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Abstract

Modeling complex systems with large numbers of degrees of freedom have be-
come a grand challenge over the past decades. Typically, only a few variables of
complex systems are observed in terms of measured time series, while the major-
ity of them – which potentially interact with the observed ones - remain hidden.
Hence, to analyze and model the behavior of such systems from available data, a
broad spectrum of data-driven methods ranging from network theory to machine
learning have been proposed. Throughout this thesis, we tackle the problem of
reconstructing and predicting the underlying dynamics of complex systems using
different data-driven approaches.

In the first part, we address the inverse problem of inferring an unknown net-
work structure of complex systems, reflecting spreading phenomena, from observed
event series. For this purpose, we numerically investigate two types of event-based
processes; I) a general model of events propagation with spontaneous events and
triggered events, and II) Susceptible-Infected-Recovered-Susceptible (SIRS) model
of epidemic spreading. Then we study the pairwise statistical similarity between
the sequences of event timings at all nodes through event synchronization (ES)
and event coincidence analysis (ECA), relying on the idea that functional connec-
tivity can serve as a proxy for structural connectivity. We demonstrate that both
ES and ECA indeed can accurately infer the underlying network structure from
the timing of events without using any prior knowledge of the type of observed
spreading dynamics.

In the second part, we focus on reconstructing the underlying dynamics of com-
plex systems from their dominant macroscopic variables using different Stochastic
Differential Equations (SDEs). Since the microscopic dynamics of complex systems
are often not accessible, SDEs attempt to model the macroscopic variables explic-
itly and represent the microscopic variables in terms of noise. We investigate the
performance of three different SDEs – the Langevin Equation (LE), Generalized
Langevin Equation (GLE), and the Empirical Model Reduction (EMR) approach
in this thesis. Our results reveal that LE demonstrates better results for systems
with weak memory while it fails to reconstruct underlying dynamics of systems
with memory effects and colored-noise forcing. In these situations, the GLE and
EMR are more suitable candidates since the interactions between observed and
unobserved variables are considered in terms of memory effects. Later, we conduct
a data-driven analysis of the Greenland temperature and atmospheric circulation
proxies under the purview of stochastic processes. Our results unravel the fea-
tures of the climate system’s stability landscape that helps understand candidate
mechanisms underlying these abrupt climate changes.

After gaining knowledge about the underlying dynamics of complex systems, the
next step is to predict their behavior. In the last part of this thesis, we develop
a model based on the Echo State Network (ESN), combined with the past noise
forecasting (PNF) method, to predict real-world complex systems. One of the
highly complex physical systems is the Earth’s climate system which consists of
several interconnected subsystems. We attempt to forecast the behavior of various
climate oscillations such as the El Nino/Southern Oscillation (ENSO), the Pacific
Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO)
using our ESN-based model. Our results show that the proposed model captures
the crucial features of the underlying dynamics of climate variability. Moreover,
the predictive power of our model suggests that cross-scale interactions are indeed
important for accurately modeling these systems.

iii





Zusammenfassung

Die Modellierung komplexer Systeme mit einer großen Anzahl von Freiheits-
graden ist in den letzten Jahrzehnten zu einer großen Herausforderung geworden.
In der Regel werden nur einige wenige Variablen komplexer Systeme in Form von
gemessenen Zeitreihen beobachtet, während die meisten von ihnen - die möglicher-
weise mit den beobachteten Variablen interagieren - verborgen bleiben. Um das
Verhalten solcher Systeme anhand der verfügbaren Daten zu analysieren und zu
modellieren, wurde daher ein breites Spektrum datengesteuerter Methoden vor-
geschlagen, die von der Netzwerktheorie bis zum maschinellen Lernen reichen. In
dieser Arbeit befassen wir uns mit dem Problem der Rekonstruktion und Vorher-
sage der zugrunde liegenden Dynamik komplexer Systeme mit Hilfe verschiedener
datengestützter Ansätze.

