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Resumo

O presente trabalho aborda um problema comum a muitos dos actuais fornecedores de serviços
Internet (ISPs): mitigação eficiente de tráfego malicioso na sua rede. Este tráfego indesejado im-
põe um desperdício de recursos de rede o que leva a uma consequente degradação da qualidade
de serviço. Cria também um ambiente inseguro para os clientes, minando o potencial oferecido
pela Internet e abrindo caminho para actividades criminosas graves. Algumas das principais condi-
cionantes na criação de sistemas capazes de resolver estes problemas são: a enorme quantidade
de tráfego a ser analisado, o facto da Internet ser inerentemente anónima e a falta de incentivo
para os operadores de redes de trânsito em bloquear este tipo de tráfego.

No âmbito de um ISP de média escala, este trabalho concentra-se em três áreas principais: ori-
gens de tráfego malicioso, classificação de segurança de redes vizinhas ao ISP e políticas de
intervenção.

Foram colectados dados de rede considerando, determinados tipos de tráfego malicioso: varri-
mento de endereços e inundação de fluxos de ligações; assim como informação de acessibilidades
rede: mensagens de actualização de BGP disponibilizadas pelo RIPE Routing Information Service.
Analisámos o tráfego malicioso em busca de padrões de rede, o que nos permitiu compreender
que é maioritariamente originário de um subconjunto muito pequeno de ASes na Internet. No âm-
bito de um ISP e de acordo com um conjunto de métricas de segurança, definimos uma expressão
de correlação para quantificar os riscos de segurança associados a conexões com redes vizinhas,
a qual denominámos Risk Score. Finalmente, propusemos técnicas para concretização das tarefas
de rede necessárias à redução de tráfego malicioso de forma eficiente, se possível em cooperação
com redes vizinhas / ASes.

Não temos conhecimento de qualquer publicação existente que correlacione as características de
tráfego malicioso de varrimento de endereços e inundação de fluxos de ligações, com informação
de acessibilidades de rede no âmbito de um ISP, de forma a classificar a segurança das vizi-
nhanças de rede, com o propósito de decidir filtrar o tráfego de prefixos específicos de um AS ou
bloquear todo o tráfego proveniente de um AS.

Acreditamos que os resultados apresentados neste trabalho podem ser aplicados imediatamente
em cenários reais, permitindo criar ambientes de rede mais seguros e escaláveis, desta forma
melhorando as condições de rede necessárias ao desenvolvimento de novos serviços.

Palavras-chave: tráfego malicioso, vizinhança de rede, BGP, regras de especificação de fluxos,
segurança de rede
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Abstract

This thesis addresses a common issue to many of current Internet Service Providers (ISPs): effi-
cient mitigation of malicious traffic flowing through their network. This unwanted traffic imposes a
waste of network resources, leading to a degradation of quality of service. It also creates an unsafe
environment for users, therefore mining the Internet potential and opening way for severe criminal
activity. Some of the main constraints of creating systems that may tackle these problems are the
enormous amount of traffic to be analyzed, the fact that the Internet is inherently untraceable and
the lack of incentive for transit networks to block this type of traffic.

Under the scope of a mid scale ISP, this thesis focuses on three main areas: the origins of malicious
traffic, security classification of ISP neighbors and intervention policies.

We collected network data from particular types of malicious traffic: address scans and flow floods;
and network reachability information: BGP update messages from RIPE Routing Information Ser-
vice (RIS). We analyzed the malicious traffic looking for network patterns, which allowed us to
understand that most of it originates from a very small subset of Internet ASes. We defined a
correlation expression to quantify the security risks of neighbor connections within an ISP scope
according to a set of security metrics that we named Risk Score. We finally proposed techniques
to implement the network tasks required to mitigate malicious traffic efficiently, if possible in coop-
eration with other neighbors/ASes.

We are not aware of any work been done that correlates the malicious traffic characteristics of
address scans and flow flood attacks, with network reachability information of an ISP network, to
classify the security of neighbor connections in order to decide to filter traffic from specific prefixes
of an AS, or to block all traffic from an AS.

It is our belief, the findings presented in this thesis can be immediately applied to real world sce-
narios, enabling more secure and scalable network environments, therefore opening way for better
deployment environments of new services.

Keywords: malicious traffic, network neighbors, peering, BGP, flow specification rules, network
security
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Chapter 1

Introduction

In this chapter we describe the main network security challenges faced by Internet Service Providers
(ISPs) and explain the contributions provided by this thesis to help solving them.

1.1 Challenges of Internet Service Providers

When dealing with ISP networks several additional issues arise, not only due to the number of
hosts, amount of traffic, technology diversity, but mainly due to the lack of control over the sources
of malicious traffic. Although this problem is similar to the ones dealt in typical local area networks,
one big difference exists, the Internet is managed by a myriad of entities, each with their own
agenda and not all overlap. Finally, the fact that ISPs are typically only considered traffic carriers
raises a whole new set of challenges, since although the ISP has the responsibility of protecting its
network, some of the possible defense mechanisms may be considered too intrusive, with privacy
concerns for the end customers (e.g., blocking certain types of traffic, virus detection). A thin line
therefore exists between traffic engineering and network operator abuses.

One of the main obstacles to have efficient solutions for dealing with malicious traffic is the lack of
incentives for ISPs to mitigate it. First, ISPs of entities that generate malicious traffic do not have any
incentive to mitigate this traffic. The malicious users are often paying customers and the incentive
is on the opposite direction, i.e., for the ISP to provide the best service, which in those cases means
providing Internet connectivity. Second, in case ISPs choose to assume a responsible role on this
issue, they need to increase their operational costs for deployment of mitigation mechanisms, i.e.,
new equipment and new specialized personnel. Also, such mechanisms are not perfect, they add
complexity to network architectures and anecdotal evidences of negative impact on well-behaved
customers are common.

As mentioned one big obstacle to the mitigation of malicious traffic within an ISP network is its lack
of control above the rest of the Internet. Although we can gain a lot from the inherent openness
of the Internet, we must be conscious of the problems that derive from that fact. Considering the
Internet as an open system means that malicious traffic mitigation in the Internet must be a joint
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effort of all parties to be effective. All networks must be called to this effort, or at least the most
relevant in current Internet infrastructure, e.g., Tier-1 ASes. This brings many other problems to the
table, e.g., business relationships, Internet neutrality, secrecy of traffic policies.

Since we cannot control actions from all providers, one possibility may be to create proper incen-
tives for malicious traffic mitigation best practices.

1.2 Contribution

In this thesis we create a mechanism that enables security classification of network neighbors,
allowing the design of security systems that deal with malicious network neighbors and in particular
peering relationships.

This thesis provides an analysis of particular types of malicious traffic in a medium size ISP network,
providing useful input for the task of designing new tools that deal with malicious traffic within an
Internet network. Due to the extremely wide range of issues that building such tools present, this
information is extremely useful for focusing on particular ones, to understand the scalability of a
specific approach, and to understand if it may even be a viable solution on current Internet.

Simplification in integrating with existing platforms allows capitalization of previous investments, an
important factor for new technologies since one of the main problems that currently exist is the in-
creasing operational cost of maintaining a network. Integration is therefore crucial for a sustainable
solution.

Based on the observations obtained from the malicious data analysis, we defined Risk Score,
a classification mechanism that allows correlation of different metrics to characterize malicious
traffic. A specific set of metrics was selected, however the Risk Score was defined with enough
flexibility to easily integrate new types of metrics. Having a Risk Score allows a network operator to
better interpret its network neighbors, namely its peering relationships, and quantify their security
characteristics. Several different possibilities to integrate it with network mechanisms that enable
malicious traffic mitigation are also presented.

If we desire the Internet to be a fertile environment for innovation, e-governance and socio-economic
changes, we need to deliver the best conditions for doing so. This means security is a fundamen-
tal requirement. For this to happen we need proper incentives, and for those we may contribute
with technological tools that help us provide them. This work is an effort in that direction, enabling
network operators to be better prepared to deal with an environment not completely "friendly". Cre-
ating new ways of interaction between different network operators. With the work being presented
with this thesis we provide a flexible way to quantify how an ISP relates to other neighbor networks.
A continuous perspective of the network neighbors behavior is fundamental and this is the rationale
that drives this work.

2



1.3 Document organization

The rest of this thesis is structured in order to give a contextualization of network environment,
current state of the art malicious traffic studies, to support the classification methodology of network
neighbors and applicability of proper network mechanisms to address ISP network security issues.
Chapter 2 provides the necessary background related to the Internet infrastructure, malicious traffic
and proposed traffic control mechanisms. Chapter 3 dives into existing work done within this area of
expertise. Chapter 4 presents the analysis done on malicious traffic, BGP reachability information
and a description of the tools used in the process. Chapter 4 describes the concept of Risk Score,
its metrics, usage and simulation results to understand its applicability. On chapter 6 we propose
a set of intervention policies, which have as main input the previously defined Risk Score. Finally
on Chapter 7 we present the thoughts derived from the work done and new venues that this thesis
opens for the research community.
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Chapter 2

Background

Following in this chapter we provide the necessary background to better understand the concepts
studied in this thesis, namely the Internet infrastructure, behaviors of malicious traffic and existing
network mitigation techniques.

2.1 The Internet

The Internet was born from a United States military and private research program with the purpose
of creating highly robust distributed computer networks that could interconnect different technolo-
gies in a seamless way. From than to current Internet a lot changed at extremely high speed but not
always in the most sustainable way. The particular environment under which the Internet was born
is often seen as one of the main reasons for many of its security weaknesses. Nevertheless its
flexibility and inherent capability to integrate different technologies is an extremely strong argument
for considering the Internet as a success case albeit all its problems.

Current Internet is composed of different interconnected networks administered by distinct entities,
some private, some military, some governmental, each one with its particular agenda. The Inter-
net is therefore a global network of networks that allows communication between many different
entities, with different intentions and some of which are malicious.

The Internet has two important entities for its infrastructure: ICANN and IETF. The former is respon-
sible for the management of Internet Protocol address space, top-level domain names, Internet
protocol identifiers; the latter is responsible for the Internet technology layer decisions. Regard-
ing ICANN it is also responsible for managing another important organization, IANA, which deals
with the technical aspects of ICANN operations, being one the most relevant for this thesis, the
management of the IP address space.

5



Figure 2.1: ICANN structure.

Depending on the region of the world, IANA delegates the allocation/registration of IP address
space and autonomous system numbers (ASNs) to one of five RIRs (Regional Internet Registries):

• AfriNIC - African Network Information Centre for Africa;

• ARIN - American Registry for Internet Numbers for North America;

• APNIC - Asia-Pacific Network Information Centre for Asia/Pacific;

• LACNIC - Latin America and Caribbean Network Information Centre for Latin America and
some Caribbean Islands;

• RIPE NCC - Réseaux IP Européens Network Coordination Centre for Europe, the Middle
East, and Central Asia.

Considering the scope of this thesis, following are some of the most important aspects of the
Internet structure:

Networks and Prefixes In the IP address space the term network usually refers to an IP classful
network, i.e., class A, B or C network as specified in RFC 791 [37]. In this context, prefixes are
classless hierarchical blocks of IP addresses as defined in RFC 4632 [27], i.e., CIDR blocks that
may include subnets of networks or groups of one or more networks.

Autonomous System (AS) According to RFC 1930 [28] an AS is "(...) a connected group of
one or more IP prefixes run by one or more network operators which has a SINGLE and CLEARLY
DEFINED routing policy". An AS is the routing policy entity used in EGP protocols, for example BGP
[41], which is the Internet de facto protocol for inter-AS routing. Regarding the routing policy, an AS
can have different interior gateway protocols (IGP) and related metrics to make routing decisions,
however when interacting with other ASes it should have a consistent routing policy, namely the
reachability information of prefixes should be coherent. Usually ASes are classified according to
the relationships with their network neighbors. They are considered to be one of the following types:

• Stub: only a connection exists to an upstream AS. If the AS routing policy is equal to the one
of the upstream AS, one AS would be enough, in fact since it is considered an unjustifiable
waste of resources, this situation is considered to be a bad practice [28]. Albeit a stub, the AS
may have peering connections with other ASes;

6



• Multi-homed: the AS has multiple connections to upstream ASes. This is a common prac-
tice if an entity wishes to have different upstream service providers, e.g., to have network
redundancy;

• Transit: the AS provides connectivity to other networks. The most common case of this type
is an Internet Service Provider (ISP).

These definitions are not standardized, for which reason we can find different classifications in
research works [22], they are simply the most common.

Autonomous System Number (ASN) This is currently a 4 byte globally unique number [49]
used to identify the AS and to exchange exterior gateway information with other ASes. For BGP
messages the ASN can be found in Open Messages, used to negotiate BGP session terms be-
tween BGP peers, and in three attributes of a BGP update message: AS_PATH, AGGREGATOR,
COMMUNITIES. Till recent times, ASNs only had 2 bytes, however due to resource exhaustion it
became necessary to have an update to the standard in order to enable a bigger allocation space.
This change is very recent and some concerns still exist in network operators regarding its deploy-
ment [33], however since January 1 2009, 4 bytes ASNs were allocated by default for new requests
and since January 1 2010 only 4 bytes ASNs are allocated for new requests.

Border Gateway Protocol (BGP) BGP is an inter-domain routing protocol [41] that enables ex-
change of network reachability information between ASes and is responsible for enabling the inter-
connection of all ASes in the Internet. BGP standardizes mechanisms to announce and withdrawal
prefix routes, enabling forwarding policies solely based on the destination addresses of IP packets.
To allow finer grained routing decisions specific attributes may be used, namely:

• MULTI_EXIT_DISC (MED): an optional non-transitive attribute for discriminating among mul-
tiple entry or exit points towards a neighbor AS;

• LOCAL_PREF: a well-known attribute that has its value calculated per route and is only sent
to internal peers. Due to the importance of this protocol many other mechanisms were added
and formally defined in the form of RFCs.

