



lead to a reduction or an enlargement of angular deviation. The position of the steering 

wheel seems random. For passing through the test track with the activated “12 o´clock 

position”-function an initial deviation is provided (  (  = 0°) ≈ 200°), similar to the test 

with deactivated function. As shown in Figure 4, the implemented steering function 

reduces the angular deviation and the steering wheel tends toward its centre position. 

To provide this feature, the steering ratio is slightly adapted. This change is not 

noticeable by the operator. 

 

Figure 4: steering without (left) and with defined neutral position of  

steering wheel (right) – “12 o´clock position” 

4. Safety concept 
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functions serves the reduction of emerging risks by maintaining a safe state or by taking 

measures to pass over to a safe state in case of failure. Because mobile machines are 

operator-controlled and their operating scenarios are subject to significant variations, 

there are many safety-relevant operational states. A comprehensive failure simulation, 

adopted from the introduced simulation model, allows for the reproduction of all basic 

conditions. With failure simulation, it is possible to analyse possible failures and their 

effects on the entire steering system as well as vehicle behaviour. The simulation is 

comparable to an FMEA (failure mode and effect analysis) and helps to identify critical 

components relevant for the safety function. Notably, the electrical and electronical 

components of the steering system are in the focus of attention, because they cannot be 

designed fatigue endurable like mechanical parts and show a stochastic failure 

behaviour. Additionally valve and sensor errors are considered. In order to derive 

universal statements relating to failure effects, all relevant operating states like pulling 

and resistive loads are considered. Thus, there is a significant number of faulty system 

states. 

With the help of a simulation-based identification of safety-critical components, a safety-

related block diagram can be derived for the safety function. The block diagram illustrates 

the structural composition of the safety function and provides the basis for the calculation 

of the present safety level /11/. 

For the development of safety concept of the steering system, a merely simulative 

consideration is insufficient. Especially for complex, safety relevant systems test rig trials 

and field tests are indispensable. Thus, it is necessary to investigate the system 

behaviour in case of a single failure at the test rig and at the demonstrator vehicle to 

validate the safety concept. The considered faulty states correspond to errors reviewed 

in the failure simulation. Testing the safety concept at the demonstrator represents the 

highest level of validation, because the outcome is not influenced by model-based 

simplifications or by limits related to the test rig. Faulty states are forced by the electronic 

control device. An excerpt of the executed error analysis is shown in Figure 5.  

The figure illustrates the behaviour of a conventional and the novel superimposition 

steering system in a case of failure. In a conventional active steering system, an 

accidentally opened valve leads to a dangerous movement during straight ahead drive, 

because of a faulty volume flow to the steering cylinder. The driver is not able to 

compensate the failure effect (  ≈ 150 mm). The superimposed steering system must 

be switched off time-critically to preserve manoeuvrability. If a comparable single error 

occurs in a system with independent metering, safety critical states will not appear. By 
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the actuation of the remaining faultless valves, the effect of the failure is reduced 

(  ≈ 5 mm). The operator maintains control over the vehicle and manoeuvrability is 

preserved. Measurements of the test rig and the demonstrator as well as the simulation 

results show comparable characteristics. 

 

Figure 5: Behaviour in case of failure of a conventional active steering system and a 

system with separate meter-in and meter-out valves 

The validated safety concept shows that in case of error the harmful effect of a failure 

can be reduced or fully compensated. A time-critical deactivation of the superimposed 

steering system is not necessary, because an error does not cause any immediately 

negative effects. There is more time to detect a faulty state reliably. This improves 

availability of the system, because singular events do not lead to a deactivation of the 

active steering system. Simple methods of error detection can be applied such as 

monitoring of limit and trend values. Other approaches, for example model-based state 

observers, are not necessary. 

5. Summary 
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for the steering system is possible, because faulty states in the steering system do not 

affect the machines safety and the vehicle´s manoeuvrability is preserved. The 

introduced system reaches a high safety level without using a fully redundant structure. 

Thus, the system is able to close the gap between existing superimposed steering 

systems and steer-by-wire solutions. Based on extensive simulations and experimental 

evaluation, potentials and limits of the analysed concept can be shown. 
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Abstract 

Besides the braking system the steering system is one of the most important systems 

on vehicles. The reliability and the performance of a steering system decides on the 

controllability of the vehicle under normal conditions as well as emergency situations. 

In everyday use the characteristics, the connectivity to assistance systems and the 

energy efficiency of the steering system become more and more important to fulfill the 

increasing demands regarding fuel consumption, carbon dioxide emissions and 

comfort. 

To meet these demands, new steering systems must be implemented and new 

technologies have to be developed. This contribution compares different approaches 

regarding functionality and energy efficiency to give an indication which system is the 

most promising solution for future front axle steering systems as well as rear steered 

axles (tag- or pusher axle) on trucks. 

KEYWORDS: Steering System, Axle, electronic, electric, electro-hydraulic, WEBER, 

VSE, ETS, EMS 

1. State of the Art 

Present steering systems for trucks consist of a mechanical steering column which 

connects the steering wheel with the steering gear, normally a recirculating ball type, to 

steer the front axle. Additional steered rear axles (pusher- or tag axles) could be added 

to a truck when needed. Such additional steered axles could be connected 
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mechanically, hydraulically, electrically or a combination of these to the front axle(s). 

Due to the fact that rear steered axles should be blocked at higher speeds for a better 

stability of the truck the hydraulic system with electronic control is the desired principle. 

In the following we will only have a look on steered rear axles which are independently 

hydraulically steered. These additional rear axles are used to increase the payload of 

trucks and to reduce the load on a single axle and therefore the load on the street. As 

added non-steered axles would lower the maneuverability of these trucks and increase 

the wear on tires and roads, steering functionality is being added.  

The meaning of hydraulic steering is that it is mechanically decoupled and therefore 

without mechanical feedback to the driver. This also results in the fact that there is no 

additional force needed at the steering wheel to steer these axles. The needed 

hydraulic power could be provided by e.g. a gear or vane pump which is driven by the 

diesel-engine or by an electro-hydraulic pump. Typical steering pump solutions consist 

of an engine driven vane pump equipped with an integrated flow control. The hydraulic 

steering uses the supplied hydraulic flow by connecting the pump to a hydraulic 

steering valve which leads the oil either back to the tank or to one of the two sides of 

the steering cylinder when actual steering is needed. 

In case of driving straight ahead the oil flow is lead practically unused through the valve 

directly to the tank. When a steering movement is needed the valve opens a (throttled) 

connection from the pump to one port of the cylinder to obtain the correct steering 

movement together with a (throttled) connection from the other cylinder port to the tank. 

Such a control strategy is called valve control. The main advantage of a valve control 

is the fast reaction time and its relative easy implementation. 

But there are some disadvantages which makes this system inefficient. In case the 

pump is driven by the engine we need a relatively large (vane) pump as the highest 

steering speeds are necessary at (very) low vehicle speeds with only low or medium 

engine speeds. In order not to have much too much oil flow at higher engine speeds 

steering pumps are equipped with flow regulators but this results in considerable 

losses. Other losses come from the steering valve as the steering speed will drop with 

higher vehicle speeds resulting in too much oil flow to this valve which is throttled 

unused to the tank. 

To overcome the flow regulator losses on the pump side which lowers overall efficiency 

and give high thermal stress of the oil, vane pumps with variable displacement can be 

used. The displacement of the pump depends on the engine speed and limits the oil 
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flow to a maximum level. Nevertheless, most of the time the flow is much higher than 

necessary resulting in the same losses in the steering valve as mentioned above. 

Full electric steering as commonly used on passenger cars nowadays do not have 

above mentioned efficiency problems. The efficiency of those systems is high because 

there are no throttle losses as the system only takes the power needed to initiate the 

steering movement. A directly electrically steered axle is not very suitable for heavy 

trucks but by combining an electric motor with a pump and tank into a motor pump unit 

controlled by an ECU and a hydraulic steering cylinder, as shown in Figure 1, rear 

axles with loads up to 10 tons per axle can be steered easily. 

 

Figure 1: principle of an electro-hydraulic steering system 

Figure 2 shows different possibilities to generate a volume flow either hydraulically or 

electro-hydraulically. In version I the (vane) pump is driven by an engine. This system 

does have the biggest hydraulic losses. Version II could be realized either with a 

variable vane pump connected to the diesel engine again or a separate electric motor 

which could be regulated independent of the diesel engine. Version III is an 

enhancement of II which doesn’t need power for driving straight ahead as the steering 

cylinder can be locked. All these 3 described versions are valve controlled. 
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For a displacement controlled solution as shown in IV a high efficient permanent 

magnet synchronous motor (PMSM) or brushless DC (BLDC) motor is needed 

combined with a bi-directional pump e.g. a gear pump. 

 

Figure 2: valve controlled and displacement controlled systems 
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2. System description 

In general the working principle of valve controlled and displacement controlled 

systems is completely different as shown in Figure 3.  

 

Figure 3: comparison between working principles 

 

Valve control Displacement control 
· Pump flow is higher than needed for 

the actual steering 
· Pump delivers only the required volume 

for the actual steering 

· Due to losses over the steering valve 
the operating pressure will be between 
really needed steering pressure for the 
load and relief valve setting 

· Operating pressure is given by the 
(external) load only 

· Pump flow is split in used (throttled by 
the steering valve) flow for the load 
and unused flow throttled to the tank 

· Variable flow given by variable rotation 
speed at constant pump displacement 
only goes to the steering cylinder 

⊕ Good dynamic and response time ⊕ Highest power efficiency 
⊖ Low efficiency due to too high flow and 

valve losses. 
⊕ Compact design and reasonable price 

⊖ Dynamic defined by the valve ⊖ Dynamic given by electric motor 
 ⊖ Dynamic limited by current consumption 

Table 1: comparison between valve control and displacement control 

2.1. Valve control 

The first group of steering systems which is considered is to be the group of valve 

controlled systems (see Figure 2, I – III). These systems are fully controlled by valves. 

The pump delivers the oil flow and pressure as it is designed and the steering cylinder 

which is connected to the axle and wheels has no feedback to the pump. Those 

systems work with constant or variable displacement but due to (internal hydraulic) 
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losses it is necessary to ensure under any operating condition that the available oil flow 

is at least 10 % higher than the required volume flow. 

A pressure relief valve limits the maximum operating pressure and ensures that no 

overload within the system will occur. 

If a steering demand should be fulfilled, the proportional valve directs and throttles the 

pump flow to the appropriate cylinder port to ensure that the needed oil flow to the 

steering cylinder is corresponding to the demand. At the same time the other cylinder 

port is connected to the tank, also via a throttled passage. The surplus of oil is also 

throttled and lead back to the tank. The advantage of these systems is the straight 

forward design and the good dynamic behavior and response time because the flow 

and pressure is always ensured (see Table 1, left column). The overall efficiency is 

very low due to high hydraulic losses (see Figure 3, left). 

2.1.1. Fixed pump (engine driven) 

The simplest system of the category of valve controlled systems works with a constant 

displacement pump which is directly driven by the vehicle engine (see Figure 2, I). But 

this means that the generated oil flow depends on the engine speed. As high flow 

demands coming from the steering can occur at low engine speeds there is a need for 

a large displacement pump for this solution resulting in high losses in either flow 

regulators, steering valves or both whenever the actual needed volume for steering is 

low. This happens a great part of the total vehicle life as e.g. on highways steering is 

hardly needed and steering movements are small. 

The big disadvantage of these systems is therefore that the largest oil flow is available 

also when it is not really needed. This results in high energy losses which mean higher 

fuel consumption and unnecessary high carbon dioxide emissions. 

2.1.2. Variable displacement pump (engine driven) or fixed pumps with 

variable motor speeds (E-motor driven) 

To reduce the losses of valve controlled steering systems variable displacement pumps 

can be used (see Figure 2, II). The displacement of the pump will be reduced with 

increasing engine speed. The efficiency is higher than the efficiency of systems with 

constant displacement pumps but still on a low level because the oil flow is still higher 

than necessary in almost all driving circumstances. A better solution is to reduce the oil 

flow to a level which is necessary to keep the control system working by regulating the 

pump speed. This can be done by combining a fixed pump with a speed regulated E-
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motor. The system behavior is similar to the above described system with a variable 

displacement pump but with lower losses as the oil flow can be kept just above the 

needed flow for steering with a surplus of approx. 10%. The pump size can be smaller 

as well as the E-motor speed is independent of the engine speed. On the other side a 

fast regulation of the E-motor is required in order not to increase the reaction time of 

the system on steering commands. 

2.1.3. Variable displacement pump (engine driven) or fixed pumps with 

variable motor speeds (E-motor driven) combined with self-locking 

cylinder 

Both previously introduced systems have in common that there are large losses 

especially in partial load and during straight ahead driving. Although system II with the 

variable displacement pump has fewer losses than system I because the generated oil 

flow is closer to the needed volume, still the losses can be huge as a great part of the 

time no steering is requested but pump pressure is still needed to keep the axle in 

position. When the steering has a self-locking cylinder by which the straight ahead 

position can be secured, this pump pressure is not needed any longer but as the pump 

always supplies oil, losses are still remarkable. If system II is realized with an electric 

motor the losses can be further lowered. 

System III (see Figure 2, III) uses this possibility to reduce the power consumption 

further. In case of standby or straight ahead driving the electric motor and therefore the 

displacement pump can be switched off completely. This reduces the losses in both 

situations to zero. As there is no standby pressure or flow which is necessary for the 

control function in open-center systems like System III, this system needs an 

independent self-centering and locking mechanism when the motor is off. An additional 

benefit of such a system is that there is a stable failure mode when there is a power 

loss in the vehicle. 

2.2. Displacement control 

Another possibility to control hydraulic systems besides valve controlled systems is a 

displacement controlled system (see Table 1, right column). In these systems, the 

pump only delivers the required oil flow. Besides some losses due to pipe length and 

diameters the pressure is given by the external load. That means that the maximum 

operation pressure is only reached when it is really needed e.g. steering in standstill 

against curbs. The oil flow is given by a constant displacement pump which is driven by 

a regulated high efficient electric motor. 
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The motor and therefore the pump are run clockwise or anticlockwise depending on the 

demanded steering direction. Missing oil due to (internal) leakage is automatically 

refilled from the tank and high pressure peaks can be relieved to the tank. The system 

principle is shown in Figure 2, IV as a closed loop. 

These systems have the highest energy efficiency because they have very low losses 

due to their working principle, as only the amount of oil needed is generated with the 

needed pressure coming from the load. The required installation space is also 

comparatively low. But the systems are more difficult to control because the dynamic 

behavior is strongly depending on the dynamic behavior of the electric motor. 

Controlling a valve is much easier. The dynamic behavior of the motor is limited by the 

motor itself, the electronics, inertia and the available current. 

3. Efficiency of steering systems 

Today the reduction of fuel consumption is one of the main challenges in commercial 

vehicle development. Therefore, the efficiency of the engine and all subsystems has to 

be improved. A conventional steering system is active all the time when the engine is 

running. Because of this long active time, even a minor efficiency increase has the 

potential to reduce the overall fuel consumption and the lifetime costs of a vehicle in a 

significant way. But the energy consumption of today’s steering systems can be 

improved considerably. 

To compare different steering systems a typical steering load cycle has to be defined. 

Alternatively, different but typical load situations have to be considered, for example 

cornering or straight-ahead driving. 

3.1. Valve control 

3.1.1. Fixed pump (engine driven) 

Figure 4 shows a steering system with fixed, engine driven pump. This solution has the 

lowest efficiency in this comparison. There are different reasons which cause this 

effect. The first reason is that the oil flow can´t be adapted to the current requirement. 

The oil flow is as high as it is necessary for any steering scenario. To last this backup 

costs energy which reduces the efficiency of the system. 

Another reason for the low efficiency is caused by the control valve system itself. 

Instead of providing only the hydraulic power which is needed for steering, the 

difference between needed and provided oil flow is lead back to the tank (throttled). In 
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addition, the supplied oil can have pressures over the pressure needed for steering 

because of pressure losses in the steering valve. 

 

Figure 4: measurement of the energy consumption for a fixed pump 

3.1.2. Variable flow (variable displacement pump or speed regulated fixed 

pump) 

 

Figure 5: added measurement for a variable flow 

The steering system with variable flow, shown in Figure 5, differs from the system 

above in the property that the oil flow can be varied by variation of the displacement or 
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motor speed. This control principle partly reduces unnecessary losses as the supplied 

volume is more appropriate for the needed steering, especially for E-motor driven 

pumps during straight-ahead driving. But the disadvantages of the valve control are still 

present. 

3.1.3. Variable flow (variable displacement pump or speed regulated fixed 

pump) combined with self-locking cylinder 

The system in Figure 6 differs from the both previous systems with just valve control 

by using a self-locking cylinder in center position. This allows to shut down the pump 

during straight-ahead driving and deactivate the steering system for the concerning 

axle. This reduces the losses in that case to zero. In steering-situation, the efficiency is 

equal to variable flow systems. 

 

Figure 6: added measurement for a variable flow combined with self-locking cylinder 

3.2. Displacement control 

The system with displacement control is the most efficient system in this comparison, 

as shown in Figure 7 above. Seen from the hydraulic steering itself there are no losses 

theoretically. The system generates only the required oil flow and the system pressure 

is equal to the load pressure. This means, that the only efficiency decreasing factors 

are leakage, pressure drops and friction. For a full comparison the efficiency of the 

electric motor itself and the electric power generation has to be taken into consideration 

but the overall efficiency is nevertheless much better compared to the other solutions. 
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Figure 7: added measurement for displacement control 

4. Conclusion 

By implementing new technologies a steering system can be developed to a much 

higher efficiency, resulting in considerably lower carbon dioxide emissions. An idea is 

to label the different steering concepts with Energy labels to indicate this energy 

efficiency easily and comparable. 

As vehicle concepts move into the direction ‘Hybrid’ or ‘Full Electric’, electro-hydraulic 

steering becomes more appropriate as a diesel engine is not available under all 

conditions. The new electric displacement controlled steering systems fits perfectly to 

these concepts and will lead the steering technology to a more “green” future. 
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Abstract 

This paper presents an approach for an automated calibration process for electronic 

control units (ECU) of power split transmissions in agricultural tractors. Today the 

calibration process is done manually on a prototype tractor by experts. In order to reduce 

development costs the calibration process is shifted from prototype testing to software 

modelling. Simultaneous optimization methods are used within the software modelling to 

calculate new parameters. The simultaneous optimization includes objective evaluation 

methods to evaluate the tractor behaviour. With the combination of both methods inside 

the software modelling, the calibration process can be automated. The success of this 

approach depends on the quality of the software modelling. Therefore the identification 

of the initial prototype behaviour and the fitting of the tractor software model is done at 

the beginning. At the end of the automated calibration the validation and fine-tuning of 

the calculated parameters are done on the real tractor. These steps are condensed to a 

five step automated calibration process which includes simultaneous optimization and 

objective evaluation methods in several applications. After the detailed discussion of this 

automated calibration process one function of the ECU (one transmission component) 

will be calibrated through this process as example. 

KEYWORDS: ECU tuning, automatic calibration, Tractor transmission control unit 

(TCU) 
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1. Introduction 

By 2050 the output of food production should be doubled to compensate the growth in 

population [1]. In consideration of limited arable land, the inevitable growth in production 

cannot be achieved by expanding the cultivated land, but by increasing the yield. One 

approach to raise yields per hectare is seen in more precise farming methods. The 

accuracy of the working process is dependent on precisely controllable tractor speeds, 

widely being achieved by modern power split transmissions. Optimizing the vehicle 

speed requires the appropriate selection of the ratio by choosing both the mechanical 

gear and the swivel angle of the hydraulic pump. This task is processed by the 

transmission electronic control unit (ECU) of the tractor. To achieve optimal behaviour of 

the tractor, the ECU must be calibrated towards proper interaction of the mechanic, 

electric and hydraulic components. Today this calibration process has to be carried out 

for each tractor model and repeated for every significant change of the drive train (e.g. 

introduction of a new engine generation). New engines are being developed on a regular 

basis driven by stricter international regulations regarding allowable pollutant emissions. 

Currently, the calibration of the ECU is done mainly manually, which means it is based 

on the subjective driving perception of an experienced calibration engineer on a test 

vehicle. The multiple parameters of the ECU will be optimized subsequently to achieve 

the anticipated driving behaviour.  

The frequent repetitions of the calibration process of the ECU as well as the high number 

of possible parameter combinations qualifies the ECU calibration process for 

automation. This can reduce the time and the resources needed to achieve a desired 

driving behaviour of the tractor.  

2. Analysis of resource usage on the manual process 

The current calibration process of the ECU is shown in Figure 1. During the whole 

process a tractor prototype, a test driver and a control engineer is present. At the 

beginning the control engineer starts with the first ECU parameter by changing and 

evaluating this parameter repetitive. The number of iteration are represented by “a” 

(Figure 1). The number of iterations “a” of this parameter are dependent on the 

experience of the control engineer. After the tractor has reached the desired driving 

behaviour with the given constrains of the first parameter, the value for this parameter is 

saved and the process is repeated with all other ECU parameters (“b” Figure 1). The 

number of iteration with the prototype, the test driver and the control engineer for the first 

set of parameters is a*b. This set of parameters does not considere the interactions of 

the parameters. Additional iterations are needed to optimize the ECU parameters taking 
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the interactions of all parameters (“c” Figure 1) into account. After all this iterations 

(a*b*c) a first set of parameters is identified.  

Common tractors provide the driver the option to set different driving behaviours, for 

example a reduced dynamic behaviour for driving with a trailer. This is possible by 

changing between different parameter sets. Starting with the first identified set of 

parameters additional iterations are made to identify the parameter sets for different 

driving behaviours. The iterations for the different driving behaviour are less than in the 

initial process, because of the first set of parameter as starting point. 

 

Figure 1: Current manual calibration process 

Until this point of the calibration process different parameter sets for the ECU are 

identified and tested on the prototype tractor. Since a tractor is used in a wide field of 

applications all the identified parameter sets have to be tested under these various 

applications. These applications encompass for instance driving with a trailer, ploughing 

or other field work. In order to comprehensively test all these conditions of use a lead 

time has to be considered based on the assembly of the trailer or field attachments and 

the transport to the fields. The parameters have to be tested under comparable 

conditions which are mainly dry conditions. In addition to this, the weather can cause 

additional rest time for the tractor testing.  

The driving with a trailer for example changes the inertia of the tractor and likewise the 

driving behaviour respectively. It is expected that the identified parameters on the tractor 

(without trailer) in general are not reaching the desired driving behaviour when driving a 

tractor with a trailer. Additional iterations of the tractor and the tractor with 
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trailer/implements have to be performed in order to identify a final set of ECU parameters 

featuring satisfactory driving behaviour in the fields and on the street. Within every 

iteration the lead time to rebuild the trailer/implement and the rides to the test track/field 

has to be considered.  

In summary of this manual process the resources (tractor, test driver, control engineer) 

are used during the whole process and weather conditions can cause additional rest 

times. The number of iterations inside this process depend on the experience of the 

control engineer and the knowledge of the prototype. 

3. Automatic calibration process 

The targets for the automatic calibration process are the reduction of the resource usage 

and the exclusion of the weather influence.  

The reduction of resource usage is reached by transferring large parts of the process 

inside a simulation environment. The exclusion of the weather influence is achieved by 

the usage of a test rig. Therefore the following automatic calibration process has been 

developed. 

 

Figure 2: Automatic calibration process 

Figure 2 shows the automatic calibration process in detail. The first step (1. Prototype 

testing) of the automatic process is the identification of the initial behaviour of the 

prototype tractor. Therefore the ECU parameters are set to reasonable values. The initial 

behaviour of the prototype tractor is identified by drive cycles. These drive cycles are 

performed with the prototype tractor and a test driver. A control engineer is not needed 
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for this process step. The output of the first process step are the initial behaviour of 

prototype tractor, which is used as optimization target in the second process step.  

The second process step is the model fitting (2.). Here the developed tractor simulation 

models are fitted with the identified initial behaviour of the prototype tractor. Therefore 

the ECU parameters of the ECU simulation model are set to the same initial values which 

are used in the prototype test (1./Figure 2). This eliminates the influence of the ECU 

parameters on the driving behaviour of the Tractor simulation model. During the model 

fitting a first optimization algorithm (optimization 1/Figure 2) compares the current values 

of the simulation with the initial behaviour of the prototype. Based on this comparison 

new model dynamic parameters are calculated by the algorithm and tested inside the 

simulation model. The evaluation of the simulation performance is based on defined drive 

cycles. These are the same drive cycles which are performed on the prototype in the first 

process step. The output of this second step is a fitted tractor simulation model. 

In the third process step the ECU parameters are calibrated inside the software. The 

fitted tractor simulation model from the second process step is used for the ECU 

parameter calibration. The “final behaviour according to specification”, which the serial 

production tractor should have, is used as target for the optimization. This target is the 

input for the second optimization algorithm (optimization 2/Figure 2). The second input 

is the current behaviour out of the optimized tractor simulation model. New ECU 

parameters are calculated and evaluated by the optimization algorithm by comparing 

both inputs (initial behaviour according to specification / current tractor simulation 

behaviour). The target of the third process step is reached when the “current behaviour 

(simulation)” is within the range of the “final behaviour according to specification”. The 

output of the third process step are the pre-calibrated ECU parameters as well as the 

last optimization step of the optimization algorithm. The simulation is used to reduce the 

numbers of iterations on the test rig and on the prototype. In order to achieve the 

reduction the last optimization iteration of the third process step is the starting point for 

the optimization in the fourth process step. 

In the fourth process step the ECU parameters are calibrated on the real tractor. 

Therefore the defined drive cycles are performed on a tractor, which is assembled to a 

test rig. The measured behaviour of the tractor is the input for the optimization algorithm 

(optimization 2/Figure 2). The second input is the “final behaviour according to 

specification”. The optimization algorithm compares both inputs and calculates new ECU 

parameter sets, which are tested on the tractor again. The target and the optimization 

algorithm of the fourth process step are the same as in the third process step. The 

difference between the fourth and the third process step is the use of a real tractor 
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instead of the tractor simulation. The output of the fourth process step are different ECU 

parameter sets which are fine-tuned on the real tractor. 

In the fifth step a control engineer chooses and implements (for example three) different 

parameter sets out of the optimized parameter sets of the fourth process step. These 

optimized parameter sets are sorted by the expression different target values and all are 

meeting the “final behaviour according to specification”. 

A comparison of this automatic process and the current manual process is shown in 

Figure 3. The main advantage of the automatic process is the reduction of prototype, 

test driver and control engineering time. The prototype and the test engineer is used in 

the new process in step “1. Prototype test” once and for validation tests in “4. Calibration 

test”. This reduces the resource usage of them according to the manual process. The 

test engineer is need in the automatic process to decide which set of parameter out of 

the final optimized parameter sets are used in the series tractor. This reduces the time 

for the test engineer to a minimum. The optimization algorithm with an objective 

performance evaluation reduces the influence of experience on the calibration results as 

well as the control engineer time. With the simultaneous optimization of the ECU 

parameters the resource usage are reduced, but also the quality of the calibration 

process can be improved [2,3]. With the simulation approach of the simultaneous 

optimization a higher number of iterations can be evaluated parallel, which concludes in 

a better fitting of the driving behaviour to the specification. 

 

Figure 3: Comparison between automatic and manual calibration process 
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The automatic process reduces the manual iterations and provides different parameter 

sets for different driving behaviour in one process run. Therefore the requirements on 

the automatic calibration process is reached. The proof of this automatic process on the 

tractor has not finished yet, but it has shown promising results on the calibration of a 

transmission part. The example of this process on this transmission part is discussed in 

the next chapter. 

4. Example of the automatic process 

The automatic calibration process can be used on parts of the transmission, like clutches, 

synchronizer, hydraulic transmission, etc. and not only on the total tractor. The calibration 

of a part of the ECU, which controls one of these transmission parts, with the discussed 

automatic calibration process is the topic of this chapter. 

The first step of the automatic process (Figure 2) is the “1. Prototype tests” in which the 

current behaviour is identified. In this example a step from 0 to 1 is chosen as drive cycle. 

The results of the prototype test on the step request and the measured response are 

shown in Figure 5 (measurement (before ECU Parameter calibration)). 

The “2. Model fitting” is the next process step. Therefore a basic simulation model of the 

ECU part and dynamic model (Figure 4) is developed. A schema of this simulation model 

is shown in figure 4. The step request is the input (request/Figure 4) to the ECU model. 

The ECU model controls the dynamic model and the output of the model is the response 

(Figure 4) on the step request.  

 

Figure 4: Schema of the basic simulation model 

The response of the simulation model on the step request is shown in Figure 5 

(simulation (before fitting). The results show that with the initial dynamic parameters of 

the simulation model the behaviour of the prototype are not matched, considering that 
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the ECU parameters of the simulation model and the ECU inside the prototype are set 

to the same values..  

 

Figure 5: Prototype and simulation behaviour at the beginning of the process 

The target of this step is the fitting of the simulation (before fitting) to the measurement 

(before ECU Parameter calibration). The optimization algorithm (1. Optimization 

algorithm/Figure 2) changes the dynamic parameters based on the comparison of the 

simulation (before fitting) and measurement (before ECU Parameter calibration). The 

result of this optimization is shown in Figure 6. 

 

Figure 6: Prototype and simulation behaviour after the model fitting 

The simulation response (simulation after fitting) is fitting better to the measurement 

(before ECU Parameter calibration). Considering the basic simulation model a perfect 

fitting couldn’t be reached. The shown result is the best compromise which could be 

reached with this model.  

The fitted simulation model is used in the next process step (3. Pre-calibration (model 

based)) to optimize the ECU parameter. The optimization target is shown in Figure 7. 
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Figure 7: Optimization target for the ECU calibration 

The target for the ECU calibration is a faster response without instable oscillations. 

Therefore the optimized simulation model from the second step is used. The ECU 

parameters are optimized by comparing the current simulation model behaviour with the 

target. 

The last iteration step of this ECU parameter optimization is shown in Figure 8. Each 

point represents one set of parameters. On the x axis the performance of the simulation 

behaviour is plotted. On the y axis the stability is plotted. This represents the lack of 

oscillations of the response. The shape of the curve represents the best compromises 

between the stability and performance of the system.  

 

Figure 8: Optimization results of the last optimization iteration step 

The results of the optimization are a number of parameter sets which are sorted by the 

behaviour of the sets. All these results are near the target curve and vary in expression 

of stability and performance. The control engineer has to choose the expression of 

stability and performance he prefers. 
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The first parameter set chosen is a fast parameter set (A /Figure 8). The response of the 

system with this fast parameter set is shown in Figure 9.  

 

Figure 9: System response of the fast parameter set (A) 

The response is compared to the simulation after the fitting. As expected the response 

of the optimized ECU parameter are faster than the initial system and has a slide 

overshoot. The optimization target (faster response) is reached with this value. To 

validate the optimization results the chosen fast ECU parameters “A” are tested on the 

prototype. The results of this test are shown in Figure 10.  

 

Figure 10: Measurements of the system response of the fast parameter set (A) 

The validation measurement shows that the parameter set “A” are faster than the initial 

ECU parameter set in the simulation as well as in the real system. The overshoot and 

undershoot of the test after calibration (Figure 10) are comparable to the simulation 

(Figure 9). Considering the basic simulation model the measured response is slower 

than the simulation, which is consistent with the results of the second step (2. Model 

fitting). 

The second chosen set of parameters are a slower system (B / Figure 8). The response 

simulation of the parameter set “B” are shown in Figure 11.  
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Figure 11: System response of the slow parameter set (B) 

The response of the system with parameter set “B” are slower than the parameter set 

“A” but still faster than the initial system. The overshoot of the system response with the 

parameter set “B” are almost absent. The system is more stable than the system with 

the parameter set “A”. The optimization target (faster/stable system) is reached with this 

parameters as well. The decision between the slow or fast system is the task of the 

control engineer. 

Figure 12 shows the validation results of the system with the parameter set “B”. The 

shape of the response is comparable to the simulation (Figure 11) results considering 

the slower response of the real system compared to the simulation model. The validation 

of the system response with the fast and the slow parameters show that the optimization 

algorithm has found parameter sets which reach the requirements and have a difference 

in expression of aggressiveness and stability. The parameter sets in between the two 

chosen parameter sets allow the control engineer an even more precise system 

response setting.  

 

Figure 12: Measurements of the system response of the slow parameter set (B) 

This example shows, that the automatic calibration process can be used to calibrate ECU 

parameters for the control parts of the transmission. The optimization algorithm has 
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found solutions for the model fitting as well as for the ECU parameter optimization. The 

chosen ECU parameters has shown a comparable dynamic behaviour inside the 

simulation and in the real system. The spread of solutions has shown that parameter 

sets with difference in dynamic behaviour are found which are within the specification. 

Even with a basic simulation model the results are promising.  

5. Conclusion  

This paper shows an approach to an automatic calibration of a transmission control unit 

using methods of optimization theory. The target of this process is the reduction of 

development costs as well as the quality improvements of the calibration by eliminating 

subjective experts rate. Methods of simultaneous optimization and objective evaluation 

replace the subjective experts rate in this process. Software modelling decreases the 

necessity of tractor prototype and test driver capacity. The simultaneous optimization 

within the software modelling allows an optimization of the ECU parameters considering 

the interactions of the parameters. In addition to this, parallelization within the software 

modelling leads to a higher number of evaluated parameter sets. The combination of 

both approaches can lead to better calibration results compared to the current manual 

process.  

The quality of the calibration results are based on the software modelling quality. Thus a 

proper identification and fitting of the initial prototype tractor behaviour to the tractor 

software model is done at the beginning of the process. Whereas the validation and the 

fine-tuning of the calculated parameters is done on the real tractor as last step. The 

simultaneous optimization and objective evaluation methods are used in this process for 

the ECU calibration but also for the tractor simulation model fitting. 

So far the validation of this process is conducted on a specific transmission component 

ECU. In this example the process has shown promising results. The last optimization 

step of the ECU parameters has generated a wide range of parameter sets which meet 

the specification and show differences in expression of aggressiveness and stability, 

which all fulfil the specification. 
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Abstract 

The paper describes the design of a prototype vehicle used by Dana Holding Corporation 

as a mobile laboratory for the development of Spicer® PowerBoost® hydraulic-hybrid 

powertrain technology. A telehandler vehicle was selected due to its versatility. Starting 

from the high-level requirements, design choices from the powertrain layout to the control 

architecture are discussed. The hydraulic-hybrid powertrain system is described, and its 

performance is analyzed based on representative driving cycles. 

KEYWORDS: telehandler, hydraulic hybrid, powertrain, driving cycles 

1. Introduction 

As a leading drivetrain supplier for the off-highway industry, Dana offers a broad portfolio 

of options to the global market, from individual product solutions to fully optimized 

drivetrain systems. Pursuing Dana’s mission to be the global technology leader in 

efficient power conveyance and energy-management solutions, Dana often develops 

prototype vehicles equipped with the company’s innovative systems as turnkey prototype 

solutions for customers or for internal product and technology development purposes. 

When these prototype vehicles are targeted for internal usage, a modular and flexible 

approach needs to be applied in order to maximize the return and benefit of R&D 

investments. 

This paper focuses on a vehicle that serves as a mobile laboratory for the development 

and demonstration of many of Dana’s new technologies, including Spicer® axles, Spicer® 

hydrostatic continuously variable transmissions (CVTs), Spicer® PowerBoost® hydraulic-

hybrid powertrain technology, the Spicer® central tire inflation system (CTIS), and many 

others. The vehicle was developed using a modular approach that allows engineers to 

easily modify all the systems under study, including the drivetrain architecture and 

components, electronic equipment, and controllers. In addition, it is equipped with an 
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advanced sensor network that includes wireless telemetry logging and measurement 

technology to provide full analytical capability for the installed components. 

Shown in Figure 1, Dana’s mobile laboratory is a telescopic boom handler (TBH), also 

known as telescopic handler, teleboom handler, or telehandler. This machine is widely 

used in the agriculture, industrial, and construction markets. It is similar in appearance 

and function to a forklift while offering the increased versatility of a single telescopic boom 

that can extend forwards and upwards from the vehicle. The operator can fit one of 

several commercially available attachments on the end of the boom, such as forks, 

bucket, hammer, muck grab, or winch. 

 

Figure 1: Dana prototype telehandler 

Since 2013, Dana has used a refurbished 1997 hydrodynamic Manitou 728-4 telehandler 

equipped as follows: 

· An electronically controlled Tier 4i Perkins engine (3.4 liters, 83 kW); 

· Dana driveline components, including a Spicer® 318 hydrostatic continuously 

variable transmission (HCVT), Spicer® driveshaft, and Spicer® Model 212 front 

and rear steer axles; 

· An electro-hydraulic steering system and work hydraulics, using technology 

provided by Danfoss Power Solutions; 

· A modular hydrostatic drive solution, allowing multiple-provider installation 

possibilities; 

· The modular Spicer® PowerBoost® hydraulic-hybrid powertrain system, including 

a Spicer® PowerBoost® Hub, a 20-liter low-pressure accumulator, and a 20-liter 

high-pressure accumulator; 
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· An LCD touchscreen driver interface, Wi-Fi telematics, on-board camera, global 

positioning system (GPS), and other interfaces for the operator. 

In Section 2, the main requirements and design criteria are provided, while Section 3 

presents a case study to illustrate the use of the mobile laboratory in a typical technology 

development project for the Spicer® PowerBoost® hydraulic-hybrid powertrain system. 

Finally, Section 4 discusses typical vehicle driving cycles and corresponding 

experimental results. 

