1,075 research outputs found

    Stellar classification from single-band imaging using machine learning

    Full text link
    Information on the spectral types of stars is of great interest in view of the exploitation of space-based imaging surveys. In this article, we investigate the classification of stars into spectral types using only the shape of their diffraction pattern in a single broad-band image. We propose a supervised machine learning approach to this endeavour, based on principal component analysis (PCA) for dimensionality reduction, followed by artificial neural networks (ANNs) estimating the spectral type. Our analysis is performed with image simulations mimicking the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) in the F606W and F814W bands, as well as the Euclid VIS imager. We first demonstrate this classification in a simple context, assuming perfect knowledge of the point spread function (PSF) model and the possibility of accurately generating mock training data for the machine learning. We then analyse its performance in a fully data-driven situation, in which the training would be performed with a limited subset of bright stars from a survey, and an unknown PSF with spatial variations across the detector. We use simulations of main-sequence stars with flat distributions in spectral type and in signal-to-noise ratio, and classify these stars into 13 spectral subclasses, from O5 to M5. Under these conditions, the algorithm achieves a high success rate both for Euclid and HST images, with typical errors of half a spectral class. Although more detailed simulations would be needed to assess the performance of the algorithm on a specific survey, this shows that stellar classification from single-band images is well possible.Comment: 10 pages, 9 figures, 2 tables, accepted in A&

    Doctor of Philosophy

    Get PDF
    dissertationElectron microscopy can visualize synapses at nanometer resolution, and can thereby capture the fine structure of these contacts. However, this imaging method lacks three key elements: temporal information, protein visualization, and large volume reconstruction. For my dissertation, I developed three methods in electron microscopy that overcame these limitations. First, I developed a method to freeze neurons at any desired time point after a stimulus to study synaptic vesicle cycle. Second, I developed a method to couple super-resolution fluorescence microscopy and electron microscopy to pinpoint the location of proteins in electron micrographs at nanometer resolution. Third, I collaborated with computer scientists to develop methods for semi-automated reconstruction of nervous system. I applied these techniques to answer two fundamental questions in synaptic biology. Which vesicles fuse in response to a stimulus? How are synaptic vesicles recovered at synapses after fusion? Only vesicles that are in direct contact with plasma membrane fuse upon stimulation. The active zone in C. elegans is broad, but primed vesicles are concentrated around the dense projection. Following exocytosis of synaptic vesicles, synaptic vesicle membrane was recovered rapidly at two distinct locations at a synapse: the dense projection and adherens junctions. These studies suggest that there may be a novel form of ultrafast endocytosis

    Vision-Based Hazard Detection with Artificial Neural Networks for Autonomous Planetary Landing

    Get PDF
    In this paper a hazard detection and landing site selection algorithm, based on a single, visible light, camera acquisition, processed by Artificial Neural Networks (ANNs), is presented. The system is sufficiently light to run onboard a spacecraft during the landing phase of a planetary exploration mission. Unsafe terrain items are detected and arranged in a hazard map, exploited to select the best place to land, in terms of safety, guidance constraints and scientific interest. A set of statistical indexes is extracted from the raw frame, progressively at different scales in order to characterize features of different size and depth. Then, a set of feed-forward ANNs interprets these parameters to produce a hazard map, exploited to select a new target landing site. Validation is carried out by the application of the algorithm to images not considered during the training phase. Landing sites maps are compared to ground-truth solution, and performances are assessed in terms of false positives ratio, false negatives ratio and final selected target safety. Results for different scenarios are shown and discussed, in order to highlight the effectiveness of the proposed system

    Deep Multiphysics and Particle–Neuron Duality: A Computational Framework Coupling (Discrete) Multiphysics and Deep Learning

    Get PDF
    There are two common ways of coupling first-principles modelling and machine learning. In one case, data are transferred from the machine-learning algorithm to the first-principles model; in the other, from the first-principles model to the machine-learning algorithm. In both cases, the coupling is in series: the two components remain distinct, and data generated by one model are subsequently fed into the other. Several modelling problems, however, require in-parallel coupling, where the first-principle model and the machine-learning algorithm work together at the same time rather than one after the other. This study introduces deep multiphysics; a computational framework that couples first-principles modelling and machine learning in parallel rather than in series. Deep multiphysics works with particle-based first-principles modelling techniques. It is shown that the mathematical algorithms behind several particle methods and artificial neural networks are similar to the point that can be unified under the notion of particle–neuron duality. This study explains in detail the particle–neuron duality and how deep multiphysics works both theoretically and in practice. A case study, the design of a microfluidic device for separating cell populations with different levels of stiffness, is discussed to achieve this aim

    Source finding, parametrization and classification for the extragalactic Effelsberg-Bonn HI Survey

