45 research outputs found

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet

    BGP Module Documentation for the PYenca Agent

    Get PDF
    This documentation stand for the design, implementation ideas and some features and capabilities added to the NETCONF Protocol through the BGP implementation process. Also, it explains a resulting library created for this implementation to transforms from the data device to the XML design and backward, that could be use for the implementation of new modules

    CHASING THE UNKNOWN: A PREDICTIVE MODEL TO DEMYSTIFY BGP COMMUNITY SEMANTICS

    Get PDF
    The Border Gateway Protocol (BGP) specifies an optional communities attribute for traffic engineering, route manipulation, remotely-triggered blackholing, and other services. However, communities have neither unifying semantics nor cryptographic protections and often propagate much farther than intended. Consequently, Autonomous System (AS) operators are free to define their own community values. This research is a proof-of-concept for a machine learning approach to prediction of community semantics; it attempts a quantitative measurement of semantic predictability between different AS semantic schemata. Ground-truth community semantics data were collated and manually labeled according to a unified taxonomy of community services. Various classification algorithms, including a feed-forward Multi-Layer Perceptron and a Random Forest, were used as the estimator for a One-vs-All multi-class model and trained according to a feature set engineered from this data. The best model's performance on the test set indicates as much as 89.15% of these semantics can be accurately predicted according to a proposed standard taxonomy of community services. This model was additionally applied to historical BGP data from various route collectors to estimate the taxonomic distribution of communities transiting the control plane.http://archive.org/details/chasingtheunknow1094566047Outstanding ThesisCivilian, CyberCorps - Scholarship For ServiceApproved for public release. distribution is unlimite

    Planning and verification of multipath routing protocols

    Get PDF
    Conventionally the problem of the best path in a network refers to the shortest path problem. However, for the vast majority of networks present nowadays this solution has some limitations which directly affect their proper functioning, as well as an inefficient use of their potentialities. Problems at the level of large networks where graphs of high complexity are commonly present as well as the appearing of new services and their respective requirements, are intrinsically related to the inability of this solution. In order to overcome the needs present in these networks, a new approach to the problem of the best path must be explored. One solution that has aroused more interest in the scientific community considers the use of multiple paths between two network nodes, where they can all now be considered as the best path between those nodes. Therefore, the routing will be discontinued only by minimizing one metric, where only one path between nodes is chosen, and shall be made by the selection of one of many paths, thereby allowing the use of a greater diversity of the present paths (obviously, if the network consents). The establishment of multi-path routing in a given network has several advantages for its operation. Its use may well improve the distribution of network traffic, improve recovery time to failure, or it can still offer a greater control of the network by its administrator. These factors still have greater relevance when networks have large dimensions, as well as when their constitution is of high complexity, such as the Internet, where multiple networks managed by different entities are interconnected. A large part of the growing need to use multipath protocols is associated to the routing made based on policies. Therefore, paths with different characteristics can be considered with equal level of preference, and thus be part of the solution for the best way problem. To perform multi-path routing using protocols based only on the destination address has some limitations but it is possible. Concepts of graph theory of algebraic structures can be used to describe how the routes are calculated and classified, enabling to model the routing problem. This thesis studies and analyzes multi-path routing protocols from the known literature and derives a new algebraic condition which allows the correct operation of these protocols without any network restriction. It also develops a range of software tools that allows the planning and the respective verification/validation of new protocols models according to the study made

    Multipath policy routing in packet switched networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaNowadays, the continuous operations of large networks, under multiple ownerships, are of tremendous importance and as a result, routing protocols have gained numerous extensions and accumulated complexity. Policy-based routing can be of signi cance for common networks when the cost of transporting a bit is no longer the biggest pressure point. The best path problem is a generalization of the shortest path problem that suits policy based routing. This means that preferences for the paths depend on semantically rich characteristics, in which two di erent paths may have the same preference. However, current policy-based routing models cannot take full advantage of the multiplicity of connections to a given destination and are single path in nature. Therefore multipath can bring several advantages in policy based routing. Designing multipath routing protocols based on policies seem to be a problem of interest. To model routing problems, algebraic structures and graph theory are used. Through variants of classical methods of linear algebra routing problems can be solved. The objective of this dissertation is to devise a multipath policy-based routing protocol using a simple destination-based hop-by-hop protocol with independent forwarding decisions. Networks featuring these characteristics can be more resilient to failures, provide better tra c distribution and maintain a simple forwarding paradigm. The dissertation concludes with the trade-o 's between the exibility of the proposed solution, the amount of multiple paths that can be used simultaneously and the network restrictions that must be applied