Im ersten Teil befassen wir uns mit dem inversen Problem, eine unbekannte
Netzwerkstruktur eines komplexen Systems, das Ausbreitungsphänomene wider-
spiegelt, aus beobachteten Ereignisreihen abzuleiten. Zu diesem Zweck untersuchen
wir numerisch zwei Arten von ereignisbasierten Prozessen: I) ein allgemeines Mo-
dell der Ereignisausbreitung mit spontanen und ausgelösten Ereignissen und II)
das SIRS-Modell (Susceptible-Infected-Recovered-Susceptible) der epidemischen
Ausbreitung. Anschließend untersuchen wir die paarweise statistische Ähnlichkeit
zwischen den Sequenzen der Ereigniszeitpunkte an allen Knoten durch Ereignis-
synchronisation (ES) und Ereignis-Koinzidenz-Analyse (ECA), wobei wir uns auf
die Idee stützen, dass funktionale Konnektivität als Stellvertreter für strukturelle
Konnektivität dienen kann. Wir zeigen, dass sowohl ES als auch ECA in der Tat
die zugrunde liegende Netzwerkstruktur aus dem Timing von Ereignissen ableiten
können, ohne vorheriges Wissen über die Art der beobachteten Ausbreitungsdy-
namik zu verwenden.

Im zweiten Teil der Arbeit konzentrieren wir uns auf die Rekonstruktion der
zugrundeliegenden Dynamik komplexer Systeme aus ihren dominanten makrosko-
pischen Variablen unter Verwendung verschiedener stochastischer Differentialglei-
chungen (SDEs). Da die mikroskopische Dynamik komplexer Systeme oft nicht
zugänglich ist, versuchen SDEs, die makroskopischen Variablen explizit zu mo-
dellieren und die mikroskopischen Variablen als Rauschen darzustellen. In dieser
Arbeit untersuchen wir die Leistung von drei verschiedenen SDEs - der Langevin-
Gleichung (LE), der verallgemeinerten Langevin-Gleichung (GLE) und dem An-
satz der empirischen Modellreduktion (EMR). Unsere Ergebnisse zeigen, dass die
LE bessere Ergebnisse für Systeme mit schwachem Gedächtnis zeigt, während sie
die zugrunde liegende Dynamik von Systemen mit Gedächtniseffekten und far-
bigem Rauschen nicht rekonstruieren kann. In diesen Situationen sind GLE und
EMR besser geeignet, da die Wechselwirkungen zwischen beobachteten und unbe-
obachteten Variablen in Form von Speichereffekten berücksichtigt werden. Später
führen wir eine datengestützte Analyse der grönländischen Temperatur- und atmo-
sphärischen Zirkulationsproxies unter dem Gesichtspunkt stochastischer Prozesse
durch. Unsere Ergebnisse entschlüsseln die Merkmale der Stabilitätslandschaft des
Klimasystems, was zum Verständnis der möglichen Mechanismen beiträgt, die die-
sen abrupten Klimaänderungen zugrunde liegen.

Nach dem Erwerb von Kenntnissen über die zugrunde liegende Dynamik kom-
plexer Systeme besteht der nächste Schritt darin, ihr Verhalten vorherzusagen.
Im letzten Teil dieser Arbeit entwickeln wir ein Modell auf der Grundlage des
Echo State Network (ESN) in Kombination mit der PNF-Methode (Past Noi-
se Forecasting), um komplexe Systeme in der realen Welt vorherzusagen. Eines
der hochkomplexen physikalischen Systeme ist das Klimasystem der Erde, das
aus mehreren miteinander verbundenen Teilsystemen besteht. Wir versuchen, das
Verhalten verschiedener Klimaschwingungen wie der El Nino/Southern Oscillati-
on (ENSO), der Pacific Decadal Oscillation (PDO) und der Atlantic Multidecadal
Oscillation (AMO) mit unserem ESN-basierten Modell vorherzusagen. Unsere Er-
gebnisse zeigen, dass das vorgeschlagene Modell die entscheidenden Merkmale der
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zugrunde liegenden Dynamik der Klimavariabilität erfasst. Darüber hinaus deutet
die Vorhersagekraft unseres Modells darauf hin, dass skalenübergreifende Wech-
selwirkungen tatsächlich wichtig für die genaue Modellierung dieser Systeme sind.
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1. Introduction