7



Figure 2.2: Internet private peering topology example.

Other relevant BGP attributes that will be addressed in this thesis are:

• AS_PATH: a well known attribute composed by all the autonomous systems through which a
BGP update message has passed by. From this attribute we know the ASes that a packet will
traverse when sent towards a certain destination;

• COMMUNITIES [17]: an optional non-transitive attribute to enable definition of a common
goal for a set of prefixes, e.g., control how to distribute routing information among a BGP
speaker neighbors.

Peering Based on an agreement between network operators (i.e., ASes) named peers, for the
exchange of data traffic at an interconnection point. This strategy allows direct exchange of data
without the need to go through the Internet cloud. Peering is done when found beneficial for the
involved parties, therefore peering agreements often imply definition of contracts with specific SLAs
agreed between parties, where peering relationship terms are defined, e.g., allowed network activ-
ities. Two main types of peering exist:

• Private: when done between only two networks that create a direct interconnection point.
Often this type of peering is not publicly disclosed, which makes the understanding of Internet
data flows more complex to understand [18]. Depending on the type of contract agreed it
might imply a fee, or be simply free, it is a business decision dependant on the mutual benefits
for both networks;

• Public: when done at an interconnection point where more than two network entities exist e.g.
Amsterdam Internet Exchange (AMS-IX), Seattle Internet Exchange (SIX). In most cases
this type of peering is economically more viable for networks to connect since many network
entities are reachable from a single interconnection point.

8



Depeering When peering ceases to be considered beneficial for the parties involved the peering
infrastructure is dismantled, which means traffic between both networks will start traversing the
Internet cloud. This means reachability between both networks should still be possible, however
without taking advantage of a direct connection, e.g., lower round trip times, higher dedicated band-
width. The technical implication for a depeering action is the tier down of the BGP session between
both ASes.

Security Current Internet has many security limitations, some with higher severity than others.
At the top of the most serious are the ones related to BGP, which have at prefix hijacking the most
frightening attack towards network operators and that apparently is still very common nowadays
[33] despite all the research efforts that have been done to mitigate this problem [11, 39, 29].

From the background knowledge described in this sub-chapter it becomes easier to understand
that the Internet is a set of unregulated interconnected networks that behave as open systems,
i.e., the actions performed within a network at one side of the world, may affect networks on the
opposite side of the world. The traffic flows through a myriad of ASes in the Internet, often without
any security mechanisms in place.

2.2 Malicious Traffic

The Internet provides a fertile ground for malicious activities to occur. Analyzing the Symantec
Global Internet Security Threat Report for 2009 [25] we can observe that malicious agents in the In-
ternet have been highly active, and although threat trends change, e.g., decrease in data breaches,
increase in botnets activity; it is not clear for what reason exactly, if due to intended actions or simply
due to cyber criminals moving to more profitable areas. Overall still much has to be done to create
a safer environment.

Malicious traffic can present itself through different attack vectors, different types of threats and
different agendas from the part of the malicious agents. According to a senior responsible for
security technology and response at Symantec: "The scale of these attacks and the fact that they
originate from across the world makes this a truly international problem requiring the cooperation
of both the private sector and world governments.". As more enterprises move to the Internet their
communications infrastructure, malicious activity also increases since it becomes a more profitable
business for cyber criminals.

According to the Arbor report [33] the most relevant attack vectors in 2009 were flood based attacks,
e.g. UDP, ICMP, which indicates special attention must be given to address this particular type of
attack vector.

Distributed Denial of Service (DDoS) attacks bandwidth growth slowed down, however it is still
growing, for example in 2009 the largest DDoS attack had a peak of 49 Gigabits per second.
Besides bandwidth denials of service, an increase in other types of resource exhaustion attacks
were detected, e.g. CPU exhaustion, targeted at services facing the Internet, e.g., DNS. According
to the Arbor report [33] the biggest threat was in fact DDoS to links, hosts or services.
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Although all the evolutions seen for mitigating flood attacks, whether TCP or UDP, it is still an
extremely common attack vector used in current Internet, approximately 45% of all registered attack
vectors. In fact, this type of attacks is not only toward typical public services, e.g., HTTP, but also
towards BGP peering addresses, which if successful, may have a devastating impact in networks
connectivity.

Spam is a malicious activity responsible for much effort allocation by the part of corporations and
one of its usual side effects is port/host scanning. For this reason, the latter is often used as a
correlation factor when understanding this particular malicious traffic behavior.

In current Internet, many network operators already have some form of detecting and mitigating
DDoS attacks [36]. Some of the most popular mitigation techniques for malicious traffic include:
source/destination based access control lists (ACLs), source/destination based BGP remotely trig-
gered blackholing (RTBH) [48], intelligent filtering, rate-limiting and BGP flow specification. Since
some of these techniques may have negative impact in legitimate traffic and in the service provided
to well-behaved paying customers, less harsh approaches are being used not to completely block
traffic from entire networks but placing customers in wall-gardens or in quarantine. These more
"sympathetic" solutions are of course done for the internal customers, relationships with external
networks are usually addressed differently. This thesis focuses on the latter.

All these observations are obviously considering that malicious traffic is an unwanted type of traffic
for a network operator. This is, unfortunately, not always true, placing this area of research in
considerably fuzzier grounds. The following question is therefore very relevant:

Why may a network operator want malicious traffic?

Some possible answers include:

• The malicious traffic originator is a paying customer. Blocking its traffic leads to an unsatisfied
customer;

• The network operator has malicious intentions, e.g. organized crime, and is colluding with the
originator of malicious traffic;

• Some network operators base their business models on accounted traffic, this means if a
customer exchanges more traffic it also pays more.

2.3 Malicious Traffic Mitigation

Two main areas exist for the development of defense mechanisms in regard to malicious traffic,
host-based and network-based. Host-based approaches (e.g., rootkit scanners, patching policies)
are confined to hosts and although they have an extremely important role in the deployment of
efficient security measures, network-based approaches (e.g., Intrusion Detection System) provide
a wider defense barrier. The work done in this thesis focuses on network-based approaches, for
which reason the defense mechanisms that will be described within this section belong to that class
of defenses.

Typical network mechanisms used for mitigation of malicious traffic include:
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Source/destination based access control lists (ACLs) A simple solution for malicious traffic
mitigation is to have ACLs deployed in routers found in the path to the target prefix within the
target network. These ACLs may be defined to drop/rate-limit traffic destined to the target network
(destination based ACLs), or have traffic from a specific origin dropped/rate-limited (source based
ACLs). This technique has the advantages of being simple and enabling good filter granularity,
e.g., traffic type, source/destination prefix, TCP port, packet size. The main disadvantages are the
inherent complexity of managing ACLs, the fact they must be configured router-by-router in their
ingress or egress interfaces, and they do not distinguish malicious from legitimate traffic.

Destination based black-holing One technique that uses BGP to mitigate malicious traffic sent
to a particular target is simple black-holing. When an attack is detected within an AS, an iBGP
custom update message is created, where the targeted prefix (host or network) has the next hop
selected from the private internet networks defined in RFC 1918 [42]. This advertisement is than
exchanged within the iBGP domain. This technique considers that most routers in the Internet, in
particular edge-routers, have routes configured to send networks from RFC 1918 to the null inter-
face. Since the null interface route will generate a host unreachable ICMP message, if the network
operator does not want for the attacker to realize the attack is being manipulated, workarounds
must be but in place for the ICMP message to not reach the attacker machine(s). This approach
has the advantage of avoiding the rest of the network from being affected, however for this to be
achieved the network operator is shutting down the part of its network that the attack is targeting,
affecting malicious as well as legitimate traffic. This is consequence of another disadvantage of this
technique, the low granularity available to characterize the malicious traffic.

Source/destination based BGP remotely triggered black-holing (RTBH) RTBH is a more ad-
vanced technique that tries to overcome the limitations of simple black-holing by defining special
BGP communities within the target AS. BGP is therefore used as a signaling protocol, which can
be deployed from a unique management point. For each edge-router a special community is de-
fined and another for particular groups of edge-routers. When an attack is detected, an iBGP
advertisement is propagated in the victim AS for the destination prefix, with the communities as-
sociated with the routers through which the attack is passing through and with a no-export policy.
A pre-configured policy exists in every router to filter advertisements with their particular commu-
nity identification strings. That policy will then state the injection of routes with specific next hops,
which can be for example the null interface. With the RTBH mechanism we can choose only the
routers through which the malicious traffic is flowing and signal them to manipulate the malicious
traffic. This has the advantage that all other routers will continue to provide the correct service for
legitimate traffic. Details for this technique can be found in RFC 3882 [48].

Sinkhole tunnels [48] The RTBH technique implicitly states black-holing traffic, however, instead
of simply dropping packets by specifying the next hop as the null interface, it can be configured to
maintain the next hop but to forward the packets through a particular path/tunnel, which can have
a packet sniffer for malicious traffic analysis, or be manipulated in more intelligent ways, e.g., using
traffic engineering techniques for:
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• QoS policies deployment;

• Rate-limiting;

• ACLs for dropping traffic.

One of the big security issues of this approach is the eBGP messages exchanged with the network
peers, which may be crafted with specific communities used for this technique and that may lead
the network operator to wrongly act on traffic otherwise considered legitimate.

BGP flow specification To tackle one of the limitations of RTBH techniques, i.e., low granularity,
another technique named BGP flow specification has been proposed, and is now defined under
the proposed standard RFC 5575 [32]. Due to its high communication efficiency, this technique
still uses BGP as a signaling protocol, however it also enables a much finer granularity level for
characterizing traffic, including source/destination ports, protocol type. The same traffic engineering
techniques mentioned for sinkhole tunnels, can also be applied for the BGP flow specification.
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Chapter 3

Related Work

The problems originated from malicious traffic do not seem to have an end in the near future;
nevertheless a lot of effort has been put into this field of research. Several improvements have
been made but still no perfect solution exists which leads to a continuous effort among research
community to find better mechanisms to deal with this problem. Some believe that the only solution
is to start from a clean slate [12], others believe it has been proved through the years that although
changes and new mechanisms may be required, an evolutionary approach is the best solution
[23]. We believe that the latter approach is not just more pragmatic but can indeed provide the
better results for designing efficient countermeasures. The power provided by years of use of the
Internet infrastructure is not only valuable for checking the quality of network protocols but also not
duplicable in any test bed. For this reason, the work developed in this thesis follows the evolutionary
approach.

Some of the biggest security shortcomings of the Internet infrastructure exist at its core, the nature
of TCP/IP itself [13], allowing the user to access the data and control planes, namely the routing
facilities. From the latter, BGP is one of the most influential protocols, however it is considered too
naive to deal with current threats. Several alternative solutions have been tried out [16], however
none of which have found its way to total acceptance, several reasons are cited: too cumbersome
mechanisms (e.g., S-BGP), lack of incentives or lack of liability. Although this work does not solve
these basilar problems, they must be referenced for the reader to understand the challenge they
present.

An infinite number of research works has been done focusing on the BGP problems. Nordstrom
and Dovrolis [34] raised awareness in the networking community for BGP and interdomain routing
vulnerabilities. They believed that since no relevant attacks had been performed till that time, proper
care was not being given to such a fundamental component of current Internet. A description of
the main attacks existing at the time (objectives and mechanisms) was done, which included loss
of connectivity, traffic subversion and data interception. For the attacks described, it was assumed
one or more BGP peers had been compromised and were being maliciously controlled, therefore
entering in the study field of Byzantine faults. These observations make us aware of, not only
the importance that network neighbors represent as means for malicious activity but that may also
have as blocks for the construction of defense mechanisms. This thesis does not deal with the
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problems of malicious BGP neighbors as malicious entities of the BGP protocol, instead it presents
a mechanism that considers network neighbors as important parts of security classification and
that may be used for reducing the amount of malicious traffic received by a network.

One of the most feared threats related to BGP is prefix hijacking - currently without a global solution
deployed - for which we had in the Pakistan Telecom/Youtube hijack event [10] one of the most well
known. For better prepare network operators to deal with this problem, the research community
has created some helpful tools. Lad, Massey et al. presented PHAS [29], a tool that enables prefix
owners to be notified in case their prefixes’ BGP origin is modified. Qiu et al. have recently devel-
oped LOCK [39], a monitoring system that enables locating prefix hijackers and therefore improving
the efficiency of mitigation actions. This particular issue, although not directly approached in this
thesis, serves as reference, not only to understand the dependability of the Internet infrastructure
on BGP, but also to understand how the publicly available reachability information, namely BGP
update messages, can be used as input in a security tool.

To better understand the network security problems of the Internet, one of the obvious steps would
be to understand how exactly the Internet is laid out, what exactly is the topology of the Internet.
Although apparently easy this has been a herculean task and till this moment without an exact
answer. It is hard if not impossible to determine which network relationships currently exist in the
Internet [35]. Some authors [18] argue it is due to limited reach of monitoring systems based in
probe networks, for example RouteViews [8], RIS [9] (commonly used by the research community)
and propose use of other data inputs, e.g., looking glass sites or routing policy information available
in Internet Routing Registry (IRR) databases. Dimitropoulos et al. [22] observe that information only
gathered from BGP tables is far from providing enough information to define complete adjacency
tables for ASes in the Internet. Another difficulty is the private character that private peering In-
ternet connections usually have, which although difficult to maintain secret for Tier-1 ASes due to
their visibility, it is a lot easier for all the other ones. Other interesting data sources for AS con-
nectivity information are the Internet Routing Registries (RIRs) that manage databases for ISPs,
which can register routes and routing policies. The main problem with these databases is that their
updates are not mandatory for network operators, this leads to lack of confidence in their own com-
munity regarding their accuracy, unfulfilling the whole purpose of their existence. Although all these
challenges exist, to build efficient network defense mechanisms in the Internet, being aware of the
network topology provides a great advantage and that was a principle used for creating the Risk
Score algorithm we present in this thesis. We propose a pragmatic method to define the network
topology for specific networks, in order to use it as an input for the Risk Score.