    Full text link
    Context. Source extraction for large-scale HI surveys currently involves large amounts of manual labor. For data volumes expected from future HI surveys with upcoming facilities, this approach is not feasible any longer. Aims. We describe the implementation of a fully automated source finding, parametrization, and classification pipeline for the Effelsberg-Bonn HI Survey (EBHIS). With future radio astronomical facilities in mind, we want to explore the feasibility of a completely automated approach to source extraction for large-scale HI surveys. Methods. Source finding is implemented using wavelet denoising methods, which previous studies show to be a powerful tool, especially in the presence of data defects. For parametrization, we automate baseline fitting, mask optimization, and other tasks based on well-established algorithms, currently used interactively. For the classification of candidates, we implement an artificial neural network which is trained on a candidate set comprised of false positives from real data and simulated sources. Using simulated data, we perform a thorough analysis of the algorithms implemented. Results. We compare the results from our simulations to the parametrization accuracy of the HI Parkes All-Sky Survey (HIPASS) survey. Even though HIPASS is more sensitive than EBHIS in its current state, the parametrization accuracy and classification reliability match or surpass the manual approach used for HIPASS data.Comment: 13 Pages, 13 Figures, 1 Table, accepted for publication in A&

    Reconstructing Dynamical Systems From Stochastic Differential Equations to Machine Learning

    Get PDF
    Die Modellierung komplexer Systeme mit einer großen Anzahl von Freiheitsgraden ist in den letzten Jahrzehnten zu einer großen Herausforderung geworden. In der Regel werden nur einige wenige Variablen komplexer Systeme in Form von gemessenen Zeitreihen beobachtet, während die meisten von ihnen - die möglicherweise mit den beobachteten Variablen interagieren - verborgen bleiben. In dieser Arbeit befassen wir uns mit dem Problem der Rekonstruktion und Vorhersage der zugrunde liegenden Dynamik komplexer Systeme mit Hilfe verschiedener datengestützter Ansätze. Im ersten Teil befassen wir uns mit dem umgekehrten Problem der Ableitung einer unbekannten Netzwerkstruktur komplexer Systeme, die Ausbreitungsphänomene widerspiegelt, aus beobachteten Ereignisreihen. Wir untersuchen die paarweise statistische Ähnlichkeit zwischen den Sequenzen von Ereigniszeitpunkten an allen Knotenpunkten durch Ereignissynchronisation (ES) und Ereignis-Koinzidenz-Analyse (ECA), wobei wir uns auf die Idee stützen, dass funktionale Konnektivität als Stellvertreter für strukturelle Konnektivität dienen kann. Im zweiten Teil konzentrieren wir uns auf die Rekonstruktion der zugrunde liegenden Dynamik komplexer Systeme anhand ihrer dominanten makroskopischen Variablen unter Verwendung verschiedener stochastischer Differentialgleichungen (SDEs). In dieser Arbeit untersuchen wir die Leistung von drei verschiedenen SDEs - der Langevin-Gleichung (LE), der verallgemeinerten Langevin-Gleichung (GLE) und dem Ansatz der empirischen Modellreduktion (EMR). Unsere Ergebnisse zeigen, dass die LE bessere Ergebnisse für Systeme mit schwachem Gedächtnis zeigt, während sie die zugrunde liegende Dynamik von Systemen mit Gedächtniseffekten und farbigem Rauschen nicht rekonstruieren kann. In diesen Situationen sind GLE und EMR besser geeignet, da die Wechselwirkungen zwischen beobachteten und unbeobachteten Variablen in Form von Speichereffekten berücksichtigt werden. Im letzten Teil dieser Arbeit entwickeln wir ein Modell, das auf dem Echo State Network (ESN) basiert und mit der PNF-Methode (Past Noise Forecasting) kombiniert wird, um komplexe Systeme in der realen Welt vorherzusagen. Unsere Ergebnisse zeigen, dass das vorgeschlagene Modell die entscheidenden Merkmale der zugrunde liegenden Dynamik der Klimavariabilität erfasst.Modeling complex systems with large numbers of degrees of freedom have become a grand challenge over the past decades. Typically, only a few variables of complex systems are observed in terms of measured time series, while the majority of them – which potentially interact with the observed ones - remain hidden. Throughout this thesis, we tackle the problem of reconstructing and predicting the underlying dynamics of complex systems using different data-driven approaches. In the first part, we address the inverse problem of inferring an unknown network structure of complex systems, reflecting spreading phenomena, from observed event series. We study the pairwise statistical similarity between the sequences of event timings at all nodes through event synchronization (ES) and event coincidence analysis (ECA), relying on the idea that functional connectivity can serve as a proxy for structural connectivity. In the second part, we focus on reconstructing the underlying dynamics of complex systems from their dominant macroscopic variables using different Stochastic Differential Equations (SDEs). We investigate the performance of three different SDEs – the Langevin Equation (LE), Generalized Langevin Equation (GLE), and the Empirical Model Reduction (EMR) approach in this thesis. Our results reveal that LE demonstrates better results for systems with weak memory while it fails to reconstruct underlying dynamics of systems with memory effects and colored-noise forcing. In these situations, the GLE and EMR are more suitable candidates since the interactions between observed and unobserved variables are considered in terms of memory effects. In the last part of this thesis, we develop a model based on the Echo State Network (ESN), combined with the past noise forecasting (PNF) method, to predict real-world complex systems. Our results show that the proposed model captures the crucial features of the underlying dynamics of climate variability