2. Vehicle lab requirements 

2.1. General requirements 

The main goal of this vehicle is to provide a useful development platform and 

demonstrator for a wide range of Dana products and technologies. Thus, the main design 

requirement was to develop a vehicle that can be used to test a wide variety of functions 

for material-handling operations, construction work, digging, lifting, and the like. The 

telehandler is the ideal baseline vehicle thanks to its versatility and ability to perform 

multiple types of operation involving traction and work functions such as lifting, handling, 

digging, silage, loading, and transportation. Other important high-level requirements are 

related to the flexibility of the powertrain layout and control system, as detailed in the 

following sections. 

2.2. Powertrain layout 

The second requirement is the ability to test transmission technologies from several 

families at different times. Thus, the vehicle powertrain layout was specifically designed 

to be compatible with a wide range of Dana transmissions and powertrain solutions, 

including hydrostatic transmissions with single- or dual-traction motors — some including 

the option of a direct engine-transmission mechanical connection — as well as standard 

powershift transmissions. In order to meet this requirement, the engine is located in the 

back of the vehicle, in line with the vehicle longitudinal direction and centered with 

respect to the vehicle track. This required the original vehicle chassis to be stretched 

longitudinally in order to fit the new Tier 4 engine, which includes a new after-treatment 

system that makes it larger in size when compared with the original engine installed in 

the telehandler. The vehicle layout is illustrated in Figure 2. 
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Figure 2: Telehandler powertrain layout 

In addition, the space in the center of the vehicle frame provides room for the extra 

components required for the Spicer® PowerBoost® hydraulic-hybrid powertrain system 

— namely two 20-liter hydraulic accumulators and the Spicer® PowerBoost® Hub.  

2.3. Control architecture 

The control architecture is modular and allows for the implementation of different 

strategies, which can be adapted to the layout of the transmission installed in the system 

and the desired operating mode. It is built upon logic functions that can be replaced and 

reused in different applications. A high-level view of the control architecture is shown in 

Figure 3, where three macro-blocks are identified: 

· Control: Algorithms, signal conditioning, generation of actuator setpoints; 

· Safety: Low-level control overrides, for safety functions and error management; 

· Plant: Interface to vehicle actuators, or, alternatively, to simulation model.  

 

Figure 3: Control architecture 

 

For maximum flexibility and computational efficiency, each element of the control 

architecture can be executed with a different sample time, in accordance with system 

and functional requirements. Model-based design is used for control development, 
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especially focused on rapid control prototyping (RCP), based on a dSPACE 

MicroAutoBox platform. 

Each macro-block can be replaced; for instance, the algorithms can be changed to match 

the powertrain configuration. In addition, macro-blocks can be individually modified as 

development progresses while keeping the same interfaces. In particular, the plant block 

allows switching between the physical prototype and a virtual prototype (simulation 

model). This allows engineers to easily test the control strategies in simulation without 

modifying the algorithms or software before implementing them on the vehicle. 

3. Technology development case study: Spicer® PowerBoost® 

3.1. Hydraulic-hybrid powertrain technology 

Spicer® PowerBoost® is a series hybrid-hydraulic powertrain technology for off-highway 

vehicles and material-handling equipment. This technology is intended for hydrostatically 

driven applications with frequent bursts of acceleration, deceleration, lifting, and lowering 

during cyclic maneuvering, which all support the recuperation of energy.  

By using hydraulic accumulators, the system captures energy that would otherwise be 

wasted, and then uses this recuperated energy to help power the vehicle. In addition to 

the accumulators, the system includes the Spicer® PowerBoost® Hub, an innovative 

mechatronic device that integrates hydraulic manifolds, valves, and the electronic 

controller. The Spicer® PowerBoost® Hub has a modular design that includes a core 

block for the operation of the main system as well as optional modules that enable 

several extra functionalities, depending on vehicle configuration and customer 

preference. 

Figure 4 is a circuit representation that shows the core functionality of the Spicer® 

PowerBoost® system, while Figure 5 illustrates the physical implementation of the 

Spicer® PowerBoost® Hub installed on the Dana telehandler. 
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Figure 4: Series hybrid architecture. This simplified concept representation only shows 

core functionality 

 

Figure 5: The modular design of the Spicer® PowerBoost® Hub. This configuration 

shows all optional modules 

The core block contains normally closed hydraulic cartridge valves that, when actuated, 

connect the hydrostatic circuit with the high-pressure accumulator and low-pressure 

accumulator. These connections enable the drive system to store or utilize previously 

stored energy. Furthermore, the core block embeds the safety functions required by 

pressure equipment, including certified pressure relief valves to secure the hydraulic 

accumulators, accumulator discharge valves, and sensors to monitor pressure and 

temperature. 

The other modules host other functionalities, such as start/stop. With this module, the 

vehicle’s engine can be restarted by using the energy stored in the high-pressure 

accumulator. The hydraulic start/stop functionality is more responsive than an electric 

starter and saves the electric battery. 

A second module connects the Spicer® PowerBoost® system to the vehicle’s working 

hydraulics circuit. This connection allows the system to utilize energy accumulated in the 
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travel hydraulics system to move implements or capture kinetic energy from implements 

and store it in the accumulator.  

Electric valves are managed by a control platform that communicates with the general 

vehicle controller via CAN bus. The electric devices are covered by a plastic or metal 

sheet (shown partially open in the picture) to protect them from dust and dirt.  

When a vehicle is purely hydrostatically driven, the hub is not actively used, since 

hydraulic fluid is only diverted from its initial route in hybrid mode when energy is 

recuperated or released. Under hydrostatic power, hydraulic fluid simply flows through 

the hydrostatic A-line and B-line of the hub. 

3.2. Development process 

Dana’s advanced engineering teams normally follow an agile systems engineering 

development approach, which is based on two factors: lean management of system 

requirements — which can evolve rapidly during the development of a prototype study 

— and the use of three main development environments: the vehicle lab, the test bench, 

and the simulation lab.  

Normally, the vehicle lab constitutes the most realistic environment for testing a new 

technology, but the three labs complement each other and enable the development of 

advanced control systems. The test bench and simulation lab support the development 

of the vehicle, facilitating the interpretation of the experimental results on the vehicle. 

The test bench and the simulation lab are used extensively for system modeling and 

analysis in the preliminary stage, control development and testing in the implementation 

phase, and augmentation of the physical measurements for improved analysis and 

assessment in the verification phase. 

3.3. Simulation model 

Engineers use LMS Amesim in co-simulation with Simulink for control development to 

implement a simulation model of longitudinal vehicle dynamics and hydraulic-hybrid 

powertrain technology. The model is based on a 1-D modelling approach for the 

hydraulic circuit, which includes the hydrostatic machines (variable-displacement pump 

and motors), fluid hoses, control valves to connect and disconnect the accumulators, 

and accumulators. The hydrostatic machines are modelled using an efficiency map and 

a 1st order dynamic response for the current-to-displacement transfer function. The 

control valves are represented by standard orifice equations to represent the pressure 

losses vs. flow and by a 2nd order dynamic response (current to opening area). The 
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accumulator model is based on ideal gas law, and it includes heat exchanges with the 

external environment.  

The internal combustion engine is represented by an efficiency map, and the driveline is 

assumed to be composed of a sequence of lossy gear ratios, neglecting the torsional 

driveline dynamics. The power loss associated with the gearbox and axle is modelled 

using a Coulomb + viscous friction approximation, based on experimental 

characterization of these components. The vehicle dynamics are purely longitudinal and 

account for tire rolling resistance.  

All model parameters are identified from experiments at the test bench (for the hydraulic 

components) or the vehicle (such as vehicle dynamics and overall energy balance). The 

simulation model is validated with experimental testing using standard cycles at Dana’s 

own test track, which is detailed later in this paper. 

 

Figure 6: Graphical comparison of simulation results with experimental testing 

Figure 6 shows a comparison between simulation results and experimental data on a 

reference driving cycle, while Figure 7 shows a synthetic representation of the model 

quality based on the Alignment Index (AI), defined as follows: 

 (1) 

where  is a generic variable of interest (one of those listed in Figure 7), and the 

subscripts  and  denote its simulated and measured values, respectively. 
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Figure 7: Model alignment indices, a metric to assess the match between simulation 

outputs and experimental data. A unit value indicates a perfect match. 

4. Testing and driving cycles 

4.1. Test track 

Dana’s prototype telehandler was instrumental in the development of Spicer® 

PowerBoost® technology. This prototype allowed for testing and validation in several 

usage scenarios, thanks to the ability to perform multiple types of operation involving 

traction and work functions such as lifting, handling, digging, silage, loading, and 

transport. These scenarios are formalized into a set of driving cycles performed at Dana’s 

own test facility. 

Figure 8 represents the layout of the test track at Dana’s facility in Arco, Italy. It consists 

of a flat area paved with asphalt and concrete, surrounded by guard-rails. A sand pile is 

available for conducting load tests with the bucket, while different weight ballasts can be 

used for tests with the fork. A control room is available for engineers working on vehicles, 

and the entire area is accessible with Wi-Fi. 

 

Figure 8: Layout of Dana’s test track in Arco, Italy 
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4.2. Driving cycles 

A set of basic maneuvers is identified and performed in order to verify the functionality 

and performance of the vehicle in elementary operations and controlled conditions. In 

addition, complete driving cycles are defined to cover the vehicle’s range of operation 

and allow an assessment of vehicle performance in complex operations that reproduce 

real-life scenarios. The cycles, listed in Table 1, are also applicable to other vehicles 

performing similar operations, such as forklift trucks and wheel loaders. 

Cycle Description 

Travelling unloaded Transport of the vehicle by driving on tarmac road, pavement and other 
smooth roadways. Typical travel speed is between 15 kph and 
maximum vehicle speed. 

Travelling loaded Transport of the vehicle by driving on tarmac road, pavement and other 
smooth roadways, with load on the forks. Typical travel speed is 
between 15 kph and maximum vehicle speed. 

Towing a trailer Transport of the unit by driving on tarmac road, pavement and other 
smooth roadways, towing a trailer of given weight. Typical travel speed 
is between 5 and 20 kph 

Short Y-cycle The cycle involves removing relatively loose material from a pile and 
depositing it into a truck. 
The vehicle follows a Y-shaped path picking up material in one area, 
backing away in reverse, shifting into forward, turning a few degrees to 
the left or right, traveling to an unloading area, depositing material, and 
backing to the starting area. Transport distance is about 30 m. 

Long Y-cycle Same as Short Y-cycle, but transport distance is about 170 m. 

Short material-handling cycle The cycle involves picking up material from one point, transporting it to 
a location at a certain distance, and safely unloading the material at this 
location. The material is located on a pallet, which is picked up with the 
forks of the vehicle. Transport distance is about 150 m.  

Table 1: List of driving cycles 
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4.3. Hybrid powertrain performance evaluation 

In this section, the performance of the hybrid driveline is compared to a conventional 

hydrostatic driveline using experimental results collected at the Dana test track. The 

comparison is obtained by running two different control strategies on the vehicle. The 

KPIs taken into account are vehicle productivity and fuel consumption. Two of the driving 

cycles listed in Table 1 are considered: short Y-cycle, where the vehicle is used to dig 

into a pile of sand, and travelling unloaded with a speed between 15 and 30 kph.  

Velocity profiles are shown in Figure 9, along with other experimental results. Each duty 

cycle is performed with the standard and hybrid control strategies. In order to have 

statistical relevance, the Y-cycle is repeated 20 times, while the traveling cycle is 

performed for 10 minutes. The digging phase of the Y-cycle happens after 10 seconds, 

a point when the speed of the vehicle goes to zero abruptly. 

The productivity of the standard and hybrid hydrostatic drivelines is comparable for both 

driving cycles. The time required to perform the 20 Y-cycles with the standard hydrostatic 

driveline is 12 minutes, 8 seconds, compared with 11 minutes, 59 seconds for the hybrid 

driveline. Moreover, the same distance is covered after the 10-minute duration of the 

travelling cycle. 

The charts in Figure 9 that show the operating points of the engine are related to the 

cycles performed with the hybrid hydrostatic driveline. The blue dots show the engine 

operating points during the boosting and regenerative phases (hybrid ON), while the 

green crosses are associated with those time periods when only the hydrostatic driveline 

is driving the vehicle (hybrid OFF). These points are similar to those obtained with the 

standard hydrostatic control, so they can be used to compare the two cases. The red 

ellipse centered at 1500 rpm marks the position of the minimum brake specific fuel 

consumption (BSFC) region. 

It is important to note that, during the hybrid ON phases, the engine speed shifts to lower 

values. This is especially clear in the Y-cycle, when the engine speed is reduced to 

1200 rpm while the driveline is delivering less power. When the vehicle is running at high 

speeds and the driveline is delivering more power in the travelling cycles, the engine’s 

operating points shift to the zone of minimum BSFC, delivering maximum efficiency. 
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Figure 9: Measured duty cycles and operating points of the engine. The left column 

illustrates one out of 20 cycles of the loading cycle, while the right column 

shows the first 150 seconds of the handling cycle 

The fuel savings obtained with the hybrid driveline with respect to the standard 

hydrostatic driveline is 16 % during Y-cycle operation, when the vehicle is moving slowly 

and with continuous inversions of the direction that allow for numerous regeneration 

phases. During fast travelling maneuvers, the decelerations are shorter since the vehicle 

does not fully stop, it simply reduces its speed to corner. However, it is possible to 

recover enough kinetic energy to reduce the engine load for the subsequent acceleration 

phase, thus reducing the fuel consumption by 13 %. 
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Abstract 

Along with the general requirement of continuously increasing efficiency of hydrostatic 

drivetrains, variable displacement machines are of major concern in research and 

development. To this effect, the whole machine performance is mainly dependent of 

the displacement variation system (DVS) performance. A lot of work to this topic 

focusses on the controller and actuator level. The aim of this paper is to offer a more 

fundamental view on DVS by giving a focus to the basic hydro-mechanical principles.  

KEYWORDS: variable displacement, fundamentals, product development 

1. Motivation 

For flow and/or pressure control in hydrostatic power transmissions, variable 

displacement machines are the key components, especially in mobile systems. On the 

supply side, external valve based concepts (discharge bypass or suction throttling, 

figure 1) have major drawbacks concerning efficiency or controllability for multi-

actuator systems. Variation of shaft speed as another external control concept for 

pumps usually requires electrically driven shafts, which is standard in stationary 

applications. It will certainly become more important in mobile machines, as electrical 

drives are emerging. On the actuator side, variable displacement (respectively: 

secondary control) is the single alternative to valve control and consequently the most 

effective measure on this side for improving system’s efficiency.  

The overall dynamic performance of these components under different working 

conditions is determined by the layout of the displacement variation system (DVS). 

Furthermore, since any control system needs power supply itself, this has an 

unneglectable impact on the efficiency of the displacement machine. 
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Figure 1: Control concepts for displacement machines 

For both, primary and secondary control, a lot of research work has been performed on 

DVS and successfully has been put into products. Nevertheless, as recent 

development and research shows, there is a need for increasing dynamics and 

efficiency /1/ /2/. Ongoing trends, for example functional integration (synchronizing 

driveshafts in gear boxes, etc.) and system integration /3/, will lead to higher demand of 

performance in the future. In order to overcome existing restrictions and discover new 

development potential, it is useful to look beyond conventional fields of investigation. 

Since much work has already been done to DVS on the controller and actuator side, 

this paper offers an analysis of the basic hydro-mechanical part of DVS in general.  

2. General requirements and state of the art 

Basically, requirements on DVS are the same as to the whole displacement machine: 

· small installation space 

· light weight, low cost 

· good control behaviour (precision and dynamics) 

Regarding a displacement machine as part of a power transmission system, the energy 

consumption of a DVS has to be characterized as a loss, no matter, how efficient a 

certain actuator or control element may be. Further, assuming a perfect layout of a 

fixed displacement machine, e.g. in terms of oscillation and noise emission, a DVS may 

have negative effects on the machine performance, because it changes parameters of 

operation. As additional requirements, specifically for DVS, there are: 

· low power consumption 

· Neutrality to the machine’s performance (efficiency, oscillations, reliability etc.) 

In scientific publications, the overall effect of variable displacement concepts on the 

efficiency of a whole drivetrain has often been more in focus than efficiency and power 

consumption of a DVS itself. On this upper level, the dynamics of variable pumps and 
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motors are strongly relevant to the efficiency of hydrostatic drivetrains, because it is a 

major factor in the competition between valve control and displacement control. In 

general, power consumption of control actions have to be considered in the efficiency 

assessment of drivetrains and consecutively in the layout of operation strategies /4/ /5/. 

In addition, stand-by power losses of existing (hydraulic) control systems may be 

significant /6/. 

Mostly demonstrated for axial piston machines, three major topics of development and 

research can be distinguished on the hardware side: 

1. increase power supply 

2. reduce power losses 

3. reduce actuation work 

Increase of power supply, for example by means of de-throttling hydraulic actuation 

systems, has been a successful approach in order to achieve high dynamics for 

secondary control /7/. As examples for reduction of power losses, especially in stand-

by mode of the DVS, low pressure servo-hydraulics as well as electrical actuators /6/ 

can be mentioned. Reducing the required actuation work itself by means of force and 

displacement can have positive effect on both, dynamics and power consumption 

(resp. efficiency) of DVS. Development and research on this topic means focussing on 

the basic hydro-mechanical function of DVS, which has been subject to the work of 

Achten /8/ and Cho /9/.  

3. Functional analysis of displacement variation system 

Looking at the whole chain of information and energy, the input would be the desired 

value of output power (or another related quantity) as well as the power supply for 

converting this value on the machine. The output would be a change of output power. 

Inside this chain, every kind of DVS on any type of machine consists of at least five 

parts, which therefore can be identified as main functions (figure 2).  

 

Figure 2: Five main functions of displacement variation system 
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The first function is the controller, which determines the deviation of the observed value 

form the target and generates an output signal that is being passed to the power 

control element. This second function determines the amount of power being supplied 

to the actuator, which generates a certain actuation force and displacement, acting on 

the connected mechanical system. Last, the displacement of the actuated mechanism 

has to be turned into a change of displacement of the unit, which finally transduces flow 

and speed as well as pressure and torque. On axial piston machines for example, this 

“displacement unit” is being made up by the swash device, pistons, cylinder block and 

port plate as main parts. 

Figure 3 shows a morphological matrix as one basic method out of the product 

development process. For a detailed look on different options, how functions may be 

put into solutions, consecutive matrices and variation methods are required in each 

line.  

 

Figure 3: Example of morphological matrix for development of DVS 
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actuator motion and the requirements of the last function, the mechanical system 

typically provides a transformation ratio of force or torque as well as a conversion 
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screw drives. Constructional layout of the displacement unit regarding stroke and 

commutation follows, respectively determines the basic hydro-mechanical principle of 

displacement variation. 
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4. Variable displacement unit 

The fifth function of DVS, turning a mechanical control movement into a change of 

displacement of the hydro-mechanical power transducing unit, can be carried out in 

different ways. With certain types of hydrostatic machine designs, certain solutions are 

common or even exclusive in existing products. Nevertheless, apart from some few 

basic restrictions, functional principles are transferrable between different types of 

construction. They also may be combined. In order to define these principles, a general 

functional analysis has been carried out. 

4.1. Functional volumetric fractions of displacement chamber 

Basically, the displacement unit of a hydrostatic machine performs an intake, a 

transport, a compression or respectively decompression and an output of discrete fluid 

volumes /11/. This is achieved by cyclic enlargement and reduction of the displacement 

chambers (stroking motion) and by alternating the connection to the intake and output 

port of the machine (commutation). Regarding the displacement unit, functional 

principles of DVS influence the effective displacement by variation of these two factors. 

In order to discuss existing DVS and development potential of future solutions, a 

volume-oriented definition of functional principles is being proposed. Figure 4 shows 

functional volumetric fractions of a general displacement chamber. 

 

Figure 4: Functional volumetric fractions of displacement chamber 
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Consequently, the maximum chamber volume (MCV) in general consists of two parts 

(figure 4, b): 

The first part is called the dead volume, representing the minimum value of the 

displacement chamber during one cycle. On axial piston machines for example, the 

dead volume is being made up at least by the bottom bores of the cylinder block and by 

the inner volume of hollow pistons, if employed. The dead volume does not contribute 

to the displacement of the machine. The second part is the stroke volume of one cycle, 

representing the difference between maximum and minimum chamber volume. 

Dependent on the design of the machine, it can be varied by means of the stroking 

motion. 

Taking into account the commutation between intake and outlet port, the stroke volume 

represents the maximum possible theoretical displacement volume during one cycle. 

Any commutation layout that permits a connection between displacement chamber and 

one of the ports during the point of MCV reduces the theoretical displacement. The 

volume fractions that are being pushed back into the intake port and on the other side 

being retaken from the outlet do not contribute to the displacement of the machine. 

Therefore, these parts shall be defined as “blind” stroke volumes. The remaining 

fraction imposes the theoretical displacement of the chamber (figure 4, c). 

In order to determine the effective displacement volume, all gap heights, fluid 

properties and pressure ratios must be taken into account. Compared to the theoretical 

value, it is being reduced by internal and external leakage and influenced by 

compression or decompression effects, respective to pump mode (compression, see 

figure 4 d) or motor operation (decompression) of the unit.  

4.2. Basic principles of displacement variation 

Depending on which volumetric fractions are affected, three different basic principles of 

displacement variation can be defined. 

4.2.1. Variable maximum chamber volume (MCV) 

The first principle is the variation of stroke by means of maximum displacement 

chamber volume. In most existing hydrostatic machines, the employment of this 

principle goes along with a variation of the dead volume, which additionally influences 

the theoretical displacement volume. Figure 5 shows this principle, taking a vane pump 

as example. By reducing the relative eccentricity of rotor and stator ring, the MCV is 

being decreased while the dead volume is being increased. 
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Figure 5: Variation of maximum chamber volume (example: vane pump), acc. to /12/ 

A pure variation of stroke without changing the amount of dead volume would also be 

possible, for example in inline or axial piston machines (figure 6). In this case, for the 

example of an axial piston machine, the centre point of the swash movement must be 

located on the piston radius at minimum chamber volume (top dead centre, “TDC”). 

Existing axial piston machines are swivelled around a point either on the main axis, for 

symmetric reasons and swivelling beyond zero, or around a point in between main axis 

and piston axis for making use of self-swivelling forces /13/. 

 

Figure 6: Variation of MCV, stroke only (example: axial piston pump) 
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tooth spaces, fitting elements (1, 2) are located next to the gears. Because of the 

meshing condition, the stroke volume of gear machines cannot be reduced to zero, 

unless an additional synchronising is provided /14/. 

 

Figure 7: Variation of stroke and dead volume (e.g. external gear machine acc. /14/) 
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Figure 8: Variation of commutation; example: internal gear machine 

A major challenge in the layout of variable commutation for DVS is the influence on the 

geometric compression and decompression behaviour which is connected to the 

commutation timing. Figure 9 shows this for the example of a pump with variable 

commutation in terms of discharge delay. Moving the end of suction and the beginning 

of discharge towards higher gradients of chamber volume leads to an increase of the 

compression volume ΔVVC. The same applies to decompression when the 

displacement chamber leaves the discharge port. In turn, with a lead of discharge 

instead of a delay, the resulting behaviour is the opposite.  

 

Figure 9: Influence of commutation timing on geometric compression 
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force to the fluid. Therefore, combinations of variable MCV and variable commutation 

are in focus of this chapter. 

Up to now, such combinations have not been investigated for the purpose of 

displacement variation. At least, variable commutation has been implemented as a 

measure of pulsation and noise reduction. Hence, on variable displacement machines, 

the interaction of variable MCV and variable commutation has to be considered. In 

general, principles may be combined by mechanical coupling or by individual control. 

5.1. Mechanical coupling 

In existing machines, combinations of variable MCV and variable commutation can be 

observed in the field of vane pumps and related types having an axial port plate. As 

depicted in figure 10, a reduction of MCV by rotation of the stator ring leads to a 

dislocation of the eccentricity relative to the (fixed) port positions. The theoretical 

displacement volume is being reduced by both, a reduction of stroke volume in terms of 

smaller MCV and bigger dead volume (same in figure 5, linear motion) as well as by 

blind stroke volumes. By having a fixed port plate and only one actuator movement, the 

principles are mechanically coupled and the relation between the two effects is fixed.  

 

Figure 10: Coupled variation of MCV (α) and commutation (β); example: vane pump 
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backflow as a consequence of incomplete filling of chambers would lead to a bad 

oscillation performance. Since in general, along with an increase of MCV, an increase 

of geometrical precompression is required for preventing back-flow, variable 

commutation should be of advantage for variable displacement pumps. Because a 

variable MCV goes along with variable gradients of chamber volume (compressed 

stroking function, figure 10) the precompression volume ΔVVC may even be less 

affected than with pure variable commutation (figure 9). Nevertheless, layout of a 

mechanical coupled variable MCV and variable commutation makes pump 

development more complex in general. In vane pumps in automotive, solutions using 

single MCV-variation (linear movement of stator) and a combination of principles both 

exist. 

5.2. Individual control 

Individual control in this context means having no mechanically or hydrostatically fixed 

relation between the two principles (figure 11). By this, given a minimum stroke volume 

(sufficiently above zero), variable commutation may be used for lowering the theoretical 

displacement (to zero) and in turn, raise it without varying MCV. 

 

Figure 11: Individual variation of MCV (α) and commutation (β); example: axial piston 

Apart from the fixed-stroke hydraulic transformer and with different objectives, 

individually controlled variable commutation has been investigated also on variable 

displacement machines. Here, two approaches for axial piston machines shall be 
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few degrees and with this, adapts the commutation timing to the system pressure. 

Ideally, this pressure level should be met by precompression in order to avoid pressure 

peaks as well as backflow. Since commutation is being controlled only on the basis of 

pressure information, there is no direct dependency on the actual stroking volume. 
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Cho /9/ developed a system which uses the self-swivelling forces of the machine in 

order to control the swash plate angle. Because these forces are strongly dependent of 

commutation timing, rotating the port plate by small angles shows sufficient in order to 

control displacement in the full range. 

6. Discussion 

The development of innovative solutions for displacement variation affects all five main 

functions and technical levels of DVS. On the controller level, precision and dynamics 

are in focus for competing valve based concepts of drivetrain control. Descending to 

the actuator, efficiency and energy consumption is being considered as well. On the 

basic hydro-mechanical level (displacement unit), principles of displacement variation 

should require minimum actuation work and have no negative effect on the machines 

steady-state performance (efficiency, oscillations, reliability etc.). 

Concerning variable commutation as an alternative to (direct) variation of MCV, the 

main advantage is not having to act on the relatively massive machine parts connected 

to stroking, such as pistons and swash-devices (especially bent-axis type) or gears /16/ 

/9/. In particular for axial piston machines, a clear disadvantage is the fact of at least 

one additional moving machine part. Hence, bearing problems have to be solved and 

reliability may be affected without appropriate layout. Also critical, but not necessarily a 

disadvantage, is the requirement of a dedicated, precise layout of the commutation 

timing. At least regarding a variation of system pressure and with this, varying optima 

of geometric pre- or/and decompression, variable commutation has already proven 

effective /19/. As stated above, this should apply even more if MCV is also variable. 

In order to assess the potential of an independently controlled combination of the two 

principles, research work will be required concerning four major issues: 

· Restrictions in construction: concepts (valves, rotating port plate…), reaction 

forces (friction, pressure ratio of ports…) → feasibility to be proven 

· Concepts and methods for layout of variable timing with respect to compression 

and decompression behaviour → feasibility to be proven 

· Integration and test: impact on energy consumption and dynamics of DVS 

· Control strategies: efficiency and dynamics potential in drivetrain applications 

Looking forward to further investigations in the field of DVS, a function-oriented 

assessment of performance in existing systems is certainly needed. On this basis, the 

potential of future solutions has to be discussed.  
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7. Summary 

The aim of this paper was to offer a methodical basis for the development of new 

solutions for displacement variation systems (DVS), with a focus on basic hydro-

mechanical principles. Therefore, a functional analysis of DVS in general and of the 

displacement chamber volume in particular has been performed. Independent of the 

machine design, three principles of displacement variation can be identified, affecting 

maximum chamber volume, dead volume or commutation. The main characteristics of 

these principles have been presented, along with current product examples and related 

research. Finally, a potential combination of principles has been discussed and 

proposed for further investigation. 
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Abstract 

Current efficiency measurements of variable hydraulic axial piston pumps are 

performed with the displacement system locked at maximum volume, thus without the 

controller. Therefore, the controller’s effect on the efficiency is not quantified at state of 

the art measurements. Former research on control systems mainly focused on the 

dynamic behaviour. This paper aims to quantify the losses in the displacement and 

control system and to research the dependencies of those. Therefore, a test rig is built 

up at IFAS to measure the control power of displacement controlled pumps. 

Furthermore, a simulation tool is developed to increase the understanding of the loss 

mechanisms of the investigated control systems. In conclusion, the paper shows the 

potential of efficiency improvements for displacement controlled pumps. 

KEYWORDS: displacement controlled pumps, losses, controller power, efficiency 

1. Introduction 

Efficiency measurements of variable hydraulic axial piston pumps are performed with 

the displacement system locked at maximum volume and no controller in the setup. 

Therefore, the controller’s effect on the efficiency is not quantified at state of the art 

measurements. Former research on control systems mainly focused on the dynamic 

behaviour. Hahmann analysed the dynamics and measured the self-adjustment forces 

on the swash plate /1/. Dreymüller compared different control strategies and showed 

that a three way valve control of the control cylinder is the best compromise between 

loss and dynamic behaviour /2/. Electrohydraulic control systems were investigated by 

Langen /3/. He also showed that the flexibility of the electronic controller dominates the 

control behaviour of hydraulic-mechanical systems. Achten measured oscillations of 

the control piston pressure at the floating cup pump and indicated that a fixed swash 

plate during efficiency measurements does not lead to suitable results /4/.  
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Figure 1 shows a classification of hydraulic control methodologies into control types 

and power supply. Pressure controls are characterized by their simple setup. A control 

valve is shifted by the load pressure against a spring force and in case of internal 

power supply diverts power from the main line into the hydraulic displacement piston. 

Displacement controls typically contain an electronic controller and thus sensors and 

an electrically operated control valve. Similar to pressure controls power is diverted 

from the consumer line. In contrast to this internal power supply an additional external 

pump can be used represented by the second row in Figure 1. Further systems like 

load sensing or negative flow control are possible expansions of the aforementioned 

control types, but are not in the focus of this paper. 

To quantify the losses caused by the controller, a test rig is built up at IFAS. Its set up 

and measurement results are discussed in the next paragraph. According to the 

results, the potential of efficiency improvements for variable displacement pumps is 

shown. After that, a simulation model is presented, supporting the understanding of the 

loss behaviour of displacement controlled pumps. Furthermore, a parameter study 

shows the dependence of the loss and dynamic behaviour regarding to the analysed 

parameters.  

Figure 1: pump control methodology 
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2. Test-rig 

To quantify displacement losses a test rig according to ISO 4409 /5/ is set up. A 

suitable measurement matrix is designed to cover the common operating points of the 

pump. The results are the base for further research on the dependencies and show the 

potential of efficiency improvements for variable displacement pumps. 

2.1. Test-rig setup 

The test rig is composed of a test pump driven by an electric motor delivering against a 

load valve. The circuit is based on a classic efficiency test bench and shown in Figure

2. To estimate the volumetric and hydro mechanical efficiencies of the pump, pressure, 

flow rate, speed and torque sensors are mounted as shown in Figure 2. To operate 

pressure and displacement controlled pumps, the load system of the test rig consists of 

two different kinds of valves. With a proportional directional valve a nominal flow rate 

can be set for a pressure controlled pump depending on the valve opening. To obtain a 

fast response of the nominal flow rate, a high performance servo valve was chosen 

(0% to 100% opening in 7 ms at ∆p = 100bar). Using a displacement controlled pump, 

a pressure controlled valve sets the load of the test bench. 

Figure 2: test rig set up

Between controller and pump a sensor block is installed, allowing the measurement of 

the actuator pressure (pA) in the control piston chamber and the flow rate (Qc) flowing 

through the controller (Figure 3). The flow rate sensor is placed in the tank line of the 

controller, assuring that the entire flow rate passing the controller is measured and the 

flow rate sensor has the lowest effect on the control behaviour. 
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Figure 3: measuring equipment

The sensor block allows quantifying the control power beside the friction and leakage 

generated loss power of the pump (Figure 4). To identify the control power, the 

controller flowrate is multiplied by the supply pressure, which is the system load 

pressure for internally supplied controllers. The actuator pressure at the control piston 

is important to detect the kinematic behaviour of the swash plate and the control 

system.  

Figure 4: variable pump power flow

The measurement matrix is created by varying the parameters displacement angle, 

system pressure and shaft rotational speed (Figure 5). To analyse the dynamic 

behaviour, a step answer profile for different swash plate angles is measured for all 

constant pressure/speed combinations shown in the matrix below.  

  

Figure 5: measurement matrix and profile
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Three pressure controlled pumps from different manufactures with internal control 

power supply are investigated. In addition, pump A is also tested with two kinds of 

displacement controllers. Figure 6 shows an overview of the tested units. The first 

displacement controller (dc-1) has the same hydraulic architecture as the pressure 

controller with a three way valve. The second displacement control option (dc-2) has a 

different, four way valve and, compared to the other controllers, it features no orifice 

between actuator pressure and tank line, which is typically used to increase the stability 

of the closed loop. Thus, the task is taken over by the electronic control. 

Figure 6: overview of investigated systems

2.2. Results 

Figure 7 shows a measurement of pump A at pHP = 300 bar system pressure. The 

mean controller flow rate (Qc = 3.07 l/min) and the mean actuator pressure 

(pA = 67 bar) are not dependent on the swash plate angle for constant system pressure. 

During swash plate movement the actuator pressure raises or drops according to the 

shift direction. The actuator pressure raises to reduce pump displacement. When the 

actuator pressure drops, the control piston increases the swash plate angle and pump 

displacement. The controller flow rate raises independently of the moving direction of 

the swash plate. Furthermore, the results show that the actuator pressure adjusts for all 

tested pumps to about 25% of the system pressure in steady state operation.  
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Figure 7: measurement graph for pump A at 300 bar system pressure

In the left diagram of Figure 8 the power diverted to the control systems of the three 

different hydraulic axial piston pumps with internally supplied pressure controllers is 

shown. The control power is related to the system pressure pHP. Highest recorded 

control power is located at 300 bar system pressure with 1.5 to 2 kW. The right 

diagram of Figure 8 quantifies the control power used by pump A with the three 

different types of controllers. The blue curve (dots) shows the control power of the 

pressure controlled (pc) system. Controller dc-1 (purple line, squars) needs 30% and 

controller dc-2 (green line, lozenges) 60% less power than the pressure controller. A 

hypothesis for the reduced power consumption of the both displacement controllers is 

based on the damping orifice diameter. In fact, the damping orifice for the dc-1 

controller features a smaller diameter then for the pressure controller. The integration 

of an electric controller module raises the damping grade of the control system and this 

leads to stable controller operation with a reduced hydrostatic damping. Furthermore, 

the dc-2 controller has no damping orifice. This hypothesis will be proved in the 

following paragraph with a simulation model. 

����

���

���

����

β 
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Figure 8: results for pump and controller variation 

Figure 9 compares efficiency curves of pump A with pressure controller for different 

swash plate positions. The green line represents the results with a fixed swash plate at 

100% displacement. All the other curves are measured without fixing the swash plate. 

The measurement shows an efficiency offset of almost 5% at 94% displacement 

according to the fixed swash plate with 100% displacement. With declining 

displacement volume the overall efficiency drops. At 25% displacement the efficiency 

peak is just 60%. At low pump displacements, the efficiency drops faster with raising 

system pressure. This supports the hypothesis that the main part of the controller 

losses is generated by the damping orifice. The dashed line represents the efficiency at 

25% displacement without the controller power. It shows that the controller power 

generates 7.5% of efficiency loss in this operation point.  

�

Figure 9: effect on efficiency due to controller operation

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300 350

P
co

n
tr

o
l
(k

W
)

pHP (bar)

pump variation with pressure controller

pump A pump B pump C

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300 350

P
co

n
tr

o
l
(k

W
)

pHP (bar)

controller variation at pump A

pc dc-1 dc-2

Group I - Pumps | Paper I-2 447



A magnification of the measured step response illustrates the dynamic behaviour of the 

swash plate in Figure 10 for the pressure controller of pump A. The green line 

represents the position of the load valve spool to set the nominal system flow 

rate (Figure 2: Qnominal). First, the valve spool yvalve is set to 10% opening which results 

in a 25% pump displacement set by the pressure controller for 300 bar system 

pressure. In the next step, the valve is opened fast to 15% opening position and the 

controller has to move the swash plate to 75% displacement to keep the system 

pressure stable at 300 bar. Therefore, the actuator pressure pA (red line) is relieved to 

0 bar during the swash plate movement. When the swash plate angle reaches the 

steady state, the actuator pressure raises again to the equilibrium level which is 25% of 

the system pressure. The opening of the control valve leads to a higher controller flow 

rate (blue line). The slewing back of the swash plate is shown on the right side of 

Figure 10. Here, the actuator pressure raises up to 120 bar before the swash plate 

stabilises at 25% displacement. 

Figure 10: high resolution of step answer 

In conclusion, the pressure control shows the highest potential for energy savings. 

Furthermore, the influence on pump efficiency grows with declining displacement 

angle. In contrast to the state of the art efficiency measurement, a free moving swash 

plate reduces the efficiency of a displacement controlled pump. 