    Security analysis of network neighbors

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2010O presente trabalho aborda um problema comum a muitos dos actuais fornecedores de serviços Internet (ISPs): mitigação eficiente de tráfego malicioso na sua rede. Este tráfego indesejado impõe um desperdício de recursos de rede o que leva a uma consequente degradação da qualidade de serviço. Cria também um ambiente inseguro para os clientes, minando o potencial oferecido pela Internet e abrindo caminho para actividades criminosas graves. Algumas das principais condicionantes na criação de sistemas capazes de resolver estes problemas são: a enorme quantidade de tráfego a ser analisado, o facto da Internet ser inerentemente anónima e a falta de incentivo para os operadores de redes de trânsito em bloquear este tipo de tráfego. No âmbito de um ISP de média escala, este trabalho concentra-se em três áreas principais: origens de tráfego malicioso, classificação de segurança de redes vizinhas ao ISP e políticas de intervenção. Foram colectados dados de rede considerando, determinados tipos de tráfego malicioso: varrimento de endereços e inundação de fluxos de ligações; assim como informação de acessibilidades rede: mensagens de actualização de BGP disponibilizadas pelo RIPE Routing Information Service. Analisámos o tráfego malicioso em busca de padrões de rede, o que nos permitiu compreender que é maioritariamente originário de um subconjunto muito pequeno de ASes na Internet. No âmbito de um ISP e de acordo com um conjunto de métricas de segurança, definimos uma expressão de correlação para quantificar os riscos de segurança associados a conexões com redes vizinhas, a qual denominámos Risk Score. Finalmente, propusemos técnicas para concretização das tarefas de rede necessárias à redução de tráfego malicioso de forma eficiente, se possível em cooperação com redes vizinhas / ASes. Não temos conhecimento de qualquer publicação existente que correlacione as características de tráfego malicioso de varrimento de endereços e inundação de fluxos de ligações, com informação de acessibilidades de rede no âmbito de um ISP, de forma a classificar a segurança das vizinhanças de rede, com o propósito de decidir filtrar o tráfego de prefixos específicos de um AS ou bloquear todo o tráfego proveniente de um AS. Acreditamos que os resultados apresentados neste trabalho podem ser aplicados imediatamente em cenários reais, permitindo criar ambientes de rede mais seguros e escaláveis, desta forma melhorando as condições de rede necessárias ao desenvolvimento de novos serviços.This thesis addresses a common issue to many of current Internet Service Providers (ISPs): efficient mitigation of malicious traffic flowing through their network. This unwanted traffic imposes a waste of network resources, leading to a degradation of quality of service. It also creates an unsafe environment for users, therefore mining the Internet potential and opening way for severe criminal activity. Some of the main constraints of creating systems that may tackle these problems are the enormous amount of traffic to be analyzed, the fact that the Internet is inherently untraceable and the lack of incentive for transit networks to block this type of traffic. Under the scope of a mid scale ISP, this thesis focuses on three main areas: the origins of malicious traffic, security classification of ISP neighbors and intervention policies. We collected network data from particular types of malicious traffic: address scans and flow floods; and network reachability information: BGP update messages from RIPE Routing Information Service (RIS). We analyzed the malicious traffic looking for network patterns, which allowed us to understand that most of it originates from a very small subset of Internet ASes. We defined a correlation expression to quantify the security risks of neighbor connections within an ISP scope according to a set of security metrics that we named Risk Score. We finally proposed techniques to implement the network tasks required to mitigate malicious traffic efficiently, if possible in cooperation with other neighbors/ASes. We are not aware of any work been done that correlates the malicious traffic characteristics of address scans and flow flood attacks, with network reachability information of an ISP network, to classify the security of neighbor connections in order to decide to filter traffic from specific prefixes of an AS, or to block all traffic from an AS. It is our belief, the findings presented in this thesis can be immediately applied to real world scenarios, enabling more secure and scalable network environments, therefore opening way for better deployment environments of new services