    Lossy Compression of Climate Data Using Convolutional Autoencoders

    Get PDF

    Application and improvement of soil spatial distribution mapping using advanced modelling techniques

    Get PDF
    The main purpose of this contribution is to develop  realistic prediction digital soil maps in order to increase their visuality, and to evaluate and compare the performance of different modeling techniques: a) Kriging, b) Artificial Neural Network – Multilayer Perceptron (ANN-MLP) and c) Multiple Polynomial Regressions (MPR). The following  criteria were used to determine selection of the testing site for the modeling: (1) intensive metal ore mining and metallurgical processing; (2) geomorphological natural features; (3) regular geological setting, and (4) the remaining minefields. The success of Digital Soil Mapping and the plausibility of prediction maps increases with the availability of spatial data, the availability of computing power for processing data, the development of data-mining tools, geographical information systems (GIS) and numerous applications beyond geostatistics. Advanced prediction modeling techniques, ANN-MLP and MPR include geospatial parameters sourced from Digital Elevation Models (DEM), land use and remote sensing, applied in combination with costly and time-consuming soil measurements, developed and finally incorporated into the models of spatial distribution in the form of 2D or 3D maps. Innovative approaches to modeling assist us in the reconstruction of different processes that impact the entire study area, simultaneously. This holistic approach represents a novelty in contamination mapping and develops prediction models to help in the reconstruction of main distribution pathways, to assess the real size of the affected area as well as improving the data interpretation.</p

    Fluvial Processes in Motion: Measuring Bank Erosion and Suspended Sediment Flux using Advanced Geomatic Methods and Machine Learning

    Get PDF
    Excessive erosion and fine sediment delivery to river corridors and receiving waters degrade aquatic habitat, add to nutrient loading, and impact infrastructure. Understanding the sources and movement of sediment within watersheds is critical for assessing ecosystem health and developing management plans to protect natural and human systems. As our changing climate continues to cause shifts in hydrological regimes (e.g., increased precipitation and streamflow in the northeast U.S.), the development of tools to better understand sediment dynamics takes on even greater importance. In this research, advanced geomatics and machine learning are applied to improve the (1) monitoring of streambank erosion, (2) understanding of event sediment dynamics, and (3) prediction of sediment loading using meteorological data as inputs. Streambank movement is an integral part of geomorphic changes along river corridors and also a significant source of fine sediment to receiving waters. Advances in unmanned aircraft systems (UAS) and photogrammetry provide opportunities for rapid and economical quantification of streambank erosion and deposition at variable scales. We assess the performance of UAS-based photogrammetry to capture streambank topography and quantify bank movement. UAS data were compared to terrestrial laser scanner (TLS) and GPS surveying from Vermont streambank sites that featured a variety of bank conditions and vegetation. Cross-sectional analysis of UAS and TLS data revealed that the UAS reliably captured the bank surface and was able to quantify the net change in bank area where movement occurred. Although it was necessary to consider overhanging bank profiles and vegetation, UAS-based photogrammetry showed significant promise for capturing bank topography and movement at fine resolutions in a flexible and efficient manner. This study also used a new machine-learning tool to improve the analysis of sediment dynamics using three years of high-resolution suspended sediment data collected in the Mad River watershed. A restricted Boltzmann machine (RBM), a type of artificial neural network (ANN), was used to classify individual storm events based on the visual hysteresis patterns present in the suspended sediment-discharge data. The work expanded the classification scheme typically used for hysteresis analysis. The results provided insights into the connectivity and sources of sediment within the Mad River watershed and its tributaries. A recurrent counterpropagation network (rCPN) was also developed to predict suspended sediment discharge at ungauged locations using only local meteorological data as inputs. The rCPN captured the nonlinear relationships between meteorological data and suspended sediment discharge, and outperformed the traditional sediment rating curve approach. The combination of machine-learning tools for analyzing storm-event dynamics and estimating loading at ungauged locations in a river network provides a robust method for estimating sediment production from catchments that informs watershed management
    • …
    corecore