Knowing the AS topology based on the exchange of public data can therefore be of considerable
value. Several tools [30, 51, 38] have been developed for monitoring BGP messages through the
Internet, whether for analysis of BGP update messages patterns or associated network behaviors.
One particular example is the work done by Chi, Oliveira and Zhang, whom developed Cyclops
[21], a tool that provides a graphical interface for AS-level connectivity in the Internet, based on a
number of data inputs, e.g., RouteViews, looking glasses. In our thesis we chose to use the RIS
platform from RIPE [9] as the data input.

Studies of malicious traffic behaviors and patterns within the Internet environment have been done
and some interesting conclusions have been reached. Chen, Ji and Barford [19] present an inter-
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esting study on network behavior for malicious sources in which they consider the main problem
of the Internet to be the lack of built-in security mechanisms, leading to the need of having several
add-on mechanisms deployed. According to this work, malicious sources are mainly constant in
terms of:

• Space: regarding the IP address space usage;

• Time: regarding the lifetime of malicious source addresses.

Most of the sources, which are responsible for a reduced number of attacks, also have small life-
times, and the source prefixes responsible for the highest number of attacks, belong to the same
AS. This may be due to the infection of neighboring machines and to the network effect. Authors
observe the rule of 80/20 "about 80% sources locate in the same 20% IP address space over time.",
for which reason they believe 20% of the IP address space should be the focus for both attackers
and defenders. Another interesting observation is that a considerable amount of traffic originates
from unrouted prefixes, i.e., private addresses and IANA unallocated prefixes, also known as "bo-
gons". The existence of "bogon" routes is in itself a management problem for network operators
and not always dealt in the best manner [24]. Most of these observations are corroborated by our
own work in this thesis, providing strong confidence that defense mechanisms based in network
behaviors are not only viable but may provide high efficiency values. The authors however do not
use the results of their study for building any system, which is one of the contributions from the
current work.

Through the years, most of the security research has focused on spam, the main reason for this
investment is because spam has been one of the major concerns for service providers [33, 25].
Ramachandran and Feamster [40] studied this particular type of malicious traffic and tried to corre-
late it with network behaviors, in particular an interesting correlation between BGP prefix hijacking
and spam. From their conclusions we may say that short-lived BGP routes provide a good metric
for characterizing an AS as malicious. The authors believe that the network properties of malicious
traffic may provide a more robust form of filtering than common content rules (e.g. signatures).
The work presents an analysis of blacklists and concludes that the number of false positives is high
and they are only effective if several different types of blacklists are used in conjunction. Although
many problems in characterizing malicious traffic through network properties exist, it is believed
that it may be the one less prone to be manipulated. Besides the advertisement of routes for more
specific prefixes by spammers, which is already common knowledge, one interesting discovery is
that spammers sometimes advertise large address blocks to workaround network filtering usually
done for smaller network blocks e.g. less then a Class C. Authors introduce a new concept named
BGP spectrum agility where spammers announce IP address space (usually hijacked) for short
periods of time, from which they send spam. From the point of view of the spammer this technique
has also the problem of circumventing black lists. For this reason we consider that defense mecha-
nisms based on lists have high manageability costs, scalability constraints and efficiency problems,
reason why we present alternatives exactly based on network behaviors to deal with malicious
traffic.

Some research efforts have tried to have in consideration not only the routers near the target of the
malicious traffic but the whole path, namely through different ASes. Ioannidis et al. [31] present
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a protocol named Aggregate-based Congestion Control (ACC), intended to detect and limit high
bandwidth aggregates in network infrastructures. Authors consider one of the main challenges
to be how to distinguish between legitimate and malicious traffic, even because it is not a simple
case of applying policies to one particular flow, since in both cases many undifferentiated flows
may exist, hence the term aggregate. Authors describe particular mechanisms of the protocol as
the calculation of rate-limit values for creating traffic filters, and explain how congestion control
messages are communicated upstream to all nodes in the path (i.e. pushback mechanism) to the
source of malicious traffic. We follow the rationale of this work and propose intervention policies
that consider a joint effort among network neighbors to deal with malicious traffic through the use
of known technologies within the network operators context (e.g., BGP).

Other approaches not so ambitious in terms of network relationships, take more pragmatic ap-
proaches. Borremans and Valke [15] embrace the inevitability of attacks affecting services and
the only solution being the damage minimization through traffic diversion. Depending on the area
of the network where malicious traffic is diverted, three different types of traffic diversion classifi-
cations are defined: early (at the carrier level), near (at the network neighborhood near the ISP’s
upstream providers and peers) and late (as near as possible to the ISP). Their work describes some
DDoS defense techniques namely: Rate Limiting, Oversizing, Firewalling (TCP/UDP blocking), Ex-
ternal ISP diversion (including BGP community dropping), Stop Announcing, Isolation (ranking of
malicious sources and different announcements through different links) and some commercial im-
plementations. The authors also take particular attention to relationships between neighbor ISPs
and mention that contracts between ISPs may include network specific details, e.g., minimum size
of networks to be advertised, re-advertisement of communities. The use of defense mechanisms
at a network level is also used in this thesis and, regarding peering agreements, that idea can also
be used as an enhancement for the work presented in this thesis. Although Borremans and Valke
do not perform a thorough study of this issue, it is an interesting idea to apply.

The work done in this thesis shares the same approaches of part of the works here described,
for example the importance of network behaviors of malicious traffic, the use of an evolutionary
approach, avoids others, for example the use of pre-computed lists . Nevertheless, we used all
the research work here presented to define a strategy on building efficient security defense mecha-
nisms, contributing with new security classification mechanisms integrated with viable deployment
scenarios.
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Chapter 4

Data Analysis

In this chapter we analyze the data corpus of malicious data sent towards a mid scale ISP network.
Also, we perform an analysis of network reachability information based on raw BGP data from RIS
[9]. Finally we explain the software tools used to perform the analysis.

4.1 Malicious Traffic Identification

This thesis contains an analysis of malicious traffic sent towards a medium scale ISP network in-
frastructure for the time window from 2010-04-13 to 2010-07-12. The malicious traffic identification
and classification is performed by a closed source detection platform. Two types of malicious traffic
were selected: flow floods and address scans; to be described on sections 4.1.2 and 4.1.3. These
classifications are not based on static signatures but on traffic behavior. For both types of traffic it is
possible to refine what exactly is considered malicious or legitimate. This can be done by defining
thresholds for time or for number of events after which it can be considered malicious traffic.

For the particular types of malicious events under analysis we have the following definitions:

DEFINITION 1 Let N and T be configurable system parameters, a flow flood event is
defined by a host trying to open N connections towards a single destination host and
port within a T seconds time window.

DEFINITION 2 Let N and T be configurable system parameters, an address scan
event is defined by a host sending messages towards N ports at a single destination
host within a T seconds time window.

For the particular types of malicious traffic under analysis we have the following definitions:

DEFINITION 3 Let M and T be configurable system parameters, flow flood malicious
traffic is defined by M flow flood events detected within a T seconds time window.

DEFINITION 4 Let M and T be configurable system parameters, address scan ma-
licious traffic is defined by M address scan events detected within a T seconds time
window.
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For the mentioned time window a total of 8453 events were detected:

• 3359 flow floods;

• 5094 address scans.

4.1.1 Traffic Anonymization

To allow the traffic analysis it was required by the ISP that the malicious traffic information be
anonymized. This was achieved with the help of CryptoPAn (see chapter 4.3.4) for the IP addresses
and a simple conversion mechanism for the AS numbers. We used the real source IPs of the
malicious traffic as input for a whois service (see chapter 4.3.2) from which we received the real
AS numbers. At this point we could anonymize the IP addresses by running a tool based on the
Crypto-PAn library. Besides the IP addresses we also used the same tool to anonymize the IP
prefixes. The Crypto-PAn has as one of its best features the capability to preserve the prefixes after
anonymization, which means that two real IP addresses included in a particular prefix will remain
in the same prefix after anonymization. This ensures that we can perform coherent analysis based
on IP addresses or prefixes.

Regarding the AS numbers we used a much simpler mechanism based in the private AS numbers
reserved by IANA [28] - from 64512 to 65535 - creating a translation between the real and private
AS numbers, therefore ensuring the anonymity of the real ASes.

Using these mechanisms we ensure that the data analysis will still be valid, while preserving the
data anonymity.

4.1.2 Flow floods

As mentioned in several research works [47, 50] flow flood attacks are considerably difficult to detect
and to defense mechanisms that do not affect legitimate traffic are almost impossible to develop.
The reason for this is related to the extreme difficulty in distinguishing an attack from a perfectly
legitimate access to a service, e.g., flash crowd. Due to these reasons they are often used by
malicious entities for inflicting distributed denial of service (DDoS) attacks. Another important factor
that potentiates this type of attacks is the current availability of botnets on the black market, rented
as a commercial service. Botnets not only provide anonymity and big attack power for the attacker
but also, and more relevant for the DDoS attacks, diffusion.

Typical use cases include infected hosts initiating many simultaneous connections towards a spe-
cific victim. Currently, there are even certain websites that provide the infrastructure for this type
of attacks from more radical activists campaigns. The impact of such attack is dependent on the
network size of infected machines, higher network sizes enable more powerful attacks.

For this type of malicious traffic the following data was analyzed:

• Number of events;
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• Number of bytes;

• Number of packets;

• Source IP address;

• Start timestamp.

Commonly TCP SYN flood attacks are relatively small in actual bits per second but they often
exhaust other resources through an increase of number of connection requests since the end point
(e.g., router) must save the connections state.

4.1.3 Address scans

Address scans are usually used for acquiring information regarding services that are open to the
network. This is often a way to determine the type of attack that is more likely to succeed. Although
not mandatory, some of the typical originators of such traffic are hosts infected by worms or viruses
when trying to propagate to other devices. Although not all attacks are preceded by address scans
(many malicious code simply searches for specific vulnerabilities in specific service ports and tries
to exploit them), existing address scans usually precede attacks, for which reason they should be
considered as an interesting metric for understanding the behavior of malicious traffic. Knowing
which ports are open restricts the vulnerabilities that the attacker may try to exploit. For example
knowing that port 80 is opened may tell the attacker that an exploit to the HTTP service may be
possible.

For this type of malicious traffic the following data was analyzed:

• Number of events;

• Number of bytes;

• Number of packets;

• Source IP address;

• Start timestamp.

4.1.4 Analysis

In this chapter we analyze the characteristics of malicious traffic as a whole and a more detailed
analysis of the top 5 higher originators of malicious traffic. The analysis will be performed for the two
types of malicious traffic previously described in 4.1.2 and 4.1.3. Due to the considerable amount
of different traffic sources and since most of it was from a small subset of origins, selecting the
top 5 most significant origins reduced the analysis scope allowing a more thorough analysis of the
relevant sources.
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Cumulative

When considering the whole data set from which this analysis was done, we get 474 different AS
origins. However, looking at Figures 4.1 and 4.2 we can conclude that only a few are responsible
for most of the malicious traffic.

The top 5 ASes for address scans are described by the ordered set {64519, 64524, 64521, 64517, 64528}
and for flow floods by the ordered set {64549, 64557, 64542, 64562, Reserved}. We can observe that
although address scan events have approximately 50% more events than flow floods, both figures
have similar curves. This means although the magnitude of values differs, trends for both types of
events are similar.
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Figure 4.1: Address scans cumulative source addresses.
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Figure 4.2: Flow floods cumulative source addresses.
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From the charts we can see that flow flood events reach a ceiling faster than the address scans.
Although the behavior is similar, the ASes responsible for contributing to the cumulative value of
flow floods become almost irrelevant for other than the first fifteen. This observation is more visible
in the ranking charts present in figures 4.3 and 4.4, where the number of flow flood events is
approximately zero.
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Figure 4.3: Address scans ranking source addresses.
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Figure 4.4: Flow floods ranking source addresses.

For address scans however, we can see that this difference is not so abrupt. Although, as men-
tioned before, the first ASes are the main originators of malicious events, after the first ten the
trend toward value zero is also visible but with a softer slope. From this observation we may also
conclude that address scans are more common than flow floods.
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Prefix distribution

Although it is interesting and relevant to know the amount of malicious traffic originating from a
particular AS it is also relevant to know if sending malicious traffic is a generalized behavior of the
AS or simply the action from a particular segment of the network, namely a particular prefix. For
this reason, an analysis of the prefixes originating the traffic was also done. From the total number
of ASes we chose a subset to understand what exactly was the impact of particular prefixes versus
the total malicious traffic originating from the AS. We chose 8 ASes for address scans and 10 ASes
for flow floods since, as previously explained, the contribution of the first ranked ASes for flow floods
is more relevant than for address scans. The choice of prefixes was done based on their ranking
regarding all the detected prefixes, the ones responsible for originating the higher number of events
were selected.
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Figure 4.5: Prefixes versus AS address scans.
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Figure 4.6: Prefixes versus AS flow floods.
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From the charts in figures 4.5 and 4.6 we observe that two main types of situations exist:

1. Malicious traffic from an AS is originating mostly from a single prefix, sometimes completely,
e.g., 64562:93.156.0.0/14 (flow floods);

2. Malicious traffic from an AS is originating from more than a single prefix, e.g., 64524:67.248.255.0/18
(address scans).