” How do we know that the world’s creation is not determined by falling grains of
sand” (Victor Hugo 1862). Consider a single grain of sand in a sand pile; any change
in its position can cause a massive avalanche, altering the sand pile’s shape. Systems
with many coupled degrees of freedom, whose macroscopic dynamics cannot easily be
predicted from the behavior of the individual components, are called complex sys-
tems [152]. Ecosystems, financial markets, granular materials, and the Internet [11,
192, 204] are all well-known instances of complex systems. The prevalence of these
systems and their colossal influences on human lives, highlight the theoretical and
transnational importance of understanding, modeling, and predicting them.

The complexity of complex systems does not come only from many interacting enti-
ties but also from nonlinear interactions that constantly change their internal patterns
and structures. Unlike simple linear systems, where an ensemble of individual fea-
tures can provide complete knowledge of the overall dynamics, in complex systems,
the whole is more than the sum of the components. Notably, complex systems exhibit
some distinct features that make their dynamics challenging to investigate, such as
adaptiveness, unexpected or unpredictable emergence, sensitivity to initial conditions,
and self-organization [37, 187]. For instance, short- to medium-range weather forecast-
ing is prone to error due to sensitivity to initial conditions [130]. Due to this intrinsic
complexity and interactions in a wide range of time scales, capturing detailed local
knowledge of every microscopic degree of freedom is difficult. However, in the study of
complex systems, we are often interested in global emergent behaviors that occur at a
larger scale than the microscopic variables’ behavior. To derive such macroscopic-level
information, one possible approach is to observe the system at a particular time scale
and abstract away unnecessary details on the finer scale that cannot be resolved ex-
plicitly [192]. For example, to capture the essential information on the global climate
system, one can investigate the evolution of sea surface temperature (SST) instead of
understanding each microscopic component of oceans and atmosphere.

Describing the long-term dynamics of a complex system by macroscopic variables
fluctuating in time is the heart of stochastic modelling [75, 138]. Depending on the
time scale differences between microscopic and macroscopic variables, one can achieve
a stochastic description of a system’s dynamic based on a desired level of abstraction.
In scenarios where the macroscopic behavior of a system occurs at a far larger scale
than the microscopic variables, one can study macroscopic variables independently
and consider microscopic variations as noise (i.e., Markov processes). For instance,
it has been demonstrated that one can consider turbulent free jet as a Markov pro-
cess and establish a model based on the Fokker-Planck equation [57]. However, this
scale separation approach cannot be easily applied when the macroscopic behavior
depends on the nonlinear microscopic interactions, which can lead to long memory
effects [123]. For example, one can consider the Earth’s climate system which consists
of several interconnected subsystems (i.e., oceans and atmosphere) taking place on
different time and spatial scales. Even though these subsystems may be investigated
separately, our growing understanding of nonlinear interactions and feedback loops
among them demonstrates that such interrelations must be taken into account to un-
derstand the emergent behaviors of the Earth’s system [46]. Accordingly, to capture
these cross-scale interactions, a model needs to have additional terms that consider
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memory effects. For example, the Mori–Zwanzig [154, 225] formalism has been devel-
oped to construct a coarse-grained model from high-dimensional systems and derive
closed equations of motion of resolved variables by considering cross-scale interactions.
However, analyzing the dynamics of a complex system using such models can be a
complicated and no-trivial task. Additionally, establishing mathematical models can
be challenging for complex dynamical systems where systems’ dynamics are driven by
non-Gaussian processes (e.g., Lévy motion).