�
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3. Simulation 

To get a better understanding of the system a simulation model of the internally 

supplied pressure control is implemented in DSHplus, a 1-dimensional simulation 

environment developed for hydraulic systems. 

3.1. Simulation model 

Figure  11 shows the model setup. The component parameters are taken from 

datasheets and measurements conducted during an earlier project phase. Effects of 

friction and flow losses in the pipes are neglected. 

Figure 11: setup of a pressure control system in DSHplus

The model is composed of a hydraulic pump with a displacement angle input and a 

pressure look up table implemented in the source code. The load is modeled by a 

variable orifice, using the opening area as input and calculating the flow based on the 

pressure difference. The control valve is connected to the system pressure through a 

defined area and possesses a counteracting spring. Its flow is calculated from a 

pressure and stroke dependent look up table as well. The orifice between control valve 

and displacement piston – the damping orifice – acts as a stabilizer for the system. 

Finally the displacement piston itself has internal friction implemented as well as a 

spring force. Additionally the pump generates a self-adjustment force which is 

dependent on displacement angle and load pressure. This force can be determined by 

calculation of the sum of all piston forces on the swash plate. Figure 12 shows the 

calculated self-adjustment forces for pump A. A negative force causes a swash plate 

movement to lower displacement.  

Group I - Pumps | Paper I-2 449



������������ �

Figure 12: self-adjusting forces on the swash plate

The main output of the model is the sum of the total output flow of the controller. In 

combination with the controller pressure it represents the power diverted from the 

consumer line to displace the pump. 

3.2. Simulation validation and results 

The simulation is performed by the same measurement matrix presented in Figure 5. 

Figure 13 shows a comparison between the simulation results and the measurement 

results for the controller pressure and flow. It is apparent that simulation and 

measurement results differ slightly, especially at 300 bar load pressure. Possible 

reasons may originate from the neglected flow and friction losses in the pipes. Overall, 

the simulation results are close to the measurements. 

Figure 13: comparison of simulation and measurement results

Table 1 shows the results of the variation of different parameters due to losses and 

dynamic behaviour. It becomes obvious that upsizing of any investigated component 

always increases losses but also improves dynamic for the most part. It is state of the 

art, that pump controllers are used for different pump sizes. The controller power 

�
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remains in this case the same. Therefore, the influence of the controller power 

decreases with an increasing pump size. The dynamic will be reduced due to the 

higher self-adjustment forces. 

parameter � losses dynamics 
diameter of damping orifice � �

area ratio of the displacement piston � �

displacement piston diameter � - 
pump size � �

Table 1: influence of examined parameters on losses and dynamics 

4. Conclusion and Outlook 

The analyses in this paper highlight that the control power has a significant influence 

on the overall efficiency of displacement controlled pumps and must be considered for 

correct efficiency estimations of hydraulic systems. With decreasing swash plate angle, 

the influence of the controller power on the overall efficiency increases. The 

investigation shows that internally supplied pressure controlled pumps exhibit the 

highest potential of efficiency improvement. Main losses occur due to the damping 

orifice which leads to a constant leakage flow rate, as shown in the validated 

simulation. The electrical displacement controller can already reduce the pump 

controller power loss up to 60% due to the adjustable diameter of the damping orifice. 

The simulation model can be used to estimate efficiencies more precisely in complex 

system simulations. Furthermore, it supports research on more efficient controller 

concepts in future. 

5. Acknowledgements 

The IGF research project 18071 N/1 of the research association Forschungskuratorium 

Maschinenbau e. V. – FKM, Lyoner Straße 18, 60528 Frankfurt am Main was 

supported from the budget of the Federal Ministry of Economic Affairs through the AiF 

within the scope of a program to support industrial community research and 

development (IGF) based on a decision of the German Bundestag. 

�

Group I - Pumps | Paper I-2 451



6. References 

/1/ Hahmann, W.:, „Das dynamische Verhalten hydrostatischer Antriebe mit 

Servopumpe und ihr Einsatz in Regelkreisen“, Dissertation, RWTH Aachen, 

1973 

/2/ Dreymüller, J.: „Hydraulisch-mechanische Druckregelung an verstellbaren 

Axialkolbenpumpen“, Dissertation, RWTH Aachen, 1975

/3/ Langen, A.: „Experimentelle und analytische Untersuchungen an 

vorgesteuerten hydraulisch-mechanischen und elektro-hydraulischen 

Pumpenregelungen“, Dissertation, RWTH Aachen, 1986 

/4/ Achten, P.: Dynamic high-frequency behaviour of the swash plate in a variable 

displacement axial piston pump, Journal of Systems and Control Engineering, 

2013 

/5/ ISO 4409:2007 (E): Hydraulic fluid power – Positive displacement pumps, 

motors and integral transmissions – Methods of testing and presenting basic 

steady state performance, 2007 

7. Nomenclature 

β swash plate angle % 

η efficiency % 

�� controller power kW 

�� actuator pressure bar 

��� load system pressure bar 

�� controller flow rate l/min 

��� consumer flow rate l/min 

�	
�	� position of load valve % 

�

452 10th International Fluid Power Conference | Dresden 2016



 

A General Method to Determine the Optimal Profile of Porting 

Grooves in Positive Displacement Machines: the Case of 

External Gear Machines 

Sidhant Gulati, Andrea Vacca 

Maha Fluid Power Research Center, Purdue University, Lafayette, IN, 47905, USA 

E-mail: avacca@purdue.edu 

Manuel Rigosi 

CASAPPA SpA, Via Balestrieri, 1, 43044 Lemignano di Collecchio, Parma (Italy)  

Abstract 

In all common hydrostatic pumps, compressibility affects the commutation phases of the 

displacing chambers, as they switch their connection from/to the inlet to/from the outlet 

port, leading to pressure peaks, localized cavitation, additional port flow fluctuations and 

volumetric efficiency reduction. In common pumps, these effects are reduced by proper 

grooves that realizes gradual port area variation in proximity of these transition regions. 

This paper presents a method to automatically find the optimal designs of these grooves, 

taking as reference the case of external gear pumps. The proposed procedure does not 

assume a specific geometric morphology for the grooves, and it determines the best 

feasible designs through a multi-objective optimization procedure. A commercial gear 

pump is used to experimentally demonstrate the potentials of the proposed method, for 

a particular case aimed at reducing delivery flow oscillations. 

KEYWORDS: External gear pumps, design optimization, relief or silencing grooves 

1. Introduction 

In all positive displacement pumps, the commutations of the displacement chambers (i.e. 

the tooth space volumes – TSVs – in gear pumps, or the piston–cylinder volumes in 

piston units) from/to outlet (HP port) to/from inlet (LP port) port is accompanied with 

undesired compressibility effects. With a proper design of the ports, these chambers are 

connected to the inlet or to the outlet respectively when their volume increases or 

decreases. Inevitably, commutations from/to HP and LP ports can be realized only 
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through gradual port area opening. These regions of partial opening can involve 

significant variations of the displacing chamber volume, as shown in Fig. 1 for the case 

of an external gear pump – EGP – (meshing region). 

 
Figure 1 – Instantaneous TSV and IN/OUT commutations in an EGP 

These volume variation induces undesired effects: firstly, pressure peaks can arise 

during the volume decrease with restricted connection to HP. These peaks can be 

reflected at the outlet port as additional pressure ripples; moreover, in EGP they might 

affect the radial balance of the gears. Secondly, localized cavitation in the displacement 

chamber can occur in the region of increasing volume, when the LP connection is 

gradually opening. Low opening areas in proximity of the min/max volume point can also 

limit the actual displaced volume, thus affecting volumetric efficiency. Bypass flow from 

HP to LP can also be established in case of overlap for the port openings (often referred 

as crossport). This is a condition that can be realized with the aim of increasing the 

opening area in the region of high volume changes, thus limiting the negative effects 

described above. All these aspects have been extensively studied in positive 

displacement machines: /1,2/ represents some of the significant works on EGPs. These 

past studies highlight the importance of a careful design for the porting areas in the 

transition phases. Figure 2a shows the typical designs of the grooves machined to realize 

proper porting areas in EGPs. In positive displacement pump designs, these grooves are 

often referred as “relief grooves” or “silencing grooves”. However, a design procedure 

able to identify the best geometry morphology for these grooves was never published, 

and EGP manufacturers often use empirical approaches or simplified numerical 

procedures according to the designers’ experience. As a consequence, different design 

morphologies can be found in the market (see Fig. 2b), and no evidence exist to identify 

which one is more suitable to the pump operation. Some past studies, such as /3/ for 

EGPs, and /4/ for axial piston pumps, presented optimization procedures for pre-defined 

geometric morphologies for the port grooves. No published work addresses the problem 
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of finding the best realizable groove geometry without assuming a shape a priori.  

In this paper a numerical optimization procedure is proposed to automatically determine 

both the optimal porting area and the geometric morphology of the transition grooves. 

The optimization process consists on a multi-objective genetic algorithm, in which 

different objective functions are numerically evaluated using a simulation model for EGPs 

previously developed by the authors’ research team /1/. The innovative content of the 

proposed approach consists in the input parameters used by the optimization process to 

determine both the areas and the shapes of the grooves. In two separate levels, the 

procedure determines first the best numerical area function and secondly the most 

closest realizable shape according to common manufacturing processes.   

 

a) 

b) 

Figure 2 – a) EGP and details 
on the grooves machine in the 

lateral bushings. b) examples of 
typical groove designs 

2. Numerical Approach 

2.1 Basic EGP simulation 

To predict the performance parameters for an EGP with different groove designs, this 

study benefitted from the tool HYGESim (Hydraulic Gear Machine Simulator) previously 

developed by the authors’ team. As described in /1,5/, HYGESim combines a lumped 

parameter fluid dynamic model for the analysis of the main flow through the unit with a 

Fluid Structure Interaction CFD evaluation of the internal lateral gap flow leakages; a 

mechanical model is then used to evaluate the micro-motions and the balance of the 

internal pump elements. The lumped parameter model is the main component of 

HYGESim for this study; according to this model, the TSVs and the inlet/outlet ports are 

treated as separated control volumes. The pressure in each control volume is then 

evaluated from continuity eq. /1/: 

 
(1)  

Group I - Pumps | Paper I-3 455



Through an accurate geometrical model that takes the CAD drawings of the gears, the 

case and the lateral bushings of the pump, the instantaneous volumes as well as the 

areas of the internal connections between the TSVs and the inlet/outlet port are 

evaluated by the geometrical model of HYGESim. The connections realized by the 

grooves in the meshing areas, represented in Fig. 2 are of particular interest for this work. 

After each TSV is trapped between the points of contact of the gears, these connections 

are the only openings of the volume to the inlet/outlet ports. In the fluid dynamic model, 

these connections are treated by using the turbulent orifice equation:  

 
(2) 

b) 
a)

  
Figure 2 – a) the openings realized by the porting grooves in an EGP; b) Areas for a 

reference TSV pair, with the angular convention of Fig. 1 

With this approach, HYGESim can estimate parameters characterizing the EGP design 

such as instantaneous TSV pressure, port pressure fluctuation and volumetric efficiency.  

2.2 Optimization Phase I – Area connection realization 

The proposed optimization procedure is divided in two phases: Phase I identifies a 

smooth and realistic groove area (Ω in Eq. 2) curve that guarantees optimum 

performance of the unit; while in Phase II, a realizable groove shape is found to replicate 

the optimal area curves obtained from Phase I.  

In Phase I, the area profile of each connection is determined by determining the location 

of a certain number of points of the area function W= W (J). For the sake of clarity, the 

procedure is hereafter detailed for the optimization of the HG1 area connection. The area 

plots for other connections formed by the grooves such as HG2, LG1 and LG2 are 

optimized in the same fashion. With reference to Fig. 3, the V1 tooth space area curve 

(in red) represents the projection of the TSV on the lateral side of the gears while the 

HV1 area curve (in orange) represents the connection area between TSV with the outlet 
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port though the face width of the gear. After HV1 reaches a null value (for J= Jc ≈55°), 

the TSV on gear 1 is trapped by the point of contact and HG1 is the only connection to 

the outlet port. HG1 has a primary influence on the pump operation only within the 

interval JC - Jmin. This because the inlet/outlet commutation of the TSV occurs around 

J= Jmin ≈70°, and the TSV is open to the outlet port through both HV1 and HG1 before 

Jc. For this reason, Phase 1 optimizes the location for the HG1 area points only in such 

region; before Jc, the area of HG1 is simplified by 3 area points as shown in Fig. 3.  

 

 

Figure 3 – Area points for the optimization of HG1  

These latter points can be initially 

assumed as points reasonably 

close to the TSV area curve and 

are kept fixed during Phase I. The 

actual HG1 area at these 

locations will be determined 

afterwards by Phase II. The 

yellow points in Fig. 3 are the 

design input variables provided to 

the optimizer. 

The point 4 in the extreme right represents the angular value at which the HG1 orifice 

area becomes zero or, in other words, the location at which the HG1 connection closes. 

The rest of the variable points between the points 3 and 4 are placed with smaller angular 

interval for the points near the closing of the connection area and larger interval in the 

remaining region. In this way, more importance is given to the angular region of the 

groove that realizes minimum opening areas, which is also the region that plays the 

relevant role during the TSV commutations. For each connection, the number of input 

points to be optimized during Phase I (in yellow, in Fig. 3), was assumed equal to 8, as 

best compromise between simulation time and consistency of the results. For the 

reference pump, a higher number of points does not change significantly the result of the 

optimization. To generate area input curves to be used as input in the HYGESim 

simulations, the input points are connected using linear interpolation. It is also important 

to ensure that these points are explored within a realistic range. For this purpose, if the 

connection area value is greater than TSV area value at any angular step, the particular 

design configuration is excluded because unrealistic.  

Objective functions (OFs) for Phase I are defined in a similar fashion as in /6/. 

 1-OF1: Minimize pressure fluctuations: As source of fluid-borne noise and vibrations, 
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the outlet pressure flow fluctuation should be minimized. As described in /7/, the 

fluctuations in the flow can be quantified by calculating the energy associated with these 

signals in the frequency domain: 

 

(3) 

In the equation, N here is the number of multiples of the fundamental harmonics 

considered (typically 5 are enough for the typical shape of the signal), πk is the total 

energy of kth harmonic, L(f) is FFT of the pressure ripple signal.  

1-OF2: Minimize internal pressure peaks: Pressure overshoots occurring during the 

meshing process in proximity of the TSV connections need to be minimized in order to 

reduce noise, mechanical vibrations and instantaneous radial stress to the gears. 

1-OF3: Minimize localized cavitation onset: Air release, and in extreme cases vapor 

cavitation, can occur due to the rapid increase of the TSV volume in the meshing 

process. This occurs when the TSV pressure falls below the fluid saturation pressure. 

Therefore, OF3 is defined as the area of the TSV pressure with respect to the rotation 

angle that falls below the saturation pressure of the fluid: 

 (4) 

1-OF4: Maximize volumetric efficiency.  

2.2 Optimization Phase II – Groove determination 

Once the optimal area curves are obtained from Phase I, Phase II solves the problem of 

determining a feasible – through conventional milling practices - groove shape that would 

give performance features as close as possible to the optimal area curve. For this 

purpose, a numerical tool is developed for Phase II to build the groove by the union of 

basic geometry features such as rectangles, triangles, circles, as shown in Fig. 4a. The 

number of geometrical features (circles, triangles) is selected by the user. Once a groove 

shape profile is finalized, the HG, LG area connection curves are calculated by using the 

HYGESim geometric model. A genetic algorithm is then used to find the optimal profile, 

defined as the one that realizes curves as close as possible to those found by Phase I. 

Figure 4b shows the inputs required to determine the size and position of each individual 

geometrical feature utilized during Phase II. The variable positioning of the basic 
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geometric features, as well as the parameters for the base rectangular shape, permit to 

study also the implementation of asymmetric grooves, uncommon in commercial EGPs, 

but potentially convenient in case of asymmetric gear profiles. Phase II is also able to 

investigate simple shape morphologies, characterized by a number of features lower to 

the one set by the user. In fact, while performing the union of different features to build 

the final shape, a feature does not affect the final groove shape if it is placed by the 

optimizer in such a way that an intersection with the base shape does not exist.  

 

a) 
 

b) 

Figure 4 – a) formation of groove 
shape; b) parameters for the basic 

geometric primitives 

Figure 5 – Objective functions for Phase II 

 

The features related to the 

delivery grooves are used for the 

HG1 and HG2 connections, while 

the suction groove is used for the 

LG1 and LG2 connections. 

Therefore, in Phase II the 

optimization of the delivery groove 

(for HG1 and HG2 connection 

areas) can be performed 

separately from the suction 

groove (LG1 and LG2). 

The OFs for Phase II help in identifying the closest feasible profile to the optimal area 

curve found in Phase I: 

2-OF1: Curve match: This function minimizes the difference between the area curve 

obtained from the generated groove shape and the optimal connection area defined from 

Phase I. Figure 5 shows the optimal area curve (from Phase I) in black and two candidate 

area curves, in red and green. The design in green is considered a better design than 

the one in red, despite it does not follow the optimal curve in the upstream part. This is 
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in accordance to what described in section 2.1: regions of small area openings are in 

proximity of the TSV commutations and therefore have higher importance: 

 (5) 

ad represents the area value for the design generated by the optimization, while aopt   

represents the optimal value from Phase I. P is a linearly growing ramp to ensure 

emphasis is given to the region near the meshing process, near the closing/opening. 

2-OF2: Opening and closure points: It is of utmost importance to ensure that the porting 

grooves respect the opening and closing points of the connection as identified by Phase 

I. This function minimizes the angular difference between the candidate curve and the 

optimal one in proximity of the opening/closing points (Fig. 5): 

 (6) 

3. Results and discussion 

The proposed numerical optimization procedure was implemented in a modeFrontier® 

workflow and utilized to design the bushing of a commercial EGP according to the Fast 

Optimizer algorithm /8/, which combines Response Surface Models to multi-objective 

evolutionary optimization. To confirm the potential of the procedure, the optimal design 

found from the optimization was implemented and tested for comparison purposes with 

the commercial one. The reference pump has a displacement of 22 cm3/rev and 12 teeth 

on each gear. A operating condition that falls approximately in the middle of the typical 

operating range of the reference unit (2000 rpm and p = 0.8*pref delivery pressure) was 

considered. Approximately 3500 designs were evaluated during Phase I, for a simulation 

time of about 3-4 days (using an Intel Core i7-3770 Windows CPU @ 3.40 GHz). From 

Phase I, a Pareto frontier is obtained between the OFs and the best design is selected 

from the Pareto optimal region, as best compromise between the five different OFs of 

Phase I. A subset of the designs evaluated by Phase I, close to the optimal region of the 

Pareto frontier is plotted using a 4D bubble chart in Fig. 6. In particular, the pressure 

pulsations at outlet and TS pressure overshoot are plotted on x axis and y axis 

respectively, the color of bubble represents the volumetric efficiency and the diameter of 

bubble gives an estimate of the cavitation. This graph helps in understanding the tradeoff 

between OFs and their dependence on different groove profile designs. From Fig. 6 it is 

interesting to observe how the groove profiles for the reference pump fall in the optimal 

region, indicating how there is no much margin of improvement for the reference unit. 
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However, with the aim of further reducing the level of outlet pressure fluctuation, a design 

with higher pressure peak was chosen for further consideration.  

 

Figure 6 - Pareto frontier between TSV pressure overshoot and delivery pressure ripple. 
Vol. efficiency and localized cavitation OFs are also reported (all values normalized). 

   

 
 

a) 
 
 

b)

 
Figure 7 – a) Groove showing the superposition of selected optimal design over the 
reference design; b) comparison between OFs for the optimal and reference design 

Phase II was executed afterwards to find an actual shape for the optimal grooves. Around 

5,000 designs were evaluated, for about two days of computational time (same computer 

specified above). Figure 7a shows the original profile (in black) of the grooves 

superimposed with those found by the proposed procedure (in red and blue respectively) 

The optimal delivery groove is formed by a base rectangle and circle, while the optimal 

suction groove is formed by a base rectangle and two circles. Because of the nature of 

the design of the reference pump (symmetric teeth, with minimum backslash in the 

meshing zone), no significant asymmetry appears in the optimal grooves. Also, in the 
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Pareto frontier of the best designs for Phase II, it was possible to identify a design without 

triangular features, thus of easier realization. 

The performance of the new optimal design in terms of OFs was compared against the 

baseline unit through HYGESim simulations and compared with the predictions 

performance of the baseline design, Fig. 7b (normalized OFs). The delivery pressure 

ripple in the simulation is reduced by 26%, with an increment of the pressure overshoot 

of about 1.5 times. The other OFs are marginally affected with the new grooves.  

 

Figure 8 - Experimental outlet pressure ripple for the reference EGP, using the standard 
grooves (red) and the optimized ones (blue) at n = 2000 rpm: (a) time signal at p/pref 
=0.8, (b) FFT signal at p/pref =0.8, (c) time signal at p/pref = 0.4;  (d) FFT at p/pref = 0.4 

To validate the performance of the new design obtained from the proposed numerical 

procedure, experiments were performed at the Maha Fluid Power Research Center of 

Purdue University. The experiments for both reference and optimal bushing were 

performed using the baseline pump with same gears but replacing the lateral bushings. 

The hydraulic circuit used for the tests is in accordance with the ISO 4409 standards for 

pump characterization. Piezoelectric pressure sensors are flush mounted in a calibrated 

(easy to reproduce in a simulation environment) outlet rigid pipe used to measure the 

outlet pressure pulsations, as described in /7/. In Fig. 8, the experimental results are 

shown for two different operating conditions, i.e. 2000 rpm and 1500 rpm at p/pref = 0.8. 

a) b) 

c) 
d) 
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The difference in the pressure ripple can entirely be accounted due to the change in the 

profile of the grooves because all other factors affecting the pressure signal including the 

pump is kept same in the experiment. It can be observed that optimal grooves show a 

smaller pressure ripple magnitude than the reference ones for both the operating 

conditions. This trend can also be seen over the range of frequencies in the plots showing 

the FFT of the signal. The optimal groove design shows lower amplitude of peaks and 

thus lower energy in the pressure signal as compared to reference groove design.  

 

4. Conclusions 

The paper presented a novel methodology to optimize the profile of the porting grooves 

which affects the behavior of pumps during the HP/LP commutations of the internal 

displacement chambers, particularly as concerns fluid borne noise, volumetric efficiency, 

occurrence of cavitation and of internal pressure peaks. This paper particularly refers to 

the case of external gear machines, for which a simulation model (HYGESim) is available 

at the authors’ research center to study the effects of the porting grooves at the lateral 

side of the gears with high level of details.  

The proposed optimization methodology consists of two phases: in the first phase (Phase 

I), the optimal area of the connections for each displacing chamber with the inlet/outlet 

port is defined. Phase I does not assume a particular geometrical morphology for the 

porting groove: it simply optimizes proper points of the function area vs. shaft position. 

In the second phase (Phase II), the best groove shape is found by an algorithm that 

combines basic parametric geometric features (rectangle, circle, triangle) to identify the 

best actual geometry able to match the result found in Phase I. The novelty of the 

proposed procedure consists in its generality: in fact, the procedure does not assume 

any specific geometric template to optimize and thus can permit more freedom in 

allowing unconditional groove profiles.  

To show the potentials of the proposed algorithm, the case of a commercial 22 cm3/rev 

pump was considered. The optimization procedure permitted to confirm that the 

commercial design used by the manufacturer is already close to the optimum, according 

to the objective functions (OFs) considered in the research. Despite this observation, it 

another design lying on the optimal Pareto frontier, characterized by a different 

compromise between the OFs that decreases outlet pressure ripples, was tested. Both 

simulation results and experiments confirmed the results anticipated by the procedure, 

showing a reduction of the pressure ripple in the order of 30%, obtained by accepting 

larger pressure peaks associated with the meshing process of the pump. 
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Abstract 

This paper describes a high fidelity simulation model for GEROTOR pumps. The 

simulation approach is based on the coupling of different models: a geometric model 

used to evaluate the instantaneous volumes and flow areas inside the unit, a lumped 

parameter fluid dynamic model for the evaluation of the displacing action inside the unit 

and mechanical models for the evaluation of the internal micro-motions of the rotors 

axes. This paper particularly details the geometrical approach, which takes into account 

the actual geometry of the rotors, given as input as CAD files. This model can take into 

account the actual location of the points of contact between the rotors as well for the 

actual clearances between the rotors. The potentials of the model are shown by 

considering a particular GEROTOR design. A specific test set-up was developed within 

this research for the model validation, and comparisons in terms of steady-state pressure 

versus flow curves and instantaneous pressure ripples are shown for the reference 

pump. 

KEYWORDS: Gerotor, pump, lumped parameter model, pump model, geometrical 

model 

1. Introduction 

Gerotor pumps are fixed displacement units which find a wide range of application in low 

pressure fluid power systems (<50 bar) and in automotive (AWD systems, engine 

lubrication, fuel injection systems) thanks to their low cost, compactness, reliability, 

robustness under severe operating conditions and low noise level. Although the basic 

kinematic theory pertaining to the trochoidal profile of the rotors date back more than a 

century /1/, and several studies were done to find profiles suitable for pump operation, 

the development of Gerotor units has followed trial and error or very simplified numerical 
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approaches for years. In recent years, several approaches have been presented to 

simulate the fluid dynamic aspects characterizing the displacing action of Gerotors. This 

past effort can be grouped in two categories: CFD based approaches, such as /2/ and 

fast lumped parameter approaches, such as /2-4/. Both these approaches showed high 

potentials for predicting aspects related to fluid compressibility, such as filling capability, 

effect of port timing, and so on. Simulation time can limit the use of CFD approaches for 

optimization studies; moreover, the need for a continuous fluid domain implies the 

impossibility of reproducing actual contacts between the rotors. Additionally, the position 

of the rotors axes has to be assumed as simulation input, and cannot be considered as 

a resultant of the actual loading on the rotors. On the contrary, lumped parameter 

approaches are fast, and can be easily coupled with other mechanical models to permit 

the study of micro-motions of the internal parts. This approach has been successfully 

implemented for on external gear units /5/ as well as axial piston units /6/. However, 

existing lumped parameter models for Gerotor units are limited by simplistic assumptions 

pertaining the location of the contact points (it is often assumed contacts at every tooth), 

the delimitations of the tooth space volume and the geometry leakages of the internal 

leakage paths resulting from geometrical tolerances. 

This paper addresses the above mentioned limiting aspects of lumped parameter models 

for Gerotor pumps and presents a lumped parameter model based on a detailed 

evaluation of the internal geometric features. The main element of novelty respect to 

existing approaches is the numerical algorithm used to generate the inputs for the fluid 

dynamic simulation. Although not detailed in the paper, the model has also the capability 

of predicting the actual position of the rotors resulting from the pressure loading on the 

rotors and the behavior of the lubricated journal bearing. 

The model potentials were investigated within this research through tests performed at 

Thomas Magnete GmbH, on a test rig specifically developed to measure both steady-

state and transient performance of Gerotor units. Significant comparisons between 

simulation results and experimental data are shown in the results section of the paper. 

2. The Gerotor Model 

The structure of the proposed simulation model is shown in Figure 1. Different 

submodules compose the simulating tool: the geometrical module, the fluid-dynamic 

module and three modules dedicated to the evaluation of the micro-motions of the rotors. 

In particular, the forces module evaluates the loading of the rotors based on the fluid 

pressure; the journal-bearings model evaluates the behavior of the lubricated interface 

at the outer rotor interface; the rotors radial movement model evaluates the 
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instantaneous position of the rotors, as pertains their axis of rotation and orientation. 

While the geometrical model as well as the journal-bearing model are developed in C++, 

the other modules are implemented as built in C models in Amesim simulation 

environment, to permit an easy simulation of a complete system that includes a Gerotor 

unit. The following section details the numerical geometric model, being one of the most 

important elements of novelty of the proposed model. 

 

Figure 1: Structure of the Gerotor Simulation Tool. 

2.1. The Geometrical Module 

The geometrical model is an essential pre-processor for all the modules of the overall 

simulation tool. This module is not based on the analytical definition of the rotor profiles, 

but it is entirely based on numerical calculation performed on the CAD files (in TXT or 

STL format) of rotors and of the inlet and outlet ports. The module is implemented in C++ 

and takes advantage of open-source GSL libraries. The output of the model is given by 

TXT input files that can be used for stand-alone considerations on the pump geometry 

(using ParaView) and for the input of the Amesim fluid dynamic model of the unit. The 

placement of the rotor, as pertains rotation center and relative rotation, is given as input 

of the model (Figure 2). A set of different rotors position is created before the fluid 

dynamic simulations, in order to create a look-up table of different geometric 

configurations for the same unit. During the simulation, the mechanical model of the 
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rotors determines the actual rotor configuration, interpolating the values from the pre-

generated look-up table. 

 

Figure 2: Gerotor Simulating Tool in Amesim environment. 

This process allows for a non-nominal initial positioning of the rotor that can be 

representative of the error in the centering of the two gears in a real life scenario. A 

realistic operation of the unit is reproduced by rotating the drive rotor of an angle  , as 

shown in Figure 5, that permits to establish a condition of contact between the rotor 

profiles. To minimize the calculations and promote simulation swiftness, the rotors are 

cut in slices of seven half-tooth profile, which is the minimum possible number in order 

to perform the evaluation of the geometrical features over an entire revolution of the outer 

rotor. Additionally seven different geometrical features required by the fluid dynamic 

module are evaluated through the geometrical module: displacement chamber volume 

(i), area and hydraulic diameter of the connection between the displacement chamber 

and suction and delivery ports (ii, iii, iv, v), height of the gap between the rotors (vi) and 

equivalent gap length (vii). For a Gerotor, a number of control volumes (displacement 

chambers) equal to the number of teeth of the outer rotor can be defined. An entire 

revolution of the outer rotor (that corresponds to  rotation of the inner rotor) is 

then necessary for a complete evaluation of the geometrical features (Figure 3).  
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Figure 3: Shape and location of the DC volume for 360° of revolution of the outer rotor 

 

Figure 4: Connection between the DC volume and the suction (A) and delivery (B) 

ports; definition of minimum gap height  and equivalent gap length  (C) 

The displacement chambers (DCs) are simply defined as the space between the points 

of minimum distance between two rotors, in this way the algorithm can work also if 

clearances are present. Since the law of variation of each DC is the same, with a proper 

angular lag, the definition of one DC is sufficient to define all the control volumes of the 

fluid dynamic model. It is of outmost importance to ensure that discontinuities are not 

present in the DC volume variations throughout the entire revolution. In fact, 

discontinuities would lead to unrealistic pressure variations in the solution of the pressure 

of the DC, as it will be clarified in section 2.2. Since the DC profile is not generated 

through an analytical formula but it is derived from CAD drawings, the profile is defined 

by a discrete number of segments. The volume per unit width of the DC is therefore 

calculated numerically using the formula below: 

 (1) 

 being the number of segments constituting the DC profile equivalent polygon. The 

connection between the DC volume and the suction/delivery ports is calculated as the 

Displacement 

chamber (DC) 
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intersection area between the DC profile and the port. The hydraulic diameter of the 

connection is also evaluated as: 

 (2) 

An important feature evaluated by the geometric model is the radial gap between 

adjacent DCs, which is one of the major contributor of leakages. An ideal positioning of 

the rotors would lead to constant gap height, however, a condition of actual contact 

between the rotors lead to variable gap height (Figure 5). Once the gap height is 

identified as minimum distance criteria, an equivalent gap length  is defined as the 

distance between two points positioned inside adjacent DCs where the gap height is

 (Figure 4). An example of the outputs of the geometrical model for a given 

positioning of the rotors for a reference unit is given in Figure 6. 

a)                b)  

Figure 5: Effect of rotor positioning to the radial gap: a) ideal positioning (constant 

gap); b) actual positioning. 

 

Figure 6: Trend of geometrical features predicted by the geometrical module. 

470 10th International Fluid Power Conference | Dresden 2016



2.2. The Fluid Dynamic Module 

The lumped parameter fluid dynamic module permits the calculation of the pressure 

inside each DC as well as the flow between each DC and the ports. The fluid domain of 

the pump is discretized with a finite number of control volumes (CVs) interconnected 

among each other as shown in Figure 7. 

 

Figure 7: Connection between control volumes. 

Each CV has uniform fluid properties that depend only on time. The CVs are treated as 

variable DCs while the connections between the different CVs as well as between CVs 

and inlet/outlet ports are treated as variable orifices. Based on the flow between adjacent 

CVs, mass conservation law and fluid state equations the variation of the pressure  

inside each CV with respect to time is determined through the pressure build-up equation 

 (3) 

The mass entering and leaving each CV is evaluated using two different approaches: for 

the connection between a CV and the inlet/outlet port the orifice equation has been used 

assuming a dependence of the discharge coefficient on the Reynolds number 

 (4) 

For the connection between the different CVs, a modified Poiseuille equation (including 

the Couette flow) is used instead, assuming laminar flow conditions: 

 (5) 

For this research, the flow through the lateral gap of the rotors is modeled as an 

equivalent laminar orifice connecting the suction and delivery environments. This 

simplified approach permits to evaluate the overall volumetric losses of the unit.  
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3. Results 

An extensive validation of the proposed model has been performed. This section reports 

results generated for a 7/8 teeth Gerotor pump at different operating conditions in terms 

of speed of the working fluid: the simulation results have been then compared with 

experimental data.  

3.1. Test-rig Setup 

A test rig was specifically designed (Figure 8) within this research to measure steady 

state operation of Gerotor units as well as the pressure oscillation at the delivery port. 

Similarly to what described in /7/, a delivery load system based on a sharp orifice 

restriction and a line that avoids geometrical discontinuities was implemented in order to 

have a delivery line easy reproducible in simulation. In this way, an accurate comparison 

between simulated and measured outlet pressure oscillations could be performed 

considering the behaviour of the delivery line. 

    

Figure 8: Picture and ISO schematic of the circuit used for the measurements of the 

pressure ripple and characterization of the pump. 

3.2. Model Results and Validation 

The comparison between measured and simulated pressure-flow curves in steady state 

conditions for the reference pump are shown in Figure 9. From this figure, it appears 

evidently how the model is capable of reproducing the experimental data with a good 

accuracy, particularly at low speed operating conditions. Similar agreements were 

obtained at different oil temperatures. The reason of the mismatch at higher speeds are 

due to the approximations pertaining the lateral gap leakage flow. In fact, Couette flow 

dragging effects, particularly visible at low operating pressure (when pressure-driven 

leakages are less important), are not properly considered by the equivalent laminar 

orifice used in the model. Although the comparisons are satisfactory, to improve the 

accuracy the implementation of a 2D gap model for the lateral gap flow is currently under 

development. 
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Figure 9: Measured and predicted steady state performance. 

 

Figure 10: Comparison between simulated and experimental pressure ripple at the 

delivery for 300(A), 400(B), 500(C) rpm. 

Further validation of the model was obtained through the evaluation of pressure pulsation 

at the delivery with the system shown in Figure 10. The simulation was obtained by 

coupling the pump model with a 1-D finite element method for the modelling of the 

pressure waves in the line /7/. Figure 10 shows the comparisons between simulation 

results and experimental data for three different operating conditions for the reference 

pump. The same sharp orifice (diaphragm) was used for all tests, and only the speed of 

the pump was varied. The comparison shows a very good agreement for the three 
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different operating conditions especially at low speed Figure 10A; the difference at 

higher speed is due mainly to the fluctuation of the flow related to the shaft irregularity. 

Once the accuracy of the model is confirmed by the experimental validation, useful 

considerations on pump operation can be performed by looking at the detailed results of 

the model. For example, the model can provide detailed analysis of the displacing action 

realized by the internal DCs as well as the effect of the inlet and outlet port timing. Figure 

11 shows the pressure profile of one DC plotted against the DC volume: regions of 

pressure drop below the saturation pressure, associated with cavitation, and pressure 

peaks can be spotted in the pressure trend. These effects might not be visible at the 

delivery but can affect the pump performance in terms of efficiency, noise and durability. 

These phenomena are associated to the geometry of the ports, that play a timing 

function, and to the tolerances between the rotors.  

 

Figure 11: Pressure profile inside a DC for one revolution of the outer rotor plotted 

against DC volume. 

4. Conclusions 

A simulation model for Gerotor unit has been presented in this work. The model couples 

different submodules. The particular focus of this work was the geometrical module, 

which uses a numerical approach capable of taking into consideration the actual rotor 

geometry, the clearances between the rotors and the realistic positioning of the gears. 

The geometric model provides the data to a lumped parameter fluid dynamic model, 

which is able to provide an accurate evaluation of the flow through the unit. An 

experimental activity was performed at Thomas Magnete GmbH to validate the model 

predictions, and a high fidelity of the simulation results was found at different operating 

conditions. Although not detailed in this work, the fast lumped parameter approach 

permits the coupling of mechanical sub-models for rotors. These sub-models permit the 
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evaluation of the force balance at the rotors including the behaviour of the lubricating 

journal bearing established by the outer rotor. In this way, the actual position of the rotors 

and their micro-motions resulting from the pressure fluctuation can be evaluated.  