Considering the first situation, if defense mechanisms are put in place to filter only the malicious
prefixes, they will have high efficiency values. For the second situation, it may be possible to apply
more interesting defense mechanisms, for example depeering from ASes that provide transit for
traffic originating from that particular AS identified as malicious. These defense mechanisms are
based on the detection and classification platform, which accuracy is dependent on several factors,
namely thresholds definition. Knowing that such platforms are not 100% accurate, we must always
be careful when introducing harsh measures into the defense mechanisms and we must have in
mind that an evolutionary approach to the detection platform itself is required, with the thresholds
being constantly validated and fine-tuned. Another issue to be considered regarding the detection
mechanism is the possibility of packet origins being spoofed with addresses from a legitimate AS
and that AS being wrongly classified as malicious. The top malicious ASes are not required to have
direct links to the ISP, which greatly increases the success potential of such spoofing mechanisms.
This scenario could therefore become an attack strategy from a malicious entity with the purpose
of forcing a legitimate AS to be considered malicious.

For flow floods in particular, a considerable amount of traffic is originated from reserved IP address
ranges, which are enumerated in Table 4.1. It is interesting to notice that most of these detected
malicious events is from private IP addresses [42] or, typically, misconfigured machines [20]. This
type of traffic can be simply ingress filtered using access control lists (ACLs), however it imposes
allocating resources in segments of the network that may be under extreme stress, for which reason
having more lines inserted in ACLs is sometimes avoided by network operators.

IP Network Description Number of Events
5.0.0.0/8 IANA RESERVED-5 933

169.254.0.0/16 Link Local RFC3927 IANA Reserved[20] 2173
192.168.0.0/16 Private Address CBLK RFC1918 IANA Reserved[42] 1383

Table 4.1: Reserved IP addresses.

In the case of address scans, five of the first eight prefixes are originating less than 21% of the
total number of detected events. As for flow floods, eight of the first ten prefixes are responsible
for more than 60% of the total number of detected events, the prefix with less number of events
(64557:81.146.32.0/21) has 32%, which is still a large percentage from individual prefixes. From
these results we can understand that depending on the type of malicious traffic being analyzed, the
most efficient defense mechanisms changes. A simpler and more flexible approach for supporting
different types of malicious traffic may be to consider a threshold value to define which defense
mechanisms to apply.
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Temporal distribution

For the top 5 ASes we obtain the charts presented in Figures 4.7 and 4.8 from which we can directly
compare the traffic originated from each of the ASes through the time window analyzed.
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Figure 4.7: Time series for top 5 address scan origins.

For address scans there are two ASes responsible for most of the traffic, AS 64515 and AS 64524,
however the former has the most consistent behavior. If the malicious traffic from these two ASes
could be mitigated it would have a high impact in the whole network infrastructure of the ISP. An
interesting observation that can be made from the chart is the sawtooth pattern of the time series
events. This is true for all five ASes depicted in the chart. One possible reason for this could be
the periodic behavior that characterizes many of the propagation mechanisms of worms. From the
chart we can also observe an increase in the total number of detected events from the month of
June onwards. Although AS 64515 is the most constant and therefore the one contributing with the
highest number of events overall, in this time window it had a reduction while the other ASes had
an increase in their contribution of address scan events.
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Figure 4.8: Time series for top 5 flow flood origins.

For flow floods there are also two ASes responsible for most of the traffic, AS 64549 and AS 64557,
however, although they have the highest volumes of traffic, that traffic is not constant through all the
4 months of data, most of it is concentrated on the months of June and July. This seemed to be a
very active period for malicious activity from these two ASes but a more peaceful one for all the other
ASes, considering that the majority almost ceased activity. Similar to address scans, mitigating flow
floods from these two ASes would have a high impact in the whole network infrastructure of the ISP.
As mentioned for address scans, also with flow floods we can observe a sawtooth pattern, which
may be due to the same reasons as the ones described for the address scans case.

AS distribution

Another interesting perspective over the data is given by the way malicious activity is distributed
across all ASes, and how each AS contributes to the total malicious traffic universe.
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Figure 4.9: AS versus Total address scan events.

Considering the address scans (figure 4.9), most of the malicious traffic (36%) is spread ac cross
the AS space, however a significant amount is originating in a small subset of ASes, in particular
AS 64515 with 31% and AS 64524 with 17% of all malicious traffic.

The same conclusions can be obtained for flow floods (figure 4.10), in which 27% of the malicious
traffic is spread through different ASes but three of them, namely ASes 64557, 64549 and 64562,
are contributing with significant volumes of malicious traffic, 26%, 26% and 6% respectively.

For both types of malicious traffic it is perfectly viable to focus our mitigation efforts only in a small
subset of ASes.

Figure 4.10: AS versus Total flow flood events.

Given the data set provided by the monitoring system, we analyzed how all the malicious traffic is
distributed through the AS space in order to better understand how a real ISP is targeted. We could
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conclude that although traffic is sent from many different sources, most of the traffic can be con-
tained within a small subset, in our case we chose 5 ASes which are responsible for approximately
64% of all address scans and 73% of all flow floods. This conclusion gives hope that protecting
the network from a particular AS can have a great impact in the overall security of the network. To
consider this information when designing defense mechanisms can be extremely useful not only for
estimating their efficiency but also their scalability.

4.2 Network Reachability Information

4.2.1 BGP update messages

Considering that our thesis is under the scope of a particular ISP (i.e., AS), all its neighbors may be
defined using the BGP information available from the core routers of the ISP. The network topology
issues only arise regarding the topologies of other ASes, since one of the main challenges of
defining the Internet AS topology is exactly the lack of complete BGP public information, which can
be due to different reasons e.g. business secrecy, traffic aggregation [18].

From the BGP update messages we are only interested in a subset of fields:

• Prefix - IP prefix;

• Origin - origin AS;

• Type - announcement, withdraw;

• AS Path (see section 2.1 for details).

With the above information we are able to understand what ASes an IP packet will traverse to reach
a particular prefix. First we need to understand how the Internet sees the ISP AS, what known paths
currently exist, in order to create the ISP AS reachability map. Second we need to understand how
we can classify an AS in terms of neighborhood, i.e., which ASes are directly connected. Since the
Internet is an extremely vast and dynamic environment we must restrict our scope of analysis. For
achieving this purpose we defined the following sets of ASes we considered interesting:

1. AS paths related to the ISP AS prefixes;

2. AS paths that include the top 5 sources of malicious traffic previously determined.

4.2.2 Routing Information Service from RIPE

Different platforms for collecting BGP routing tables and update messages information exist, namely:

• Route Views;

• Looking Glasses;
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• RIPE Routing Information Service (RIS);

• CAIDA.

For this work we chose to use RIS [9]. RIS has a network of 14 active probes, which collect BGP
update messages from several locations around the world (see table 4.2). This information enables
us to know, approximately, how other ASes in the Internet reach a particular AS.

Probe Location
RRC00 RIPE-NCC Multihop, Amsterdam
RRC01 LINX, London
RRC03 AMS-IX / NL-IX / GN-IX, Amsterdam
RRC04 CIXP, Geneva
RRC05 VIX, Vienna
RRC06 DIX-IE, Tokyo
RRC07 Netnod, Stockholm
RRC10 MIX, Milan
RRC11 NYIIX, New York
RRC12 DE-CIX, Frankfurt
RRC13 MSK-IX, Moscow
RRC14 PAIX, Palo Alto
RRC15 PTTMetro, Sao Paulo
RRC16 Terremark - NOTA, Miami

Table 4.2: RIS probes.

We can parse the BGP update messages, searching for announcements of prefixes belonging to
the ISP AS, in order to collect all the published AS paths. This defines the first set of interest-
ing ASes too look for in BGP update messages. For the second set of ASes we must filter all
announcements/withdraws that include the malicious top 5 ASes.

Given these two sets of ASes, we are now able to know all paths from the Internet towards the ISP
AS and an adjacency list for all interesting ASes with their neighbors, which may be malicious or
benign. This approach to the total universe of existing ASes provides scalability to our approach
and therefore to the classification mechanism being presented in this work. The goal of this step
is not to create an exact topology of data flows but to have the most probable paths that data may
take towards the network operator AS, since it is not possible to determine - in useful time - the
exact path that a data flow will take.

4.2.3 Analysis

Besides the reachability perspective given by the RIS service we could have yet another one, the
ISP network that could be given by its BGP speaking routers. The former one gives the perspec-
tive of Internet-to-ISP and the latter one ISP-to-Internet. To understand how malicious traffic is
sent towards the ISP network we should focus on the Internet-to-ISP perspective, i.e., the probes
network.
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For analyzing the BGP update messages we chose a period of 8 days, from June 1 to June 8 2010.
For that period we retrieved the raw update messages available at RIS and parsed them with the
goals previously explained (i.e., ISP reachability map, AS adjacency list).

To understand the dynamics of BGP update messages, we present the amount of announcements
and withdraws observed for only this period:
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Figure 4.11: BGP update messages dynamics.

As reference for parsing the BGP update messages, we considered the ISP AS with ASN 3243.
Filtering reachability information for its prefixes, a total of 49 unique paths were detected, from
which information we could create the network topology present in figure 4.12.
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Figure 4.12: AS 3243 public reachability paths.

From the above chart we conclude that AS 3243 has only two different access points from the
Internet to its network: AS 8657 and AS 1930. This however is not a full characterization of the
AS topology since it does not consider its role as a transit AS. From the BGP update messages
we could also discover other directly connected ASes, not included in BGP update messages for
prefixes from the ISP AS, but for which the ISP provides transit: ASes 8426, 42863, 12527, 28672,
41159, 65001, 9118, 31497, 39088, 28998, 15525, 47784, 29673, 13200, 6773, 25253, 34873 and
6939. As mentioned before we must not forget that we are interested in collecting all the neighbors
of ASes:

• in the path to the ISP AS, which can be done by filtering BGP update messages that include
the ISP AS in their AS PATH attribute;

• neighbors of the malicious ASes.

After collecting this information we have fulfilled the minimal requirements for creating a topology
snapshot of the ISP AS and its neighborhood. Regarding the top 5 ASes responsible for originating
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malicious traffic, the same rationale can be used to create their topology and neighborhood charac-
terization. At this point it is not possible to analyze this information since we do not know the public
ASNs of the malicious ASes, due to the anonymization process explained in 4.1.1.

4.3 Software Tools

To perform the data analysis a set of tools and processes were used. When choosing the best
tools for this task, we were looking for tools simple to use, easy to integrate, fast to deploy and with
enough background to provide confidence in their quality. Although not all tools share the same
licensing scheme (e.g., GPL, Google CLA) they are all open-source, with good documentation and
with a good community support.

4.3.1 PyBGPdump

To perform the analysis of the RIS raw files a support software was required. We chose to use
PyBGPdump, a Python library that enables parsing of BGP dump files produced by Zebra/Quagga
or Multi-threaded Routing Toolkit (MRT)[14], a routing information export format. PyBGPdump is
based on the dpkt Python library that provides packet manipulation functionalities for some TCP/IP
protocols, namely BGP, and MRT. The current version of dpkt (1.7) does not support ASNs with 4
bytes nor MRT TableDumpV2 RIB dumps, for which reasons the patch provided with MRT dump
file manipulation toolkit [43] from CAIA was applied. Since some of the MRT files can be of con-
siderable size, one interesting feature of this tool is its capability to support gzip’ed and bzip2’ed
files. Following is a simple source code snippet written in Python that parses a MRT file and goes
through its attributes, in order to understand the ease of use of this tool:

# Import an MRT file

dump = pybgpdump.BGPDump(mrt_file)

# Access the BGP attributes

for mrt_h, bgp_h, bgp_m in dump:

for attr in bgp_m.update.attributes:

if attr.type == bgp.AS_PATH:

print "AS_PATH"

elif attr.type == bgp.ORIGIN:

print "ORIGIN"

elif attr.type == bgp.NEXT_HOP:

print "NEXT_HOP"

elif attr.type == bgp.LOCAL_PREF:

print "LOCAL_PREF"

elif attr.type == bgp.MULTI_EXIT_DISC:

print "MULTI_EXIT_DISC"

elif attr.type == bgp.COMMUNITIES:

print "COMMUNITIES"
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elif attr.type == bgp.ATOMIC_AGGREGATE:

print "ATOMIC_AGGREGATE"

# Print the number of routes in the update message

print "BGP total announced routes %s" % bgp_m.update.announced

print "BGP total withdrawn routes %s" % bgp_m.update.withdrawn

4.3.2 Whois service

To perform the traffic analysis it was necessary to map the source IP addresses of the malicious
traffic detected to the ASes to which they belonged. Typical whois services were not applicable due
to the large amount of queries required, which is reason enough for some of the publicly available
whois services to black list the host executing the queries. An online free service was therefore
used that allows bulk queries given a set of IP addresses: cymru-ip2asn [5]. The service syntax is
extremely simple and following is a quick example:

$ netcat whois.cymru.com 43 < malicious_traffic_ip_addresses

As we can see it uses the GNU netcat command to send the IP addresses from a text file to the
whois service available at port 43 of host whois.cymru.com and it returns their ASes. For example
if we create a file with the IPs of the following hosts:

• ris.ripe.net

• www.iana.net

we would get the following answer from the service:

AS | IP | AS Name

3333 | 193.0.19.19 | RIPE-NCC-AS RIPE Network Coordination Centre

AS | IP | AS Name

40528 | 192.0.32.8 | ICANN-LAX - ICANN

To parse the malicious traffic data and execute the queries, we used mainly three UNIX utilities:
cat, awk and netcat.