    Application of overlay techniques to network monitoring

    Get PDF
    Measurement and monitoring are important for correct and efficient operation of a network, since these activities provide reliable information and accurate analysis for characterizing and troubleshooting a network’s performance. The focus of network measurement is to measure the volume and types of traffic on a particular network and to record the raw measurement results. The focus of network monitoring is to initiate measurement tasks, collect raw measurement results, and report aggregated outcomes. Network systems are continuously evolving: besides incremental change to accommodate new devices, more drastic changes occur to accommodate new applications, such as overlay-based content delivery networks. As a consequence, a network can experience significant increases in size and significant levels of long-range, coordinated, distributed activity; furthermore, heterogeneous network technologies, services and applications coexist and interact. Reliance upon traditional, point-to-point, ad hoc measurements to manage such networks is becoming increasingly tenuous. In particular, correlated, simultaneous 1-way measurements are needed, as is the ability to access measurement information stored throughout the network of interest. To address these new challenges, this dissertation proposes OverMon, a new paradigm for edge-to-edge network monitoring systems through the application of overlay techniques. Of particular interest, the problem of significant network overheads caused by normal overlay network techniques has been addressed by constructing overlay networks with topology awareness - the network topology information is derived from interior gateway protocol (IGP) traffic, i.e. OSPF traffic, thus eliminating all overlay maintenance network overhead. Through a prototype that uses overlays to initiate measurement tasks and to retrieve measurement results, systematic evaluation has been conducted to demonstrate the feasibility and functionality of OverMon. The measurement results show that OverMon achieves good performance in scalability, flexibility and extensibility, which are important in addressing the new challenges arising from network system evolution. This work, therefore, contributes an innovative approach of applying overly techniques to solve realistic network monitoring problems, and provides valuable first hand experience in building and evaluating such a distributed system

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Architecture and performance of multi-hop wireless ad-hoc routing protocol (MultiWARP)

    Get PDF
    In recent years, a great deal of attention has been given to wireless connectivity solutions that are capable of establishing wireless ad-hoc networks between mobile nodes. Whilst most of these networks are formed using a combination of fixed and mobile infrastructure, completely infrastructure-less networks are thought to become more commonplace in the future. Moreover, this type of network structure seeks to utilise multi-hop connectivity between mobile nodes rather than the traditional single-hop connectivity established between fixed access points.The initial configuration phase and subsequent maintenance phase of a multi-hop wireless ad-hoc network requires the use of appropriate routing functions to exist between the mobile nodes. Therefore, it is essential that a routing protocol capable of determining correct and optimal routing path information in the presence of node mobility and the mobile radio environment be sought. Furthermore, it is beneficial to utilise the limited wireless bandwidth efficiently, such that a routing protocol should be designed specifically in the context of a multi-hop wireless ad-hoc network topology. This can be achieved through employing a non-hierarchical approach and using neighbouring nodes to act as intermediate relay nodes.The proposed routing protocol, called the Multi-hop Wireless Ad-hoc Routing Protocol (MultiWARP), is comprised of both a proactive and reactive routing component, thus forming a hybrid protocol which is able to exploit the benefits of each component. It is shown that manipulating these two components within the context of an awareness region, which divides the network into 2 regions, the routing overhead can be minimised. For the proactive component, the necessary network topology information that must be transmitted between neighbouring nodes is encoded within a routing update (RUPDT) packet. In this study, three alternative RUPDT encoding schemes have been formulated to encode the network topology in an efficient manner to reduce the RUPDT packet size.For the reactive component, a novel covercasting mechanism is designed that minimises the number of route request (RREQ) transmissions required to determine the routing path by utilising existing routing table information. Supplementary techniques are then utilised, such as snooping, route repair, and route optimisation to further optimise performance and minimise the route discovery delay (latency). This same covercasting mechanism is then utilised to efficiently transmit periodic RUPDT packets between neighbouring nodes to maintain routing table validity at each node, without having to resort to flooding which causes the “broadcast storm problem”. In addition, several route selection algorithms are considered which distribute traffic data between the intermediate relay nodes comprising the ad-hoc network.The performance and computational complexity of the proposed hybrid routing protocol is shown by means of computer simulations and theoretical analysis. Various traffic scenarios and topologies are presented to obtain the routing protocol performance metric results, and these are compared with other protocols found in the literature. For a multi-hop wireless ad-hoc network, it is shown that the proposed hybrid routing protocol, MultiWARP, is able to achieve higher average system performance in terms of improved throughput and stability performance when compared to other wireless ad-hoc routing protocols, such as DSR
    corecore