The proposed model can be considered a valuable tool for simulation of different designs 

of Gerotor pumps and thanks to the low computational cost can be considered ideal for 

optimization studies.   
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6. Nomenclature 

 = Area, m²  = Mass flow rate, kg/s 

 = vertex or corner of the 

polygon, m 

 = Time, s 

 = Perimeter, m  = Coefficient of discharge, - 

 = Hydraulic Diameter  = Angular velocity, rad/s 

 = Gap Height  = Radius, m 

 = Equivalent Gap length  = Dynamic Viscosity, Pa/s 

 = Volume, m3  = Rotors‘ Width, m 

 = Pressure, Pa  = Order of Magnitude, - 

 = Density, kg/ m3  = Tolerance, - 

Subscripts:  

 = Displacement chamber  

 = Entering/Leaving  

 = Delivery/Suction Port environment  

 = Reference Value  
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Abstract 

Nowadays sealing systems are commonly designed by means of hydrodynamic and 

elastohydrodynamic theories. Although the analytical as well as the computational 

approaches have improved in meaning full manner since the last decades: For small 

sealing gaps, in the order of micrometers and below, a discrepancy between 

experimental investigated and theoretically predicted leakage flows occur. As a cause 

for the discrepancy a breakdown of the no slip boundary condition is suspected. Since 

in small sealing gaps the continuum hypothesis is violated and molecular effects have to 

be considered. One fundamental quantity to take molecular affects into account is the 

slip length. 

Within this paper a new measurement apparatus to evaluate the slip length for hydraulic 

applications is presented. The adjustable gaps between two planar surfaces are in the 

order of magnitude of 1 µm. In a first step the slip length for the system steel-oil –steel is 

investigated at three different temperatures:  and . The measured slip 

lengths are in the order of magnitude of ~100 nm. 

 

KEYWORDS: Slip length, Tribology, Sealing Technologies 
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1. Introduction 

Nowadays sealing systems are commonly designed by means of hydrodynamic and 

elastohydrodynamic theories. Although the analytical as well as the computational 

approaches have improved in meaning full manner since the last decades: For small 

sealing gaps, in the order of micrometers and below, a discrepancy between 

experimental investigated and theoretically predicted leakage flows occur. As a cause 

for the discrepancy a breakdown of the no slip boundary condition is suspected. Since 

in small sealing gaps the continuum hypothesis is violated and molecular effects have to 

be considered. 

The discussion regarding boundary conditions at solid walls is as old as the momentum 

equations for Newtonian fluids itself. Already Navier /1/, as stated by Stokes /2/, 

suggested in his derivation of the Navier-Stokes equations a sliding coefficient close to 

the wall. Stokes /3/ himself favored the no slip boundary condition. His assumption was 

based on experimental investigations of du Buat /4/. Helmholtz /5/ suggested a linear 

boundary condition with a finite slip velocity  close to the wall. Slip velocity and shear 

rate  are linked by the sliding coefficient  called slip length: 

.           (1) 

By Helmholtz’s hypothesis the sliding coefficient or slip length has the dimension of a 

length and remains constant, for a respective sliding interface consisting of a fluid and a 

solid interface. Today Helmholtz’s sliding coefficient is known as the slip length . 

In Figure 1 are the common boundary conditions at solid walls presented: At first the 

ideal slip condition where the velocity  close to the solid wall and in the far field are 

identical. These boundary condition is commonly used if internal fluid friction is 

IDEAL SLIP NO SLIP CONDITIONAL SLIP

 

Figure 1: Boundary conditions in fluid mechanics. 
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neglected. The second boundary condition is the no slip condition. Here the velocity at 

the wall is identical to the wall velocity. On the right hand side of Figure the conditional 

slip condition is constituted. The conditional slip condition and hence the slip length is 

key research subject of the current paper. At conditional slip the bulk fluid close to the 

solid wall moves relative to the wall, with the finite velocity .Slip is often present at the 

interface of a gaseous and liquid fluid. At the interface of a fluid and a solid surface, slip 

is enhanced either by an electric double layer (Figure 2 a) or by the adsorption of 

surfactants at the interface (Figure 2 b). The slip velocity  and the far field velocity  

are linked by a linear velocity profile. The slip length  describes the distance between 

the intersection point, of the wall perpendicular and the linear extrapolated velocity 

profile, and the distance to the wall. From geometrical point of view: The slip length 

represents an apparent enlargement of the flow regime normal to the main velocity flow. 

ELECTRIC 
DOUBLE LAYER

SURFACTANTS

a) b)

 

Figure 2: Slip at solid surfaces affected by an electric double layer or surfactants. 

In the end of the 19th century the topic of wall boundary conditions was intensively 

discussed. The discussion was affected by various capillary measurements and Hagen-

Poiseuilles equation published in 1846 /6/. Various studies either confirmed the no-slip 

condition or stated to have measured slip in the context of the measuring accuracy. The 

scientific discussion ends at the beginning of the 20th century with the result that, up to 

this time, if slip occurs its influence is too small to measure. Hence the no slip condition 

was assumed to be valid within a sufficient accuracy for technical applications. Since the 

mid of the 20th century the concept of no slip was accepted as textbook knowledge. Only 

a few authors e.g. Lamb /7/, a student of Stokes and Maxwell, and Goldstein /8/ remarked 

the concept of slip close to the solid wall. With improvements in processing capabilities, 

new experimental technologies and data acquisition measurements techniques to 

evaluate wall slip were developed since the 1970s. A review about experimental 

techniques, from the 1970s up to now, is given in Neto.et al. /9/. 

Neto et al. /9/ distinguish four different techniques to measure the slip length: 1. 

Techniques tracing the fluid flow near a boundary, 2. Techniques based on force or 
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displacement measurement, 3. Capillary techniques and 4. Quartz crystal resonators. 

Roughly concluded the covered measurement techniques include six different 

measurement systems with numerous gradations and differences:  

The tracer based methods consists of Particle Image Velocimetry (PIV) /10/, /11/, /12/, 

/13/ and Fluorescence Recovery after Photobleaching (FRAP) /14/, /15/, /16/, /17/, /18/, 

/19/, /20/. For the PIV technique Lumma et al. /12/ as well as Zettner & Yoda /13/ stated 

that they rather measured the slip between the tracer and the flow than the slip between 

the fluid and the solid wall. This statement is based on a dependency of the slip length 

of the used tracer particle size. With the FRAP technique Pit et al. /17/ measured for the 

system Hexadecane ( ) - solid sapphire surface modified by a stearic acid slip 

lengths from100 nm up to 350 nm. Hexadecane is one fluid in the covered literature that 

is approximately comparable with a hydraulic fluid. Other experimental investigations 

used commonly water solutions or long chained polymer melts as fluid. The expected 

slip length for the presented experiment are in the order of magnitude of 100 nm up  to 

1000 nm. 

The methods based on force and displacement measurements consist of surface force 

apparatus (SFA) /21/, /22/, /23/, /24/ and the atomic force microscope (AFM) /25/, /26/. 

The key difference between both devices persist in the probe size. At the surface force 

apparatus, the probe has a diameter in the order of magnitude of millimeters. While the 

probe of the atomic force microscope (AFM) has a diameter of a few micrometers. The 

surface force apparatus was developed to measure the surface forces - introduced by 

van der Waals in 1879. The atomic force microscope was developed by IBM and 

Stanford University to resolve the molecular structure of insulator materials. The two 

other measurement devices are the capillary measurements and the quartz crystal 

resonators. 

The existing apparatuses for slip length measurements use solid surfaces materials such 

as glass, silicon, mica or gold as materials. These surface materials are not of major 

importance in practical application of hydraulics. Today's available material combinations 

used to determine the slip lengths, are on the one hand a result of the development 

objectives of measuring equipment and on the other hand a result of the available 

manufacturing capabilities. Most available apparatus were designed for measurement 

tasks far beyond the slip length. PIV was developed for macroscopic flow field 

measurements. Surface force apparatus were designed to measure the van der Waals 

forces and the Atomic-force microscope was devised to resolve the molecular structure 

of insulator materials. Especially the last two measurement techniques based on force 
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and displacement measurement require surface roughness within the molecular size (~1 

Å=0.1 nm) and are across the scope of common mechanical capabilities. Another 

sticking point with respect to the restricted material pairings of individual measuring 

devices is that no comparable validation measurements were carried out so far between 

the individual apparatuses. 

In this paper a new measurement technique is presented, to determine the slip length 

for hydraulic applications. The device was developed at the TU Darmstadt, at the Chair 

of Fluid Systems during the last years. The measurement is based on torque and 

displacement measurements. The sliding surfaces consist of steel and were prepared 

by the manufacturing process lapping. The fluid is a poly-alpha-olefin with a kinematic 

viscosity  of 33 cSt. 

The ongoing paper persists of five parts: At first the measurement principle is described. 

Followed by the detailed exposure of the test rig. On this basis the obtained results are 

presented. The paper closes with a discussion of the results and a conclusion. 

2. Measurement Principle 

In this chapter the measurement concept is presented to evaluate the slip length for a 

typical material system of the hydraulic. In Figure 3 is the principle sketch of the 

measurement device illustrated. 

The measurement principal was developed by Pelz in 2007 already published in /27/. 

Specified are the main parts of the concept: By the pressure  on the one hand the fluid 

is fored to a radial motion between the gap confining disks. On the other hand the two 

discs are separated in such a way that there is an equilibrium between the pressure and 
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Figure 3: Measurement principle – Experimental setup. 
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the spring fore at distance  The gap distance is measured directly by two distance 

sensors located in the stationary disk. The torque transmitted by the fluid is also 

measured at the stationary disc. 

In Figure 4 the experimental examination of the slip length is represented. The 

transmitted torque is applied to the accompanying gap height. Measurements at a 

sufficient number of measurement points allow the determination of the torque at gap 

height  by extrapolation. The torque at  can not be measured due to the fact 

that each technical surface has a finite roughness . 

GAP HEIGHT h  

Figure 4: Measurement principle (Pelz) 

From hydrodynamic lubrication theory it is known that the friction torque between two flat 

disks at distance  for no slip boundary condition is given by 

. (2) 

 represents the dynamic viscosity,  the rotational speed of the disk and  the 

geometrical moment of inertia. From Equation 2 it can be figured out that the friction 

torque  is an inverse linear function of the gap height . This relationship is illustrated 

in Figure 4 with the white filled markers. At infinitesimal small gap height the inverse 

friction torque tends to zero. With an increasing rotational speed of the rotating disk, the 

inclination of the linear function increases. The triangles and the circles denote two 

different rotational speeds at constant dynamic viscosity and equal geometry. Above it 

was mentioned that the slip length can be understood as an enlargement of the confined 

gap. For the presented test rig, slip occurs at the rotating as well as at the stationary disk. 

 represents the gap enlargement due to the surface at the stationary disk and  the 
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enlargement due to the surface at the rotating disk. If the slip condition is considered in 

the friction torque, the inverse toruqe is given by 

. (3) 

In the case of slippage at the confined surfaces, the friction torque at zero gap height is 

different from zero. This relationship is illustrated in Figure 4 by the black markers. The 

slip length can be figured out directly from the graph if the inverse moment is extrapolated 

up to the intersection with the horizontal axis. The negative gap height represents the 

apparent enlargement of the gap. The hypothesis that is based to Figure 4, is that the 

slip length is independent of the shear rate. This assumption was already published by 

Helmholtz /5/ and applies to check. 

3. Test Rig  

Figure 3 represents a principal sketch of the measurement device. In this section a 

detailed view on the design of the test rig will be given. 

In Figure 5 a sectional view of the test rig is represented. The main parts are named in 

the table below. For the function of the apparatus: The liquid enters the machine by a 

rotary feedthrough, passes per the drive train into the system and gets injected via the 

rotating disk. The gap height  is adjusted by the inlet pressure and the spring stiffness 

of the axial compliance. The axial compliance is achieved via a polyurethane spring. The 

axial force sensor is used to adjust the preload of the spring. The preloading is required 

to squeeze the fluid out of the gap to obtain gap heights in the order of micrometers. The 

torque is measured by a reaction torque sensor with an effective range of 1 Nm. The 

drive drain is beard by a fixed and a movable bearing. Due to the fact that each rolling 

bearing has a concentricity tolerance, which is too large to maintain a planarity of the 

rotating disk in the order of 100 nm, a compensation system is required. The toe bearing 

represents this compensation system. Due to the pressure within the confined gap, the 

stationary surface is always oriented planar to the rotating one. 

Two capacitive sensors are inserted into the stationary disk. The used measurement 

system has a dynamic resolution of 1 nm. Due to the fact that at a vanishing gap distance 

the capacity of the sensors tends to infinity, the transmitter is caused to oscillate. To 

avoid electronic oscillations the sensors are located at a distinct difference behind the 

confining surface. The distance  by which the sensors are set back behind the surface 

was determined with a micro coordinate measuring microscope. 
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Figure 5: TU Darmstadt slip length tribometer. 

 

From Figure 6 it can be figured out that the distance  is about 52.8 µm. Furthermore 

it can be seen that the surface seems to be very rough. In average surface roughness’s 
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were measured in the order of magnitude of 100 nm. From interference measurements 

it is known that the surface roughness is in the order of magnitude of 10 nm. Hence the 

inaccuracy is related to the micro coordinate measuring microscope. Due to the fact that 

the grip shifts during a measurement to create a planar measurement. The “surface 

roughness” represents nothing else than the bearing clearance of the linear guides of 

the measuring microscope. To obtain a more accurate measurement result for the 

reinstatement of the sensor surface a planar interference measurement will be 

conducted. 
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Figure 6: Reinstatement – distance sensor and solid surface. 

4. Results 

In this chapter the first results obtained with the previous described apparatus are 

presented.  

In Figure 7 are slip length measurements at different temperatures presented. The 

measurements were conducted at a constant rotational speed of 60 rpm. The oil was a 

poly-alpha-olefin. The kinematic viscosity varied from  cSt down to  

cSt. From Figure 7 emerges that the linear relationship between inverse torque and gap 

height (compare Figure 3) is properly measured. Furthermore the extrapolated inverse 

friction torque crosses the horizontal axes at a negative intercept. Hence a slip length is 

measured. The measured value is in-between the range of ~100 nm as expected. Up to 

now no absolute value is specified for the slip length. This has two reasons: On the one 

hand are the uncertainties of the reinstatement still too large. And on the other hand are 

the temperature uncertainties in one series of measurement not negligible. 
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Figure 7: Slip length at different temperatures. 

Figure 7 shows the positive perceptions of the new Tribometer. With the new 

measurement device the tribo-system is quantified three independent mentioned data: 

First the dynamic viscosity is given by the slope of the inverse friction torque in Figure 

7 a), second the slip length  is given by the intersection with the abscise and third a 

critical normal force is given by ( ). At small gap height normal adhesion forces are 

present. The presented measurement device is sensitive to those forces. 

5. Summary and Conclusion 

Within this paper a new measurement apparatus to evaluate the slip length for hydraulic 

applications was presented. In a first step the measurement principle was presented. 

Based on this the design was exposed with the key constructive issues. In the 

measurement section slip length measurements at three different temperatures were 

presented. In the case of a temperature change of 10° C, the slip length varies in the 

order of 100 nm. As a result of temperature variations within a series of measurements, 

the slope changes are still uncertainty. Absolute values of the slip length are not yet 

quantified due to uncertainties with respect to the reinstatement of the distance sensor. 

But the results obtained so far are of the same order of magnitude as indicated in the 

literature.  

The aim for the future is to reduce the uncertainties with respect to the absolute values 

of the slip length. Hence the reinstatement of the distance sensor will be measured using 

a planar interference technique. Due to this investigation method the accuracy will be 

improved by one order of magnitude. To keep the slope of the moment constant the 
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apparatus will be used in temperature cabinet in future investigations. Based on these 

method the slip length for the material paring steel-oil-steel will be investigated at 

different temperatures and different shear rate. 
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7. Nomenclature 

  Distance m 

  Gap Height m 

  Geometrical Moment of Inertia m4 

  Friction Torque kgm²/s² 

  Pressure kg/ms² 

 Velocity m/s 

 Slip Velocity m/s 

  Reinstatement of the Distance Sensor m 

 Shear Rate 1/s 

  Dynamic Viscosity kg/ms 

  Kinematic Viscosity m²/s 
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Abstract

By defined structuring of sliding surfaces at dynamic contact seals friction and leakage 

can be reduced. Compared to macro-structures, micro-structures have the advantage of 

a quasi-homogeneous influence on the fluid behavior in the sealing gap. The 

development of suitable microstructures based on prototypes, whose properties are 

studied on the test bench, is very expensive and time-consuming due to the challenging 

manufacturing process and measuring technologies, which are necessary to investigate 

the complex rheological behavior within the sealing gap. A simulation-based 

development of microstructured sealing surfaces offers a cost- and time-saving 

alternative. This paper presents a method for simulative design and optimization of 

microstructured sealing surfaces at the example of a microstructured mechanical face 

seal. 

KEYWORDS: Surface Microstructuring, Surface Texturing, Mechanical Face Seals 

1. Introduction 

For about one decade, functionalization of surfaces by means of micro-structures has 

been subject of intensive research /1/, /2/, /3/. The positive effect of improving the hydro- 

and thermohydrodynamic behaviour of a technical system by influencing the fluid in the 

proximity of walls microscopically has been demonstrated in many cases /4/. New 

microproduction techniques like laser structuring with ultra-short-pulse lasers in 

combination with multi-beam processing establish themselves in the market and enable 

an economic microstructuring of hard metallic surfaces without the need of additional 

post-processing /5/. The big challenge today is the development of most suitable 

microstructures for specific applications. Several structures have already been published 

/6/ and the hydrodynamic influences have been investigated /7/. Methods to design 
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structures for specific applications, however, are very limited and only a few numbers of 

scientific work exist /8/, /9/. Furthermore, multiphysical simulation methods considering 

the influence of the dynamics and deformation of the contact partners on the 

hydrodynamic conditions in the lubrication gap are not available. 

Mechanical face seals, a special type of axial face seals, are typically used as primary 

seals between relatively rotating parts in heavily contaminated environments. Typical 

applications are wheel drives of earthmoving machinery like wheel loaders and dumpers. 

Mechanical face seals consist of two metal rings which are mounted on a rotating shaft 

and inside the bore of a stationary housing. The sliding surfaces of both rings are lapped 

and preloaded by O-rings which additionally function as secondary seals between the 

metal rings and the hub or housing (Figure 1).

Figure 1: Left: Mechanical face seal; Right: Wheel hub with mechanical face seal

Mechanical face seals are commonly made of hard cast iron and require a lubrication of 

the sliding surfaces. When lubricated by oil, the sliding speed for reliable applications is  

Figure 2: Seals in the area of conflict between circumferential velocity and dirt load 
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limited to about 3 m/s. For short times, sliding velocities of up to 10 m/s can be reached. 

Hence, the field of operation of mechanical face seals is limited to slowly rotating 

applications like wheel drives (Figure 2). For high-speed components, elastomeric radial 

shaft seals are used nowadays. These seals, however, do not reach the desired lifetime 

due to the heavily contaminated environment. Therefore, a new high-speed mechanical 

face seal for solid particle contaminated environments has been developed in a public 

funded (BMWi) research project. 

2. Approach  

The increased sliding speed requires a significant friction reduction within the lubrication 

gap. Conventional mechanical face seals operate in solid or mixed lubrication with a high 

solid contact ratio (Figure 3). In order to decrease the friction within the lubrication gap, 

a concept for the functionalization of the sealing surfaces has been developed. This 

concept is based on three different functional surfaces. The first functional surface (a) 

reduces the friction. Well-defined microstructures on the sliding surface acts as oil 

reservoir and generate a hydrodynamic lubrication film, so that even for low sliding 

speeds, the friction regime is shifted to the more advantageous fluid friction. 

Figure 3: Coefficient of friction µ depending on the sliding velocity u (Stribeck-curve)

As a matter of principle, the lubrication gap expands. Therefore, a second functional 

surface (b) is used, which intends minimizing the occurring leakage. For this, conveying 

microstructures are applied, which influence the fluid flow within the lubrication gap. 
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Finally, the third functional surface (c) increases the dirt resistance by transporting solid 

particles out of the sealing. 

In this contribution, only the functional surfaces a and b will be described. For information 

about the design of the functional surface c, which increases the dirt resistance, see /10/. 

3. Method 

For designing the functional surfaces a and b, a simulation method has been 

development to investigate the influence of the sliding surface topography on the friction 

and leakage (Figure 4). Based on an iterative procedure, the sliding surface topography 

is optimized with respect to low friction in the first step (Figure 4A). This friction-optimized 

topography is then used as an input for the second step, in which the topography is 

optimized for leakage (Figure 4B). The new topography is then given back to the friction 

optimization and a new iteration is started. 

Figure 4: Simulation method for designing and optimizing hydrodynamically effective, 

microstructured sealing surfaces /11/

4. Functional surface „a“ – friction reducing  

In addition to the topography of the sliding surface and the hydrodynamics within the 

lubrication gap, the friction is significantly determined by the kinematics of the sealing 

components and their deformation. This deformation can be in the same range as the 

lubrication gap height. Hence, a coupled simulation of the structural dynamics, structural 

mechanics and hydrodynamics becomes necessary. Due to this, the mechanical face 

seal has been modeled as an elastic multibody system (EMBS) with coupling to the 

microelastohydrodynamics inside the sealing contact. Compared to classical multibody 
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systems, in which only rigid bodies are investigated, the EMBS considers the 

deformation of bodies.   

In principle, the modeling approach in EMBS can be divided into two separate branches. 

In the first branch, the technical system is described as a MBS based on kinematic, 

kinetic and mechanical properties. In the second branch, the elastic solids are modeled 

as continuous bodies and discretized into small (finite) elements, whose spatial positions 

are described by nodes (Figure 5).

Figure 5: Modeling of a technical system as EMBS /cf. 12/

For the rigid body, the equation of motion consists of three translational and three 

rotational degrees of freedom (DOF). For the FE-model of the flexible body, these six 

DOF must be considered for each node, which leads to a considerable computational 

effort. Therefore, the number of DOF of the flexible body is usually decreased before it 

is used in an EMBS simulation. For this purpose, relevant DOF are defined as so called 

master DOF and the remaining slave DOF are reduced. The deformation, which was 

previously defined by local shape functions, is then calculated by global shape functions. 

Hence, the equation of motion (1) becomes /13/:  

!"#$%& ' ("#$%) ' *"#$% + ,"#$ (1) 

The reduced flexible bodies have markers on which external forces can be applied /13/. 

For pressure forces, the sealing surfaces are discretized and the contact pressure - is 

calculated. This pressure consists of the hydrodynamic pressure -. under mixed 

lubrication and the additional solid body contact pressure -/ (2): 

- + -. ' -/ (2) 
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The integral contact pressure acting on the body is transferred to the master node, so 

that the overall equation of motion (3) can be written as:  

!"#$%& ' ("#$%) ' *"#$% + ,#01"#$ ' ,2"#$ (3) 

In this equation !  represents the mass matrix, ( the damping matrix, * the stiffness 

matrix, % is the vector containing the degrees of freedom, ,#01"#$ is the external force vector 

and ,2"#$ represents the contact pressure vector. For a detailed derivation of this 

equation, see /11/ and /14/. 

The solid contact pressures acting on the sealing rings are determined by the micro 

contact model of Greenwood and Williamson /15/. In this model, the surface roughness 

profiles of two contacting bodies are approximated by spherical caps and transferred to 

one deformable surface, while the other surface is assumed to be rigid and perfectly 

smooth. By using the Hertzian theory, the solid contact pressure -/34563 can then be 

determined depending on the lubrication gap height. Based on this, the solid contact ratio 

can be determined and the friction torque (4) due to solid contact can be calculated as 

follows: 

78#9:;/
<;= + > ? -/@ABC

D  (4) 

For the hydrodynamic pressure, the Reynolds equation is solved. In order to avoid an 

expensive discretization of the microstructured sliding surface, the microstructural 

influence is decoupled from the macro hydrodynamics. In this indirect coupling approach 

based on the theory of Patir and Cheng /16/, the influence of microstructures on the 

micro hydrodynamics inside the lubrication gap is determined only on a small 

representative part of the surface by means of flow factors. In this way, the micro 

hydrodynamic influence on the fluid flow can be considered in a macro hydrodynamic 

simulation. For this, the Reynolds equation (5) is modified to include the pressure flow 

factor E2 and the shear flow factor EF:
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The hydrodynamic shear stresses (6) can then be determined by: 
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with the shear stress factors  EN.F and EN.2 and the correction factor E. (see /17/). The 

positive sign represents the stationary and the negative sign the sliding sealing ring. 

Hence, the hydrodynamic friction torque (7) becomes: 

78#9:;.
<;= + ? T.N<;=@AWA@

C
D  (7) 

For mixed lubrication, the overall friction torque (8) can then be calculated by a simple 

summation of the solid friction and the hydrodynamic friction torque: 

78#9:;X
<;= + 78#9:;.

<;= '78#9:;/
<;=  (8) 

As a result, this part of the simulation method (Figure 4A) is able to optimize the sliding 

surface topography with respect to friction. 

5. Functional surface „b“ – leakage reduction 

In addition to the requirement of low friction, the demand for minimal leakage has to be 

fulfilled. As a matter of principle, hydrodynamic microstructures increase the lubrication 

gap. Therefore, an additional functional surface is used, which transports radially 

occurring leakage back into the lubrication gap. Such recirculating micro structures are 

state of the art for radial shaft seals. For mechanical face seals, only a few number of 

macroscopic structures have been published /18/, /19/, /20, /21/. These structures, 

however, produce high local pressure gradients and cannot offer a homogenous 

recirculation due to its macroscopic nature. Therefore, new microscopic microstructures 

have been developed. 

Due to the assumptions (
G2
GY + Z,CCG[GY + Z) made for the derivation of the Reynolds 

equation /17/, equation (4) is not able to simulate occurring leakage accurately enough. 

Contrary to the simplifications assumption, three dimensional flow and pressure fields 

exist /22/, which also influence the amount of leaked fluid /23/. With respect to the 

intended manipulation of the fluid flow, a three dimensional hydrodynamic simulation 

becomes necessary. 

Therefore, a CFD simulation model has been build up, which represents the 

microstructures inside the lubrication gap. In Figure 6, two exemplary structures are 

shown. The rear boundary of the fluid space is formed by the microstructured sealing 

ring. It moves in negative x-direction. The front boundary is formed by the unstructured 

sealing ring. It is fixed. In Figure 6, the computation grid of discretized fluid space can be 

seen. The recirculating feed structures shown are recesses. Under the structures 

additional x-z-planes are placed. These planes illustrate the velocity fields in radial 
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direction y. At first, the fluid flows from bottom left radially inside the structures (positive 

y-direction). It is then diverted and finally, it flows to the bottom right back into the sealing 

gap (negative y-direction). 

Figure 6: Velocity field of CFD simulation of two recirculating microstructures with 

convex/ concave edge geometry and different lengths (l.: 100 µm, r.: 300µm) 

The influence of the geometry, the size and the depth of the structures have been 

investigated and a sensitivity analysis has been performed. As an example, the influence 

of the structural height is illustrated in Figure 7.

Figure 7: Influence of structural height to the fluid flow  

In addition, the entire lubrication gap including all microstructures has been optimized 

with respect to minimal leakage in further CFD-simulation. This simulation yields the 

leakage-optimized sliding surface topography, which then serves as an input for the 

simulation of friction reduction (Figure 4A). By applying this iterative procedure, the 

bidirectional influence of the friction-reducing and leakage-reducing microstructures can 
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be investigated and at the end, the optimized sliding surface topography under 

consideration of critical operation points can be found. 

6. Results 

In Figure 8, a prototype of the developed mechanical face seal is shown. The structures 

have been manufactured by ultra-short pulsed laser. Compared to classical laser 

techniques, ultra-short pulsed lasers can produce high quality surfaces without melt 

residue, so that expensive post-processing can be avoided. Due to the high resolution 

of this technique, the numerically developed microstructures could be inserted into the 

mechanical face seals very precisely.  

Figure 8: Sliding sealing ring with microstructured functional surfaces

The right picture in Figure 8 shows the microstructured sliding surface. The functional 

surface a is provided with oval dimples (L = 25 µm, W = 50 µm, D = 5 µm). The functional 

surface b is provided with sickle-shaped grooves (L = 400 µm, W = 50 µm, D = 20 µm). 

In order to convey into the sealing gap penetrating dirt back to the outside, the seal has 

a primary dirt conveying structure for large particles (cp) and a secondary structure (cs)

for small particles.  

For validation, the prototypes have been tested on a specific MFS-test bench (Figure 9).

Figure 9: Testing of mechanical face seals on test bench with dirt-loading 
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In first trials, the friction could be reduced by up to 25 % without any leakage. The left of 

Figure 10 shows the friction torques of a conventional and a microstructured mechanical 

face Seal at sliding velocities up to 20 m/s. The conventional MFS already failed at about 

3.5 m/s through warm scuffing. This reflected in the friction torque peaks. Due to the 

breaking away opens the sealing gap which massive leakage. In the gap penetrates 

fresh oil and lubricants for a short time, so that the friction torque falls down until the next 

contact occurs. The conventional MFS failed finally at 16 m/s through flying sparks. The 

right of Figure 10 shows the scuffing marks at the sealing sliding surface. Because of the 

higher lubricant thickness and a better heat removal from the sealing gap, the 

microstructured MFS achieved without damage 20 m/s. Additionally acting the structures 

as a particle trap for wear particles. 

Figure 10: Left: Friction torque with microstructure and without microstructure;  

Right: Failed unstructured MFS with scuffing marks as result of warm scuffing 

The microstructured seals have not yet been studied in longer-term tests hitherto, so that 

statements for wear and life time not yet available.  

An actually disadvantage are still the high production costs. For economical production, 

they must be significantly reduced. Multi beam scanner offers here excellent 

opportunities. 

7. Summary and Outlook 

Hydrodynamic microstructures show a big potential to decrease energetic losses in high-

friction applications. Although this topic has been addressed in many research projects, 

only a small number of methods exist, which assist the developers of microstructural 

surfaces to transfer the fundamental knowledge to specific applications. 

In this contribution, a simulation method has been proposed, which allows the design of 

microstructured mechanical face seals with respect to friction and leakage reduction. The 
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optimized properties of such mechanical face seals have been demonstrated in first trials 

on a test bench. Regarding the huge amount of oil-lubricated, high-friction applications, 

a transfer of the proposed simulation method to further dynamic seals is imaginable. 
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10.  Nomenclature 

B Area m² 

(\]^ Reduced damping matrix N s/m 

, Force N

,"#$ Reduced contact pressure load vector N 

R Clearance Height m 

*\]^ Reduced stiffness matrix N/m 

78#9: Friction torque Nm 

!\]^ Reduced mass matrix kg 

- Pressure Pa 

-. Fluid pressure Pa 

-/ Surface pressure Pa 

@ Radius m 
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% degree of freedom vector in reduced system m 

_ Velocity (x-direction, circumferential direction) m/s 

` Velocity (y-direction) m/s 

a Velocity (z-direction) m/s 

b Dynamic viscosity Pa s 

c Friction coefficient - 

T shear stress Pa

W Angle ° 

E2 Pressure flow factor - 

EF Shear flow factor - 

E.2 Shear stress factor of the pressure flow - 

EF. Shear stress factor of the shear flow - 

E. Correction factor - 

P Angular velocity sec-1 

!
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Abstract 

This paper examines the model-based design of thermal systems in mobile machines 

with a focus on heat exchanger design.  An industry project is described in which the 

vapor compression cycle for the air-conditioning system was modeled using the 

software SimulationX.  By modeling heat exchanger sections separately, multiple flow 

arrangements could be tested without the need for physical prototypes.  The paper 

presents this work in the context of the full model-based design process including 

extensions for hardware in the loop (HiL) testing of control units and operator training 

using virtual machines. 

KEYWORDS: Heat Exchanger, Simulation, Model, Cooling, Heating, Air-

Conditioning, Design, Control, Virtual, Testing 

1. Background 

Designing heat exchangers and thermal systems in mobile machines brings with it 

unique challenges since there is relatively limited space to install the heat exchange 

equipment and the machines must be robustly built and functional in extreme and 

changing conditions such as frost or high-temperatures.  Furthermore, each type of 

machine within a series can have different circuits, engines or hydraulic systems, each 

of which needs to be appropriately cooled.  Combining these factors with multiple 

operation modes, such as transport, heavy-work, light-work and idling results in a 

highly complex design process. 
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Figure 1: Product Development Process in a V-Diagram 

A V-diagram is often used to describe the process of developing complex products 

such as mobile machines.  In a V-diagram, the left side of the diagram describes the 

decomposition and definition of subsystems.  The functional description resulting from 

the definition of requirements is continuously further broken down into systems, 

subsystems and then individual components, eventually resulting in a potential 

implementation of the product.  The right side of the diagram describes moving from 

these individual components and subsystems back into the whole system in a process 

of recomposition and integration.  The end result is a product capable of operation that 

fulfils all of the requirements defined at the beginning of the design workflow.  In almost 

all cases the V-diagram is not a linear process moving from one step to the next, but 

requires multiple iterations between steps to remove errors, for instance in the 

integration of subsystems.  As the design process moves further along to the right of 

the V-diagram it becomes more expensive in both time and costs to fix an error.  For 

this reason many companies focus on frontloading the design process. 

508 10th International Fluid Power Conference | Dresden 2016



 

Figure 2: Frontloading Design Processes 

The term frontloading refers to moving development effort and investments to steps 

earlier in the design process when relatively little effort is required to eliminate errors 

compared to later steps.  An established method of frontloading a design process is to 

use model-based design.  This paper focusses on the model-based design of the heat 

exchangers and thermal systems in the context of mobile machines. 

2. Introduction and Initial Design 

The design process for thermal systems in mobile machines begins with understanding 

the standard operating conditions that a machine will be used in.  Mobile machines 

differ from stationary machines in that they typically have a wider range of operating 

scenarios that the cooling and climatization systems need to be able to handle.  

Whereas a stationary machine will normally run at or near its nominal condition, mobile 

machines need to be designed for transportation (high power, high air flow), for work 

(high power, low air flow) and for idling (low power, low air flow).  Additionally, the 

climatization needs of the operator introduce additional requirements that need to be 

considered in the design process to ensure power is efficiently available to meet cabin 

heating or cooling demand. 

2.1. Requirements and Calculation of Typical Operating Conditions 

Based on the intended use of the mobile machine, requirements are formulated that 

describe what the machine needs to be able to do, for how long, and in what 

Group K - Fundamentals | Paper K-3 509



environmental conditions.  The requirements most relevant to the cooling and 

climatization systems of the machine are the engine power and the environmental 

conditions it will be used in, since these values will determine the dimensioning of the 

thermal systems. 

Entering these requirements into requirement management software is the first step in 

the virtual product design process.  Modern model-based design workflows support a 

close linkage between requirements and structure as demonstrated by the 

development of a braking component for an intercity railway in a joint engineering 

project by Knorr-Bremse Systeme für Schienenfahrzeuge GmbH, ITI GmbH and IBM 

Deutschland GmbH. /1/   

The specification of the main operating conditions of the mobile machine along with the 

percentage of operating time it is likely to be used for each purpose is the prerequisite 

for moving to the next design step, an energy-based analysis of the various systems. 

2.2. Energy-Based Analysis 

Simulation tools able to handle various levels of complexity are well suited to a 

continuous model-based design process.  Initial calculations are intended to determine 

the approximated boundaries of the design space.  For the design of the cooling 

systems this means determining how much heat the engine cooling system will need to 

dissipate based on the engine power for the typical operating conditions.  This enables 

an initial dimensioning of the cooling system components.  The same concept applies 

for the potential heating and cooling loads of the operator cabin and the climatization 

system. 

At this point of the design process a lot of information is still unknown and the 

simulation should be kept simple.  Calculations of the steady-state conditions are 

sufficient.  This process is described using an example from ITI GmbH of the simulation 

of the thermal systems of a hybrid vehicle using the modeling software SimulationX for 

a renowned Japanese automobile manufacturer. 

Although SimulationX is capable of dynamic simulation in multiple physical domains, at 

this point of the design process a signal-based analysis is sufficient to make the first 

calculations regarding system design and component dimensioning. 
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Figure 3: Sample Diagram of Thermal Flows within a Vehicle 

The simulation of the thermal management of the vehicle was based on a schematic 

provided by the automobile manufacturer.  This schematic provided the basic energy 

flows within the vehicle, for instance the heat flow from the electric motor, generator 

and transmission to the oil cooling circuit and the heat flows from the PDU and engine 

to the corresponding cooling circuits.  Manufacturer and/or measurement data were 

supplied for each of the components.  By incorporating the data as tables within 

custom library elements in SimulationX, an object-oriented approach to the thermal 

management calculation was achieved.   

 

Figure 4: Thermal Map of the Exhaust Heat of a Vehicle Engine 
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Based on the vehicle operating condition inputs, for example vehicle speed, engine 

RPM, engine torque, etc., initial conclusions could be made about the suitability of the 

components for this particular vehicle at each operating condition.  The simulation 

made it possible to calculate coolant flow rates, air outlet temperatures, and heat flows. 

A signal-based analysis is restricted to steady-state operating points.  In a second step 

the basic dynamics and inertias of the thermal systems were introduced. 

3. Dynamic Modeling 

The calculations of the steady-state operating points represent only part of the picture.  

Just as important for the mobile machine design process are the heat-up and cool-

down phases, as well as the dynamics of the thermal systems in particular in regards to 

the layout and parameterization of the control systems.  For such models it is 

necessary to use component models that contain fluid volumes or thermal capacities.  

The differential equations behind such component models enable the simulation 

software to calculate the rate of change of potential variables.  For instance, the 

differential equation for the temperature in a component model of a thermal capacity 

calculates how quickly the temperature will rise or drop based on a heat flow.  

Likewise, the differential equations in a fluid volume calculate the rate of change of fluid 

pressure and temperature based on mass flows and heat flows.  Dynamic modeling 

can also be split into various levels of detail ranging from consideration of the biggest 

volumes and capacities as described in the next section to CFD and FEM calculations 

where the dynamics within individual components are calculated based on 

discretization meshes.  This paper focuses on system-level dynamics, although the 

interface to CFD calculations is briefly explained in the heat exchanger design. 