4.3.3 ipaddr-py

To contextualize the analysis of the BGP update messages received from RIS with the IP addresses
of the top sources of malicious traffic, ipaddr-py [6] was used. It is a Python library developed at
Google for manipulation of IPv4/IPv6 addresses and prefixes. Some of the functionalities used for
the analysis were:

• Check if IP addresses are contained within a specific prefix;
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• Check if an IP prefix is included within another prefix.

Using this library was extremely easy and the integration with the PyBGPdump library (see section
4.3.1) was straightforward. Following is a small Python code snippet used for checking if an IP
prefix is included in a set of prefixes:

prefixes.append(IPNetwork(’10.0.0.0/13’))

prefixes.append(IPNetwork(’192.168.0.0/16’))

prefix_object = IPNetwork(’10.0.1.0/24’)

if (prefix_object in prefixes):

print "Prefix %s is included in prefixes set."

else:

print "Prefix %s is not included in prefixes set."

4.3.4 Crypto-PAn

For the analysis performed in this thesis it was not important to have the raw data with the original
addresses, for example we did not intended to make a correlation of the malicious activity with
geographical locations. To analyze the data ensuring that it could be kept anonymous, Crypto-PAn
[3], a cryptographic sanitization tool was used. Some of the main characteristics of Crypto-PAN
are:

• Based on the Rijndael block cipher;

• The cryptographic algorithm receives a secret key for the IP addresses anonymization;

• Using the same secret key for different traffic traces ensures consistency, i.e., the same IP
address will be anonymized to the same address in different traces.

Crypto-PAn is a well established and mature tool, integrated with other tools from The Coopera-
tive Association of Internet Analysis (CAIDA), e.g., nfdump [7], CoralReef [2], and used in several
research works that required trace anonymization features [45, 44, 46, 52, 26].
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Chapter 5

Risk Score

In this chapter we present a method for classifying a network neighbor in terms of security under
the scope of an ISP, we explain the goal of the classification method, the metrics, the algorithm
used and simulations for understanding the behavior of the algorithm in face of malicious traffic
dynamics.

5.1 Concept

With the data analysis performed for a particular ISP we were able to better understand how certain
types of malicious data (i.e., address scans and flow floods) behave. Although each ISP in the In-
ternet has its own specificities we think extrapolating this analysis to common mid scale ISP can be
done. We intend to use the observations reached from the data analysis into the design of defense
mechanisms. Different approaches exist to deal with malicious traffic, some are host centric, others
are network centric, given the observations presented in chapter 4, we are presenting in this thesis
an approach from the latter.

To enable defense mechanisms based on network behaviors we propose a method named Risk
Score, which quantifies each network neighbor in terms of the security risk it represents to the
ISP. The goal of the Risk Score is to enable decision processes for choosing the more appropriate
defense mechanism: depeer; filter specific prefixes from malicious ASes; no action, i.e., allow
malicious traffic to flow.

Since security classification is a rather complex and dynamic field, dependent of different events,
the classification method should have the flexibility to support the contribution of several metrics
and the inclusion of new ones. This was achieved by creating a metric correlation algorithm with
custom parameters.

As explained by other authors [22, 18] different types of relationships exist for directly connected
ASes. In the context of malicious traffic origins, the AS may be the originator of malicious traffic or
be a transit AS for malicious traffic. The latter is the most common situation and the classification
mechanism was required to address this issue. This means that although a network operator of a
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directly connected AS may not be responsible for the malicious traffic, it can use the same rationale
to its directly connected ASes, i.e., using a recursive strategy in order to restrict the actions of the
malicious AS, mitigating its malicious traffic. Having this definition in mind the Risk Score should
be defined with focus on providing a characterization of the ISP neighbors and not only on the
malicious AS itself.

Since one of the goals of our work is to decide if neighborhood relationships (e.g., peering) are
appropriate, this property was fundamental. In the particular case of peering, the rationale behind
depeering is to reduce the level of malicious traffic received in a network operator using network
mechanisms but also creating disincentives for providers to transport this type of traffic, which is
usually extremely complicated if not impossible due to the way Internet is organized 2.1. Besides
technical mechanisms we believed that business logic should also be addressed by this work.
When announcing the depeering decision to the neighbor AS, the latter is forced to perform a thor-
ough analysis of pros and cons of what is more beneficial. Whether in a peer or transit relationship,
Tier-1 ASes are in a strong position to implement this type of mechanisms, however stub ASes
are in an extremely fragile situation since whatever measure they implement it will only have local
effect.

Considering that individual initiatives from ASes are not as efficient as congregated actions from
the Internet community, we created the algorithm to facilitate this interaction. If more than only an
AS uses this approach, ASes will have the incentive to mitigate the malicious traffic in their own
network.

Following a description of the main entities used in the construction of algorithm will be provided.
To better understand the purpose of the metrics and parameters used in the construction of the
algorithm, we must have in consideration the ultimate goal of the Risk Score: risk classification of
the network neighbor. It is not intended to classify the malicious ASes themselves, they are simply
part of the classification process of the neighbor.

5.2 Metrics

Malicious AS We define a malicious AS as a network entity from which malicious traffic originates
and its ranking in the universe of ASes that send malicious traffic to the operator network, exceed
a certain upper bound. Considering the analysis previously made to the corpus of malicious data,
we can state that most of the malicious traffic has its origin in a small subset of the total ASes with
which the network exchanges traffic. To quantify the upper bound, we use the values observed in
the real network data. The concept of malicious AS is therefore tied to the network under study and
takes in consideration the detected values for all ASes.

Address scans traffic ratio Quantifies the amount of address scans originated from an AS i in
comparison to the total amount of address scans received from all ASes, i.e., ASi address scans detections

Total taddress scans detections .

Flow floods traffic ratio Quantifies the amount of flow floods originated from an AS i in compar-
ison to the total amount of flow floods received from all ASes, i.e., ASi flow floods detections

Total flow floods detections .
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5.3 Custom Parameters

We now present all the customizable parameters used for calculating the Risk Score for a particular
AS. This construction assumes to be biased by the ISP network operator security policies, which is
not considered to be a problem since it is assumed that the Risk Score is used in the context of a
particular ISP and not to be used as a comparison mechanism between different ISPs. However,
we still propose default values for each of the parameters, not only to allow comparisons if required
but also to simplify operational actions, namely configuration.

Weight Considering that the relevance of each type of malicious traffic should depend on the
network operator security policy, a weight value is given for each of the different types of malicious
traffic. In the particular case of the work done in this thesis it means address scans and flow floods.
Weight can have values from 1 to 5, depending on the relevance a metric has to the network
operator, they have to the operator, the higher the value, the higher the importance. For weight
values associated with all types of malicious traffic we propose 3 as the default value.

Karma Although an AS is responsible for originating malicious traffic, the network operator of the
target network, i.e., the ISP, may find strategic value in that AS. Whether this is due to: business
agreements with the malicious AS (e.g. content provider for the ISP, peering contracts); volume of
legitimate traffic much higher than the volume of malicious traffic. Although these reasons are often
responsible for malicious traffic not being mitigated efficiently, it was important for the Risk Score
expression to reflect this type of particularities. In this sense, the Karma parameter could also
be named pragmatic parameter, since it is exactly what introduces to the expression, pragmatism.
The use of the Karma parameter is strictly dependent on the policy of the network operator - in the
same sense as the LOCAL_PREF attribute is used in BGP, according to which an internal routing
policy imposes that certain routes be preferred in detriment of others - the value of Karma follows
that same rationale, it exists as a mean to impose a policy and therefore strictly dependent on the
network operator decision. The Karma is a custom parameter defined per AS, which may have
values from 1 to 5, depending on the relevance they have to the operator, the higher the value, the
higher the importance. For Karma and regarding all possible ASes, we propose 1 as the default
value. This value indicates that by default we do not trust ASes originating malicious traffic. It is
the responsibility of the network operator to attribute values to Karma and it must be applied to all
ASes considered malicious independently of their distance towards the ISP.

Neighborhood Level (NL) Defines the level of neighbors to check for within the adjacency table.
The adjacency table has the mappings of directly connected ASes per AS. With NL it is assumed
that we do not require a complete mapping of the Internet AS topology, we only want to consider
ASes within a certain scope, that scope is given by the NL and the BGP paths for the network
operator prefixes.

Proximity Level (PL) Defines the malicious AS proximity to the ISP network, i.e., if it is a directly
connected neighbor or not. It is the only parameter that can be fixed, it only has 2 levels: directly
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connected; not directly connected. In the former case PL is 2 and in the latter it is 1. Since
directly connected ASes have higher control of the malicious traffic originating in their networks,
their responsibility is higher and that is reflected in the Risk Score.

5.4 Malicious AS in Path

To define which malicious ASes exist in all the known/possible paths towards the ISP we use the
BGP data available from RIS (see section 4.2.2) and we parse it to obtain all the AS paths (see
section 2.1) that are announced for the prefixes belonging to two entities:

1. The ISP AS;

2. The malicious ASes.

With this information we build an adjacency table composed of all existing ASes included in paths
announced for prefixes from the ISP and the malicious ASes.

Due to the complexity of the Internet topology, this metric is the most complicated one to obtain and
some assumptions are required:

• From the AS paths present in the BGP update messages, every direct link connecting two
neighbors can be used in a path;

• The values present in the AS paths are correct, i.e., we do not consider malicious manipulation
of BGP update messages.

OBSERVATION 1 Every possible path should be used since we do not control the way operators
change their routing policies. For this reason we take a pessimistic approach and consider that
every possible path, which includes malicious ASes, should be accounted for in the Risk Score.

OBSERVATION 2 Since we only consider the BGP messages related to ASes previously classi-
fied as malicious, the possible paths of interest are a small subset of the whole Internet. This helps
providing scalability to the system without reducing its efficiency by giving it focus.

For a simple example let us consider figure 5.1, where M1, M2, M3 are malicious ASes and A is
the ISP AS.

Figure 5.1: AS topology example.
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From RIS we collect the reachability information for AS A and for malicious ASes M1, M2, M3, by
parsing the BGP update messages and collecting all the AS paths from their prefixes. The parsed
AS paths are presented in Table 5.1. An important observation is that the efficiency of RIS data is
constrained by their network of probes and we should have present that most of the BGP messages
exchanged by ASes in the Internet are not available in RIS.

AS Path
{C, B, M1, A}
{D, B, M1, A}

{M2, F, E, B, M1, A}
{F, E, B, M1}

{F, M2}
{F, E, B, C, M3}

Table 5.1: RIS reachability map for ASes A, M1, M2, M3.

With this information we are now able to build the adjacency table 5.2

AS Directly connected ASes
A M1
B M1, C, D, E
C B, M3
D B
E F, B
F M2, E

M1 B, A
M2 F
M3 C

Table 5.2: Adjacency table example.

We can now select the ASes that will contribute for calculating the Risk Score based on the following
four elements:

1. The neighbor;

2. The NL;

3. The ISP network reachability information (table 5.1);

4. The adjacency table (table 5.2).

An important observation is that, although in this example we are assuming all prefixes from a
particular AS have the same reachability information, i.e., same AS path, in a real case scenario
this may not occur. The consequence of this observation is a bigger adjacency table. When defining
the adjacency table, we intentionally ignore which prefixes routing information were parsed, we are
only interested from which AS they are originated. Although more disperse, this choice provides
greater flexibility regarding the paths malicious traffic may flow through.

39



5.5 Correlating Metrics

Continuing with our example let us consider that we want to calculate the Risk Score of the neighbor
M1. We define the NL for the neighbor (M1); with the information from tables 5.1 and 5.2 we create
the AS table for that particular neighbor (table 5.3). To better understand the impact of defining NL
we present two different sets of ASes for different values of NL.

Neighbor Reachable ASes NL
M1 B, C, D, E, F, M1, M2 1
M1 B, C, D, E, F, M1, M2, M3 2

Table 5.3: Neighbor AS table example.

To build the AS table we use as reference the different AS paths from table 5.1, we follow each
path and add each of the ASes present in the path to the table. If NL is 1 then we only put into the
table the ASes existing in the AS paths associated with prefixes from the ISP AS. If NL has a higher
value, e.g., 2, then we use ASes from previous NL, e.g., 1, and consulting the adjacency table we
add the direct neighbors of those, meaning that another hop is considered. Using higher values of
NL ensures a wider set of ASes will be analyzed for the Risk Score and greater sets are preferable
since they provide better accuracy by using more ASes for the neighbor classification, however,
given the size of current Internet, is also a mean to limit the scope of the algorithm, providing
scalability. The values used in table 5.3 were selected as example values but higher values could
be used, e.g., 4.

Now that we know which ASes can reach the ISP AS through a particular neighbor, we can start
calculating the Risk Score. For each day i, the following expression is calculated for each of the N

malicious ASes, considering a total of Q metrics M , each with a given weight W . We name it α:

αi =

Q∑

j=1

Mj ×Wj

karmai
,

{Wj ∈ N : 1 ≤ W ≤ 5}
{karmai ∈ N : 1 ≤ W ≤ 5} (5.1)

Now we calculate the sum of α values from N malicious ASes, which is in fact the instant value of
the Risk Score. We name it β.

Let βi be the value β for i days, N be the total number of malicious ASes, αij the value αi for AS j

and PLj the PL value for AS j:

βi =
N∑

j=1

αij · PLj (5.2)

Since the risk should depend on events that occur through time, it makes sense to have that ra-
tionale reflected in the final expression through a feedback mechanism. We chose to implement it
in a simple form, the expression considers the previous values of β within a 30 days time window,
according to the following expression:
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Ii = Ii−1 + βi , let i be the number of days and Max(i) = 30 (5.3)

By choosing a 30 days time window we ensure scalability to the algorithm since it is not required
to keep the total of previous Risk Score values, only the last 30 days, a time window of this length
provides enough information for classifying a particular neighbor.