As an alternative approach, data-driven techniques can be employed to extract hid-
den patterns of an unknown complex system from the evolution of observed data. Dif-
ferent data-driven methods, from network science to time series analysis and machine
learning, have been introduced to identify emergent properties of complex systems [27,
71]. For example, in climate science, data-driven methods, successfully are employed
for weather forecast [29, 178] and climate variability prediction [72, 149, 219]. A major
advantage of these data-driven approaches is that they do not require a prior assump-
tion about the dynamics of the target system. The overarching aim of the current
thesis is to shed light on data-driven approaches to understand and reconstruct the
underlying dynamics of complex systems and subsequently predict their future behav-
ior. More specifically, the current thesis will address three questions:

I. Is it possible to reconstruct the structural connectivity of an unknown complex
network from observed event-series?

One common approach to represent an abstraction of a system is a network. Com-
plex networks are widely applied for modeling and analyzing real-world phenomena
across disciplines [51]. In real-world situations, the network structure underlying some
observed macroscopic dynamics is often unknown. In such cases, the common task
is to infer the unobserved connectivity patterns based on long-term observations of
the emerging dynamics. The fundamental assumption underlying this concept is that
strong pairwise statistical associations between the dynamics at each pair of nodes can
be interpreted as functional connectivity between them [78, 79, 208]. This functional
connectivity can be used to proxy the (unobservable) actual structural connectivity
of the network. However, the associated problem of statistical inference of the under-
lying linkage structure – the so-called network topology – from observed dynamical
processes is still a subject of ongoing research. Specifically, only a few studies have
deeply addressed whether we could correctly “predict” the placement of connections
from specific measures of statistical similarities between event sequences [44, 217]. To
solve the problem of inferring structural connectivity of the target systems, we will use
suitable similarity measures, i.e., event synchronization and event coincidence analysis.

II. How to reconstruct the underlying dynamics of complex systems form time series
using stochastic differential equation (SDE)?

Due to insufficient prior knowledge about the underlying physical processes, deriving
governing laws (in the forms of ordinary, partial, or stochastic differential equations)
often analytically is difficult [139]. In the last several decades, there have been consid-
erable methodological advances in discovering governing laws underlying the evolution
of complex systems from experimental and observational data [23, 25, 104]. The time
evolution of a complex system’s state can be a continuous trajectory, exhibit jump
discontinuities, or even in some cases, stochastic. Notably, the stochasticity might
stem from random forcing or the presence of interactions in different time (length)
scales. This is where the concept of stochastic models becomes more relevant to de-
scribing the underlying dynamics of a system. Stochastic modeling is commonly em-
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ployed in domains such as finance [49, 52], power grid [8, 65] and climate systems [19,
137]. In this framework, the evolution of a complex system can be described by its
macroscopic dynamics. Further, the microscopic interactions are accounted as fluc-
tuating forces modeled by suitable noise terms. The noise term serves as a tool for
taking non-specified components into account that cannot be captured by a determin-
istic model [181]. Notably, depending on the intrinsic dynamics of the target system
(e.g., from weak history-dependence to strong state-dependence), different forms of the
stochastic equation of motion can be derived. We will employ some data-driven meth-
ods to extract underlying mechanism and corresponding SDEs of complex systems.

III. How to improve the prediction of future behavior of complex systems from
limited time series using artificial neural networks (ANNs)?

Aside from identifying, predicting complex systems’ behavior is essential in many
fields, particularly in Earth’s climate system (e.g, forecasting weather and extreme
events). However, due to the complex nature of such systems and often their chaotic
characteristics (i.e., high sensitivity to initial conditions), there is an intrinsic limit
to predicting their behavior. In recent years, different machine learning techniques,
particularly artificial neural networks (ANNs), have been advanced as popular tools
to classify, optimize, and diagnose the characteristics of complex systems [129, 212].
The central issue of these techniques is how to extract useful information efficiently
from available data. However, a pivotal problem in forecasting natural systems, like
climate, is understanding the influence of unresolved (high-frequency variables) on the
dynamics of resolved (low-frequency variables) [10]. To circumvent this problem, we
developed an ANN algorithm that is not only able to predict the variable of interest
but can also estimate fast fluctuations and their impact on the resolved parts of the
dynamics.