3.1. Inclusion of Simple Dynamics 

A second aspect of the project for thermal management modeling of an electric vehicle 

was the calculation of the effects of the most significant fluid volumes and thermal 

capacities.  Each cooling circuit was modeled using two volumes.  The fluid cycles 

were split in such a way that one volume represented the fluid at high temperature 

before the heat exchanger, and the other volume represented the fluid at low 

temperature after the heat exchanger but before the heat source. 
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In addition to the fluid volumes, the most significant thermal capacities were also 

considered.  These included but were not limited to the engine, the transmission and 

the generator. 

The inclusion of simple dynamics into the component models enabled the engineers to 

calculate a thermal balance during drive cycles.  Approximate fluid and metal 

temperatures could be determined and thus initial conclusions drawn as to whether the 

selected systems meet the requirements. 

3.2. System Dynamics and Heat Exchanger Design 

The process of modeling system dynamics and designing heat exchangers using a 

model-based design process is described using an example from industry.  The 

customer request was to create a model of the air-conditioning system in order to find 

the optimal heat exchanger configuration based on the number of tubes and flow 

arrangement.  To check the accuracy of the model, validation data was provided for 

various compressor frequencies.   

An air conditioning system has four main components: the compressor, condenser, 

expansion device and evaporator.  The energy input to the cycle comes in the form of 

compressor input power.  Depending on the design it may be electrical or mechanical 

energy.  Due to the fact that refrigerants exhibit no or only minimal change in 

temperature during phase change, it is possible to store and release large amounts of 

energy in the fluid without requiring large temperature differences.  The physical 

property of fluids that the boiling point changes based on the pressure level makes it 

possible to move this thermal energy from a lower temperature level to a higher 

temperature level using a vapor compression cycle.  A vapor compression cycle can be 

used for either cooling or heating, depending on which heat exchanger is connected to 

the area of interest.  In an air conditioning system the vapor compression cycle is used 

for cooling.  The inlet of the evaporator contains two-phase refrigerant at a low 

pressure and thus low temperature.  Heat naturally migrates from the higher 

temperature of the air from the operator cabin into the refrigerant, which cools the air 

and heats the refrigerant, evaporating it into a gas.  This gas is forced to a higher 

pressure and thus higher temperature using a compressor.  The hot gas enters the 

condenser which is connected to a heat sink, typically the ambient air.  This cools the 

refrigerant, condensing it into a liquid.  The final step in the vapor compression cycle is 

to expand the refrigerant from the high pressure level back to the low pressure level.   
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Figure 5: Pressure-Enthalpy Diagram of a Vapor Compression Cycle 

The air conditioning system in question used R410A as a refrigerant and had a thermal 

load around 6kW.  The compressor was a fixed displacement piston compressor with 

frequency control.  To model the compressor, the customer provided data for the 

displacement volume, volumetric efficiency and isentropic efficiency.   

Both heat exchangers were fin and tube heat exchangers with five sections connected 

in parallel.  The geometric parameters for the simulation included the tube length and 

inner diameter as well as the number of tubes per section.  The fin thickness and 

spacing was also considered.  Based on these parameters the component models 

were able to calculate the heat transfer area of the heat exchanger.  Depending on the 

selected calculation method, the current heat transfer coefficients both on the 

refrigerant and the air side were calculated from the fluid properties and mass flow 

rates. 

Each of the heat exchanger sections was modeled separately in the system model.  

Since the goal of the project was to determine which changes could be made to the 

design of the heat exchangers to increase the energy efficiency of the air conditioning 

system, the air flow rates through the various sections of the heat exchanger had to be 

considered.  To determine the air flow rates through each section, a CFD calculation 

was done using Ansys in order to obtain a quadratic flow curve for each heat 

exchanger section.  These flow curves were entered into the heat exchanger elements 

of the system model in SimulationX.  This made it possible to calculate the local 
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conditions, e.g. mass flows and temperatures, in each heat exchanger section, and 

thus calculate how much heat was transferred by each section. 

 

Figure 6: Five Heat Exchanger Sections Modeled in Parallel 

To validate the simulation model static operation points were measured for 30%, 45%, 

70%, 75% and 100% of the nominal frequency.  Sensors were installed for pressure in 

the vapor compression cycle at the compressor inlet and outlet, as well as at the inlets 

and outlets of both heat exchangers.  Likewise, temperature sensors were installed at 

the inlet and outlet of the compressor as well as at the inlet and outlet of each heat 

exchanger section.  The measurements were carried out by the customer and provided 

for the validation of the simulation models.  However, the measurement data was only 

suitable for an approximation of the system behavior, since there were detectable 

errors in the temperature measurements.  The measurement errors were visible for 

instance in discrepancies between the pressure in the two-phase region and 

corresponding calculated two-phase temperature versus measured temperature.  

Furthermore, assuming correct measurement data, isentropic efficiencies for the 

compressor greater than 100% would have to have occurred.  The most likely cause 

for the error in the temperature measurements is due to the method.  Temperature 

sensors were fastened on the outside of the copper refrigerant pipes and then covered 

with insulation at that point.  Most likely nearby components or refrigerant flows had an 

effect on the outer pipe and thus sensor temperature. 

Despite the measurement errors, it could be demonstrated that the behavior of the 

simulated vapor compression cycle scaled well with the measured behavior. 
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Figure 7: Validation Results of the System Simulation Model 

The challenge in maximizing heat transfer over a heat exchanger is that there is an 

irregular air flow profile within different sections.  The most basic solutions require 

ensuring that the last tubes in the refrigerant flow path are closest to the air entry point.  

Likewise, the first tubes in the refrigerant flow path should be in the row furthest from 

the air entry point. Although fin and tube heat exchangers are in a crossflow 

configuration, arranging the flow path in this way makes it possible to use the small 

counter-flow effect created by multiple tube rows. 

       

Figure 8: Example of Heat Exchanger Sectioning 

 Simulation 

Measurement 

45% 30% 70% 

75% 100% 
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Since heat is transferred most effectively via large temperature differences, a second 

step in improving the flow configuration is done by adjusting the number of tubes per 

section and their connections in order to adjust the refrigerant flow proportional to the 

air flow.  The goal in rearranging the flow path is to achieve a similar outlet temperature 

for all of the refrigerant outlets and as uniform a temperature as possible at all points of 

the outlet air flow area. 

Calculations demonstrated that considering the latent heat of condensation was critical.  

When moist air meets the cold pipes of the evaporator, water vapor condenses out of 

the air and forms droplets on the heat exchanger.  The process of changing phase from 

water vapor to droplets releases energy from the moist air that is transferred via the 

pipe surface into the refrigerant.  This heat transfer is called latent heat and made up 

20% to 30% of the total heat exchange in the evaporator for the recorded validation 

cases. 

The dynamic simulation model enabled the customer to quickly try out different heat 

exchanger configurations, and to calculate the internal workings of the heat exchanger.  

Many more heat exchanger variants could be tested than would have been feasible if a 

prototype was necessary for each flow arrangement. 

4. Controller Design, Code Generation, HiL Testing and Operator Training 

Although not a focus of this paper, it is worth mentioning that the model-based design 

process does not end with the system layout and dimensioning of components such as 

heat exchangers.  In fact, a significant advantage of model-based design is that the 

dynamic models created during early and middle design phases can be reused in later 

design stages such as controller design, code generation, virtual commissioning and 

operator training. 

4.1. Controller Design, Code Generation 

Designing a controller requires understanding the layout and dynamics of the machine.  

This information has already been generated, calculated and organized in the system 

modeling process as described in section 3.2.  Using modeling software such as 

SimulationX it is also possible to describe the functional behavior of a controller using 

typical signal blocks such as integrators, PI, PID, and PT blocks.  The controller model 

connected to the dynamic machine model enables the control engineer to test various 

designs and optimize parameters.  Most importantly, C-code for the controller can be 

exported from SimulationX for use on the PLC.  The full model-based controller design 

process is described in the paper “SimulationX goes BeagleBone & Co.”. /2/ 
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4.2. Hardware-in-the-Loop Testing (HiL) and Operator Training 

An additional level of testing can be achieved using Hardware-in-the-Loop (HiL) 

simulations.  Using this method, a real-time platform serves as an interface between 

the dynamic model of the machine and the real electronic control unit.  The real-time 

platform takes “measurements” from the dynamic model and sends these signals to the 

electronic control unit.  The control unit compares the measurements to operator inputs 

(e.g. from a joystick), processes the information and sends a corresponding actuation 

signal.  This actuation signal is received by the real-time platform and converted to 

input data for the dynamic model.  Since the model represents the physical dynamics 

of the real machine, the controller implementation can be tested at an earlier design 

stage and for extreme situations that may be too dangerous or too expensive to test on 

a real machine.  The same techniques for HiL testing can be used for operating 

training.  Including the real operator in testing processes earlier in the design process 

makes it possible to catch errors and make improvements at a point where it is still 

feasible to do so. 

5. Conclusion and Outlook 

Model-based design represents significant potential for saving time and costs in 

product development by being able to recognize errors earlier in the process and make 

adjustments at an early stage.  This potential was demonstrated using an example 

project from industry.  By using model-based design the customer was able to test 

many more flow configurations for the heat exchangers of an air conditioning system 

than would have been feasible using physical prototypes.  The dynamic models 

created are not limited only to this design step but can be integrated with requirement 

validation, HiL testing of the electronic control unit and operating training using a virtual 

machine. 
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Abstract

The following paper presents a one-dimensional numerical model for simulating transi-

ent thermohydraulic pipe flow based on the Method of Characteristics. In addition to 

mass and momentum conservation, the proposed scheme also guarantees compliance 

with the laws of thermodynamics by solving the energy equation. The model covers 

transient changes in fluid properties due to pressure changes, heat transfer and dissi-

pation. The presented methodology also allows the computation of the transient tem-

perature distribution in the pipe wall through an additional ordinary finite difference 

scheme. The numerical procedure is implemented in the commercial simulation soft-

ware DSHplus. The capability of the code is examined by comparing the simulation 

results with theoretical solutions and experimental data. 

KEYWORDS: Thermohydraulics, transient pipe flow, heat transfer, injection rate 

measurement, waterhammer 

1. Introduction 

Typically, the physical models used for the simulation of pipe flows with distinct transi-

ent features (e.g. waterhammer problems) only consider the continuity and momentum 

equation. If at all, changes in material properties are incorporated by an additional ma-

terial law such as ! = !(p). Effects like heat transfer or transient changes of fluid proper-
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ties (e.g. speed of sound, viscosity) due to temperature changes are typically not cov-

ered at all. In certain applications of thermohydraulics, these effects are vital. In order 

to model the heat transfer between fluid and pipe wall accurately in these cases, the 

temperature distribution in the pipe itself has to be considered, too. Based on these 

requirements, a physical model of the problem is developed. 

2. Physical model 

The problem is split into a liquid (pipe flow) and a solid (pipe wall) domain, for which 

separate (but coupled) physical models are used. The more complex physical model 

for the fluid domain is discussed first. 

2.1. Fluid domain 

The fluid behaviour is described by a set of three conservation equations in differential 

form. These differential equations are formulated in terms of primitive variables, since 

the simulation model should be capable of handling real fluids (and in particular, liq-

uids), where analytical expressions for the state equations are not commonly available. 

2.1.1. Continuity equation 

The compressible continuity equation, expressed in terms of the area-averaged axial 

velocity " (volume flow Q by pipe cross-sectional area A) and fluid density ! is given as 

follows: 

!"
!# $ %& !"!' $ ( !)*!' + ,"

,# $ ( !)*!' + - (1) 

Since primitive variables are used, the total density change has to be expressed in 

terms of the variables ", p or T. Using the definition of the wave propagation speed a, 

the modified continuity equation can be expressed in terms of the fluid pressure p: 

!"
!# $ %& !"!' $ ( !)*!' + .

/0
!1
!# $ )*

/0
!1
!' $ ( !)*!' + - (2) 

2.1.2. Momentum equation 

If the influence of gravity is neglected, the momentum equation (Navier-Stokes equa-

tion) in longitudinal pipe direction reads as follows: 

!)*
!# $ %& !)*!' $ .

"
!1
!' $ .

"
21
2' + - (3) 

The pressure loss per unit pipe length !p/!x is calculated using the methodology de-

scribed in section 2.1.4. 
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2.1.3. Energy equation 

The energy equation, formulated in terms of the area-averaged thermodynamic fluid 

temperature T, can be written as follows /1/: 

(31 ,4,# 5 4
6 7!6!481

,1
,# 5 !

!' 79 !4!'8 5 :
; <= >> 5 ?%& 212'? + - (4) 

In this equation, k denotes the thermal conductivity of the fluid. The prefactor of the 

pressure differential dp/dt is the product of the fluid temperature and the isobaric ther-

mal expansion coefficient: 

4
6 7!6!481 + @A1 (5) 

For an ideal gas, the isobaric thermal expansion coefficient is equal to 1/T, rendering 

the prefactor equal to one. For hydraulic oils and other liquids, #p is estimated numeri-

cally from the state function v = v(p, T) provided by the DSHplus fluid library. Typical 

values for the prefactor are given in table 1. The values were calculated for ambient 

pressure (p = 1 bar) by using a central difference approximation at the respective tem-

perature with a step size of !T = ± 5 K. 

Fluid T#p(T = 20 °C) T#p(T = 100 °C)
Water 0.06 0.29 

HLP 46 0.21 0.29 
Diesel 0.24 0.33 

Gasoline 0.32 0.45 

Table 1: Product of fluid temperature and expansion coefficient for various fluids.

For the ease of calculation when using the Method of Characteristics (as will be de-

scribed later), the pressure differential dp/dt in the energy equation has to be replaced 

by a partial derivative. By using the modified continuity equation (2), it can be ex-

pressed as a function of the spatial derivative of the flow velocity: 

,1
,# + 5(BC !)*!' (6) 

The wave propagation speed a differs from the fluid’s speed of sound a0, since every 

pipe is made of a material with finite Young’s modulus E. The relations for estimating 

the wave propagation speed for different mechanical support conditions of the pipe are 

taken from a literature overview provided by HALLIWELL /2/. For linear-elastic pipe 

material, the following quantities are needed to calculate the wave propagation speed: 

B + B 7BDE (E FE GE H;8 (7) 
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2.1.4. Pressure loss 

For laminar pipe flows, ZIELKE /3/ demonstrated that the pressure loss !p can be de-

composed into steady and unsteady components. The pressure loss due to steady flow 

is calculated using the well-known Darcy-Weisbach equation with the Darcy friction 

factor $. The friction factor can be obtained as a function of the pipe diameter Reynolds 

number Red from theoretical considerations (laminar case) or experimental results. The 

pressure loss also depends on the relative roughness %/d of the inner pipe surface, if 

the roughness % exceeds the viscous sublayer thickness in turbulent flow. 

In contrast to steady flow conditions, the estimation of pressure losses due to unsteady 

flow is much more demanding. For the laminar case, a classical approach to the prob-

lem has been presented by ZIELKE /3/. For better numerical calculation performance, 

the approximation of the weighting function presented by MÜLLER /4/ is used. For tur-

bulent flow through smooth and rough pipes, VARDY & BROWN /5/ have published 

numerical schemes that will be implemented in the near future. 

2.1.5. Heat transfer 

The area-specific heat flux <= ’’ between fluid and pipe wall is calculated using the inner 

heat transfer coefficient &d, the wall temperature Tw and the mean fluid temperature T: 

<= >> + I;J@K 5 @L (8) 

As is the case with the friction factor $, the heat-transfer coefficient is calculated from 

analytical solutions for selected special cases or – in general – experimental correla-

tions. Typically, the heat transfer coefficient is represented in a non-dimensional form, 

namely the Nußelt number Nud, in the literature: 

M%; + I; ;N (9) 

In general, the Nußelt number Nud for a given problem depends on the geometry, the 

Reynolds number Red, the Prandtl number Pr of the fluid (ratio of momentum diffusivity 

to thermal diffusivity), the relative length L/d of the pipe section (if the velocity profile is 

not fully developed) and also on the relative surface roughness %/d: 

M%; + M%; 7OP; E QRE S; E T;8 (10) 

Because the area-specific heat flux also depends on the pipe wall temperature, the 

equations of both domains are coupled. 

522 10th International Fluid Power Conference | Dresden 2016



2.2. Wall domain 

Since the pipe wall is a solid body and its elastic deformations are either not consid-

ered (axial) or taken into account by the equations of the fluid domain (radial), the only 

remaining conservation equation for the solid domain is the energy equation. Its single 

variable (other than the fluid temperature) is the wall temperature Tw, which is a func-

tion of time and axial position along the pipe. Since the pipe material is of finite thick-

ness, Tw may also vary in radial direction. However, the following considerations will 

prove that for most applications, the radial temperature profile can be neglected. 

2.2.1. Radial temperature distribution 

In the current approach, the significance of the radial temperature distribution within the 

wall domain is characterised by the Biot number Bi. The Biot number is defined as the 

ratio of the conductive thermal resistance Rcond of a body to the convective thermal re-

sistance Rconv at the surface of the body. If the thermal resistance between the fluid and 

the pipe wall is used as the reference convective resistance, it can be shown that the 

Biot number equals the following temperature ratio: 

UV + WXYZ[
WXYZ\ +

4]7[08^4]7_08
4^4]7[08

 (11) 

If the Biot number is much less than one, the radial distribution of the wall temperature 

is negligible. Using the definition of the Nußelt number, the following relation is derived 

for the Biot number: 

UV + `[;
CN] ab 7

H
;8 + c)[

C
N
N] ab 7

H
;8 (12) 

Numerical analysis of equation (12) shows that for many thermohydraulic and almost 

all pneumatic problems, the Biot number is indeed much less than one (for Diesel flow-

ing through a steel pipe with D/d = 1.5 at Red = 104, Bi ! 0.08). Hence, the radial distri-

bution of the wall temperature can be neglected for these applications. 

2.2.2. Energy equation 

If this major simplification is applied and radiative heat transfer (which is easily taken 

into account by linearization of the biquadratic temperature terms, if required) is ne-

glected, the energy equation for an infinitesimal slice of the pipe wall reads as follows: 

(K3K !4]
!# + 9K !04]

!'0 $ :
JH0^;0L dI;eJ@ 5 @KL $ IHfJ@) 5 @KLg $ :H

JH0^;0L <=h>> (13) 
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In this equation, <=h>> denotes the area-specific power of possible external heating devic-

es, while Tu equals the temperature of the fluid surrounding the pipe wall. 

3. Solution methods 

In general, the balance equations derived in the previous chapters cannot be solved 

analytically. Hence, numerical methods are employed to solve the set of equations ap-

proximately. The equations governing the fluid and wall domain are solved simultane-

ously. For solving the equations describing the fluid behaviour, the Method of Charac-

teristics is used. A standard finite difference scheme is employed for solving the energy 

equation of the wall domain. 

3.1. Method of Characteristics (fluid domain) 

The Method of Characteristics (MOC) is a very efficient scheme for solving systems of 

partial differential equations numerically. However, one of the major drawbacks is its 

limitation to hyperbolic equations. Since a diffusive term (k "²T/"x², if thermal conductivi-

ty k is assumed constant within a timestep) is present in the energy equation, the gov-

erning set of equations is not strictly hyperbolic. The diffusive term, representing Fouri-

er’s law, is used to model the axial heat transfer due to thermal conduction within the 

fluid. The only other mode of heat transfer in axial direction (within the fluid domain) is 

due to convective transport of fluid elements and their respective energies. The relative 

significance of axial convective heat transfer compared to axial thermal conduction can 

be characterized by the Péclet number Pé. The Péclet number, written in terms of pipe 

flow problems, is defined as follows: 

Qi + )*"jk;
N  (14) 

For typical thermohydraulic problems, the Péclet number is much greater than one. 

Hence, the axial heat transfer in the fluid domain is governed by convection and the 

contribution of thermal conduction (and therefore, the diffusive term in the energy equa-

tion) can be neglected. The validity of this statement will be proven by comparison with 

analytical solutions in section 4.1.  

After applying this simplification, the set of equations becomes hyperbolic, and the 

MOC can be employed. By performing a suitable manipulation, the set of partial differ-

ential equations is transformed into a set of ordinary differential equations (the so-

called standard form). A procedure for obtaining the standard form for this type of 

equations is discussed in detail by PEUSSNER /6/. For the presented set of equations, 

the standard form reads: 
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The total derivatives in these three equations are replaced by first-order finite differ-

ences. Since the differential equations are only ordinary along certain curves (“Charac-

teristics”) in the time-space grid diagram (Figure 1), a total derivative of the same 

physical quantity has to be approximated by different finite difference expressions, de-

pending on the respective equation and propagation speed dx/dt: 

Figure 1: Time-space grid diagram and characteristic speeds. 

For approximating the total derivative of an arbitrary quantity m occurring in equation 

(15), where changes propagate with the speed dx/dt = " + a, the value of m at node ‘A’ 

and time step i has to be used when formulating the finite difference: 

,n
,# o 2n

2# + nZpqr^nsp
2#  (18) 

For transforming equations (16) and (17) into algebraic expressions, the values at the 

nodes ‘B’ and ‘C’ respectively, have to be used. The values of m at nodes ‘A’, ‘B’ and 

‘C’ are determined by linear interpolation between the adjacent nodes. After all deriva-

tives of the flow variables are replaced according to this scheme, the resulting set of 

algebraic equations can be solved with respect to the values at the node n and the time 

i + 1. Once the fluid variables ", p and T at the time step i + 1 have been calculated, the 

associated new wall temperature can be computed. 

3.2. Finite difference method (wall domain) 

Since conduction is the only mechanism by which the pipe wall can transfer heat in its 

axial direction, the diffusive expression in the energy equation cannot be neglected. 
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Hence, the (classical) Method of Characteristics cannot be used for solving the non-

hyperbolic energy equation governing the wall domain. Instead, a standard finite differ-

ence method is used. The time derivative of the wall temperature is approximated by a 

first-order forward scheme, whereas the second order spatial derivative of the wall 

temperature (Fourier’s law) is calculated by a central difference scheme. Once the par-

tial derivatives in the energy equation of the wall (equation 13) have been replaced by 

these expressions, the resulting algebraic equation can be solved for the wall tempera-

ture at the time step i + 1. After the new wall temperature is calculated, the whole pro-

cedure is repeated by solving the fluid equations based on this result. 

3.3. Stability conditions 

The proposed numerical scheme is implemented using an equally spaced grid in both 

time and space. Since the simulation time step size !t is typically chosen with respect 

to the dynamics of the system to be simulated, the spatial step size !x has to be de-

termined based on stability conditions. 

When applying the MOC, care has to be taken that a disturbance (e.g. pressure wave) 

cannot propagate farther than !x in a given time increment !t. This condition is met if 

the so-called Courant-Friedrichs-Lewy Number CFL is less than or equal to one: 

tuv + wxy 7,',#8 2#2' + Jz%&{/'z $ zB{/'zL 2#2' | } (19) 

The finite difference scheme for solving the diffusive energy equation describing the 

pipe wall is stable if the following condition is satisfied: 

N]
"]j]

2#
2'0 | .

C (20) 

Comparison between the two stability conditions shows that for typical fluid power sys-

tems, equation (19) imposes stricter conditions on the time step size and spatial dis-

cretization than equation (20). Hence, the stability condition of the fluid domain is used 

for determining the spatial step size !x. 

4. Examples 

The numerical scheme is implemented as a new class of pipe models into the com-

mercial fluid power simulation software DSHplus. The capabilities of the new pipe 

model are demonstrated by comparing simulation results with analytical solutions for a 

simplified case (constant wall temperature) and experimental data. 
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4.1. Axial temperature distribution in a fluid, constant wall temperature 

If we assume the wall temperature, mean flow velocity, inner heat transfer coefficient 

and all fluid parameters to be constant, an analytical solution for the axial temperature 

distribution of the fluid can be given. If the influence of the pressure change on the flu-

id’s enthalpy is neglected, the energy balance for a fluid element (with the cross-

sectional area A) leads to the following ordinary differential equation:  

9~ ,04
,'0 5 %&~(31 ,4,' $ I;�eJ@K 5 @L $ ~%& 212' + - (21) 

To obtain a homogeneous representation of the energy balance, the excess tempera-

ture ' is introduced: 

� + @ 5 @K 5 21
2'

)*;
:`[ (22) 

If we denote the fluid temperature at the starting point of the heated pipe section with 

T(x = 0) = T0 and demand the fluid temperature to attain a constant value for x " (, the 

axial distribution of the excess temperature ' = '(x) is given by the following expres-

sion: 

�J�L + 7@D 5 @K 5 21
2'

)*;
:`[8 P

�
0[��i^��i0�.��

�[�i�*�Xk� + �DP
�
0[��i^��i0�.��

�[�i�*�Xk� (23) 

Figure 2 shows the comparison between the simulated axial temperature distribution 

(Pé = �) and the analytical solution for Péclet numbers ranging from 0.02 < Pé < �, 

represented by the following non-dimensional quantities: 

��J�L + �J'L
�� E �� + � '; `[

)*"jk (24) 

Figure 2: Axial fluid temperature distribution for constant wall temperature.

• Simulation 
- Pé = 0.02 ÷ 0.50 

- Pé = # 
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Apparently, the numerical simulation shows excellent agreement with the analytical 

solution for the case of negligible axial heat conduction. 

4.2. Injection rate measurement 

The shape of the fuel injection rate (mass or volume flow vs. time) has significant ef-

fects on the efficacy and emissions of internal combustion engines /7/. To analyse the 

injection rate of a given injection system experimentally, specialized test benches are 

used. Assuming constant fluid properties, the pressure signal p(t) measured in a pipe-

line following the injector can be transformed into the corresponding volume flow rate 

Q(t), if the pipe impedance is known. However, this assumption is not always satisfied, 

in particular if the fluid properties (and the pipe impedance) change along the pipeline 

due to heat transfer as is the case for an existing test bench /8/. In addition, the dura-

tion of injection is of the order of a millisecond (transient effects), which makes this 

scenario an ideal test case for the developed numerical model.  

The experimental set-up features an injector, for which the volume flow rate distribution 

Q(t) is approximately known, and a sufficiently long pipe, along which significant heat 

transfer (!T/!x ! -12 K/m) occurs. A pressure sensor measures the resulting pressure 

distribution p(t) in the pipe section. For comparison, both diabatic and isothermal condi-

tions are studied. To maintain isothermal conditions, heating devices along the pipeline 

are used to prevent temperature loss. To exclude reflections of pressure waves that 

could alter the pressure signal, a non-reflecting line termination (“RaLa”) is used. The 

measured pressure distributions, along with the corresponding numerical results, are 

presented in the following diagram (Figure 3): 

Figure 3: Pressure distribution for varying thermal boundary conditions /8/.

- Experiment  (isothermal)
• Simulation (isothermal)
- Experiment  (diabatic) 
• Simulation  (diabatic) 
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As can be seen, the heat transfer along the pipe leads to a significant pressure rise due 

to changes in the hydraulic impedance of the pipeline, which underlines the importance 

of thermohydraulic effects. The numerical results for both isothermal and diabatic flow 

conditions show excellent agreement with the respective experimental data. 

5. Discussion 

A numerical model to simulate transient pipe flows with heat transfer was developed 

and successfully implemented into the simulation software DSHplus. Comparison with 

an analytical solution for a simplified case and selected experimental data of transient 

diabatic pipe flow shows excellent agreement with the numerical model. Future devel-

opments will see the implementation of procedures to cover the effects of unsteady 

turbulent pipe friction and unsteady heat transfer coefficients. The developed model 

also allows the analysis of the influence of heat transfer on the hydraulic transmission 

characteristics (characterized by a four-pole matrix) of a pipe section, which will be 

covered in an additional paper. 

!  
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7. Nomenclature 

B! Wave propagation speed m/s 

BD! Speed of sound in the fluid m/s 

~! Cross-sectional area of the pipe m² 

UV! Biot number 1 

31! Specific isobaric heat capacity of the fluid J·kg-1·K-1 

3K! Specific heat capacity of the wall J·kg-1·K-1 
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e! Inner pipe diameter m 

f! Outer pipe diameter m 

9! Heat conductivity of the fluid W·m-1·K-1 

9K! Heat conductivity of the wall W·m-1·K-1 

M%;! Nußelt number, inner wall surface 1 

� Thermodynamic pressure N/m² 

QR! Prandtl number of the fluid 1 

<=h>>! Area-specific power of external heat sources W·m-2 

OP;! Pipe flow Reynolds number 1 

@ Area averaged fluid temperature K 

@K! Wall temperature K 

%& Area averaged fluid velocity m/s 

�! Specific volume m³·kg-1 

I;! Inner heat transfer coefficient W·m-2·K-1 

IH! Outer heat transfer coefficient W·m-2·K-1 

A1! Isobaric thermal expansion coefficient K-1 

�! Relative roughness m 

�! Excess temperature of the fluid K 

�! Darcy friction factor 1 

G! Poisson’s ratio of the pipe material 1 

(! Fluid density kg·m-3 

(K! Density of the pipe material kg·m-3 

!
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Abstract

Friction force oscillations caused by changing properties of the contact zone between 

brake disc and pad are well known from various applications. Resulting effects like 

brake judder are known phenomena in brake technologies and in the scope of various 

scientific work. A new measure to potentially reduce brake torque oscillations is the 

active compensation with the use of the control system of a self-energizing hydraulic 

brake (SEHB). New in comparison to traditional disc brakes is the fact that the brake 

torque is measured by the pressure in an additional supporting cylinder. Thus, the 

brake system is able to work in brake torque control mode. Within this paper a dynamic 

simulation model of the SEHB is shown and evaluated with measurement data 

achieved from a full scale test rig for railway applications. Based on the simulation 

model a pressure control strategy is developed to minimize brake torque oscillations of 

lower frequencies. The control parameters of the simulation are transferred to the 

experimental setup. Finally, simulation and experimental results are compared. Future 

work will deal with the development of control strategies to additionally minimize brake 

torque oscillations of the higher dynamics. 

KEYWORDS: SEHB, Simulation, Brake Torque Oscillations, Control Strategies 
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1. Introduction 

Oscillations of the braking torque are caused both by dynamic changes of the friction 

coefficient between brake pads and disc and by deviations of the contact pressure. 

Main excitation mechanisms are reversible deformation of the brake disc and 

permanent disc thickness variations. In practice, relevant effects are brake squealing 

and judder /1/. Especially sideface runout (SRO) and waviness of the disc are relevant 

problems and can lead to reduced comfort, increased noise and damage /2/. A 

commonly used countermeasure consists of applying smallest tolerances during 

production and mounting process of the disc and fine-tuning of the brake clearance, 

which can lead to higher costs and increased development time. An alternative 

approach is the use of the dynamic properties of the control system of a self-energizing 

hydraulic brake (SEHB). The author´s research group at the Institute for Fluid Power 

Drives and Controls (IFAS) of RWTH Aachen University developed a brake system for 

railway applications which is able to generate the needed power from the brake 

process itself /3/. The system profits from the high power density of hydraulic actuation 

/4/ and the good dynamics of the control system /5/. In this paper the influence of the 

existing brake disc waviness of the SEHB and the development of a simulation model 

of the brake system is shown. Further, a control strategy with predicative intrusion for 

compensating brake torque oscillations will be introduced. 

2. SEHB 

2.1. Operating Principle 

The brake system layout of the investigated SEHB is shown in Figure 2.1. The brake 

system is tailored to railway applications and mainly consists of the brake pads, brake 

calipers, a brake actuator and a control valve. The brake actuator clamps the brake 

hydraulically. In contrast to conventional disc brakes, the SEHB utilises an additional 

supporting cylinder. To explain the operation principle consider a regular braking 

process: to begin braking, the control valve is opened from neutral position. 

Pressurized oil stored in a high-pressure accumulator flows towards the piston end of 

the brake actuator. The stroke of the brake actuator causes the brake pads to be 

pressed onto the brake disc. Hence, a normal force is applied and a friction force 

develops. This force causes the caliper to move in the tangential direction. Due to this 

movement the brake caliper exerts a force on the supporting cylinder. In doing so, 

pressure builds up in the chamber of the supporting cylinder. As the control valve is still 

open, the pressurized oil is continuously fed to the piston end of the brake actuator, 

increasing the clamping force. In this way the self-energization loop is closed. 
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Figure 2.1: Principle of the SEHB 

2.2. Test Rig 

Experiments are conducted using a full scale test rig for railway brake applications in 

the IFAS laboratory. In contrast to conventional brake tests which use electric motors to 

drive the brake shaft the test rig for this study uses a hydraulic drive, which operates in 

a secondary control loop with the rotational speed n as the control variable /6/. Due to 

the high power density higher rotational speeds can be held constant over a large 

range of generated braking torques. Further, specific deceleration rates similar to the 

real loads of the railway vehicle can be achieved. 

2.3. Force Oscillation by Brake Disc Waviness 

The test rig is equipped with an internally ventilated brake disc (dBD = 640 mm) which 

has run several brake cycles, so that the topography of the surface is measured and 

the disc is checked for visible cracks before the experiments are conducted. Figure 2.2 

provides the disc thickness variation (DTV) for both sides along the middle friction 

radius. High brake loads have obviously lead to permanent deformation of the brake 

disc surface. A dominant waviness of 2nd order can be seen clearly for both sides with 

an antisymmetric distribution. The used brake pad halves correspond to International 

Union of railways (UIC) standards and are made from organic material. During a brake 

process pressure oscillations can be observed in both hydraulic cylinders (Figure 2.2 

bottom). Strong time dependent behaviour from the rotational speed allows the 

conclusion of brake disc waviness of 2nd order as the dominant excitation, which 

corresponds to the literature /2/. 
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Figure 2.2: Brake disc DTV and pressure oscillations 

3. Simulation Model 

To develop and test control strategies for compensation of brake torque oscillations a 

simulation model of the SEHB is implemented into the one-dimensional simulation tool 

DSHplus. First the actuation force which reacts in normal direction between brake pads 

and brake disc is implemented. Second the brake force and pressure into the 

supporting cylinder are calculated with respect to the frictional coefficient and the brake 

disc waviness. The pressure feedback from the supporting cylinder to the valve 

(Figure 2.1) which closes the circuit of self-energization is not considered in this stage 

of simulation. 

3.1. Actuation Force 

Figure 3.1 shows the hydraulic-mechanical actuation system of the SEHB. The 

hydraulic part consists of the control valve, hydraulic lining, and the brake actuator. The 

direct driven control valve is designed for a 4/3-way operation with zero-overlap and 

small nominal volume flow. It operates in position control mode and shows a 

eigenfrequency fV = 225 Hz and damping factor DV = 0,6. The eigenfrequency fBA of the 

brake actuator can be determined by (1) /4/. 

!"# $ %
&'(

)*+,-.)*+,/.)01,/-
2/-,3 $ 4454678 (1) 

The influence of the mechanical part of the actuation system is difficult to analyse due 

to its complexity. Figure 3.1 illustrates its reduction to a spring and mass system. The 

most important parts are the calipers, bearings, pad holder (PH), and brake pads (BP). 
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Figure 3.1: Hydraulic-mechanical structure of the actuation system (top view) 

Caliper and bearing stiffness are determined experimentally by measuring relative 

positions of involved components under various loads. The reduced masses m1,r/l and 

m2,r/l which interact via the caliper stiffness can be determined with both the condition of 

conservation of mass (2) and position of centre of mass (3) /7/. 

9:;< $ 9% =9& (2) 

>%9% $ >&9& (3) 

Hence, the reduced masses are calculated by (4) and (5). 

9% $ 9:;< ?3
?@.?3 (4) 

9& $ 9:;< ?@
?@.?3 (5) 

The stiffness of the brake pads is calculated by (6) regarding the nominal friction area 

ABP, the nominal bulk modulus EBPn, and the thickness bBP of the pads. 

A"B $ C/DE/D
F/D  (6) 

Figure 3.2 left presents the amplitude response of the mechanical part of the actuation 

system. The main peak can be observed at a frequency of 570 Hz. A smaller peak 

occurs at 200 Hz. Consider that damping factors are set very low in the simulation 

because experimental data were not available. Subsequently, excitation frequencies 

due to the rotational speed and DTV reach 25 Hz at 1500 rpm. Results from simulation 

and measurement of an actuation process are illustrated in figure 3.2 right and show 

good agreement. The measured force is determined by a load sensor between the 
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brake pads instead of the brake disc. The stiffness of the brake disc was replaced 

considering the stiffness of the load sensor. During start up high forces are caused by 

the spring force of the brake actuator, which leads to a minimal demanded normal force 

in case of hydraulic failure. 

 

Figure 3.2: Amplitude response of the mechanical part of the actuation system (left), 

simulated and measured actuation process (right) 

3.2. Brake Force and Supporting Cylinder Pressure 

During the brake process an additional force FBD caused by the brake disc waviness 

occurs next to the force FN by the actuation system and effects the total force FN,tot 

between brake pad and disc (7). FBD can be calculated by the measured DTV and the 

brake disc stiffness and leads to a deviation of the supporting cylinder force FSC (8) 

depending on the rotation angle of the brake disc. 

GH,IJI,<KL $ GH,<KL = G"M,<KL $ GH,<KL = A"MN"M,<KL (7) 

GO: $ PQO:RGH,IJI,< = GH,IJI,LS (8) 

Figure 3.3 left depicts the map-based implementation of the DTV and the 

determination of the brake and supporting cylinder force. Due to the high stiffness of 

the mechanical structure compared with the stiffness of the oil volume in the supporting 

cylinder, the detailed implementation of a further spring and mass system is neglected. 