The Risk Score expression R for a period of i days for a particular neighbor is described by:

Ri =






β1 , i = 1

Ii
i , 1 < i ≤ 30

Ii
30 , i > 30

(5.4)

Following we summarize the steps executed to calculate the Risk Score of an ISP neighbor:

1. From the malicious traffic AS distribution explained in section 4.1.4, determine the top 5 mali-
cious ASes per malicious traffic type. This step defines the universe of malicious ASes;

2. Define the NL to be used and the weights to be used per metric;

3. Considering the BGP reachability information, get the AS paths for the ISP, for the malicious
ASes and create the adjacency list;

4. Choose the network neighbor, its karma value according to the network policy and the NL
parameter;

5. With the adjacency list and the NL parameter, discover which malicious ASes (determined in
step 1) are contributors for the Risk Score of that particular neighbor;

6. Given the metrics presented in section 5.2 we calculate the Risk Score according to the
expressions for R (5.4), α (5.1) and β (5.2) considering the contributing malicious ASes cal-
culated in step 5.

5.6 Comparing Risks

A common way of calculating risk in security applications is to have a score that has its values
within a limited interval, e.g., from 1 to 5. Although this approach simplifies the analysis of security
status for network operators, it has the disadvantage of loosing granularity. For this work we intend
to make possible a granular comparison of risk from the different neighbors, for which reason this
method will not be used, we will instead accumulate the values of the different malicious ASes.

For calculating the Risk Score we should not make an average of all malicious ASes but instead
add all the individual values of α. This choice has two main reasons. The first reason is the one
stated above, since the existence of several malicious ASes would lead to a dissipation of the
values of α and a misleading β. Imagine that we have neighbor A that has three malicious ASes
with Risk Scores of 90, 90 and 70, and neighbor B that has only one malicious AS with Risk Score
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85. Although AS A provides transit for much more malicious traffic, it would have a lower Risk Score
than B. The second reason refers to malicious users trying to manipulate the Risk Score values.
The rationale is the same, averages soften the differences of β and a malicious user could have
one, or more, metrics with very low values and one with high value. Although the malicious traffic
could be dangerous, the final result would be a low value due to the average calculation, and it
could become even more dangerous if facing a collusion situation among different malicious ASes.
This means that the Risk Score should not have an upper bound value and averages should be
avoided.

To properly compare risks we should consider two main types of neighbors, peers and all the
remaining. The rationale for these two types is due to the fact that the typical concept of peer is
used for two ASes exchanging traffic between them but not providing transit for each other traffic.
In this scenario it only makes sense to compare peers with peers since the traffic is only local and
the AS topology, i.e., its connections to other ASes is irrelevant for the Risk Score calculation since
that traffic will not reach the ISP AS, only traffic originating from that peer.

5.7 Simulation

For simulating the Risk Score behavior we are required to have two main inputs:

1. Malicious traffic information - we used the one analyzed in section 4.1;

2. BGP reachability information - since we do not have the public ASNs for the malicious traffic,
the public data from RIS (see section 4.2 for details) is not useful. We therefore defined a sce-
nario for a neighbor with three malicious ASes that may use it as transit: ASes 64557, 64562
and 64549. The neighbor itself is not originating malicious traffic. The reason for choosing
these malicious ASes is because they are characterized by different types of malicious traffic,
forming a good sample for the simulation.

Given this scenario, we could start with the first simulation. Table 5.4 provides the values required
for expressions 5.1, 5.2 and 5.4.

AS AS/Total Malicious Traffic (address scans) AS/Total Malicious Traffic (flow floods)
64515 32 0
64562 0 13
64549 0 26

Table 5.4: Malicious traffic metrics (real data).

With these inputs and with the default values for the custom parameters, i.e. karma = 1, weight =
3, we get the following results for α and β for the first day:

• α64515 = 160, α64562 = 30, α64549 = 130

• β1 = R1 = 320
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In this case we are not simulating a time series and for that reason, according to expression 5.4 the
Risk Score value is given by β, i.e., expression 5.2.

Now we wanted to understand how the Risk Score is affected by varying the karma parameter. We
changed the value of karma for the three ASes in concordance, i.e., we varied the karma value
from 1 to 5 simultaneously, obtaining five different values for the Risk Score. With this simulation
we were not analyzing the Risk Score behavior within a time window, therefore we calculated the
Risk Score for a single day without previous values, i.e., i = 1. Table 5.5 and figure 5.2 present the
values for that simulation:

karma64515 α64515 karma64562 α64562 karma64549 α64549 R1

1 160 1 30 1 130 320
2 80 2 15 2 65 160
3 53 3 10 3 43 107
4 40 4 8 4 33 80
5 32 5 6 5 26 64

Table 5.5: Karma impact on Risk Score.
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Figure 5.2: Karma impact on Risk Score.

From these results we can understand that the Risk Score decreases with the value of karma,
which is the wanted result. As explained in section 5.2 the operator should use higher values of
karma for ASes with which it has interest in its traffic. Now it becomes clearer why to use value 1
as the default value for karma, by default we do not trust ASes responsible for sending malicious
traffic.

Concerning the weight parameters, since they enable tweaking of proportionality between different
metrics, when we vary the values of weight we should only see a linear impact in the Risk Score.
To prove this assumption, another simulation was performed with the same values from table 5.4
but varying the values of weight for the metric related to flow floods, and the results are presented
in the following table:
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Flow floods Weight α64515 α64562 α64549 R1

1 32 1 5 38
2 32 2 10 45
3 32 4 16 51
4 32 5 21 58
5 32 6 26 64

Table 5.6: Weight impact on Risk Score.
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Figure 5.3: Weight impact on Risk Score.

As we can observe, the value of α64515 remains constant although the values of weight change.
This simulation only changes the weight for a particular metric, flow floods, since AS 64515 only
has values for address scans, changing the weight for flow floods does not impact on α64515. From
this simulation we also understand that the value of weight has a linear impact on the Risk Score,
and we can influence the values of Risk Score depending on the importance we attribute to each
metric, value 1 for lower importance and value 5 for higher importance. For this reason we believe
the best default value should be 3. The reason for this choice is because by default the metric has
a medium value of importance, allowing the operator to increase or decrease it as he/she thinks is
appropriate.

Another question that required an answer, was the behavior of Risk Score for a period of time with
variations in its inputs, the metrics. For this purpose we created a simulation for calculating the Risk
Score of a neighbor, with the following scenario:

• Phase 1

Time Period: From day 1 to 60;

Description: three malicious ASes start sending malicious traffic towards the ISP AS, the
values are incremental with an increase of 1% of malicious traffic per AS, per day.

• Phase 2
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Time Period: From day 61 to 75;

Description: One of the malicious ASes stops sending malicious traffic, the other two
continue sending malicious traffic.

• Phase 3

Time Period: From day 76 to 154;

Description: One of the malicious ASes starts decreasing the malicious traffic with a
decrease of 1% of malicious traffic per AS, per day until it completely stops.

Until the end of the simulation only one AS continues to send malicious data. From this scenario
we calculated the Risk Score and created a chart to compare how the Risk Score behaves in
comparison to the β parameter, since β gives the instantaneous value.
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Figure 5.4: Risk score simulation.

The purpose of this last simulation is to understand how the algorithm behaves with the dynamics
of malicious ASes. As we can observe from the chart in figure 5.4 as the system changes its inputs,
the Risk Score accompanies those changes and when the input flattens, i.e., remains constant, the
algorithm starts converging, a behavior that deals well with the dynamics of the Internet. We can
observe that a possible problem for this algorithm is the time it consumes for reacting to malicious
traffic, since the β parameter was constant for approximately 290 days and the Risk Score is still
approaching that value.
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Chapter 6

Intervention Policies

Beyond the classification of network neighbors, we can integrate this concept with active security
policies, namely the deployment of defense mechanisms to mitigate malicious traffic. These are
two facets of the study provided by this thesis.

In this chapter we analyze different mechanisms to mitigate malicious traffic received at the ISP
network, using the Risk Score (RS) previously calculated for a network neighbor and the ratio of
prefix versus total AS malicious traffic.

A possibility would be to simply depeer or block all the traffic from the AS with highest Risk Score.
Although a possible approach, this may be too harsh or even - in a worst-case scenario - counter-
productive. A feasible scenario would be an AS originating high volumes of malicious traffic from
one particular prefix. In this case the malicious traffic would be contained in one particular prefix
and filtering just that prefix, while notifying the AS network operator could solve the problem.

As mentioned, it is the responsibility of the network operator to choose which class of intervention
policy should be used, also, in order to provide coherence to the intervention policy the class must
be global, i.e., the same policy is used for all network neighbors of the same type.

For these reasons following we will now present possible solutions for different scenarios.

6.1 Network Mitigation Techniques

6.1.1 Depeering

Choosing to peer with a certain AS is done under thorough scrutiny and depends on a number of
different reasons, as explained in section 2.1. Although many of these reasons differ from AS to
AS there is one that is common: only when mutually beneficial to the parties will it be implemented.
Regarding the beneficial concept, it is also dependent on the specificities of each AS view (e.g.,
business revenue, technology choices). To determine when a certain agreement is beneficial can
be extremely hard to quantify and the Risk Score intends to provide another argument to support
that choice. We must understand when it stops being beneficial to peer with another AS, which can
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occur when considerable amounts of malicious traffic are received from that particular peer, and
we may be required to take the drastic approach of depeering from that AS.

When we choose to depeer from a particular AS, it does not mean that malicious traffic previously
detected will suddenly stop arriving to the ISP network since there are other routes that it may use
to reach the ISP network (that is one of the marvels of the Internet - its implicit redundancy). This
being said, the Risk Score algorithm also classifies all the other neighbors, peers or not, and if the
malicious traffic is still being detected, the same process will be run again.

6.1.2 Prefix Filtering

A possible and widely used solution to mitigate malicious traffic is prefix filtering based in deploy-
ment of ACLs (see section 2.3). Prefix filtering through ACLs allows dropping traffic from certain
specific prefixes, however it is not a very flexible solution in particular in terms of scalability, since
new prefixes responsible for originating malicious traffic appear with some regularity and the de-
ployment of ACLs through all the ingress routers is extremely difficult. In practical terms this means
the filters need to also include the new prefixes, which means considerable maintenance efforts are
required, increasing the complexity of the filters, increasing the space for configuration errors and
also increasing the processors load for that particular task - something that may introduce delays
into the network.

Prefix filtering through ACLs, although a simple technique implies many disadvantages, as previ-
ously stated, for which reason should be avoided as a long term deployment solution.

6.1.3 Route Injection and Flow Spec

The use of route injection and Flow Spec takes advantage of a trusted signaling infrastructure
already in place and specialized personnel already accustomed with the technology, BGP. The
use of Flow Spec provides a defense mechanism of high granularity since it enables definition of
protocols, source/destination addresses, source/destination ports, packet size, fragmentation, etc.
Flow Spec distributes flow specifications through BGP and delegates on the network routers that
implement BGP, the task of filtering the identified flows, therefore enabling a triggering mechanism
fast and easy to deploy1. This technology uses extended communities and a new Network Layer
Reachability Information (NLRI) address family. Some of the actions supported by Flow Spec are
traffic discard, traffic rate limitation or traffic redirection into an MPLS tunnel, meaning that traffic
engineering techniques can be applied to particular traffic flows.

This approach could have even more potential since it can be used for communication between
network neighbors. If previously defined rules were agreed between the involved network neigh-
bors, the Flow Spec rules could be propagated upstream till the source of the malicious traffic. A
cooperative approach could therefore increase the power of the defense mechanisms and to deploy
it using BGP is a simple and ubiquitous network mechanism already widely used in current Internet,
and with which network operators are familiar.

1Vendor support is currently still an issue.
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6.2 Making a Choice

From an operator point of view, making the choice of the most suitable defense mechanism is
dependent on two types of values: the value of the Risk Score after which mitigation actions are
in deployed; the values of prefixes versus AS total malicious traffic (see section 4.1.4). In case of
a source of malicious traffic being confined to a particular prefix, for example AS64542 has 100%
of its malicious traffic from prefix 33.152.0.0/14 (see figure 4.6 for details). In these cases it makes
sense to affect only particular prefixes, since it will mitigate all the malicious traffic from that AS,
otherwise, if depeering was applied, it would affect all the customers from AS64542 even if being
perfectly legitimate users.

The best solution for this choice would be to define a threshold to the ratio of prefixes versus AS
malicious traffic, after which we should choose to redirect particular source prefixes through Route
Injection or Flow Spec mechanisms, i.e., most of the malicious traffic originates from a particular
prefix. Using these mechanisms it would be possible to mitigate the malicious traffic in an efficient
and automatic way. If however the source of malicious traffic originated in a particular AS is more
spread through its address space than we should not use this type of mechanisms but instead
consider it as an argument for legitimate depeering actions.

As we can observe from the figure 4.5 some of the sources of malicious traffic in terms of prefixes
are below 20%. This implies the diffusion of malicious traffic through the address space explained
above. For this reason it is not efficient to start deploying a set of mitigation rules for each of
the prefixes and a wider approach is preferable, in particular depeering or blocking all traffic from
malicious ASes.

When classifying network neighbors, the maximum acceptable value for RS is given by the maxi-
mum value of α for one malicious AS. Considering the expressions for α 5.1, β 5.2, and Risk Score
5.4 we obtain the following statement:

STATEMENT 1 Let Q be the total number of metrics and Karma have its default value,
i.e., 1 we have MaximumAcceptable RS V alue =

∑Q
j=1 100×Wj .

Since we can have network operators with specific concerns, we propose the use of three classes
of intervention policies: strict, moderate and soft.

Strict A network operator with high security concerns and with low tolerance for malicious traffic.

Moderate A network operator with high security concerns that may tolerate some malicious traffic.