1.1. Organization of the thesis
This thesis is split into two parts: the theory and applications. In chapter (2), I
start with an overview of the basic concepts of complex networks and explain how
functional connectivity can be estimated based on the temporal similarity measures
of event sequences. In the second section, I introduce several dimension-reduction
methods commonly used to reconstruct the governing dynamics of stochastic systems.
Finally, I close the theoretical foundation chapter with an overview of ANNs and
present our developed ANN based on the interactions between the slow and the fast
scales in real-world data. From chapter (3) onward, I present our original results
employing these theoretical foundations for addressing above-mentioned questions. In
chapter (3), we aim to infer the (unknown) structural connectivity of complex networks,
exhibiting some spreading process, from the functional connectivity. In chapter (4),
first, we reconstruct SDEs governing the dynamics of various synthetics and real-world
processes. Then, we investigate the underlying stochastic process deriving sudden
climatic transitions observed during the last glacial period. In chapter (5), we evaluate
the prediction skill of the developed ANN by applying it to three different climate
variability indices. Finally, in chapter (6), I summarize the main conclusions derived
from chapter (3) to chapter (5) and outline potential avenues for future research.
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2. Theoretical Foundations

2.1. Measures of Similarity in Complex Networks

We live in a world of complex systems. It is usually challenging to model such sys-
tems due to their highly complex nature and many interdependencies. One popular
approach used to extract information from structural and behavioral characteristics of
complex systems is complex network theory [10, 22, 163, 196]. According to this the-
ory, many complex systems ranging from biological and social systems to ecosystems
and the Internet can be described as networks of interacting entities. This powerful
approach that has traditionally been the domain of graph theory, attempts to uncover
the signature behavior of complex systems using a visual-mathematical abstraction of
a set of interactions and removes all unnecessary details. However, constructing the
structural network of many real-world systems (e.g., climate and brain) is not always
straightforward. In such circumstances, the unknown connectivity patterns should be
inferred from the statistical interrelationships among entities of a network [81]. The
fundamental assumption underlying this concept is that strong pairwise statistical as-
sociations between two entities can be interpreted as functional connectivity between
them, which can be used as a proxy of the (unobservable) actual structural connec-
tivity [26, 45, 47, 164]. To capture such functional connectivity, different similarity
measures have been proposed [44, 174]. In the following section, we briefly introduce
some fundamentals of network theory and present some similarity measures used in
this thesis to infer network topology.

2.1.1. Complex Networks

Mathematically, a network consists of a set of nodes N and links E that represent
various entities or systems. Properties of a network can be characterized by its connec-
tivity matrix– known as adjacency matrix A – which keeps tracking of the topological
structure of the network [16].

Aij =
{︄

1 if there is a link from i to j

0 otherwise.
(2.1)

In an undirected network, the adjacency matrix is symmetric, Aij = Aji indicating
a connection between two nodes is bidirectional. However, in applications, complex
networks are not always symmetric, and a link between two nodes has a specified
orientation Aij ̸= Aji (e.g., neural connections in the brain and internet). For such
directed networks, a link from a source node i to a target node j is not equivalent to
a connection from j to i. Moreover, a network can have self-loops, where the Aii = 1.
In both directed and undirected networks, the strength of links between nodes can
also be represented by weights (Wji). Such weighted physical linkages are the basis of
the architecture of weighted networks where the entries of the adjacency matrix are:
Aij = Wij . In addition, each node in a network can possess a weight that represents
how significantly a node contributes to a domain of interest.
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Several global and local measures can be defined as indicators of the network’s
topology using the adjacency matrix. For instance, we can quantify the number of
edges on a network using the link density ρ.