The supporting cylinder pressure is calculated by (9), where FSP,SC considers the force 

of the spring which retracts the brake to its initial position after the brake process and 

Ffr,SC the friction forces. 

TO: $ U0VWU01,0VWUXY,0V
E0V  (9) 

When measuring the supporting cylinder pressure over increasing actuation force an 

increase of the friction coefficient can be observed which leads to higher pressure 

oscillations (Figure 3.3, top right). This behaviour is typical for brake pads made from 

organic materials and depends on the area of real contact, load, and time /8/. 
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Figure 3.3: Brake force / DTV implementation (left); pressure oscillations at rising 

friction coefficient (right top); declining behaviour at load jump (right bottom) 

When increasing the load the area of real contact between brake pad and disc will be 

smaller than the steady-state size until it reaches its maximum. Further, a reduction in 

the friction coefficient can be observed after a fast rise of the force and reaching a 

constant load (Figure 3.3, right bottom). Here, slower processes like cleaning contact 

plateaus from binder material during the brake process lead to a diminished area of 

real contact and thus to a lower friction coefficient. A detailed model of the friction 

coefficient which includes the dependence of the area of real contact, participating 

elements of the material compound, exact thermo-mechanical loads, and time-

depending behaviour is outside the scope of this work. To obtain a simulation tool for 

developing control strategies for brake force oscillations of small amplitude compared 

to absolute values the friction coefficient is set to a constant value. Deviations of 

experimental results are corrected afterwards with the constantly measured friction 

coefficient to check the simulation results. 

Figure 3.4 left depicts the simulated and measured pressure increase at maximum 

brake force and back. Pressure levels and gradients show good agreement between 

simulation and experiment. Only at the end of ramps the simulation results are higher 

due to the reduction in the friction coefficient. Pressure oscillations of the supporting 

cylinder, reduced by the mean value, at a constant friction coefficient ! ! 0,43 are 

illustrated in Figure 3.4 right. 
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Figure 3.4: Jump of the supporting cylinder pressure (left); pressure oscillations (right) 

4. Control Strategies to Compensate Brake Torque Oscillations 

The simulation model is enlarged to a closed loop control system to develop a 

controller design to compensate the brake torque oscillations. Subsequently, the 

obtained control parameters are transferred to the test rig. 

4.1. Brake Torque Control with P-Controller 

A simple method to implement a brake torque control with the SEHB is the use of a 

controller with proportional behaviour. Figure 4.1 left illustrates the principle. The 

desired brake torque is compared with the current value calculated from the measured 

supporting cylinder pressure. When the control deviation is multiplied by the factor KP 

and the output sent to the control valve, the control loop is closed. As described the 

disturbance variable of the brake disc waviness influences pSC immediately. Varying KP 

over a broad range leads to only small changes of pressure oscillations in simulation 

(Figure 4.1 right). When KP is further increased instability occurs. Data from 

measurements confirm the simulation results while instability is already reached at 

KP = 0,01. 

 

Figure 4.1: Proportional brake torque control (left); simulation results with varying KP

4.2. Brake Torque Control with Predicative Disturbance Decoupling 

Due to the limited effect of only instantaneous control strategy with proportional 

behavior a predicative disturbance decoupling on the control signal is developed 
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(Figure 4.2). The control signal u is calculated from the signal uP of the P-controller 

which is set to a value which shows good dynamics and stability of the system and an 

additional signal uPSB. The predicative signal builder (PSB) makes use of the time-

depending behaviour of the pressure oscillations generating a sinusoidal signal 

anticyclical to the brake torque oscillations. This leads to increasing actuation force 

during brake force decrease. 

 

Figure 4.2: Brake torque control including predicative intrusion signal

The additional signal uPSB,i+1 is found by (10) under assumption of a constant 

deceleration of the brake. 

ZBO",[.% $ \] ^_`RabRcd = 4,efc[ g c[W%hS = iS (10) 

By measuring the time between every revolution of the pressure the time difference 

can be determined and the revolution time of the next pressure oscillation can be 

foreseen. The gain factor is fixed by the amplitude Â while the phase shift " considers 

the delay time between valve stroke and increase of the load pressure. Figure 4.3 

illustrates simulated and measured results of pressure oscillations at brake torque 

MBr = 1 kNm, constant rotational speed n = 120 rpm and a friction coefficient ! ! 0,5. 

 

Figure 4.3: Pressure oscillations with predicative disturbance decoupling

When enabling the predicative signal uPSB, the load pressure deviation pLn changes 

from cyclical to anticyclical oscillation with increasing amplitude compared to the 
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supporting cylinder pressure pSCn. Thus, the amplitudes of the supporting cylinder 

pressure are reduced by about 40% after a short settling time. A further reduction could 

be reached by increasing the fixed amplitude Â of uPSB, but must be considered, that a 

minimum oscillation of the supporting cylinder pressure has to be obtained to detect the 

impact of the brake disc waviness. Figure 4.4 shows the amplitude reduction of the 

supporting cylinder pressure during a brake process with constant deceleration. 

 

Figure 4.4: Effect of predicative disturbance decoupling at decreasing rotational speed 

Again, pressure amplitudes are reduced by enabling the additional disturbance 

decoupling. When decreasing the rotational speed, the anticyclical oscillation of the 

load pressure fits the pressure oscillations of the supporting cylinder. A further 

amplitude reduction at lower speed can be observed and indicates that the fixed 

amplitude Â of the predicative intrusion signal uPSB could be optimized depending on 

the point of operation. 

5. Conclusion and Outlook 

In accordance to commonly used brake discs, the brake disc in the IFAS test rig shows 

a permanent thickness variation of 2nd order which leads to an excitement of the brake 

torque during the brake process. By developing a simulation model of the SEHB in the 

software DSHplus an effective tool was created to develop and test control strategies 

for compensating observed brake torque oscillations. The implementation of the 

actuation system shows good agreement between simulation and experimental results. 

Furthermore, a critical influence of the exciting mechanism of the brake disc waviness 

could be excluded by investigating the dynamic properties of the complex hydraulic-

mechanical actuation structure. When implementing the brake force and the pressure 

in the supporting cylinder the influence of the brake disc waviness was considered. A 

dependence of the friction coefficient on brake load and time was observed. However, 

measured influences were neglected due to steady-state operating points and a lack of 

an appropriate model. After validating the simulation model with experimental results a 
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simple proportional control was tested which shows no recognizable compensation of 

the brake torque oscillations. By using an additional predicative disturbance decoupling 

the actuation force could be modified to achieve a reduction of 40 to 50% depending on 

gain and rotational speed. Future work will be the extension of the additional 

predicative signal builder by adapting the gain factor to varying operating points. The 

influence of closing the circuit of self-energization will be investigated by simulation and 

experiments. Finally, the achieved control system will be tested at operating points with 

higher frequency excitations and resulting brake torque oscillations. 
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8. Nomenclature 

\ Area mm² 

\] Signal amplitude V 

jkl Thickness of brake pad mm 

A, AUm Spring constant, stiffness of fluid N/m 

n Damping - 

o Bulk modulus N/m² 

Qpq Transmission ratio to supporting cylinder - 

! Frequency Hz 

G Force N 

9 Mass kg 

rk? Brake torque Nm 

s Rotational speed rpm 

T Pressure bar 

> Lever arm mm 

c, t Time s 

Z Control signal V 

N Position mm 

u Area ratio - 

i Phase shift, rotation angle rad 

P Friction coefficient - 

!
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Abstract 

The implementation of an energy recovery system for retreiving otherways wasted 

energy is an effective method for reducing the overall energy consumption of a mobile 

machine. In a fork lift, there are two subsystems that can be effectively modified for 

recovering energy. These are the driveline and the lift/lower function of the mast. This 

study focuses on the latter by studying a recovery system whose main component is a 

hydraulic transformer consisting of a hydraulic motor, a variable displacement pump and 

an induction motor. Since the flow rate/pressure - ratio can be modified, the utilization of 

the hydraulic transformer enables downsizing of the accumulator volume. However, the 

decrease of the gas volume leads to an increase in the compression ratio of the 

accumulator, which in terms leads to higher gas temperatures after charging and 

consequently to higher thermal losses during holding phase. In order to reduce these 

losses, a thermally regenerative unit was implemented to the gas volume of an 

accumulator to reduce the temperature build up during charging. In this study, the effect 

of improving the thermal characteristics of the accumulator to the efficiency of the whole 

energy recovery system is investigated by means of measurements. 

KEYWORDS: Reach truck, energy recovery, thermally regenerative hydraulic 

accumulator 
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1. Introduction 

There are multiple technologies available for on to which a recovery system can be 

based on. Majority of the commercially available recovery systems are electric recovery 

systems found in hybrid and electric vehicles. Other commercially available recovery 

system types are rarer, however some examples can be found, such as Bosch hydraulic 

regenerative braking system for trucks /1/.  

In previous studies related to this project a hydraulic recovery system has been proven 

to be an effective solution for harvesting the potential energy of the load while in lowering 

motion /2/. However, in these tests the used accumulator volume was relatively high 

resulting in low compression ratios in the accumulators when recovering the potential 

energy of the load. The low compression ratio in terms retains temperature increase in 

compression phase and thus reduces heat flux exiting the accumulator during 

subsequant holding phase. When downscaling the accumulator volume, the thermal 

efficiency of the accumulator becomes a more influencial factor in the overall efficiency 

of the recovery system.  

The most widely used hydraulic accumulator type is the pressure accumulator with pre-

charged nitrogen in the gas volume. Pressure accumulators can be divided into sub-

categories, labelled by the element dividing the gas and liquid portions. These are  

piston-, diaphragm-, bladder- and bellow accumulators. These sub-types differ from each 

other by the maximum allowable compression ratio and by the response speed to 

changes in the liquid side pressure. The diaphragm- and bellow-type accumulators have 

the best response speeds and are therefore best suited for pulsation damping 

applications. The piston-type accumulator has a lower response speed but allows higher 

compression ratios which makes it more size effective for energy recovering purposes. 

In addition, the piston type construction allows the modifications for implementation of a 

linear position sensor to measure the piston position. 

In majority of work cycles, thermal losses are the main contributor to the efficiency of 

pressure accumulators. The compression of the gas, usually nitrogen, leads to an 

increase in its temperature during charging, assuming non-isothermal process. When 

holding the charge, this leads to heat flux to the colder surrounding environment. The 

reduced gas temperature leads to a lower gas pressure, and thus to a reduction in the 

quantity of reusable energy. The thermal energy transfer occurs mainly through the shell 

of the accumulator to the surrounding atmosphere, but also to a lesser extent through 

the dividing element to the hydraulic fluid.  
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When excluding the changing of the gas type and external heat exchange the thermal 

efficiency of a pressure accumulator can be increased by improving the thermal isolation 

of the gas volume or by adding thermal inertia to the gas volume. The latter strategy, 

referred in this study as thermal regeneration, reduces the temperature buildup and 

therefore also the thermal flux exiting the device. Therefore, the gas pressure remains 

higher for expansion, i.e. energy reuse, phase and thus the devise’s output energy is 

higher. In literature there are examples of utilization of both these strategies. For 

example, a study on automotive catalysator as the regenerative unit /3/ or the usage of 

lathing shavings for the same purpose /4/.   

2. Measurement setup 

This chapter describes the reach truck test setup, the used hydro-pneumatic accumulator 

and the measurements. 

2.1. Reach truck test platform 

The studied reach truck test platform is an indoor forklift that uses a 48 volt lead acid 

battery bank as its energy source. The hydraulically operated functions, including the 

lift/lower function studied here, are powered by a 14 kW induction motor. The lifting 

motion uses a telescoping mast structure with three cylinders, one in the lower lift zone 

i.e. free lift zone and two in the upper lift zone. However, due to the limited oil chamber 

volume in the accumulator, all the tests in this study are carried out in the free lift zone.  

The main component of the system, illustrated in Figure 1, is a hydraulic transformer 

consisting of two interconnected pump/motor units for changing the ratio between the 

volume flow and the pressure entering and exiting the transformer. The four normally 

closed 2/2-valves in the circuit are used for diverting the volume flow between the mast 

cylinder, the transformer and the hydraulic accumulator.  
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Figure 1: Hydraulic circuit 

The two hydraulic machines in the transformer are connected with an overrun clutch. 

This enables the pump to operate without rotating the hydraulic motor when the 

accumulator is depleted. The system has an auxiliary pump for supplying the pressure 

control valve that controls the main pumps displacement. In addition, it is used to provide 

a small pressure to the pump of the transformer’s pump to prevent cavitation. 

The controlling of the system is realized with Simulink Real-Time software which is also 

used for data acquisition. The lowering velocity is controlled by creating torque 

equilibrium between the two hydraulic machines of the transformer. This is done by 

setting the pump displacement to a state in which the torque created by the pump against 

the pressure of accumulator is equal to the torque of the constant displacement motor 

created by the load induced pressure, equation 1. 
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The machine efficiencies are ignored from the equation. The main component of the 

swash plate angle controller is a PI-controller. However, in order to achieve adequate 

response time and stability the controller was supplemented with a feed-forward coupled 

initial value calculator for adjusting the controller’s command value close to the correct 
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command value via utilizing equation 1 to solve ε. The controller subsystem also contains 

sub-blocks for additional functions, such as safety logics.  

2.2. The hydraulic thermally regenerative accumulator 

The hydraulic accumulator used in this study is a custom designed piston type pressure 

accumulator with a gas volume of 9.6 liters. The accumulator is designed to facilitate the 

insertion of the thermal regeneration unit to the accumulator without limiting the limits of 

the piston motion. The oil chamber volume of the device is 3 liters. The accumulator is 

illustrated in Figure 2.  

 

Figure 2: The accumulator 

The regeneration unit used in this study is a structure created of steel meshes with a 

total weight of 5 kg. With the regenerator installed the maximum gas volume is reduced 

to 9 liters. The accumulator was instrumented with a linear position sensor for measuring 

the piston position, two pressure sensors for measuring both the gas and oil side 

volumes and a thermocouple installed to the gas volume. 

2.3. Measurements 

The test platform was instrumented with a range of transducers and sensors for 

measuring pressures, position, torque, temperatures as well as rotational velocity of the 

electric motor and the vertical fork position. The energy consumption of the machine is 

derived from the measured current drawn from the main energy source and of its voltage. 
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For this, the positive output lead of the battery was instrumented with a LEM DH500-

420L B current transducer. The voltage of the battery was scaled down with a voltage 

divider to downscale the signal level to one acceptable by the measurement hardware. 

The electric energy consumption drawn from the battery pack is defined by integrating 

the momentary electric power output, equation 2. 
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Since the measurements are conducted using a finite sampling frequency the calculation 

of the energy consumption is discretized to equation 3, where Δt denotes the sample 

time of 1 ms that was used in the measurements.  

tIUtPE D××=D×= åå elecelec  (3) 

The accumulator efficiency is defined by using the pV-diagram of the charge/discharge 

cycle of the accumulator, as given in equation 4.  
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Every measurement point in these sets consists of a cycle which includes consecutive 

lift, lower and lift-operations. The first lift is done without assistance from the 

accumulators, i.e. with an empty accumulator, and the latter assisted by energy 

recovered during the lowering. The energy consumption reduction ratio is defined with 

equation 5. 

,
unassisted

assistedunassisted

E

EE -
=G  (5) 

The accumulator charge is held for a variable duration between the lowering motion and 

the second lift motion. The tests were conducted using two different payloads and for 

each, with four different holding times. Furthermore, the tests were carried out with and 

without the regenerative unit in the accumulator. The selected loads were 1000 kg and 

1500 kg and the lifting and lowering velocity was set to 0.3 m/s and lift height to 2.5 m. 
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The used holding times were 0, 30, 60 and 120 seconds. The test parameters are 

presented in Table 1. 

Payload [kg] 

1000 1500 

Without 

regenerator 

With 

regenerator 

Without 

regenerator 

With 

regenerator 

th = 0 s th = 0 s th = 0 s th = 0 s 

th = 30 s th = 30 s th = 30 s th = 30 s 

th = 60 s th = 60 s th = 60 s th = 60 s 

th = 120 s th = 120 s th = 120 s th = 120 s 

Table 1: Measurement parameters, v = 0.3 m/s, h = 2.5 m 

Due to delays in the human-machine interface the target of 0 second holding times were 

not met and the realized holding times for these sets were measured of being on average 

3 seconds. 

3. Results 

The calculated accumulator thermal efficiencies in the 16 measurements are presented 

in Table 2. As predicted, the accumulator efficiencies with the regeneration unit installed 

to the accumulator were higher than the ones without the regenerator in all measurement 

points.  

 Accumulator efficiencies  

 Payload [kg] 

 1000 1500 

Holding time [s] Without 

regenerator 

With 

regenerator 

Without 

regenerator 

With 

regenerator 

th = 0 s 97 % 98 % 91 % 97 % 

th = 30 s 92 % 96 % 86 % 96 % 

th = 60 s 89 % 95 % 85 % 96 % 

th = 120 s 89 % 95 % 83 % 96 % 

Table 2: Accumulator thermal efficiencies 

With higher payload the compression ratio of the accumulator also becomes higher, and 

thus the effect of the regenerator is more significant. The pressure-volume graphs for 

the 1500 kg payload with the shortest and longest holding times are shown in Figure 3, 

both with and without the regeneration unit. The area between the charging and 

discharging cycles depicts thermal losses. The scales on the volume axis are not uniform 

due to the reduced gas volume with the regenerator installed. 
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Figure 3: pV-graphs of accumulator: payload 1500 kg. Upper row: without regenerator. 

Lower row: with regenerator. Holding times: left 0 s, right 120 s 

The effect of the thermal characteristics to the accumulator’s gas pressure, with and 

without the regenerator, is depicted in Figure 4. They are taken from the measurements 

where the difference is at largest, i.e. with the 1500 kg payload and the holding time of 

120 seconds. 
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Figure 4: Accumulator gas pressure; payload 1500 kg, holding time 120 s 

The measured energy consumption reduction ratios of the reach truck are presented in 

Table 3. Without the regenerator they decrease with the increase of holding time. With 

the regenerator, they remain relatively constant throughout the used holding times with 

the exception of the measurement with 1500 kg payload and 120 s holding time.  

 Energy consumption reduction ratios 

 Payload [kg] 

 1000 1500 

Holding time [s] Without 

regenerator 

With 

regenerator 

Without 

regenerator 

With 

regenerator 

th = 0 s 24 % 23 % 31 % 32 % 

th = 30 s 22 % 23 % 27 % 31 % 

th = 60 s 19 % 23 % 27 % 31 % 

th = 120 s 18 % 24 % 26 % 29 % 

Table 3: Energy consumption reduction ratios 

The measured electric energy consumption of the reach truck for the measurement with 

a payload of 1500 kg and a 0 second holding time with the regenerator installed is 

presented in Figure 5. 
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Figure 5: Measured energy consumption of the reach truck: payload 1500 kg, holding 

time ~0 s 

4. Discussion 

With higher loads, the energy stored in the accumulator also becomes higher which in 

terms leads to higher thermal losses in the holding phase and thus emphasizes the effect 

of the thermal regeneration unit. Therefore, the relatively high loads of 1000 and 1500 kg 

were selected for the measurements in this study.  

The measurements indicated that the accumulator thermal efficiencies ranged from 97 

to 89 % with a 1000 kg payload and from 91 to 83 % with a 1500 kg payload when 

operating without the thermal regeneration unit. With the regenerator the corresponding 

efficiency ranges were from 98 to 95 % and from 97 to 96 % with payloads of 1000 and 

1500 kg respectively. The accumulator’s thermal efficiency with the regenerator was 

measured of being higher in all of the measurements than its efficiency without the 

regenerator in corresponding measurement. Especially, when using longer holding times 

the efficiency with the regenerator was much higher. The largest uncertainties in these 

values are in the measurements with the 0 second holding times. As described in chapter 

2.3., the actual values of these holding times can be as long as 4 seconds due to the 

command interface. In the measurements without the regenerator these few second can 

create a large effect due to the rapid initial fall of the pressure, as presented in Figure 4. 

For example, if the holding time would be precisely zero, the 91 % efficiency gained with 
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the 1500 kg payload and without the regenerator should be roughly equal the 98 % 

efficiency measured with the regenerator. 

Without the regenerator the energy consumption reduction ratios declined with 

increasing holding times from 24 to 18 % and from 31 to 26 % with the payloads of 1000 

and 1500 kg respectively. With the regenerator, these ratios remained relatively constant 

near 23 % and 31 % when using the payloads of 1000 and 1500 kg respectively, with 

the exception of the 29 % reduction for the measurement with a holding time of 120 s 

and a payload of 1500 kg. This result was verified with multiple repetitions, however the 

cause of the anomaly was not found within the time restraints of this study and therefore 

requires further examination.   

The auxiliary pump in the system was installed to produce the pressure required by the 

valve controlling the pump’s swash plate angle. In addition, it was used for producing a 

slight pressure to the pump inlet port. The hydraulic assistance power was measured of 

being roughly 60 W which is two orders of magnitude smaller than the lifting powers. 

Furthermore, in an actual production device the arrangement should be replaced by a 

pressurized tank. For these reasons, the power consumption of the auxiliary circuit was 

excluded from the results. 

5. Conclusions  

The regenerator was found to be a very effective method for improving the thermal 

efficiency of the used piston typed hydraulic accumulator. The efficiency remained at or 

above 95 % in all of the measurements, while without the regenerator it was at lowest 

83 %. The usage of the regenerator also prevented the energy consumption reduction 

ratios to decline in a noteworthy manner with increasing holding time, with the one 

previously discussed exception. However, even in this measurement point the reduction 

ratio was well above the one measured without the regenerator. 

With higher compression ratios the effect of the regenerator would have been greater, 

however the accumulator’s maximum oil volume of three liters limited the usage of higher 

compression ratios. 
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7. Nomenclature 

 Energy – electric form J 

 Energy – with hydraulic assistance J 

 Energy – without hydraulic assistance J 

I Current A 

poil Accumulator oil pressure Pa 

pcyl Cylinder pressure Pa 

pgas Accumulator gas pressure Pa 

P Power W 

th Holding time s 

∆t Sample time ms 

U Voltage V 

ε Setting of displacement (0…1) - 

Γ Consumption reduction ratio - 

ηaccu Accumulator thermal efficiency - 
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Abstract 

Suspension systems are used to diminish the vibration of vehicles. The hydraulic 

dampers in conventional suspension systems are mainly designed with the orifices of 

the piston; however, the vibration energy will be transferred into waste heat. In recent 

years, conventional vehicles with internal combustion engines and hybrid vehicles are 

used commonly. However, with the gradual depletion of fossil fuels, electric vehicles are 

developing. For this reason, the research focuses on recycling energy from the 

suspension of vehicles to improve the vehicle’s endurance. The purpose of this study is 

to develop a semi-active suspension control system with an energy harvesting system. 

Instead of the fixed orifices in conventional vehicles, an adjusting damping force method 

with variable resistance circuits system is studied for the semi-active suspension control 

system. Thus, we are able to develop semi-active control to improve the riding comfort. 

The energy harvesting system contains a hydraulic gear motor and a DC generator. 

When vehicles vibrate, the hydraulic damper serves as a hydraulic pump to compress 

the oil and drive the hydraulic motor. At the same time, the hydraulic motor drives the 

generator to generate electricity which will be stored in a battery. In this study, the test 

rig is the quarter-car system. We first design the novel hydraulic suspension system 

combining with the energy harvesting system. The simulation of dynamic mathematical 

model will be performed and analyzed by MATLAB/Simulink. Besides that, the semi-

active control by the fuzzy sliding mode controller will be realized in the hydraulic 

suspension system with energy harvesting system. Finally, a test rig is set up for practical 

experimental implementation and verification.  

1. Introduction 

In recent years, environmental pollution and the depletion of oil have become key global 

issues as a result of global warming caused by rapid technological advancements and 

economic growth. In order to address these issues, most countries have committed 

Group L - Mobile Hydraulics | Paper L-3 559



themselves to the research on renewable energy, such as solar energy, wind energy, 

wave power, geothermal energy, and tidal power, and also on other technologies 

designed to improve energy efficiency. 

Especially, the main culprits behind global warming are vehicles which emit greenhouse 

gases but undeniably, play an indispensable role in our daily life. With the growing 

emphasis on the green concept and steep petroleum prices, the Hybrid Electric Vehicle 

(HEV) was invented to tackle these issues. However, these HEVs still consume oil 

therefore, the Battery Electrical Vehicle (BEV) which is fully battery-powered, is 

developing. While the BEV seems to offer the solution to our problems, it is not feasible 

yet, given the existing problems such as battery technology, low energy density, and low 

penetration. 

For this reason, this research will focused on the recycling energy for electric vehicles. 

A key aspect of research in vehicles has always been to increase the vehicle’s 

endurance, and the regenerative braking system is commonly used in the recent years. 

In order to improve the vehicle’s endurance, the kinetic energy produced upon breaking 

is recycled to enhance the battery’s endurance. 

The vibrations felt by passengers when the vehicle is driven over an uneven road surface 

are also a kind of energy. These vibrations caused by road irregularities occur mainly in 

the vertical direction and the shock absorber, an energy dissipating device, is used in 

parallel with the suspension spring to reduce these vibrations. However, if we can 

transmit this vibration energy to the generator, it can be converted to electrical energy 

which can then be stored in the battery. Hence, an innovative energy recovery system 

have developed to further improve the vehicle’s shock absorber with the hydraulic 

system. The vibration energy of moving vehicles can be recycled to increase the 

endurance of the electric vehicles. In addition, the passenger’s comfort has also been 

taken into consideration, thus the semi-active control is also investigated. 

The development of suspensions for vehicles has received increasing attention in recent 

years both theoretically and experimentally. Suspensions may be classified into three 

distinct configurations, such as passive, semi-active and active. 

A passive suspension system is has un-adjustable characteristics of the components. 

The damping coefficient is decided by the number of orifice on the piston. It has simple 

structures, but the damping coefficient is not adjustable for considering riding comfort 

and handling stability at the same time. In 1981, Segel and Lang /1/ used the relationship 

between force and piston speed to test the performance of vehicles; in 1983, Vliet and 
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Sankar /2/ applied the force-displacement (F-D) diagrams to analyze the damping force 

of the motorcycle shock absorber. 

Active suspensions are capable of both supplying and dissipating power through an 

active actuator, unlike a passive damper, which can only dissipate energy. With an active 

suspension, the damper works as an active actuator that can generate force and 

displacement in the suspension. Through suitable control strategy, better compromise 

between riding comfort and vehicle stability can be achieved. In 1990, Satoh et al. /3/ 

analyzed the hydraulic system functions required in an active suspension built with an 

electro-hydraulic pressure control system. However, active suspensions are costly as 

they need external power and have complicated structures. 

Semi-active suspensions can only dissipate power by means of a controllable damper, 

and is operated by a set of sensors. Semi-active control is an increasingly important 

method of control, which is used in a wide range of structural control applications. For 

example, in 2000, Kitching /4/ used a simple proportional valve to generate the variable 

damping coefficient and the detrimental effects of the oil flow forces acting on the valve 

spool in conventional suspensions. In 2002, Yao et al. /5/ proposed a semi-active control 

of vehicle suspension system with a magneto-rheological (MR) damper and tested the 

performance of the damper. In 2010, Collette and Preumont /6/ analyzed the effect of 

unintended high frequency excitations generated by the semi-active skyhook control 

algorithm on the isolation properties of a car suspension. 

Energy harvesting has become an important subject for the past decades. One of the 

solutions is to recover energy. The research on energy recovery from vehicle 

suspensions began more than ten years ago. In 1992, Fodor and Redfield /7/ showed 

that the energy regenerative damper could be realized by the use of their proposed 

variable linear transmission (V.L.T.). They examined the characteristics of V.L.T. in detail 

by numerical simulations, but experimental approach was not achieved. In 2003, Nakano 

et al. /8/ also investigated the self-power vibration control using a single motor, in which 

a variable resistor, a charging capacitor and relay switches were used to control the 

motor force to achieve the desired skyhook damping force. To further magnify the motion 

and increase efficiency, in 2007, Zhang Y et al. /9/ used absorbers composed of ball 

screw and rotational electric motors to recycle energy. In 2009, Avadhany /10/ inputted 

oil to a hydraulic motor on one direction by means of oil circuit arrangement. This concept 

has been applied by the Levant Power Corporation to design a new absorber which was 

used in the HMMWV of American military. 
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2. Test rig layout  

The quarter-car system is used to simulate the actual characteristics of a driving vehicle. 

The car body will vibrate according to the different heights of the road. In conventional 

suspension systems, the damper coefficient is decided by the orifices of the piston.  

In the variable resistance system, the variable electric resistance circuits are installed to 

regulate the generator. Thus, the counter-electromotive force (counter-EMF) will 

increase to slow down the DC generator with coupled with hydraulic motor. At the same 

time, the speed of flow through hydraulic motor will drop. Hence, the damping effect of 

the damper will be enhanced at once. The electric energy generated from the generator 

can be stored in a battery.  

Based on the proposed concept, an integrated test rig is established in Fig.1, which can 

be divided into three parts, such as the hydraulic vibration exciting system, the hydraulic 

damper system, and the energy harvesting system. The hydraulic vibration exciting 

system is used to provide the shock absorber with external disturbance according to the 

conditions of road. It consists of a hydraulic cylinder, a servo valve, a hydraulic power 

source, DAQ cards, and a PC-based controller. 
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Figure 1: Layout of quarter-car system with variable resistance control 

The third part is the energy harvesting system. A hydraulic motor is installed in the 

hydraulic circuit to drive the DC generator; the electricity will be recycled and stored in 

the low-voltage battery. The feedback signals of the motor speed and generator current 

will be respectively detected by proximity switch and current sensor. The variable 

resistance circuit is consisted of 8 cement resistors and a 16-ch relay board. By binary 

logic, the resistance value could be continuous. The range of the resistances is between 

0 ~ 255 ohm. As long as the hydraulic motor rotates in one direction, the generating 
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current is the direct current. As the piston moves upward, the oil will drive the motor. 

However, when the piston moves downward, the oil will flow into the damper directly.  

The main goal of the research is to simulate the real condition of the vehicle, instead of 

the skyhook damper system (one degree of freedom); therefore, the quarter-car system 

(two degrees of freedom) is used. The wheel mass is considered in the concept. A typical 

schematic of semi-active suspension system represents two-DOF model of vibration 

system that is the quarter part of a vehicle. The hydraulic damper and suspension spring 

k2 are mounted between the sprung mass and the wheel mass. The suspension spring 

is considered a linear spring. The tire is lumped to be a linear spring element k1. 

3. Controller design 

3.1 Intelligent controller  

In the conventional fuzzy control system, the rules are composed by using the error e 

and the rate of error e& , but we have compressed these two types of information into one, 

noted by a variables . That is to say, we are only using one variable as opposed to using 

two variables, the error and the rate of error, used in the antecedents of the fuzzy rules 

in the past researches. The rationale for doing so is to reduce the dimension of the input 

space and the number of fuzzy rules. The fuzzy rules of the proposed fuzzy controller 

are generated by using the proposed fuzzy sliding surface. 

The fuzzy sliding surface comprises of two parts: sliding surface estimator and fuzzy 

controller. (i) Sliding surface estimator: Transforming the feedback signals to error e and 

the rate of error e& , we take e and e& to sliding surface function , 

                (1) 

that we had earlier designed. (ii) Fuzzy controller: This is a basic fuzzy logic controller 

that uses the sliding surface  to replace the conventional fuzzy control parameter, the 

error e and the rate of error e& . Moreover, the control target is not 0e® and 0e® 0e®  

anymore but rather 0e es a= × + ®0+ ®e e . Thus, output states will slide on the sliding 

surface and finally approach the default target. 

In general, the judgment inputs are replaced from 0=e and 0=e&  to 0e es a= × + = 0e e+ =e e in 

the fuzzy sliding rules base. Therefore, the difficulties of designing traditional fuzzy 

control rules have decreased significantly. If we let the system states maintain on sliding 

surface 0e es a= × + = 0e e+ =e e , the system final output will converge to target value.  

s

e es a= × +e e

s
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After choosing a suitable fuzzy controller, we have to design the sliding surface to be 

applied in different control systems. There are 49 rules in 77´ rule base of 

conventional fuzzy controller. F  is the boundary of convergence area on fuzzy sliding 

surface . Fine-tuning of F  value is dependent on FSMC control input and 

the operation of actual systems. 

Fuzzy sliding surface controller design does not require a mathematical model of the 

system; thus, it can be used for experimental estimation to tune the most appropriate 

value. These parameters will affect the dynamic response and performance of the 

system, so we must make adjustments depending on the actual situation. 

4. Skyhook control strategy for quarter-car system 

The skyhook control strategy is necessary to use in quarter-car system since it is a two-

DOF model. The damping effect and ride comfort are both concerned. However, it is not 

the most efficient when the damping value reaches the maximum value. The skyhook 

control, introduced by Karnopp in 1995, provides an effective solution in terms of the 

simplicity of the control algorithm. In this way a fictitious damper is inserted between the 

sprung mass and the stationary sky as a way of suppressing the vibratory motion of the 

sprung mass and as a tool to compute the desired damping force. 

This control strategy can be described as follows:  

If 2 2 1( ) 0x x x- ³2 2 1( ) 02 2 12 2 1x x2 2 1( )( )2 2 12 2 12 2 1( )( )2 2 1( )( )( )2 2 12 2 1  , then the bigger damping is required. 

If 2 2 1( ) 0x x x- <2 2 1( ) 02 2 12 2 1x x2 2 1( )( )2 2 12 2 12 2 1( )2 2 1( )( )( )2 2 12 2 1  , then the minimum damping is required. 

This strategy indicates that if the relative velocity of the sprung mass with respect to the 

wheel mass is in the same direction as that of the sprung mass velocity; then a bigger 

damping force should be applied to reduce the sprung mass acceleration. The damping 

force is depending on the error e  and the rate of error . On the other hand, if the two 

velocities are in the opposite direction, the damping force should be at a minimum to 

minimize the acceleration of the sprung mass. At the same time, the hydraulic damper 

is compressed to recycle energy. This control strategy requires the measurement of the 

absolute velocity of the sprung mass. Although the accurate measurement of the 

absolute vibration velocity of the sprung mass on a moving vehicle is very difficult to 

achieve, it is easy to do for the laboratory experiment in order to evaluate the 

performance of damper. 

 0e es a= + = 0 0 0 0 0 0 0

ee
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The error e  and the rate of error  can be obtained for the fuzzy sliding mode controller 

to output control signal   u ; therefore, according to the control signal, the actual 

resistance R can be regulated to adjust the damping force for achieving the desired 

velocity. In this thesis, the adjusting range of resistance is set from 0 to 100 . The 

resistance required can be calculated by Eq. (2). If control signal   u is zero, the 

resistance will be 100 . 

The definition of actual resistance value R  is shown as 

100  R u= -  (2) 

5. Experimental results 

In this section, the experimental results of resistance control for the quarter-car system 

are described. The different vibration conditions are applied to simulate actual driving 

situations. The load of test rig is 80kgf and the mass of wheel is 10kgf. Figure 4 to Figure 

4 show the experimental results in 0.02 m pulse vibration. Figure 1 shows the 

displacement input for quarter-car system of ( ) 0.02X t m= pulse. Figure 2 indicates the 

experimental results of semi-active control for quarter-car system in vibration of pulse

( ) 0.02X t m= , including (a) input power, (b) output power, and (c) output current. 

Through the semi-active control, the output power can be reduced obviously. Besides, 

the output power generated by the DC generator can be obtained. Figure 3 shows the 

experimental results of semi-active control for quarter-car system in vibration of pulse

( ) 0.02X t m= , including (a) output displacement, (b) output speed, (c) output 

acceleration, and (d) resistance signal. The comparisons of experimental results of semi-

active control for quarter-car system with the vibrations are described in Table 1.  

Through the semi-active control, the car body speed can be reduced by 13.3%; the 

acceleration can be diminished by -9.2%; the PSDacc,peak can be reduced by 33.7%. The 

electric power regeneration can also achieved 12.1% with the semi-active control. The 

results of the semi-active control system have demonstrated that the speed and the 

acceleration power spectral density (PSD) are significantly reduced. The time of 

comfortable riding has been extended in Meister chart. Although the efficiency of energy 

harvesting attain to 10%~30%, the harvesting energy is little due to light weight of the 

load and limit of the test rig. 

 

ee

W

W
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Figure 4: Displacement input for quarter-car system ( ) 0.02X t m= pulse 

 

Figure 5: Experimental results of semi-active control for quarter-car system in vibration 

of pulse ( ) 0.02X t m= : (a) input power (b) output power (c) output current 
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Figure 6 : Experimental results of semi-active control for quarter-car system in 

vibration of pulse ( ) 0.02X t m= : (a) output displacement (b) output speed (c) output 

acceleration (d) resistance signal 
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Figure 7 : Experimental results of semi-active control for quarter-car system in 

vibration of pulse ( ) 0.02X t m= : (a) Meister chart (b) PSD of acceleration 

pulse ( ) 0.02X t m=  Passive Semi-active 

Efficiency (%) 
24.8% 12.1% 

Car body speed maxxmaxxmax (m/s) 
0.45 m/s 0.395 m/s 

(-13.3%) 

Acceleration maxxmaxxmax (m/s2) 
13.1 m/s2 11.9 m/s2 

(-9.2%) 

Current (A) 
0.2 A 0.293 A 

PSDacc,peak ((m/s2)2/Hz) 
29.1 19.3 

(-33.7%) 

Time of comfortable riding 
25min ~ 1h 1h ~ 4h 

Table 1: Comparison of experimental results of semi-active control for quarter-car 

system with the vibrations of ( ) 0.02X t m=  pulse 
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6. Conclusions  

The purpose of this study is to develop a semi-active suspension control system and an 

energy harvesting system. Instead of the fixed orifices in conventional cars, the adjusting 

damping force methods with variable resistance circuits are studied for the semi-active 

suspension control system to improve riding comfort. The energy harvesting system 

contains a hydraulic gear motor and a DC generator. When vehicles vibrate, the 

hydraulic damper serves as a hydraulic pump to compress the oil and drive the hydraulic 

motor. At the same time, the hydraulic motor drives the generator to generate electricity 

which will be stored in a battery. 