Soft A network operator with security concerns that tolerates malicious traffic.

For determining which intervention policy to apply, the network operator must define two important
thresholds:

Risk Score Threshold (TRS) Let TRS be the maximum value of β for a given set of weight pa-
rameter values. TRS is the upper bound value after which an intervention policy should be applied.
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From statement 1 we know the maximum value RS may be, therefore this threshold value depends
on how strict the network operator is regarding security concerns. The relationships between the
different TRS values for the three classes of policies is given by: TRS(strict) < TRS (moderate) <
TRS(soft).

Prefix Threshold (TP ) Let TP be the maximum value of malicious traffic a prefix may originate,
after which the prefix is considered malicious. TP is the upper bound value of malicious traffic after
which we should only filter that particular prefix. The relationships between the different TP values
for the three classes of policies is given by: TP (strict) > TP (moderate) > TP (soft).

Now we are able to define the specific values for the three policy classes previously mentioned.
The values present in table 6.1 were chosen based on the results of the data analysis from chapter
4.

Class TRS TP

Strict 30% of Max(α) 45%
Moderate 50% of Max(α) 30%
Soft 70% of Max(α) 15%

Table 6.1: Policy Class Threshold Values.

To decide which policy to apply, we can use these thresholds as references for the values collected
by the detection platform and in particular RS. For this process we propose the workflow defined in
figure 6.1. This workflow intends to go through every ISP neighbor, calculate the RS for each one,
compare it with the threshold previously defined for RS (TRS ) and choose the appropriate policy to
apply.
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Figure 6.1: Risk Score Intervention Policy Selection.

For the processes of "Block Traffic From NetworkNeighbor[Itr_Ngb].MaliciousASes" and "Filter Traf-
fic From NetworkNeighbor[Itr_Ngb].MaliciousASes specific prefixes" we present figures 6.2 and 6.3.
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Figure 6.2: Risk Score Intervention Policy Selection - Block All Traffic.

Regarding figure 6.2, it refers to the use case where RS surpasses TRS . In this use case, the
network neighbor is considered to be a threat and special attention must be given. The workflow
proposes to go through every malicious AS associated with this neighbor; for each of the malicious
ASes we iterate through their prefixes responsible for generating malicious traffic. In case the
malicious traffic from these prefixes surpasses the threshold defined for prefix malicious traffic ratio
(TP ), it means that particular prefix is a high contributor for the total malicious traffic from that AS,
in which case we should only filter the prefix. In case the traffic for that prefix is below TP , we only
increment a counter. This counter quantifies the degree of malicious traffic dispersion through the
address space for that malicious AS. From that point onward, the process is similar for all prefixes.
As can be observed, till this moment we do not block all traffic from an AS, that will only happen in
case we do not have prefixes that surpass TP , which means the malicious traffic is disperse through
the malicious AS and therefore it is more efficient to block all the AS traffic. For the particular case
of the neighbor being a peer, the blocking of traffic is done in parallel with a depeering process. The
depeering process should be viewed not only as a technical issue but also as a more complex one
as explained in section 6.1.1.
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Figure 6.3: Risk Score Intervention Policy Selection - Block Specific Traffic.

The workflow present in figure 6.3 has a similar approach but we do not consider the possibility of
blocking all traffic from the malicious ASes. Since this workflow is executed in case RS is below the
threshold TRS , i.e., the network neighbor is not considered to be a high security risk, we are not as
harsh in the policy applied and only consider filtering the malicious prefixes. In this use case we
go through all the malicious ASes associated with the network neighbor; for each of the malicious
ASes we iterate through their prefixes generating malicious traffic, and in case they surpass the
threshold TP we filter the prefix traffic, otherwise we let the traffic flow.

6.3 Deployment

In case the depeering solution is chosen, the technical details are simple since the main require-
ment is to shutdown the BGP peer. After that point onward the reachability information exchanged
with that particular peer stops being exchanged.

For specific prefixes, the network defense mechanisms are different and the deployment of Flow
Spec is considered the best choice. It is however more complex to deploy than depeering and
currently does not have complete support of network equipment vendors. Concerning the routers
support, the specifications are very recent and although some vendors already support them (e.g.,
Juniper), others (e.g., Cisco) do not provide available support at this moment.
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Concerning Flow Spec rules injection, a viable possibility is a tool named exabgp [4], which besides
Flow Spec can also inject generic routes into BGP communications and supports IPv4 and IPv6.
The tool implements the following RFCs:

• RFC 1997 [17] - BGP Communities Attribute;

• RFC 2545 - Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing;

• RFC 4271 [41] - A Border Gateway Protocol 4 (BGP-4);

• RFC 4360 - BGP Extended Communities Attribute;

• RFC 4724 - Graceful Restart Mechanism for BGP;

• RFC 4760 - Multiprotocol Extensions for BGP-4;

• RFC 4893 [49] - BGP Support for Four-octet AS Number Space;

• RFC 5492 - Capabilities Advertisement with BGP-4;

• RFC 5575 [32] - Dissemination of Flow Specification Rules.

With a deployment scenario of Flow Spec we need to deploy a control peer. It can be a Network
Operations Center (NOC) server, internally peering with other BGP speaking neighbors, which
would be responsible for injecting the Flow Spec rules whenever considered necessary, e.g., a
prefix originating a considerable amount of malicious traffic.

Figure 6.4: Flow Spec network diagram.

Considering the alternatives, we believe the best choice would be to use BGP as a signaling mech-
anism and exabgp as the tool of choice for implementing Flow Spec. This mechanism provides
the necessary flexibility to filter specific prefixes; to filter/block traffic from a complete AS; to quickly
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communicate decisions to network equipments and, also of high relevance, enables a communi-
cation mechanism to network neighbors in case of a pre-agreement between network operators to
implement joint security countermeasures.

To present a possible deployment scenario for implementing the security policies described in this
chapter, we will consider the same values used for the Karma simulation in section 5.7, in particular
for the default value of Karma (see table 5.5), which assume default weights for the two metrics
used. In the simulation we considered as malicious ASes the set {64515, 64562, 64549}. Regarding
the main contributing prefixes for each of the malicious ASes from this set (see section 4.1.4), we
get the following distribution:

Malicious ASes
64515 64562 64549

Prefixes [Malicious Traffic] 133.191.255.0/13 [21%]
249.196.0.0/14 [6.2%]

Other [72.8%]

93.156.0.0/14 [100%]
Other [0%]

95.232.0.0/16 [99.3%]
Other [0.7%]

Table 6.2: Malicious ASes main prefixes malicious traffic distribution.

In the simulation scenario used, the calculated value for RS was 320. Considering this scenario,
we have two metrics, the default values for weights and Karma, three and one respectively, and
Statement 1 described in section 6.2, we can calculate the maximum value of RS, which is 600.
Given this value, and considering table 6.1, we obtain the values of TRS for the different policy
classes presented in table 6.3.

Policy Class TRS (%)
Strict 180
Moderate 300
Soft 420

Table 6.3: Risk Score Threshold (TRS) Calculation.

At this point we can calculate the values for the total malicious traffic after applying the different
policy classes, through the use of the workflows previously explained (figures 6.1, 6.2 and 6.3).
Depending on the value of RS for the neighbor and the policy class selected, different intervention
policies may be applied. We now explain how this is achieved for each of the ASes:

64515

• strict : since RS is 320 and TRS is 180, we choose the use case in which we may block all
traffic from AS 64515. Next, we go through all prefixes mainly responsible for generating
malicious traffic and check if they surpass the threshold value TP for this policy class
(45%). We increment a counter responsible for accounting the dispersion of malicious
prefixes (Prefix_Dispersion), i.e., only if the malicious traffic from all the main prefixes is
below the TP threshold will we block all traffic from an AS. Since none of the prefixes
contributes with more malicious traffic than TP , the policy blocks all traffic from AS
64515.
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• moderate: since RS is 320 and TRS is 300, we choose the use case in which we may
block all traffic from AS 64515. Next, we go through all prefixes mainly responsible for
generating malicious traffic and check if they surpass the threshold value TP for this
policy class (30%). We increment a counter responsible for accounting the dispersion of
malicious prefixes (Prefix_Dispersion), i.e., only if all the main prefixes malicious traffic
is below the TP threshold will we block all traffic from an AS. Since none of the prefixes
contribute with more malicious traffic than this threshold, the policy blocks all traffic from
AS 64515.

• soft : since RS is 320 and TRS is 420, we choose the use case of possibly filter the traffic
from specific prefixes of AS 64515. Next, we go through all prefixes mainly responsible
for generating malicious traffic and check if they surpass the threshold value TP for this
policy class (15%). Prefix 133.191.255.0/13 contributes with 21% of malicious traffic and
is therefore filtered. None of the remaining prefixes are filtered, for which reason we still
have 79% of the initial malicious traffic.

64562

• strict : since RS is 320 and TRS is 180, we choose the use case in which we may block
all traffic from AS 64562. Next, we go through all prefixes which were mainly responsible
for generating malicious traffic and check if they surpass the threshold value TP for this
policy class (45%). Prefix 93.156.0.0/14 contributes with 100% of malicious traffic and
is therefore filtered. Since there is no other prefix generating malicious traffic, all the
malicious traffic from 64562 is mitigated without being necessary to block the whole AS.

• moderate: since RS is 320 and TRS is 300, we choose the use case in which we may
block all traffic from AS 64562. Next, we go through all prefixes mainly responsible for
generating malicious traffic and check if they surpass the threshold value TP for this
policy class (30%). Prefix 93.156.0.0/14 contributes with 100% of malicious traffic and
is therefore filtered. Since there is no other prefix generating malicious traffic, all the
malicious traffic from 64562 is mitigated without being necessary to block the whole AS.

• soft : since RS is 320 and TRS is 420, we choose the use case of possibly filter the traffic
from specific prefixes of AS 64562. Next, we go through all prefixes mainly responsible
for generating malicious traffic and check if they surpass the threshold value TP for this
policy class (15%). Prefix 93.156.0.0/14 contributes with 100% of malicious traffic and
is therefore filtered. Since there is no other prefix generating malicious traffic, all the
malicious traffic from 64562 is mitigated without being necessary to block the whole AS.

64549

• strict : since RS is 320 and TRS is 180, we choose the use case in which we may block all
traffic from AS 64549. Next, we go through all prefixes mainly responsible for generating
malicious traffic and check if they surpass the threshold value TP for this policy class
(45%). Prefix 95.232.0.0/16 contributes with 99.3% of malicious traffic and is therefore
filtered. None of the remaining prefixes are filtered, for which reason we still have 0.7%
of the initial malicious traffic. We increment a counter responsible for accounting the
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dispersion of malicious prefixes (Prefix_Dispersion), i.e., only if all the main prefixes
malicious traffic is below the TP threshold will we block all traffic from an AS. This means
that blocking a malicious AS is a countermeasure only used as a last resort and in this
particular case it is not considered to be required, for which reason we still have 0.7% of
the initial malicious traffic.

• moderate: since RS is 320 and TRS is 300, we choose the use case in which we may
block all traffic from AS 64549. Next, we go through all prefixes mainly responsible for
generating malicious traffic and check if they surpass the threshold value TP for this
policy class (30%). Prefix 95.232.0.0/16 contributes with 99.3% of malicious traffic and
is therefore filtered. None of the remaining prefixes are filtered, for which reason we still
have 0.7% of the initial malicious traffic.

• soft : since RS is 320 and TRS is 420, we choose the use case of possibly filter the traffic
from specific prefixes of AS 64549. Next, we go through all prefixes mainly responsible
for generating malicious traffic and check if they surpass the threshold value TP for this
policy class (15%). Prefix 95.232.0.0/16 contributes with 99.3% of malicious traffic and
is therefore filtered. None of the remaining prefixes are filtered, for which reason we still
have 0.7% of the initial malicious traffic.

Table 6.4 summarizes these calculations.

Malicious AS Policy Class Main Prefixes (%) Other Prefixes (%) Total Malicious Traffic (%)
Strict 0 0 0

64515 Moderate 0 0 0
Soft 6.2 72.8 79
Strict 0 0 0

64562 Moderate 0 0 0
Soft 0 0 0
Strict 0 0.7 0.7

64549 Moderate 0 0.7 0.7
Soft 0 0.7 0.7

Table 6.4: Intervention Policy Effect On Malicious Traffic.

The question that arises at this moment is "What if the malicious traffic ingress route changes to a
different network neighbor?". Since the intervention policy is coherently propagated through BGP
across the ISP network core, the malicious traffic would still be filtered.

It should be mentioned that the mechanism here proposed intends to provide a scalable method to
deal with malicious traffic. The selection mechanism based on the Risk Score and the volume of
malicious traffic from specific prefixes is used to present to the network operator the most efficient
defense option: filter specific prefixes, block all traffic from an AS or let traffic flow.
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Chapter 7

Conclusions

In the current chapter we propose possible new directions that can be taken based on the work
presented in this thesis, and explain the main conclusions reached with it.

7.1 Future Work

The scope of this thesis is very wide, which creates several opportunities to enhance it, from differ-
ent perspectives.

The definition of Risk Score only uses ratios. One possible outcome of such choice is that although
the score is high, the absolute input values are low. This can be overcome by two parallel ap-
proaches. First, besides only the ratio, it should also consider a threshold value after which we
consider the traffic interesting. Second, using another metric that also accounts for the values of
total traffic received per origin AS. For example, spam is a type of malicious traffic easier to quantify
when compared to the total exchanged traffic. The goal of this metric would be to better under-
stand the weight each origin AS has in the total traffic received by the ISP versus the total malicious
traffic. As explained in this thesis, depending on the type of malicious traffic, the volume of traffic,
i.e., the bandwidth, may not be the most relevant metric if compared to the ISP traffic as a whole.
Nevertheless it is important to understand the importance an AS has to an ISP and that metric may
be a possible answer.