ρ =
∑︁

ij ai,j

N(N − 1) (2.2)

Here the denominator represents the maximum number of edges that could potentially
exist in a given network. Note that, for an undirected network, the numerator must
be multiplied by 2.

A network’s average shortest path length is an effective method for learning how a
network is arranged and connected. This quantity measures the average number of
steps with the shortest paths for all possible pairs of network nodes.

< L(i, j) >= 1
N(N − 1)

N∑︂
i ̸=j

Li,j (2.3)

Another frequently used tool for analyzing a network’s topology is the clustering
coefficient, representing the probability that two randomly selected neighbors of a
node are connected. This metric, known as local clustering coefficients, is defined as
follows:

< C(i, j) >= ni

ki(ki − 1) (2.4)

Where ki denotes the degree of node i and ni stands for the number of links that
connect the neighbors of node i. We can calculate the global clustering coefficient by
averaging this measure for all nodes in the network.

The question arising here is how to interpret these measurements for an empirical
network in a meaningful manner. Random network models provide suitable reference
points for determining whether the measured properties of a network of interest are
exceptional. This framework treats links between nodes as random variables governed
by specific probabilistic laws. Three types of random network models are considered in
this thesis: Erdös-Rényi random graphs, scale-free Barabási-Albert networks [12](SF),
and small-world Watts-Strogatz networks [214] (SW). The Erdös-Rényi model (ER)
generates fully random networks in which a possible edge between two pairs of nodes is
chosen randomly with a certain probability (p). Random networks evolved under the
ER model exhibit small average shortest path length and small clustering coefficient.
On the other hand, the small-world network (SW) is a class of random graphs with
a rewiring probability ρ of the original underlying ring lattice. In this structure, the
edge between two nodes is disconnected and then randomly connected to another node
( see Fig. 2.1). By varying the ρ, one can study the transition of the network from a
ring lattice to a random structure.

In contrast to the ER and SW networks, a SF network’s degree distribution (P )
exhibits a power-law behavior where P decays as the degree k increases. The algorithm
of generating ER and SW networks is based on a network with a fixed number of nodes,
while the common models to construct a SF network starts with an initial small network
with n nodes and k degree. Then, at each time step t, a new node is added into the
network and connected to m existing nodes chosen with a probability proportional to
their current degree.

2.1.2. Similarity Measures

Determining pairwise similarity is a key problem when dealing with time series. Such
inter-dependencies can be characterized by many different measures, the use of which
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Figure 2.1.: Representation of Watts-Strogatz network as an intermediary state be-
tween regular and random network, from left to right.

should be guided by the specific research question and type of recorded observables. For
example, Pearson’s correlation coefficient (PCC) [45] is one of the most commonly used
similarity metrics. The PCC is restricted to measuring linear dependencies’ strength
between two normalized time series. It can take values between -1 and 1, where the
positive and negative signs correspond to the direction of the linear relationship. For
two time series xr and xr of length T, the PCC can be defined as follows:

PCC(xr, xp) =
∑︁n

i=1(xr
i − xr

i ).(xp
i − xp

i )
σxr .σxp

(2.5)

where σxr and σxp are the standard deviation. The PCC(xr, xp) = 0 indicates that
the two time series are perpendicular and are not correlated.

In many complex systems, the pertinent information is carried by specific events
in a time series, for instance, heavy rainfall events in daily precipitation records or
neuronal spikes in electroencephalogram (EEG) signals. In such situations where the
variables of interest are not continuous, the classical linear statistical association mea-
sures may not provide reliable information on the co-occurrence of events. Among
the recent methodological developments, Event synchronization (ES) and Event coin-
cidence analysis (ECA) are known as non-linear similarity measures suitable for binary
data. These methods allow to identify instantaneous and delayed coupling patterns
among paired event time series.