The novel hydraulic suspension system combining with the energy harvesting system is 

proposed. The test rig for practical experiments is set up for experimental implementation 

and verification. In the quarter-car system, the control strategy is combined with the 

skyhook concept and the fuzzy sliding mode control. The results of the semi-active 

control system have demonstrated that the speed and the acceleration power spectral 

density (PSD) are significantly reduced. The time of comfortable riding has been 

extended in Meister chart. Although the efficiency of energy harvesting attain to 

10%~30%, the harvesting energy is little due to light weight of the load and limit of the 

test rig. If the scale of the system can be increase, the performance of energy harvesting 

will be more significant. 
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Abstract 

In this paper, we present a new compact hydraulic linear actuator. The concept is devel-

oped to change the rolling piston diameter of an active air spring during usage. By doing 

so, the air spring can actively apply pressure and tension forces. The actuator is de-

signed for small movements at high forces. It is insensitive to side forces, which are 

introduced by the bellows rolling on the rolling piston of the air spring. A diaphragm seal-

ing is used to minimize friction. Hence a precise adjustment of small displacements at 

high dynamics is possible and the system is completely leakage-free. We describe the 

design and development of this actuator and show first measurement results from pre-

liminary tests to show its functionality. 

KEYWORDS: active air spring, active strut, compact diaphragm hydraulic actuator, 

fluid powered linear actuator, side force insensitivity 

1. Motivation 

Within the scope of the Collaborative Research Center 805 (CRC) “Control of Uncertainty 

in Load-Carrying Structures in Mechanical Engineering” we develop an active air spring 

for employment in a vehicle. The motivation is to combine the advantages of an air spring 

damper, such as very good driving comfort and automatic level control, with those of an 

active system. Furthermore, we want to be able to handle uncertainties during operation 

of the vehicle. These uncertainties could vary, but common uncertainties are the vehicle 
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load, the ride velocity, the street and the driver. In this paper, we will concentrate on the 

development of the active air spring itself. 

The concept of the active air spring is to apply axial tension and pressure force by altering 

the rolling piston diameter of the air spring during usage. The axial tension and pressure 

forces are applied with frequencies up to 5 Hz. 

2. Introduction 

The aim of using active struts in general is to overcome the conflict between ride comfort 

and ride safety by applying forces actively. The movement of the car’s body can be con-

trolled to reduce rolling or pitching. 

The only fully active suspension system available on the market is the Magic Body Con-

trol by Daimler. It is the successor of the Active Body Control, which was launched in 

1999. A hydraulic piston in series with the steel spring applies forces with a frequency 

up to 5 Hz /2/. Due to the greater spring stiffness needed, the driving comfort at higher 

excitation frequencies is poor and the system is normally used for sports cars. 

The active air spring damper combines the advantages of an air spring, such as superior 

driving comfort and automatic level control, with those of an active strut. The active air 

spring can apply axial and tension forces by altering the load-carrying area , which 

is described by 

,  (1) 

where  denotes the pressure in the air spring and  the ambient pressure. The 

load-carrying area of an air spring with outside guiding of the bellows is a circle with the 

diameter  where  represents the piston diameter and  the out-

side guide diameter. The piston diameter is changed by four radially movable segments 

which are evenly distributed along the circumference of the piston. We use a double 

piston air spring as shown in Figure 1 with a load-carrying area of the ring 

. (2) 

The advantage is that only small changes in the diameters  and , always in op-

posite directions, are needed for large relative area changes. Additionally, a coupling of 

the actuators of the upper and the lower pistons is possible to minimize the actuator 

forces needed. We have already shown the capability of such a double piston active air 

spring with simulations /3/. The operational capability of the active air spring with one 
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active piston, which is shown in Figure 2, was already proved experimentally /1/. A me-

chanical transmission with camshafts, driven by a hydraulic swing motor, was used to 

adjust the rolling piston diameter of this first prototype. 

 

Figure 1: Schematic diagram of the dou-

ble bellows active air spring 

 

Figure 2: The first prototype of the ac-

tive air spring /1/ 

Due to the actuator concept of the first prototype and its limitations, this active air spring 

can never be used in a car. The mechanical camshaft actuator and the hydraulic swing 

motor require almost 50% of the strut’s length and are too heavy for usage in a mobile 

application. The actuator itself is not very efficient due to friction. An efficiency of approx-

imately  was measured and mechanical wear was detected. Furthermore, no work-

ing concept for the actuator coupling could be found. Due to these limitations of the me-

chanical adjustment mechanism, we needed to develop a new actuator. The challenging 

tasks are the large actuating forces at small displacements, limited space available, the 

needed insensitivity to side forces and good efficiency. 

3. Actuator Concepts 

We applied the methods of the VDI guideline 2221 “Systematic approach to the devel-

opment and design of technical systems and products” /4/ for designing the new actuator 

and started with the definition of the main requirements for the actuator. The required 

actuator displacement is  at an edge frequency of 5 Hz. The maximum actuator 

force needed is  A secure guiding of the segments at all times and a compensation 

of side forces, caused by the axial compression and extension of the air spring and the 

resulting rolling of the bellows on the piston (segments), which result in a maximum 

torque of , is necessary. The available space is given by the air spring dimensions; 
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see Figure 3. Additional requirements are high efficiency and minimum wear. Further-

more, the coupling between the actuators of the upper and the lower piston needs to be 

easily realizable. 

 

Figure 3: These sketches of the active piston show the available space for the linear 

actuator. The force  is introduced by the bellows and is dependent on 

the compression of the air sping 

In a concept study, many actuator concepts were examined, but only two concepts 

seemed to be capable of fulfilling the requirements; a hydraulic actuator and a mechan-

ical wedge gear actuator; see Figure 4 and Figure 5. 

 

Figure 4: Schematic diagram of the hy-

draulic actuatur concept 

 

Figure 5: Schematic diagram of the 

mechancial actuatur concept, 

the wedge gear 

The mechanical wedge gear actuator was already examined in preliminary experiments. 

The results show that the mechanical solution is not reasonable for this problem because 
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of many problems detected during those tests, for example low efficiency and complex 

guiding of the segments. 

4. Development of the Hydraulic Actuator 

For those reasons the main focus is on the development of the hydraulic actuator. A 

patent search was made at the beginning of the development, but no hydraulic linear 

actuator was found which fulfilled our requirements. As basic design decisions we had 

to choose the type of hydraulic actuator and the sealing concept. 

 

Figure 6: The hydraulic linear actuator and its components 

Due to the limited space available, a double-acting linear actuator is not suitable for our 

problem. We use a single-acting piston, which can only apply pressure forces. The force 

introduced by the bellows  is used to retract the piston rod. For the sealing, three con-

cepts are possible; a conventional piston rod seal, a diaphragm seal or a metal bellows. 

Two disadvantages of the piston rod seal for this concrete application are its friction due 

to the relative movement between the rod and the seal and its inherent leakage /5/ /6/. 

The friction of the seal is dependent on many operating parameters, such as relative 

velocity, operating temperature or operating pressure /7/. Due to an insufficient lubricat-

ing film, piston scoring can occur if piston rod seals are used for short strokes /5/. This 

results in a higher wear of the seal and eventually of the piston rod. For these reasons 

we were looking for a sealing concept where no relative movement occurred - diaphragm 

seals or metal bellow seals. A detailed research on metal bellow seals showed that there 

were no exiting solutions on the market for our application and a custom solution would 

be needed. On the contrary, diaphragm seals are easily available in many different ver-

sions and applications on the market. This concept has several advantages over the rod 

Group L - Mobile Hydraulics | Paper L-4 575



seal. It is completely leakage free and greater pressure effective areas are possible. But 

the main advantage is that the guiding is running completely in oil, which minimizes the 

friction and the wear of the rods and bearings. Due to the limited space available, two 

piston rods are used instead of one with a greater diameter. They are guided by linear 

sliding bearings; see Figure 6.  

Based on the later actuator design for the usage in the air spring, a first prototype of the 

actuator is designed for preliminary tests; see Figure 7. The objective is to prove the 

actuator’s functionality and to examine it experimentally. The design of the piston rods 

and the linear sliding bearings was optimized by applying FEM-simulations. The dia-

phragm was designed according to the design manual by Freudenberg /8/. It is clamped 

on the inside of the segment and on the outside in the main casting. 

 

Figure 7: Design of the first hydraulic diaphragm actuator, which was examined ex-

perimentally in preliminary tests 

5. Preliminary Tests of the Hydraulic Actuator 

The aim of the preliminary test is on one hand to prove its functionality, e.g. insensitivity 

to side forces, application limits and burst pressure, and on the other hand to identify its 

relevant parameters such as, friction forces, displacement area and load-carrying area. 

The test setup is shown in Figure 8 and the hydraulic schematic diagram in Figure 9. 

For examining the hydraulic actuator under realistic load conditions, a hydro pneumatic 

unit, consisting of a plunger cylinder and a gas accumulator as compliance, was used to 

generate a load. The static load  on the actuator was changed by adapting the hydrau-

lic pressure in the plunger cylinder. Because of the relatively small displacement volume 

compared with the gas volume of , the load is almost constant over the entire radial 

travel  of the plunger cylinder. The proportional valve 4WRPE 6 E 32SJ–
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2X/G24K0/A1MA by Bosch Rexroth was used to control the displacement of the hydrau-

lic diaphragm actuator with a simple PI-controller.  

 

Figure 8 Test setup 

 

Figure 9: Hydraulic schematic diagram 

For controlling the valve and for the data acquisition we used a dSpace 1103 system. All 

used sensors are listed in Table 1. For all experiments the oil Shell Tellus S2M 46 HLP 

with a measured density  at  is used. 

Type Name Measuring Range 
displacement Novotechnik TS-0025   
pressure (actuator, ) Keller PA-23/8465-100  
pressure (actuator, ) Keller PAA-33X/80794  
pressure (backpressure unit) Keller PA-23/8465-100  
force HBM 1C2/10kN  

Table 1: Used sensors. 

We performed various experimental measurements with different test parameters as 

shown in Table 2. 

Parameter Value 
static loads (centric)  

 

 static loads (eccentric)  

 

amplitudes in   
frequencies  in   

Table 2: Test parameters. 
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The first functionality tests were promising. The actuator could withstand pressure of 

 without bursting. One important parameter for characterizing the actuator is the 

friction force . It needs to be calculated from the measured quantities. One approach 

is to calculate it by using the equation of linear momentum for the rod of the actuator, 

which leads to 

,  (3) 

 denotes the measured actual force,  the hydraulic force and  mass of the ac-

tuator. The actuator force is 

 

(4) 

where  denotes the load-carrying area of the actuator. Measurements 

showed that the load-carrying area is not only dependent on the displacement of the 

actuator as expected but also on the actuator pressure as shown in Figure 10. It influ-

ences the bulging of the diaphragm and therefore has a direct influence on the calcula-

tion of the friction force. 

 

Figure 10: The measured load-carrying 

area  is dependend on the 

displacement of the actuator but 

also on the actuator pressure , 

here  and  absolute 

pressure 

 

Figure 11: The change of the measured 

hydraulic volume  over the ac-

tuator displacement, the slope is 

the displacement area  

For this reason we used another method to determine an equivalent friction force. As-

suming only Coulomb friction forces and neglecting flow losses, which is suitable due to 

the pressure sensor, the equivalent friction force is 
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, (5) 

where  denotes the dissipated energy per oscillation. It is the sum of the dissipated 

energy at the expansion and the compression of the actuator 

. (6) 

The dissipated energy at the expansion of the rod can be calculated by subtracting the 

mechanical output energy from the hydraulic input energy 

 

(7) 

respectively for the compression of the rod 

 

(8) 

The mechanical power is 

 (9) 

and the hydraulic actuator power 

 

(10) 

where  denotes the actuator displacement area. The main advantage of this method 

is that the load-carrying area is not needed, rather only the displacement area  It is 

constant over the actuator travel and only slightly dependent on its pressure; see Fig-

ure 11. One has to mention that this is just a rough approach because the displacement 

area is measured in a quasi-static measurement. Nevertheless, these measurements 

are sufficient to show the actuator’s functionality and to estimate its friction forces and 

efficiency. For one oscillation cycle, the efficiency is defined as 

 

(11) 

Figure 12 shows the measured displacement, the actuator pressure and the force for 

one oscillation cycle. The mechanical power is calculated using equation (9) and (10). 
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The resulting friction force and the efficiency for the quasi-static measurement for  

amplitude at a frequency of  is shown in Figure 13. The friction force is slightly 

higher if the torque is additionally acting on the actuator. The efficiency plot shows an 

efficiency of approximately .  

 

Figure 12: Quasi-static measurments at 

a frequency of , an ampli-

tude of  and a static load of 

 

Figure 13: Friction force and efficiency 

for the quasi-static measurement 

without ( ) and with 

side force ( ) 

6. Conclusion and Outlook 

In this paper, we presented a new hydraulic linear actuator, which is developed to change 

the rolling piston diameter of an active air spring during its usage. By doing so, the air 

spring can apply pressure and tension forces actively. Due to the limited space available 

in the air spring, a compact actuator concept is needed. The main requirements are small 

actuator travel of approximately , actuator forces of  and insensitivity to side 

forces, which are introduced by the bellows rolling on the rolling piston of the air spring. 

We designed a compact hydraulic actuator to fulfill the requirements. A diaphragm seal 

is used to minimize friction. Two pistons rods, which are guided by linear sliding bearings, 

compensate the side forces. The guiding is running completely in oil, which minimizes 
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the friction and the wear of the rods and bearings. The system is completely leakage-

free and a precise adjustment of small displacements at high dynamics is possible. 

The experimental setup to characterize the actuator will be improved in a next step to 

measure its parameters exactly. Furthermore, we will adapt the actuator design for utili-

zation in the air spring. Other solutions for the sealing instead of the clamped diaphragm 

will be examined, such as the usage of a hose or a direct vulcanization of the diaphragm 

on the piston. 
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 load-carrying area of air spring  

 displacement area hydraulic actuator  

 load-carrying area hydraulic actuator  

 load-carrying diameter of the air spring  

 rolling piston diameter of air spring  

 excitation frequency  

 static load on hydraulic actuator  

 axial force of the air spring  

 measured force  

 air spring pressure  

 ambient pressure  

 hydraulic actuator pressure  

 hydraulic power  

 mechanical power  

 volume flow  

 actuator displacement  

 static torque acting on the hydraulic actuator  

 air temperature in air spring  

 volume of air spring  

 dissipated energy  
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Abstract

Dirt ingress in hydraulic cylinders is one of the sources that leads to pollution of hydraulic 

systems. There are already several test rigs to investigate external contamination 

mechanisms. However, until now only the behavior of the whole sealing system was 

analyzed. A new testing method to understand the dirt particle transport between a 

reciprocating motioned rod and a wiper is presented. The new approach aims to avoid 

known issues such as limited reproducibility and long duration. The paper describes the 

test rig design and operating principle. First measurement results are shown. 

KEYWORDS: contamination, dirt ingress behavoir, wiper, test rig, hydraulic cylinder 

1. Introduction 

When reliability and robustness is needed, hydraulic units and systems are some of the 

best solutions to go for. Their weak spot is oil contamination which leads – despite 

excellent filtration technology- to damage of components. The pollution in hydraulic 

systems has different sources: 

! Assembly and environment during assembly, 

! Cleanliness of components, 

! Wear resistance and deterioration of components, 

! Oil filling process, 

! Operation, 

! Maintenance. 

There are also internal and external sources of pollution and pollution developing 

processes (wear). The internal pollution can be reduced by the choice of components 

and their initial assembly. Measures to reduce the external pollution are bound to a good 
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maintenance as well as to an accurate installation and the choice of the right 

components. 

External pollution will easily intrude into the hydraulic system during operation where the 

components are open to the environment: connections and fittings, hydraulic cylinder 

rods and their sealing systems. Connectors and fittings are quasi static elements, while 

the hydraulic cylinder sealing systems are dynamically working elements which are more 

sensitive to build up a source of contamination. 

While the seals in a sealing system are designed to keep the oil in the hydraulic system, 

the wiper elements are designed to avoid contamination through dirt ingress into the 

system. Without a good wiper, the best seal will fail. Depending on the cylinder 

application different wiper designs are available, the DIN ISO 6195 /1/ describes the 

gland dimensions for wiper types. There are wipers with a wiper lip, wipers with a wiper 

and a sealing lip (double acting wipers), both types with and without metal case. Wipers 

with metal case are used in axially open glands, where the metal case is pressed into 

the cylinder cap. Wipers without metal case are snapped in an axially closed gland.  

Depending on the wiper type, dirt ingress may occur through different ways (Figure 1). 
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Figure 1: Wiper types and dirt ingress sources /1, 2, 3/

The functional requirements for a wiper are quite contradictory and in detail complex: To 

allow a longer life of the seal and wiper element, a lubrication film between the rod and 

these elements is needed. And to avoid contamination of the hydraulic system the wiper 

lip needs to keep the dirt and pollution outside the cylinder while letting the oil on the rod 

return into the cylinder to avoid leakage. Particles showing much larger dimension than 
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the lubricating film between seal and rod are able to pass from the outside of the cylinder 

into the cylinder, which means that the particle motion in the sealing gap needs further 

analysis. 

2. State of the art 

While there are several works on oil aging and contamination effects on hydraulic 

components /4, 5/ not much was published about the external contamination 

mechanisms. Only a few testing approaches to investigate the wiper effects on 

reciprocating linear motion have been presented. These test rigs have been designed to 

analyze the dirt ingress into a fluid actuator by measuring the dirt particle size and 

concentration depending on the strokes (time) for different sealing systems. 

The most common testing principle consists in applying a specific dust on the 

reciprocating working rod outside the cylinder and measuring the particles that passes 

through the wiper and the seal (if installed) into the inner side of the cylinder /6, 7/. Dust 

application can be static (or gravimetric) which means it is applied once on the rod or 

cylinder cap (Figure 2), or dynamic which means that the dust is being blown on the rod 

constantly. The way to measure the contamination consists in counting the particles (size 

and rate) in the oil using commercial available measuring equipment. A dynamical dust 

application increases the contamination rate dramatically /5/. This testing method allows 

a quite good application related comparison of different wipers and in case of the test rig 

in /5/ of wiper – seal – guide ring combinations with different pressures and stroke 

velocities. 

Figure 2: Wiper test with vertical rod (Freudenberg Sealing Technologies)

To be able to improve the design of wipers through simulation provides the 

understanding of the mechanisms in the contact zone of particles on rod and in the fluid 

film between wiper and rod. The current known test rigs as presented above will not 
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deliver valuable information to develop a simulation model. In order to gather data for a 

simulation model, a new test rig was developed.

3. Wiper test rig concept 

To develop and design a new test rig able to deliver information for a simulation model 

requires a different approach. The verification of the model also needs a principle of 

testing that is close to the field application of the wiper elements. The testing boundaries 

were defined as follows: 

• Pressure: p=0-350 bar, 

• Fluid flow: Q=6 l/min, 

• Temperature: Toil =25-60 °C, 

• Velocity: v=0-0,4 m/s, 

• Stroke: lH = 600 mm, 

• Rod Diameter: drod =50 mm, 

• Rod radial displacement: y=±0,3 mm, 

• Fluid: HLP 46, quick adaption to be able to test other fluids must be provided, 

• Contaminants: standardized powders and sands with predefined particle rate 

distribution. 

Based on the different works on simulation on seals, where the seal is supposed to be 

completely flooded between two chambers with different pressures /8, 9, 10, 11/ the 

proposed test rig needs two fluid chambers which will be separated by the wiper element 

or seal system (Figure 3). A similar test rig principle is used in seal conveyance tests. 

The approach will allow the further development of current simulation models by 

including the particle motion. The main advantage of using this two chamber concept is 

the continuous control of the contamination intensity on both sides of the wiper lip. This 

will ensure an excellent reproducibility and repeatability leading to a reduction of data 

standard deviation. 

Figure 3: Wiper test principle with flooded chambers /3/
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The contamination of both chambers will continuously change until an equilibrium is 

reached. Independent of the applied parameters and the test specimens, the mechanism 

of saturation itself may be described by the difference of particle migration due to the 

pumping rates of the rod movement /5/. The time until the saturation and the saturation 

level itself will be characteristic of wiper design and dependent from the load conditions. 

With 

• Cx as time-dependent concentration of particles with specific size x, 

• V as volume of fluid in the test rig circuit, 

• Sx as the particle amount with size x counted by the particle measuring device, 

• Q the volume flow rate passing through the particle measuring device 

The process of saturation can be described as shown in Figure 4: 

Cx·V= !"Sx-Q ·Cx#dt .  (1)

Solving this integral leads to the differential equation 

dCx

dt
= 

Sx

V
- 

Q

V
·Cx.  (2)

Its solution is 

Cx"t#= 
Sx

Q
-D$

V

Q
·e

Q

V
·t.  (3)

With t%& we get the final concentration for a specific particle size x with 
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Q
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V

Q
$e-

Q

V
$t
()Cx,abs=

Sx

Q
.  (4)

The time T until saturation can be predicted by 

T= 
V

Q
.  (5)

A high robustness in the measuring equipment as well as in the handling of the different 

glands is mandatory to avoid random effects and to allow longer testing times when 

needed. Even so, a good correlation to field results is expected, a reason to design the 

rod bearing with a radial offset mechanism. It is well known, that not only a wiper but the 

whole sealing system may have an influence on the dirt ingress behavior /5/, so that the 

test rig design must also be able to test sealing systems -wiper, seal or seals and guide 
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ring combinations- acting under pressurized fluid conditions as it happens in field 

applications. 

Figure 4: Saturation process of particles for specific sizes /5/

To find the best solution for a test rig able to fulfill the goals, the current existing test rigs 

and new concepts were evaluated following a matrix according to VDI 2225-3. Out of a 

long list of requirements and criteria the most important were defined: 

• Reproducibility and Repeatability, 

• Robustness, 

• Lifetime (Endurance), 

• Test Cycle Time, 

• Practical Relevance, 

• Safety and Ergonomics. 

After weighing and evaluating the different proposals, the best evaluated single criteria 

were again put together in a new design concept to get the best of the best. 

4. Test rig design 

The test bench is used for experimental studies of wiper dirt ingress and flow behavior. 

Figure 5 illustrates the final construction. The test cell (11) consists of the center part, 

hollow cylinders and end caps (see also Figure 3). The components are screwed 

together. A centering fit ensures the concentric alignment. Testing different wiper types 

just needs to change the center part and its installation space – hollow cylinders and end 

caps are reusable. The installation space type A (snap-in wipers) and type B (with metal 

case) according to DIN ISO 6195 already cover most wiper types. The chosen setup 

reduces the production expenditure and simplifies modifications. The sealing system, 

which separates the fluid chambers from the environment, is situated within the end cap. 
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The mounting (12), which is fixed to the bottom plate, locates the test cell (11). The test 

cell resists a pressure up to 300 bar. Thus, less modification is necessary to use the test 

rig for flow behavior investigations of a sealing system. An inlet or outlet exist on top and 

at the bottom of the fluid chamber. 

Figure 5: Test rig design

The hard chromium plated piston rod (10) is made of stainless steel and hollow. The 

reduced mass decreases the tilt effect and the eccentricity due to its own weight. The 

electro-mechanical drive (1) moves the piston rod (10) back and forth. It is characterized 

by an easy controllability. The trapezoidal movement profile consists of a steady 

acceleration/ deceleration and as long as possible a constant velocity. The long stroke 

of 600 mm shall reduce the experimental time. The coupling (7) connects the piston rod 

(10) and the electro-mechanical drive (1). It compensates a radial and an angular 

displacement. A load cell (6) is placed in between. It measures the necessary forces to 

move the piston rod. 

According to Figure 6, each fluid chamber owns a separate, closed hydraulic circuit. A 

hydraulic pump (#P1) provides sufficient oil circulation to spread existing particulates 

evenly and to ensure enough volume flow through the particle measurement line. The 

used double diaphragm pump is powered by compressed air. The working cycle is 

alternating. The diaphragms of both chambers are linked. While one diaphragm chamber 

sucks, the other pumps fluid into the circuit. The pumping principle is robust against fluid 

contamination. The chosen pump is able to generate a pressure up to seven bar. 

However, a higher pressure reduces the achievable volume flow. The sensor (#S2) is 
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used to adjust and monitor the flow rate. The fluid chamber as well as the hydraulic line 

volume is as far as possible reduced. It contributes to an even distribution and a fast 

change in the particle concentration during the measurements. 

Figure 6: Hydraulic circuit

The sensor (#S1) measures the fluid particle concentration of both hydraulic circuits and 

alternatively determines the purity level based on ISO 4406:1999, SAE AS 4059 or NAS 

1638. It reports the particle amount per size range. The results according to NAS 1638 

are used for the measurements. There are five particle size ranges dedicated to the 

purity levels 00 (very good) to 14 (bad). The sensor uses an optical particle counter 

method. A diode emits a light beam through the fluid. Projected shadows on a detector 

produce a voltage change, which the sensor evaluates. This continuous procedure 

allows measurements within a 10-second cycle time.  

The allowed flow rate through the sensor is limited and much smaller than the pump 

delivery. The bypass conveys excessive volume flow passing the sensor. The spring-

loaded check valve (#V1) adjusts the particle measurement line pressure difference 

(#p=3 bar). A throttle (#V2) can regulate the flow rate through the sensor (#S1). The 

sensor (#S1) itself will return a feedback, if the flow rate is out of the allowed range.  

A 4/2-way ball valve (#V4) adds the available cascaded filter elements, which clean the 

fluid after the measurement. The upstream rough filter (#Z2) prevents fast contamination 

and exchange of the fine filter (#Z3). 

During the rod’s translatoric stroke, the sealing element conveys oil from one 

measurement cell to the other according to the piston movement. The existing vessels 
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(#Z1) balance the transferred oil amount. They can be independently pneumatically 

preloaded. This is especially relevant for double acting wipers. They have inside a 

sealing lip. The operating pressure ranges up to three bar.  

The wiper lip shape allows following a radial piston rod displacement. It prevents opening 

the sealing gap. However, due to high-frequency loads and low temperatures, the wiper 

partially detaches from the rod surface. Hence, the changing behavior due to external 

stresses shall be investigated. For the present, a static lateral force will be applied on 

the piston rod. A single force application hardly produces a radial displacement of the 

unit under test in the central part. A force on both sides shifts the piston rod parallel to 

the centerline. Therefore, a diabolo-roll is used to applicate the force from below. Due to 

the sand-glass shape, the cylinder contacts the piston rod on two points. The distance 

between the contacts allows applying the load more evenly. The rolls are carried by a 

small fitting tolerance with spacer disks in axial direction. It enables an autonomous 

centering. The rod bending at the wiper position due to the double force application is 

much smaller than the desired eccentric displacement and so negligible. The guide play 

is designed to allow moving the piston rod. The guide ring only prevents a metallic 

contact during force application. The lip seals are usually responsible for centering the 

rod. 

The viscosity essentially affects the hydrodynamic lubrication height. It is nonlinearly 

dependent on temperature and pressure. An increasing oil temperature causes a 

decreasing viscosity. Investigating the wipers dirt ingress behavior will be done non-

pressurized. Hence, its influence is irrelevant. The dependency of the viscosity on the 

temperature needs to keep the hydraulic oil temperature constant during the 

measurements. This is particularly important for experimental repeatability. Two heat 

exchangers control the oil temperature. Additionally, water flows through the hollow 

piston rod. This realizes the heat supply and discharge. A sensor measures the 

temperature at the center part close to the wiper. Due to the irons good heat conductance 

the measurement accords with the wiper temperature. 

5. Experimental investigations 

For the experimental investigations one fluid chamber has to be contaminated with dirt. 

In previous works this has been done with standardized test dust. Typical representatives 

are ACFTD (Air Cleaner Fine Test Dust) and ISO MTD (formerly known as SAE Test 

Dust). They are also used for calibration automated particle sensors and for 

determination of the filter performance data. But they cause abrasion processes. The 

sand particles damage, among other things, the surface of the piston rod. Therefore, 
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polymer particles are used for this test rig to avoid wear. The particles provide a similar 

density as hydraulic oil. This ensures a homogenous distribution over a longer period. 

Figure 7 shows microscopic pictures of different kinds of polymer particles. The shape 

of the particles on the right (Vestosint) is irregular. They are used in automotive paint 

applications. The particle size is uniformly distributed around an average grain diameter 

(d=7-70 $m). The monodisperse particle on the left are produced for scientific purpose 

and have a uniform spherical shape. The diameter varies only slightly. The manufacture 

offers several particle sizes which can individually combine according to requirements. 

The polymer particles are resistant to hydraulic oil also over a long period. Both variants 

are used for the experiments. The investigations will be accompanied by CFD simulation. 

The spherical particles can be modelled far more easily in the numerical assessment. 

Figure 7: Polymer particles and typical particle distribution /5/

The dirt ingress behavior of wipers is based on several mechanisms. Particles with a 

smaller size than the lubricant film (d=0,01…1 $m) move with the flow in the sealing gap. 

But also larger particles (d<100 $m) infiltrate the hydraulic system. They catch in the 

microscopic crack on the surface and are pulled under the elastic sealing. Figure 7 

shows exemplary typical size distributions of dirt in oil. Considering measuring range of 

the used particle sensor particles with a diameter d=2-100 $m will be investigated. 

6. Summary  

After analyzing the different current wiper testing methods, a new testing approach to 

allow a model validation of particle motion in the lubricating film between wiper lip and 

rod was developed and built. Starting from the known simulation models for fluid 

conveying effects with flooded rooms on both sides of the sealing lip, a two circuit 

principle with different contamination levels was developed, allowing an online particle 
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concentration measurement and also a radial offset of the rod. Series of tests with 

different wipers are started. 

The test rig has been designed to allow a high versatility: Besides the contamination 

changes results for wipers, later also sealing systems (wiper-seal combinations) will be 

tested. The wiper conveying behavior with other fluids and contaminants will be 

analyzed. The simulation of the particle motion in the sealing/wiping area will be 

developed so that optimized products can be designed and their behavior predicted. 
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8. Nomenclature 

v velocity m/s 

Q fluid flow  l/min 

p pressure bar 

lH stroke mm 

y rod radial displacement mm 

Toil temperature °C 

d diameter mm 

Cx time-dependent concentration of particles with specific size x 1/ml 

V Volume of fluid in the test rig circuit ml 

Sx particle amount with size x counted by the particle measuring device 1/ml 

T The time until saturation s 
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Abstract

Air contamination strongly decreases the efficiency of fluid power systems and when 

the allowable limits are exceeded, the performance of the system deteriorates. The 

hydraulic reservoir performs the function of releasing the entrained air of the hydraulic 

system to the surroundings. In recent years, the reservoir design has become an 

important task in the design of the hydraulic system due to space restrictions forcing 

the use of small sized reservoirs. Despite this fact, experimental results on an air 

release are not available. In this paper, an experimental investigation of the air release 

in hydraulic reservoirs is presented. A test apparatus using an optical method as well 

as the post-processing of the results is described. These are given in terms of an air 

release rate for different reservoir designs over a wide range of oil flow rates and air 

loads. The current study is a significant step forward in the design of fluid power 

systems, as it provides an experimental procedure to measure the air release in the 

hydraulic reservoir as well as its quantitative analysis.  

KEYWORDS: Reservoir, air release, optical method, experimental analysis  

1. Introduction 

In the last decades, in response to growing concerns over the environmental impacts of 

mobile machinery and their costs, manufacturers are being forced to develop more 

energy efficient hydraulic systems and to decrease the used fluid volume by 

decreasing the reservoir size, while maintaining the lowest possible amount of air 
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drawn into the pump. Another aspect strongly influencing the size and the design of the 

reservoirs is the additional space requirement for components for after-treatment of the 

exhaust gas. As a result, much effort has been put into studying the air release in 

hydraulic reservoirs /1/. Entrained air forms inside hydraulic components due to 

cavitation /2/ or malfunctioning seals. This leads to problems in hydraulic systems. First 

of all, it changes fluid properties such as density, viscosity and bulk modulus /3,4/. This 

results in an increased oil compressibility, which causes pressure losses and changes 

the stiffness of the system. Phenomena such as the diesel effect /5/ and cavitation 

erosion may occur and damage the components of the system. Finally, a high amount 

of air in oil produces more noise. The problems mentioned diminish the whole 

efficiency of the system and the endurance of the fluid. They make the design, the 

simulation, the manufacturing and maintenance of fluid power systems more difficult 

and expensive. In order to prevent the above mentioned disadvantages, the air release 

in a hydraulic system has been studied under the simulative and experimental point of 

view. An overview of the different methods to measure the air amount in oil has been 

discussed by Schrank et al. in /6/. The most promising ones involve optical techniques 

such the PIV (Particle Imaging Velocimetry) /7/ and the shadowgraph method. The air 

bubble behaviour in mineral oil has been experimentally investigated in terms of bubble 

velocity and coalescence /8/. The first measurement of the air release efficiency in the 

tank geometries can be found in /9/. Recently, Wohlers published the measurements of 

the air release in an hydraulic system as function of time /10/. Different CFD methods 

are employed to simulate the behaviour of an oil-air mixture. A novel application of 

such models is the simulation of a hydraulic reservoir conducted by Ti! et al. and Untch 

et al. in /11/ and /12/ respectively.      

The hydraulic reservoir performs the function of releasing the entrained air to the 

surroundings. A sub-optimal design of the reservoir leads to a poor air release 

consequently decreasing the efficiency of the system and aggravates the above 

mentioned problems. Unfortunately, the air release capability of a hydraulic reservoir as 

a function of its working conditions has not been investigated. It leads to the problems 

in the validation of the simulation codes and in the design of the reservoir.    

This paper presents an experimental study of the air release in hydraulic reservoirs. 

After a theoretical explanation of the air release process, experimental apparatus 

developed at the Institute for Fluid Power Drives and Controls at RWTH Aachen 

University using the shadowgraph method is presented. The test results are shown in 

terms of an air release rate for different air loads and as a function of various oil flow 
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rates. The influence of the internal reservoir design has been investigated as well. 

Finally, a study of the bubble diameter distribution is shown.  

2. Air release process 

Entrained air flows into the reservoir in bubble form. The different forces acting on a 

bubble moving upwards in a fluid result in a terminal velocity of the bubble. It can be 

written as in Eqn. (1) for the so-called viscous dominant regime /8/. 

!" # $
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The velocity is proportional to the square of the bubble diameter and to the air and oil 

properties. Eqn. (1) shows an inverse proportionality of the velocity to the Reynolds 

number 45 of the bubble and to the drag coefficient $6. The latter describes the 

resistance, that the bubble experiences, due to the presence of the fluid and varies with 

temperature and the oil class /8/. Finally, the parameter $ refers to fixed geometrical 

constants. As shown in Figure 1, the bubbles enter in a reservoir from the inlet with the 

oil flow rate 78. The air load is described by the volume air fraction 9 defined in 

Eqn. (2).  

9 #
:.

:;<;
 (2) 

The bubble pattern is defined by means of the composition between the rise velocity 

expressed in Eqn. (1) and the oil velocity acting on the bubble. The latter depends on 

the oil flow rate, the volume of oil and the internal design of the reservoir (separating 

plates, sieves and baffles). 

Figure 1: Air release process in hydraulic reservoirs

The bubbles rising with higher velocity can be released through the free surface of the 

oil (9=>?), while the rest flows into the outlet (9@AB). The air release rate quantifies the 
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capability of a hydraulic geometry to release the entrained air and it is defined as in 

Eqn. (3). 

4C #
DEF-D<G;

DEF
H I JKK % (3) 

3. Experimental apparatus and measurements 

The experiments are performed in the IFAS laboratory. A shadowgraph method is used 

to record the images at the outlet of the test reservoir. The pictures are then post-

processed to measure the air content. 

3.1. Test bench and shadowgraph method  

The circuit of the test bench is illustrated in Figure 2. Its goal is to measure the air 

release rate of the hydraulic reservoirs. In the first subsystem a variable displacement 

pump draws an oil flow rate between LK and JKKHMNOPQ from a main tank of capacity 

RKKHM. The flow rate is regulated by means of a flow rate sensor. As can be seen in 

Figure 2, the oil then flows through the chamber of the second subsystem. This 

chamber is connected with a pneumatic system, which injects a defined air flow rate 

through porous elements. 

Figure 2: Circuit of the test bench and optical system 

The air and oil mixture flows in the test reservoir illustrated in the third subsystem. A 

part of the injected air is released inside the tank to the surroundings, while the rest is 

drawn into the pump as illustrated in the fifth subsystem. The flow rate of the second 
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pump is also regulated by means of an additional flow rate sensor. The pressure and 

the temperature up- and downstream of the test tank are measured. A part of the 

mixture is extracted before reaching the pump and flows into a plexiglas chamber 

placed in a by-pass parallel to the main line. The mixture before the extraction optically 

shows a homogenous and uniform distribution of the air in the fluid phase. This 

chamber has a rectangular section with a thickness of SHTT and is located between a 

high speed camera and a background light. The oil flows again in the main tank, which 

is designed to release the remaining part of the entrained air. Finally, the circuit 

illustrated in the sixth subsystem performs the filtration and the heat-exchange 

functions. 