The metrics analyzed in this work only consider specific traffic between end points. A more broad
view of the network is important, for which reason integrating concepts of BGP malicious traffic into
the expression could enhance the classification quality of a neighbor, e.g., according to Ramachan-
dran and Feamster [40] the existence of short lived BGP routes may indicate an existence of a
malicious AS.

Besides the BGP update messages analyzed in this thesis, other public services in the Internet
could also provide similar information, e.g., looking glasses, increasing the BGP input data and
therefore enabling a more accurate characterization of BGP reachability information, from the In-
ternet towards the ISP. However, another input that was not regarded, were BGP update messages
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exchanged in the core network of the ISP. Currently available software already exists for this pur-
pose [1], allowing an insightful view of the operator towards the Internet, namely what routes are
available for certain interesting destinations from a security point of view.

In this thesis we exclude the scenario of malicious routers manipulating the BGP update messages.
One possible attack to the system may be implemented by manipulating the BGP update messages.
A malicious router may inject bogus BGP update messages with manipulated AS paths in order to
remove malicious ASes from the adjacency table of a certain neighbor. This attack could, in a worst
case scenario, lead a network provider to block traffic from all its neighbors. To deal with this type
of issues some research work has been done, enabling detection of these malicious actions [39]
that can also be applied to the work here presented.

Given the concepts proposed in this thesis, the design and implementation of an application that
integrates them is still to be done. The possibility of having a tool with such features and tested in
a real network environment, is in our opinion a good enhancement to a network operator security
toolkit.

7.2 Conclusions

The work presented in this thesis enables a network operator to classify a network neighbor in
terms of the security risk it poses to the ISP and provides possible actions to deal with it.

Real data was collected from a mid scale ISP network that allowed to study the behavior of par-
ticular types of malicious traffic, i.e., address scans and flow floods, sent towards the ISP network.
From this analysis we understood that although the origins of such traffic are many, most of the
traffic is sent from only a small subset. We could also observe that some of the malicious traffic
activity appeared to have a periodic behavior.

To better understand how traffic could flow towards a network, we used the BGP update messages
available from the RIPE’s RIS repository. This service is based on a network of probes spread
through different locations worldwide with several peering connections, in order to capture BGP
update messages and therefore allowing a mapping of Internet reachability information dynamics.
In particular, we focused on how a particular AS was seen from the Internet, i.e., how it could be
reached from other networks in the Internet.

To enable an ISP to classify a network neighbor we developed an algorithm to determine the se-
curity risk it poses to the ISP and we named it Risk Score. For achieving this goal, we used the
results from the data analysis previously performed on the malicious traffic, and defined metrics to
be used as inputs in the algorithm. We propose the algorithm to be used continuously by an ISP
in order to understand the entrance points of malicious traffic into its network. Therefore enabling
not only a detection and recovery strategy but also a deterrence one, since it is intended for ASes
that provide transit facilities for malicious traffic be lead to react upstream towards the source of
the malicious traffic. For understanding how the algorithm would behave under the dynamics of
malicious traffic, we simulated the input from three different ASes and from the results we could
observe the algorithm converging.
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Based on the Risk Score algorithm and on particular observations done when analyzing the mali-
cious data, e.g., some ASes originate all their malicious traffic from a single prefix; we propose a
set of intervention policies that are sensitive to network behaviors and can be applied according to
a predefined flow. To understand the effect of real data with those intervention policies, we used
the same data from the Data Analysis in chapter 4, and we were able to observe malicious traffic
being considerably reduced in some cases and in others completely mitigated.

61



62



Bibliography

[1] “Bird project. the BIRD Internet Routing Daemon.” http://bird.network.cz/. 7.1

[2] “CoralReef,” http://www.caida.org/tools/measurement/coralreef/. 4.3.4

[3] “Cryptography-based prefix-preserving anonymization,” http://www.cc.gatech.edu/computing/
Telecomm/projects/cryptopan/. 4.3.4

[4] “Exabgp: A BGP route injector,” http://code.google.com/p/exabgp/. 6.3

[5] “IP to ASN mapping,” http://www.team-cymru.org/Services/ip-to-asn.html. 4.3.2

[6] “IPv4/IPv6 manipulation library in Python,” http://code.google.com/p/ipaddr-py/. 4.3.3

[7] “NFDUMP tools,” http://nfdump.sourceforge.net/. 4.3.4

[8] “Routeviews routing table archive,” http://www.routeviews.org/. 3

[9] “Routing information service (RIS),” http://www.ripe.net/projects/ris/. 3, 4, 4.2.2

[10] “Youtube hijacking: A RIPE NCC RIS case study,” http://www.ripe.net/news/study-youtube-
hijacking.html, 2008. 3

[11] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and interception in the internet,”
ACM SIGCOMM Computer Communication Review, vol. 37, no. 4, p. 276, 2007. 2.1

[12] S. Bellovin, D. Clark, A. Perrig, and D. Song, “A clean-slate design for the next-generation
secure internet,” in Technical report, Pittsburgh, PA: Report for NSF Global Environment for
Network Innovations (GENI) Workshop, 2005. 3

[13] S. Bellovin, “Security problems in the TCP/IP protocol suite,” ACM SIGCOMM Computer Com-
munication Review, vol. 19, no. 2, pp. 32–48, 1989. 3

[14] L. Blunk, M. Karir, and C. Labovitz, “MRT routing information export format,” draft-ietf-grow-
mrt-08. txt (Internet Draft), 2008. 4.3.1

[15] W. Borremans and R. Valke, “BGP (D) DoS Diversion,” 2005. 3

[16] K. Butler, T. Farley, P. Mcdaniel, and J. Rexford, “A survey of BGP security issues and solu-
tions,” Proceedings of the IEEE, vol. 98, no. 1, pp. 100–122, 2010. 3

[17] R. Chandra, P. Traina, and T. Li, “RFC 1997: BGP communities attribute,” 1996. 2.1, 6.3

63



[18] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, “Towards capturing repre-
sentative AS-level internet topologies,” Computer Networks, vol. 44, no. 6, pp. 737–755, 2004.
2.1, 3, 4.2.1, 5.1

[19] Z. Chen, C. Ji, and P. Barford, “Spatial-temporal characteristics of internet malicious sources,”
in Infocomm Mini-Conference. Citeseer, 2008. 3

[20] S. Cheshire, B. Aboba, and E. Guttman, “RFC 3927 (proposed standard): Dynamic configura-
tion of IPv4 link-local addresses,” IETF, 2005. 4.1.4

[21] Y. Chi, R. Oliveira, and L. Zhang, “Cyclops: The AS-level connectivity observatory,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 5, pp. 5–16, 2008. 3

[22] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun et al., “AS relationships:
inference and validation,” ACM SIGCOMM Computer Communication Review, vol. 37, no. 1,
pp. 29–40, 2007. 2.1, 3, 5.1

[23] C. Dovrolis, “What would Darwin think about clean-slate architectures?” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1, pp. 29–34, 2008. 3

[24] N. Feamster, J. Jung, and H. Balakrishnan, “An empirical study of bogon route advertise-
ments,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 1, p. 70, 2005. 3

[25] M. Fossi, E. Johnson, T. Mack, D. Turner, J. Blackbird, T. Adams, D. McKinney, S. Entwisle,
B. Graveland, J. Mulcahy, and C. Wueest, “Symantec global internet security threat report:
Trends for 2009,” Volume XV, Published April, 2010. 2.2, 3

[26] M. Foukarakis, D. Antoniades, S. Antonatos, and E. Markatos, “Flexible and high-performance
anonymization of NetFlow records using anontool,” in Third International Conference on Secu-
rity and Privacy in Communications Networks and the Workshops, 2007. SecureComm 2007,
2007, pp. 33–38. 4.3.4

[27] V. Fuller and T. Li, “RFC 4632: Classless inter-domain routing (CIDR): The internet address
assignment and aggregation plan,” IETF, 2006. 2.1

[28] J. Hawkinson and T. Bates, “RFC 1930: Guidelines for creation, selection, and registration of
an autonomous system (AS),” IETF, 1996. 2.1, 4.1.1

[29] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, “PHAS: A prefix hijack alert system,”
in Proc. USENIX Security Symposium, 2006. 2.1, 3

[30] Y. Liao and K. Zhang, “BGP behavior monitoring and analysis,” ECS 289M (Advanced Topics
in Computer Security) project, 2002. 3

[31] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, “Controlling high
bandwidth aggregates in the network,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 3, pp. 62–73, 2002. 3

[32] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and D. McPherson, “RFC 5575:
Dissemination of flow specification rules,” August 2009. 2.3, 6.3

64



[33] D. McPherson, R. Dobbins, M. Hollyman, C. Labovitzh, and J. Nazario, “Worldwide infrastruc-
ture security report, volume v, arbor networks,” 2010. 2.1, 2.1, 2.2, 3

[34] O. Nordstrom and C. Dovrolis, “Beware of BGP attacks,” Computer Communications Review,
vol. 34, no. 2, pp. 1–8, 2004. 3

[35] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang, “In search of the elusive ground truth:
the Internet’s AS-level connectivity structure,” in Proceedings of the 2008 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems. ACM, 2008,
pp. 217–228. 3

[36] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense mechanisms
countering the dos and ddos problems,” ACM Computing Surveys (CSUR), vol. 39, no. 1, p. 3,
2007. 2.2

[37] J. Postel, “RFC 791: Internet protocol: DARPA internet program protocol specification,” Infor-
mation Sciences Institute, 1981. 2.1

[38] B. Prakash, N. Valler, D. Andersen, M. Faloutsos, and C. Faloutsos, “BGP-lens: Patterns and
anomalies in internet routing updates,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009, pp. 1315–1324. 3

[39] T. Qiu, J. Wang, L. Ji, D. Pei, and H. Ballani, “Locating prefix hijackers using LOCK,” 2010. 2.1,
3, 7.1

[40] A. Ramachandran and N. Feamster, “Understanding the network-level behavior of spammers,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 4, p. 302, 2006. 3, 7.1

[41] Y. Rekhter, T. Li, and S. Hares, “RFC 4271: A border gateway protocol 4 (BGP-4),” IETF, 2006.
2.1, 2.1, 6.3

[42] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. d. Groot, and E. Lear, “RFC 1918: Address
allocation for private internets,” IETF, 1996. 2.3, 4.1.4

[43] M. Rossi, “MRT dump file manipulation toolkit (MDFMT)-version 0.2,” Centre for Advanced
Internet Architectures (CAIA)-Swinburne University of Technology, Tech. Rep., July, 2009.
4.3.1

[44] A. Slagell, K. Lakkaraju, and K. Luo, “Flaim: A multi-level anonymization framework for com-
puter and network logs,” in Proceedings of the 20th USENIX Large Installation System Admin-
istration Conference, 2006, pp. 63–77. 4.3.4

[45] A. Slagell, J. Wang, and W. Yurcik, “Network log anonymization: Application of crypto-pan to
cisco netflows,” in Proceedings of the Workshop on Secure Knowledge Management 2004.
Citeseer, 2004. 4.3.4

[46] A. Slagell and W. Yurcik, “Sharing computer network logs for security and privacy: A motivation
for new methodologies of anonymization.” 4.3.4

[47] A. Studer and A. Perrig, “The coremelt attack,” Computer Security–ESORICS 2009, pp. 37–52,
2010. 4.1.2

65



[48] D. Turk, “RFC 3882: Configuring BGP to block denial-of-service attacks,” IETF, 2004. 2.2, 2.3,
2.3

[49] Q. Vohra and E. Chen, “RFC 4893 (proposed standard): BGP support for four-octet AS number
space,” IETF. 2.1, 6.3

[50] A. Yaar, A. Perrig, and D. Song, “SIFF: A stateless internet flow filter to mitigate ddos flooding
attacks,” 2004. 4.1.2

[51] H. Yan, R. Oliveira, K. Burnett, D. Matthews, L. Zhang, and D. Massey, “BGPmon: A real-
time, scalable, extensible monitoring system,” in Cybersecurity Applications and Technologies
Conference for Homeland Security (CATCH). Citeseer, 2009. 3

[52] Q. Zhang and X. Li, “An IP address anonymization scheme with multiple access levels,” Infor-
mation Networking. Advances in Data Communications and Wireless Networks, pp. 793–802,
2006. 4.3.4

66


	1 Introduction
	1.1 Challenges of Internet Service Providers
	1.2 Contribution
	1.3 Document organization

	2 Background
	2.1 The Internet
	2.2 Malicious Traffic
	2.3 Malicious Traffic Mitigation

	3 Related Work
	4 Data Analysis
	4.1 Malicious Traffic Identification
	4.1.1 Traffic Anonymization
	4.1.2 Flow floods
	4.1.3 Address scans
	4.1.4 Analysis

	4.2 Network Reachability Information
	4.2.1 BGP update messages
	4.2.2 Routing Information Service from RIPE
	4.2.3 Analysis

	4.3 Software Tools
	4.3.1 PyBGPdump
	4.3.2 Whois service
	4.3.3 ipaddr-py
	4.3.4 Crypto-PAn


	5 Risk Score
	5.1 Concept
	5.2 Metrics
	5.3 Custom Parameters
	5.4 Malicious AS in Path
	5.5 Correlating Metrics
	5.6 Comparing Risks
	5.7 Simulation

	6 Intervention Policies
	6.1 Network Mitigation Techniques
	6.1.1 Depeering
	6.1.2 Prefix Filtering
	6.1.3 Route Injection and Flow Spec

	6.2 Making a Choice
	6.3 Deployment

	7 Conclusions
	7.1 Future Work
	7.2 Conclusions

	Bibliography