The shadowgraph apparatus captures the images of the air bubbles at the outlet 

observing a flow exhibiting variations of the fluid density. It consists of a high speed 

camera equipped with a CMOS-Sensor, which can take up to 11300 fps at reduced 

resolution. A high-magnification lens system is mounted onto the camera with a 

resolution of KUVHWO. The main idea of this technique is that the light rays are refracted 

by the bubbles. With the help of the background light provided on the right side of the 

chamber, the camera on the left side is able to capture resulting light refraction as 

shadows. Additionally, a diffuser is located between the light source and the test tank 

to dampen and spread the light. The whole test setup and the specifications of the test 

reservoir are illustrated in Figure 3. The inclination of the test tank can be set either to 

KX or to VKX. The test tank is manufactured according to the norm DIN24339 /13/ and 

has a max oil volume of YZHM.  

Figure 3: Specifications of the test reservoir 
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The average dwell time ranges between KUYZ and YUZHOPQ at the maximum oil volume. 

The outlet port is located at the side of tank in order to avoid cavitation problems. The 

cover plate has five different inlet configurations and an air breather. Additionally, three 

inspection windows are placed at the tank walls monitoring the flow during the 

measurements. A separation plate can be mounted inside the tank between the inlet 

and the outlet ports.       

3.2. Post-processing procedure 

After the oil and air flow rate are set and a steady-state is reached, the camera records 

the images of the air and the oil mixture. The pictures are post-processed using a script 

implemented in MATLAB. The goal of the script is to calculate the air release rate. This 

is accomplished in different steps: 

1. Reading and filtering the image  

2. Conversion of the image in binary and detection of the bubbles and their 

diameters 

3. Calculation of the air fraction for each picture dividing the sum of the volume of 

the bubbles by the total volume of the view window  

4. Statistical analysis: noise reduction and outlier elimination 

5. Calculation of the bubble diameter distributions  

The post-processing script provides a result as measurement of the air fraction at the 

outlet 9@AB for each measure. The air fraction at the inlet is calculated using the 

measured air and oil flow rate. Finally, the air release rate is calculated using Eqn. (3). 

4. Results and discussion 

An ISO VG 46 mineral oil has been used to conduct all the tests. The test reservoir was 

filled with R[HM of oil. The different configurations of the test tank used for the 

measurements are given in Figure 4. Additionally, the boundary conditions of the tests 

in terms of air flow rate 7C and oil flow rate 78 are illustrated. In the first configuration, 

the inlet and the outlet pipes have the minimum distance. This has been tested for all 

the working conditions. In the second design, the inlet is located further from the outlet. 

The third and the fourth geometries differ from each other by the plate that separates 

the inlet and the outlet ports. The last three designs have been tested keeping either 

the oil flow rate equal to ZKHMNOPQ or the air flow rate equal to \H]MNOPQ. The air flow 

rate data are reported at standard conditions of pressure and temperature. Both of 

them have not experienced any change during the measurements. This section 

presents the experimental results of the air release in the hydraulic reservoirs. The first 
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part shows the influence of the oil flow rate and the air load on the air release rate. 

Additionally, the experimental data of the bubble diameter distribution are given. The 

second part analyses the role of the internal design of the tank in the air release 

process.  

Figure 4: Tested configurations of the hydraulic reservoir 

4.1. Variation of the working conditions 

The measured air release rate 4C of the first tank design is illustrated in Figure 5a as a 

function of the injected oil flow rate 78 for the different air flow rates 7C. An increase of 

the oil flow rate leads to the decrease of the air release rate. This is due to the increase 

of the oil velocity inside the tank. This diminishes the time that the bubbles have to be 

released from the free surface of the fluid before entering the suction pipe. This trend 

can be seen in Figure 5b as well, where the bubble diameter distributions are plotted 

for different oil flow rates with a maximum bubble diameter of KULHOO. According to the 

distribution of microbubbles of gas in water /14/, the smaller the bubbles are, the higher 

is the frequency. The three histograms in Figure 5b have a significant gap for all the 

classes due to the better air release at lower oil flow rate. The different curves at 

constant air flow rates in Figure 5a show that the air release rate sharply decreases 

with an increasing of the air load. This phenomenon attenuates at higher air flow rates. 

In order to observe such trend, the measured air release rate 4C of the first reservoir 

design is illustrated in Figure 6a as a function of the injected air flow rate 7C for the 

different oil flow rates 78. The air release rate sharply decreases with an increasing air 

load until 7C ^ YH]MNOPQ for all the curves. Afterwards, the reduction diminishes and 

they start to have an asymptotic trend. 
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Figure 5: Influence of the oil flow rate. (a) Air release rate. (b) Bubble distribution 

The reason is that an additional increment of the injected air leads to the formation of 

bigger bubbles. These have a higher rise velocity and are released faster. This trend 

can be seen in Figure 6b as well, where the bubble diameter distribution is plotted for 

different air flow rates until a bubble diameter of KULHOO. In comparison with the 

distributions illustrated in Figure 5b, the three histograms do not show any significant 

difference. 

Figure 6: Influence of the air flow rate. (a) Air release rate. (b) Bubble distribution 

4.2. Variation of the tank design 

The influence of the distance between the inlet and the outlet ports has been 

investigated. The air release rate 4C is plotted as a function of the oil flow rate 78 and 
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of the air flow rate 7CHin Figure 7a and Figure 7b respectively for the first, the second 

and the third tank configuration. In both graphs, the second design shows a higher air 

release rate. This is due to the increasing distance between the inlet and the outlet 

pipes. The larger this distance is the more time the bubbles have to reach the free 

surface of the fluid. 

Figure 7: Influence of the distance between the inlet and the outlet ports.  

(a) Oil flow rate. (b) Air flow rate 

The usage of a separation plate has been experimentally analysed as well. The air 

release rate 4C is plotted as a function of the oil flow rate 78 and of the air flow rate 

7CHin Figure 8a and Figure 8b respectively for the third and the fourth design. The 

fourth one shows an higher air release rate for both variations. This is due to the 

separation plate. Though the return and the suction pipes are placed as in the third 

design, the plate forces the bubbles to follow a longer path before reaching the outlet 

port. It increases the time that bubbles have to be released as well as encouraging 

coalescence phenomena due to the collection of bubbles near the plate. Finally, the 

results of Figure 7 and Figure 8 show that the internal design of the hydraulic reservoir 

strongly optimises the air release rate.  
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Figure 8: Influence of the separation plate. (a) Oil flow rate. (b) Air flow rate 

5. Summary and outlook 

To improve the efficiency of fluid power systems, reservoir designs must take into 

account the presence of an air phase in the working fluid. The hydraulic reservoir 

performs the function of releasing the air to the surroundings. The challenge is to  

downsize the reservoir while maintaining a low air content at the suction side. For this 

scope, a quantitative analysis of the air release in hydraulic tanks is required. This 

paper presents several experiments to investigate this phenomenon. The results show 

that the relative air release decreases with an increase in air load and oil flow rate. 

Additionally, the internal tank design strongly influences the air release process. 

Maximising the distance between the suction and the return lines as well as the use of 

e separation plate optimises the air release and saves installation space. The validation 

of a CFD code with test results and measurements of the time-dependent air release 

process are currently underway.  
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8. Nomenclature 

$ Geometrical constant - 

$_ Drag coefficient - 

2 Bubble diameter  mm 

` Gravitational acceleration m/s2 

7aH Air flow rate Nl/min 

7bH Oil flow rate l/min 

4aH Air release rate % 

45H Bubble Reynolds number - 

caH Air volume m3 

!"H Bubble velocity mm/s 

cdedH Total volume m3 

9fgH Air fraction at the inlet port - 

9ehd H Air fraction at the outlet port - 

WbH Dynamic viscosity of the oil kg/(s m) 

iaH Oil density kg/m3 

ib H Air density kg/m3 
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Abstract 

Increasing demands regarding performance, safety and environmental compatibility of 

hydraulic mobile machines in combination with rising cost pressures create a growing 

need for specialized optimization of hydraulic systems; particularly with regard to 

hydraulic reservoirs. In addition to the secondary function of cooling the oil, two main 

functions of the hydraulic reservoir are oil storage and de-aeration of the hydraulic oil. 

While designing hydraulic reservoirs regarding oil storage is quite simple, the design 

regarding de-aeration can be quite difficult. The author presents an approach to a system 

optimization of hydraulic reservoirs which combines experimental and numerical 

techniques to resolve some challenges facing hydraulic tank design. Specialized 

numerical tools are used in order to characterize the de-aeration performance of 

hydraulic tanks. Further the simulation of heat transfer is used to study the cooling 

function of hydraulic tank systems with particular attention to plastic tank solutions. To 

accompany the numerical tools, experimental test rigs have been built up to validate the 

simulation results and to provide additional insight into the design and optimization of 

hydraulic tanks which will be presented as well. 

KEYWORDS: Hydraulic reservoirs, filter-tank system, numerical optimization, 

experiment, simulation, de-aeration performance, degassing function, 

heat transfer 
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1. Introduction 

A basic function of hydraulic reservoirs in mobile applications is the storage of oil. Most 

of the mobile machines are equipped with differential cylinders which have a variable 

fluid capacity. In consequence of the cylinder operation the oil volume in the tank varies. 

The oil volume in the tank also changes as a conclusion of the thermal expansion of the 

oil during the warm-up of the machine. In addition to this variable amount of oil stored in 

the tank there is always a fixed amount of oil. This is necessary to ensure the degassing 

of the free air in the oil. The source of the air will be explained in the following. 

Henry’s law describes the amount of air VG that can be solved in a defined volume of 

hydraulic oil VFl at a specific pressure /1/. 

 (1) 

For mineral oils in balanced condition at atmospheric pressure p0 approximately seven 

percent by volume is in solution. Due to local pressure drops in the suction lines of pumps 

as well as due to jet streams especially in hydraulic valves the amount of air that can be 

solved according Henry’s law is reduced proportionally to the pressure. As a 

consequence free air in form of air bubbles is present. A further source of air ingression 

to the oil is the sloshing of the oil in the tank. There is a big spectrum of bubble diameters 

in the range of approximately 1 µm and 5 mm. In some cases the bubble diameter can 

be even bigger when air is deposited in the hydraulic system. 

The free air in hydraulic systems causes degradation of the oil as a conclusion of 

oxidation. Furthermore due to the compression of the air bubbles high temperatures can 

occur which also damages the oil. A further consequence of this effect is the reduction 

of the overall efficiency of the hydraulic pumps and therefore an increase in fuel 

consumption. Due to the increased compressibility the handling and control of the 

hydraulic systems also can decline.  

Degassing bubbles of free air in the hydraulic tank is a complex function and is depending 

on many influencing factors. Increasing the amount of fixed oil in the tank generally 

improves the degassing function. An optimization of the design of hydraulic tanks in 

regard of the de-aeration performance allows improving the degassing function without 

increasing the amount of oil or even in combination with a reduction of the tank size. As 

manufacturer of mobile machines are strongly driven by a big cost pressure due to global 

competition as well as packaging issues mainly due to changes in legislation the interest 

in optimizing hydraulic reservoirs is very high. Concrete guidelines how to optimize tank 

systems are still missing and have to be worked out.  
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As the return filter which is normally mounted into the tank is essentially influencing the 

degassing function in the following the term filter-tank system will be used. 

A further function of the tank is the reduction of the oil temperature due to heat transfer 

to the environment. This property is especially very interesting for smaller machines. In 

some applications an improvement of the tank design even allows the elimination of the 

main cooler. 

2. Experimental characterization of hydraulic reservoirs 

In order to be able to optimize hydraulic tank systems a characterization of the degassing 

function is necessary. An experimental approach will be described. Furthermore a test 

setup to determine the heat transfer of tank systems will be shown. 

2.1. De-aeration performance 

In order to characterize the de-aeration performance of hydraulic reservoirs a test setup 

for hydraulic filter-tank systems was build up. Furthermore to be able to measure the 

amount of free air in hydraulic systems a sensor was developed which is able to measure 

the amount of free air in the oil. 

2.1.1. Air Content Sensor 

In order to characterize and optimize hydraulic reservoirs regarding de-aeration 

performance the content of free air in hydraulic fluids has to be determined. For this 

purpose a special sensor was developed. The sensor is based on the electric capacitive 

principle. The effective dielectric constant of the fluid in the capacitor defines the capacity 

of the capacitor. While oil has a dielectric constant of approximately 2.7 air has a value 

of approximately 1. An increased amount on free air in the oil will reduce the capacity of 

the capacitor and can thereby be used for quantification. Because of the dependency of 

the dielectric constant with the temperature a compensation of the measurement result 

has to be performed. The sensor as well as the test setup will be introduced in the 

following. 

2.1.2. Test setup 

Figure 1 shows the hydraulic schematics of the test setup. 
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Figure 1: Test setup 

The volume flow through the tank is regulated using a variable pump. Using a special 

nozzle in combination with a mass flow controller air is injected to the suction line in a 

defined way. The Air Content Sensor (ACS) is used to measure the air content in the 

suction line with a sampling rate of one Hz. Figure 2 shows an exemplary measurement 

result comparing two different tank concepts. 

 

Figure 2: Measurement results 

One percent of air is injected at the point two minutes for the duration of one minute. 

Looking at the transient air content it is obvious that the de-aeration performance of the 

optimized filter-tank system is on a better level. 

The test rig with the special Air Content Sensor allows a characterization of tank systems 

regarding de-aeration performance. It allows a comparison of different tank designs and 

can be used to validate optimizations evaluated using simulation tools. 

2.2. Heat transfer 

In order to quantify the cooling function of tank systems a wind tunnel test was performed. 

The hydraulic reservoir is placed inside the wind tunnel and is equipped with several 

thermocouples measuring the temperature of tank, air and oil. The hydraulic system is 
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mounted on the outside of the tunnel in order to avoid disturbances. Figure 3 shows the 

tank placed inside the tunnel. 

 

Figure 3: Test tank in wind tunnel 

At the inlet of the wind tunnel on the opposite of the fan drive the velocity field was 

measured. The result of the flow field during the test is shown in Figure 4. 

 

Figure 4: Velocity profile at wind tunnel inlet 

This measurement allows the calculation of the total volume flow through the tunnel as 

an input value for the simulation model. The temperature of the oil in the tank was used 

in order to determine the heat transfer. Before starting the fan drive the oil was heated 

up to 60°C. Afterwards the oil flow through the tank was stopped. Figure 5 shows the 

profile of the oil temperature measured during the test time. 
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Figure 5: Oil temperature during measurement 

This measurement profile will be used in chapter 3.2. in order to validate the results 

from simulation. 

3. Simulation of hydraulic reservoirs 

In the following an approach to determine the de-aeration performance of hydraulic filter-

tank systems is shown. Furthermore the results of a thermal heat transfer simulation will 

be shown and will be compared to the experimental results shown in chapter 2.2. 

3.1. De-aeration performance 

A multi-phase bubble flow simulation can be used to calculate the de-aeration 

performance of filter-tank systems. Bubbles with different sizes in diameter are injected 

to the return line. The term simulated de-aeration performance which is used in the 

following is defined as the number of bubbles de-aerated inside the tank in relation to 

the number of bubbles injected to the tank. It has to be noted that this value is dependent 

on the bubble size. Figure 6 shows two simulation results done for the two different tank 

systems which were used in chapter 2.1.2. 
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Figure 6: Simulated de-aeration performance 

This approach can be used to optimize hydraulic tank systems. Nevertheless an 

experimental validation as shown in chapter 2.1.2 is strongly recommended. 

3.2. Heat transfer 

In the following a comparison of the results from the heat transfer simulation with the 

experimental investigations shown in chapter 2.2. is shown. Figure 7 shows the 

simulated velocity profile during the test. 

 

Figure 7: Simulation results velocity profile 

The volume flow at the fan drive as a boundary condition was adjusted to a value that 

fits the simulated volume flow at the tunnel inlet to the measured flow. Figure 8 shows 

the simulated heat transfer density at the surface of the tank. It can be observed, that 

the heat transfer at the upper level of the tank where air is present is on a much lower 

level as at the part where the tank is filled with oil. 
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Figure 8: Heat transfer density at outer tank surface for 60°C oil temperature 

An integration of the heat transfer density over the tank surface gives the overall heat 

transfer. Figure 9 shows a comparison of measurement and simulation. 

 

Figure 9: Comparison simulation and experiment 

It can be seen that the simulated results are qualitatively as well as quantitatively in a 

very good agreement with the measurement. It can be concluded that the usage of 

thermal simulations to determine heat transfer at tank systems is quite accurate. 
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4. Summary 

One of the main functions of hydraulic reservoirs is degassing the free air. The amount 

of oil inside the tank is only secondarily accountable for the degassing performance. 

Primarily it is the design of the inner tank geometry as well as the type and position of 

the filter. Because of the lack of knowledge in the design of tanks many hydraulic 

reservoirs are still sized in a very conservative way. Optimizing the design of hydraulic 

filter-reservoir systems allows a reduction of the tank size. This allows a significant cost 

reduction as well as improving the package of components on mobile machines. 

By usage of an experimental setup which contains a sensor to measure the amount of 

free air the degassing performance of filter-reservoir systems can be determined. The 

usage of multi-phase bubble flow simulation tools allows a computer aided optimization. 

Nevertheless an experimental validation is always strongly recommended. 

A secondary function of hydraulic reservoirs is the cooling of the oil due to heat transfer 

to the environment. A quantitative analysis helps to dimension the cooling circuit of the 

system. A comparison with experimental results has shown that the results from a 

thermal simulation are quite accurate and therefore very useful to be used for the 

dimensioning of the cooling circuit. 
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Abstract 

Hydraulic tanks have a variety of different tasks. The have to store the volume of oil 

needed for asymmetric actors in the system as well as to supply the system with 

preconditioned oil. This includes the deaeration as air contamination is affecting the 

overall system performance. The separation of the air in the tank is being realized 

mainly by passive methods, improving the guidance of the air and oil flow. The use of 

CFD models to improve the design of hydraulic tank is recently often discussed. In this 

paper, a design method for hydraulic tanks using CFD is presented and discussed. 

First the different requirements on a hydraulic tank are described as well as the 

motivation changing the tank designs. Additionally, a quick overview on different 

calculation models for the behavior of air in oil as well as the capabilities of CFD to 

reproduce them is given. After this the methodology of tank design applying CFD is 

presented. The method is then used in an example. 

KEYWORDS: hydraulic tank, hydraulic reservoir, tank design, air in oil, deaeration, 

CFD  

1. Introduction 

In a hydraulic system, the purpose of the hydraulic tank is to provide the hydraulic 

system with oil of a certain quality. The system needs oil which is air-free, has a certain 

temperature and is free of pollutants. Pollutants, especially solid particles are typically 

removed from the oil with a filter which can be positioned for example prior to the tank 

or within the tank. As there are certain returning flows where a pressure drop is not 

allowed, not all returns can be filtered. Suction filters can be fitted into the system 

additionally. Furthermore, most of the pollutants are denser than oil and therefore 

accumulate at the bottom of the tank in those systems. The temperature control of the 

oil can also be done externally by an oil-cooler or internally by convection. A separate 
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cooler is needed in most mobile hydraulic systems as many power losses due to 

different loads result in a high heat input. If there is less cooling needed, the convection 

on the surface of the tank can be used to cool the oil. This can be done by actively 

forced convection as well./1/ Active systems can be used also for the separation of air. 

These are mainly used in stationary hydraulics. In most hydraulic systems the 

deaeration is solely reached by passive measures. Such designed solutions are baffles 

to direct the flow or wire-gauzes to hold back air bubbles. 

The amount of oil in the hydraulic tank is typically much more than the volume needed 

for the operation of asymmetric actors like hydraulic cylinders. As indication for the 

assessment of the installed oil volume the theoretical residential time  can be 

used. It is defined as the oil volume in the tank divided by the typical volume flow of the 

hydraulic pump: 

 (1) 

This residential time is only reached if the flow in the hydraulic tank is completely 

uniform, which would only be the case if a laminar tube flow is present. The designing 

goal of measures in the tank is to guide the flow in a way that all of the oil nearly 

reaches this theoretical residential time. A high real residential time implies a good 

passive separation of air and pollutants. 

In the context of the design of a hydraulic tank there are different incentives to design 

the oil tank as small as possible. On the one hand a small oil volume results in lower 

total cost of ownership which gets more and more important. On the other side the 

space for the tank is in competition with other components of the machine. Especially 

due to the rising complexity of mobile machines in power supply (e.g. exhaust 

treatment systems, turbo intercooler) as well in the comfort and functionality (e.g. 

electro-hydraulic systems, air conditioning) the available space on the machine has to 

be used for more and more components. As result the hydraulic tank is fitted into 

smaller spaces. 

As the requirements for oil quality are rising, the same deaeration has to be achieved in 

a shrinking volume. This can only be reached by improving the tank design. In order to 

assess the air separation in early stages of the product development and/or to save 

test expenses, today in most cases methods of computational fluid dynamics (CFD) are 

proposed. /1,2,3,4/ With CFD models the impact of measures in the hydraulic tank as 

well as the air separation in general can be simulated and improved. 
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In this paper a development method is presented which can be used as a framework 

for designing hydraulic tanks with support of CFD. This was developed in a research 

project at the Institute of Mobile Machines and Commercial Vehicles of the Technische 

Universität Braunschweig. First, different methods of CFD are discussed which can be 

used to predict the air separation in hydraulic tanks and how the behavior of air 

bubbles in oil can be described. Then, the sequence of the development method is 

discussed and the possible use of CFD simulation is presented. The described method 

is then employed to an example. Afterwards, the impact of a variation of design 

parameters is shown and discussed. Finally, an outlook is given, how the methods can 

be improved and extended in the future. 

2. Modelling of air in hydraulic oil 

CFD models can be classified as single-phase or multi-phase models. In this paper the 

fundamental characteristics of the models are described. A more detailed overview is 

given in /3/ as well as in /5,6/. 

In the context of modelling the behavior of air and oil within a hydraulic tank - which is a 

multi-phase problem - also a single-phase model can be used to get knowledge of the 

flow. As the fluid in a single-phase model has the same physical parameters in the 

whole computational domain, no specific predictions of the behavior of air can be 

made. But the basic parameters of the tank design, e.g. the residential time, can be 

calculated as well as the main streamlines can be detected. With the information that 

air has a lower inertia and higher buoyancy, the flow of air can be estimated out of the 

streamline of oil. It can be supposed for example, that at low velocities and bends the 

air flow separate from the oil flow. 

Multi-phase flows can be modelled in different ways to regard the characteristics of 

homogeneous or heterogeneous flows. The flow of air in oil is depending of the size of 

bubbles either homogeneous or heterogeneous. For estimating the deaeration only the 

heterogeneous behavior is of interest. These flows can be modelled with the so-called 

Euler-Euler model. In this model all phases are calculated with their own complete 

equation system. The challenge of this model is the calculation and therefore modelling 

of the exchange forces between the different phases. These forces are modelled as 

source terms in the individual equation system of the phase. As result of the calculation 

the information for all parameters of the flow are known for each calculation cell, 

independent of the phase fraction. This must be kept in mind when interpreting the 

result, since parameters - e.g. a phase velocity - will be calculated even if the phase is 

not present in the cell. 
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In order to describe the behavior of air in oil correctly many parameters in the model 

have to be adapted to the air-oil-mixture. In particular the buoyancy and drag of the 

bubbles has to be calculated precise to predict the separation of air. In /4/ an 

experimental investigation of these parameters is presented. The difference of the 

buoyancy of air bubbles in oil to the model of Stokes is described. It is shown that with 

rising viscosity of the oil the behavior of the air bubbles converges to the Stokes model. 

Furthermore the buoyancy - and therefore the deaeration - is dependent on the size of 

the air bubbles. The size of an air bubble can vary due to solution and release from the 

oil. This mechanism is highly dependent of the solution equilibrium and therefore of the 

local pressure. The mechanism can be described with Henry’s Law. Additionally, 

bubbles can coalescent to larger bubbles which have higher buoyancy. In /4/ it is 

reported that for ISO VG 32 and ISO VG 46 oils air bubbles be of to be of a minimum 

diameter . 

Eventually the buoyancy of an air bubble is determining whether an air bubble can be 

separated within the tank or not. The less the buoyancy, the less is the relative velocity 

of an air bubble to the surrounding oil flow. Figure 1 shows exemplarily the theoretical 

terminal velocity of an air bubble in oil according to Stokes’ drag (Equation 2) 

calculated for ISO VG 46, . 

Bubbles with a diameter larger than  change their shape; therefore Stokes’ drag 

is not applicable. This is indicated by the grey area. 

 (2) 

In Figure 1, the strong dependency of the bubble diameter can be identified. A bubble 

with a diameter of  has quarter the buoyancy of a bubble with diameter 

. As Stokes’ drag describes the flow around a rigid sphere, it is not 

always suitable for bubbles. Different models have been developed to describe this 

change by a so-called drag coefficient. Nevertheless this only changes the slope of the 

dependency of the velocity on the size of the bubble in cases of a spherical bubble. 
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Figure 1: Dependency of bubble velocity on diameter 

3. A development method for hydraulic tanks 

The here proposed methodology for the development of hydraulic tanks is separated 

into four steps. The aim of the method is to develop a design of a hydraulic tank 

optimized for the separation of oil. In the description of the methodology it is simplified 

that the tank has one return and one suction port and a prismatic shape. In Figure 2 

the sequence of the method is depicted which is described in the following. 

In the first step, the information needed for the design has to be gathered. This 

includes the available space, the positioning of return and suction, the number of 

components that have to be installed within the tank and if there are any design 

freedoms in positioning. For the simulations, a typical volume flow and the air fraction 

have to be known or estimated. Furthermore, the geometric position of the tank within 

the machine has to be known as well as information about the machine and tank being 

exposed to different static inclinations within the operation. 

The exposure to inclinations is substantial for the further proceeding. In general the 

designs can be divided into those where the tank is not inclined or just in one 

(preferential) direction and the designs where inclinations in two directions have to be 

regarded. For cases of rotation around the vertical axis it is assumed that these 

rotations are only of short duration and therefore a transient problem. Afterwards the 

case with only one inclination direction is referred as “2D-problem” since baffles can be 

positioned on a plane. If two inclination directions are possible, all spatial directions 

have to be considered for the flow. Therefore, these problems are referred as “3D-

problems” hereafter. 
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Figure 2: Sequence of proposed development method 

In the transition from the first to the second step the return and suction port are 

positioned. Ideally they are positioned in a way that the connecting line is as long as 

possible. In the case of a 2D-problem the inlet and outlet can be positioned spatially 

close to each other. In the further steps a separating baffle has to be implemented in 

order to prevent a short circuit flow. In case of a 3D-problem both ports should be 

positioned in opposing corners of the base plane with a certain gap to the walls of the 

tank. 

As second step the initial design is assessed. Here, the theoretical residential time 

should be calculated as well as the real residential time estimated using the flow 

behavior in simulation. The latter can be done with a single-phase CFD model. Based 

on the computed streamlines the paths of the oil (and with this the paths of air) can be 

identified and potential improvements for the flow guidance can be developed. With the 

length and the distribution of speed along the main streamline the real residential time 

can be ascertained. 

According to /7/ the typical bubble diameter and the filling height of the tank can be 

used to calculate an ideal residential time, assuming a uniform flow. As shown in 

Figure 1, a bubble with the diameter of  reaches a rising velocity of 

624 10th International Fluid Power Conference | Dresden 2016



. For a tank with the filling height of  a residential time 

of  is sufficient to separate bubbles of that size. The necessary time 

can be lower and is subject to the design of the tank and the resulting flow. 

As conclusion of the second step the possible symmetries in the tank are identified. For 

2D-problems the measures should be positioned symmetric to an axis parallel to the 

axis of inclination. In case of a 3D-problem the measures should be planned point-

symmetric to the center of the connecting line between the return and suction. 

In the third step the desired streamline is drafted with the defined symmetries. In order 

to reach the desired flow, adapted measures have to be implemented into the tank 

design. The measures can be divided into two categories: measures with a two-

dimensional characteristic and those with a three-dimensional characteristic. An 

overview of the measures is given in Table 1. 2D-measures are sheet metals which are 

used as either horizontal or vertical oriented baffles. Here, the fluid is either forced to 

flow around or over the baffle. 3D-measures can be differentiated between inclined 

wire-gauzes and inclined baffles. At a wire-gauze air bubbles are held back and may 

coalescent, whereas an inclined baffle is used to force the flow up or down. 

All measures can be used for 2D-problems as well as for 3D-problems. In case of a 

3D-problem caution is required when using 3D-measures. It is important that the 

measure is positioned in an area where the flow cannot reverse as the effect can turn 

negative. 

2D Measures 3D Measures 

Horizontal oriented 

baffles 
Inclined Wire-gauzes 

Vertical oriented 

baffles 
Inclined Baffles 

Table 1: Measures for flow guidance 

After implementing the measures in the third step the resulting geometry of the tank 

can be used for assessment. In the fourth step, the air separation behavior of the tank 

is computed using CFD. An Euler-Euler model according to the boundary conditions 
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(e.g. typical volume flow, phase fractions, air bubble size) is set up and calculated. 

Based on the results of the simulation it can be interpreted whether the tank design 

meets the desired air separation or not. If this is not the case the third and fourth step 

have to be done again, by reconsidering the measures and improving them. 

4. Exemplary application of the method 

In this segment, the previous presented method is applied to an example. For this a 

tank with a prismatic shape and the internal dimension of  is 

investigated. The filling height is  therefore the volume of oil is approx. 

. The pump is estimated to have a typical volume flow of 

 and with this the theoretical residential time is . 

The tank is regularly inclined in both base directions hence it is a 3D-problem. The 

return and the suction port are placed in opposite corners of the tank. In Figure 3 the 

tank and its dimensions are shown. The line in the upper half represents the filling 

height of the oil. The tube on the left is the return, the one in the opposite corner the 

suction. 

 

Figure 3: Dimensions of exemplary simple tank 

A single-phase simulation of the oil yields the real residential time minimum of . As 

boundary conditions the abovementioned volume flow of the pump as well as the 

physical parameters of an ISO VG 46 oil are used. In order to calculate the 

ideal/sufficient residential time, bubbles of diameter  are assumed. As 
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mentioned above, bubbles of that size have a good chance to be separated and can 

coalescent according to /4/. The ideal residential time then results to  

In order to assess the effectiveness of the used measures, a multi-phase simulation for 

this simple tank design is performed as well. Bubbles are modelled with a diameter of 

 and it is assumed that the volume fraction of air at the inlet is 

 As initial condition this volume fraction is applied to the whole oil domain, the air 

gap above the filling height is assumed as pure air. Therefore, the air bubbles will rise 

to the top of the tank. At the outlet the air fraction is expected to converge to an 

equilibrium over time. The multi-phase simulation yields a convergence to a phase 

fraction of  at the outlet. As only bubbles with the diameter  

are modelled, the volume fraction is just corresponding to this size! 

In the next step, two vertical oriented baffles are placed in order to extend the 

streamline. The dimensions and position are chosen arbitrary but regarding the 

symmetry point. In Figure 4 the new design is shown. The multi-phase simulation with 

the same boundary conditions as above yields a phase fraction of  at the 

suction port. Therefore, an improvement of doubling the deaeration is achieved with the 

additional baffles. 

 

Figure 4: Position of baffles in changed design 
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5. Variation of Parameters 

As the fictional example has no certain target value for the air separation, the arbitrary 

parameters are now varied for estimating the impact of changes. First, the variation of 

the volume flow of the pump is doubled in both variants (with and without baffles). 

Therefore the theoretical residential time is now  a realistic parameter 

for mobile hydraulic applications. 

In Figure 5 the area-weighted phase fraction of air at the suction port is shown over 

time for the doubled volume flow  for both variants. It can be 

identified that for the initial, simple design the oil at outlet gets faster deaerated, but 

results in a higher stationary value than in the design with the baffles. This can be 

explained by the different streamlines. Where in the initial design the air is separated 

near the return and the degassed oil quickly reaches the suction, in the design with 

baffles a more uniform flow is reached and therefore a better deaeration is possible. 

The air fractions after  yield to  for the initial design and  

for the design with baffles. 

 

Figure 5: Air separation for doubled volume flow 

In a second variation the length of the baffles is varied to  and  and 

simulated with the initial parameters. In this particular example no improvement could 

be observed as neither the air fraction at outlet nor the time delay changes in a 

significant way. This implies that the change of the streamline due to the measures is 

as shown above a crucial factor for the deaeration. But for related designs with minor 

changes to the streamline a change of design parameters has not the influence as 
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maybe expected. However it can be seen that the use of CFD to assess the design 

concept in early stages of the development is needed, as to improve the deaeration 

major changes in the design are necessary. 

6. Conclusion and Outlook 

The design of hydraulic tanks in general has to be improved since the requirements are 

increasing. One important aspect is to maintain the deaeration performance when 

changing - especially shrinking - the volume of the tank or the design. The use of CFD 

simulations to assess and predict the behavior of air in oil is commonly proposed. In 

this paper a development method for hydraulic tanks applying CFD simulations was 

presented. The method was applied to an example, showing the impact of baffles to 

the design. 

The results show that the effect of baffles especially their size and positioning should 

be investigated in more detail. The assumption that the deaeration of air bubbles of a 

certain size is an indicator for the overall deaeration performance has to be validated 

by further simulation as well as by measurements. Further the impact of different drag 

models and the changes in oil viscosity dependent on oil temperature and type should 

be investigated. At last the impacts of different design measures have to be further 

assessed and a general design theory has to be developed 
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8. Nomenclature 

 Diameter of Bubble  

 Gravitational Acceleration  

 Volume Flow of Pump  

 Temperature of Oil  

 Residential Time  

 Velocity of Bubble  

 Volume of Oil  

 Dynamic Viscosity of Oil  

 Density of Air  

 Density of Oil  
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DRESDNER VEREIN ZUR FÖRDERUNG 

DER FLUIDTECHNIK e.V. 
 
 
 
Duties and goals of the association  

The support of scientific research and development in education and application of 

research results in the fluid power domain. The association is purely non-profit and 

serves the public good. This includes:  

· Lectures and presentations on conventions and conferences  

· Scientific knowledge transfer with other universities and industry domestic and 

abroad 

· Publication of research results 

· Supply and distribution of educational material, dissertations and publications of 

the Institute of Fluid Power, TU Dresden 

· Support of educational and cultural events in the fluid power area 

· Preparation and organization of scientific fluid power conferences such as the 

International Fluid Power Colloquium (IFK) 

· Organization and execution of fluid power conferences in the Dresden area. 
 
 

Management: 

Dr.-Ing. Thomas Neubert (Chairmen), Hydrive Engineering GmbH 

Prof. Dr.-Ing. Jürgen Weber (Vice-Chairmen), Institut für Fluidtechnik, TU Dresden 

Dr.-Ing. Hilmar Jähne (Director), Hydrive Engineering GmbH 

Dr.-Ing. Norman Bügener (Treasurer), Dowaldwerke GmbH 

 

 

Contact: 

Dresdner Verein zur Förderung der Fluidtechnik e.V. 

c/o Institut für Fluidtechnik 

Technische Universität Dresden 

01062 Dresden 

 

Tel.: 0351/463-33559 

Fax: 0351/463-32136 

E-Mail: dvf@ifd.mw.tu-dresden.de 
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DRESDNER VEREIN ZUR FÖRDERUNG 

DER FLUIDTECHNIK e.V. 
 
 
 
Aufgaben und Ziele des Vereins 

Förderung der wissenschaftlichen Forschung und Entwicklung, der Aus- und 

Weiterbildung sowie der Anwendung von Forschungsergebnissen auf dem Gebiet der 

Fluidtechnik. Der Verein verfolgt ausschließlich gemeinnützige Zwecke. Diese Aufgabe 

schließt ein: 

· Vorträge und Referate auf Zusammenkünften und Tagungen 

· Wissenschaftlicher Gedankenaustausch mit anderen Hochschulen und 

Industrievertretern im In- und Ausland 

· Veröffentlichung von Forschungsergebnissen 

· Bereitstellung und Vertrieb von Lehrmaterialien, Dissertationen und Publikationen 

des Instituts für Fluidtechnik 

· Unterstützung von Bildungs- und Weiterbildungsmaßnahmen auf dem Gebiet der 

Fluidtechnik 

· Vorbereitung und Organisation von wissenschaftlichen Tagungen, wie das 

Internationale Fluidtechnische Kolloquium 

· Organisation und Durchführung der Dresdner Fluidtechnischen Kolloquien 
 
 

Vorstand: 

Dr.-Ing. Thomas Neubert (Vorsitzender), Hydrive Engineering GmbH 

Prof. Dr.-Ing. Jürgen Weber (Stellvertreter), Institut für Fluidtechnik, TU Dresden 

Dr.-Ing. Hilmar Jähne (Geschäftsführer), Hydrive Engineering GmbH 

Dr.-Ing. Norman Bügener (Schatzmeister), Dowaldwerke GmbH 

 

 

Kontakt: 

Dresdner Verein zur Förderung der Fluidtechnik e.V. 

c/o Institut für Fluidtechnik 

Technische Universität Dresden 

01062 Dresden 

 

Tel.: 0351/463-33559 

Fax: 0351/463-32136 

E-Mail: dvf@ifd.mw.tu-dresden.de 
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