2.1.2.1. Event Synchronization (ES)

Event synchronization (ES) was initially introduced by Quian Quiroga [174] as a
parameter-free method to measure the strength of mutual synchronization (and asso-
ciated time delay) between neurophysiological signals exhibiting spiky dynamics (like
in electroencephalogram (EEG) recordings). Beyond various applications in the neu-
roscience context, this approach has also been applied to climatological time series in
recent years. For instance, to investigate the synchronicity of the timing of extreme
events at different locations, to identify essential regional interdependence patterns
and the preferred direction of propagation of such extremes [17, 18, 139].

Let us consider two series containing information on the times of occurrence of two
specific types of events, λ and µ (e.g., heavy rainfall events at different meteorological
measurement stations). We enumerate the corresponding events as l = 1, 2, ..., nλ and
m = 1, 2, ..., nµ, respectively. Within the framework of ES, two events eλ

l and eµ
m
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Figure 2.2.: Schematic illustration of event synchronization.

are considered synchronized if and only if they both took place with a mutual time
difference smaller than a specific, data-adaptive interval τl,m. In this thesis, we refer
to this quantity as a dynamical coincidence interval. The dynamical nature of this
time interval implies that the more frequent the events occur (i.e., the shorter the
inter-event or waiting time between subsequent events of the same type), the smaller
this dynamical coincidence interval is.

τλ,µ
l,m = 1

2 min{tλ
l+1 − tλ

l , tλ
l − tλ

l−1, tµ
m+1 − tµ

m, tµ
m − tµ

m−1}. (2.6)

With this definition, we can assess for each pair of events eλ
l and eµ

m in the two event
series whether or not they have occurred in close succession in comparison with their
respective dynamical coincidence interval τλ,µ

l,m . Thereby, we can simply count the
number of times an event in series λ is close to a previously occurred event in series µ
(and vice versa) as

q(λ|µ) =
nλ∑︂
l=1

nµ∑︂
m=1

cλ,µ
l,m (2.7)

with

cλ,µ
l,m =

⎧⎪⎨⎪⎩
1, if τmin < tλ

l − tµ
m < τλ,µ

l,m ,

0.5, if τmin = tλ
l − tµ

m,
0, otherwise.

(2.8)

Then we can measure the strength of event synchronization between two nodes in a
symmetric fashion, where the temporal order of events does not matter,

QES
(λ|µ) =

q(λ|µ) + q(µ|λ)√
nλnµ

, (2.9)

QES
(λ|µ) = 1 implies complete synchronization between two sequences. Fig. (2.2)

systematically illustrates the general concept of ES.
Note that, if we are interested in identifying directed influences among the units of

a networked system, we might however solely consider the directed quantity QES
(λ|µ),

thereby acknowledging that QES
(λ|µ) ̸= QES

(µ|λ) is possible. In this thesis, we employ
symmetric version of QES

(λ|µ) to infer possible interconnection between components of a
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complex network.

2.1.2.2. Event Coincidence Analysis (ECA)

As described above, the ES method utilizes a dynamical and data-adaptive coincidence
interval. Even though this has the advantage of not choosing a specific value a priori,
it implies that ES is beneficial if there is some typical inter-event waiting time in the
two series to be compared. This might be presumed in the case of EEG recordings
exhibiting relatively regular inter-spike intervals, but not necessarily in the context
of successions of, e.g., natural disasters which may occur clustered in time. Further,
the ES method does not require explicitly determining coincidence interval, which may
cause merging information from different timescales and make it difficult to distinguish
certain processes. Moreover, depending on the specific application, there might be prior
knowledge of typical time scales of the process under study (e.g., a finite propagation
speed of events in a spatially extended system) that might be explicitly considered in
the corresponding analysis.

Another recently proposed method, event coincidence analysis (ECA), takes the
more general viewpoint of possibly coupled point processes. Similar to ES, it is based
on counting the cases in which two events of different types have occurred in close
succession [44]. However, unlike ES, closeness is defined here in a prescribed static
coincidence interval ∆T . We note that, most previous applications of ECA have ex-
plicitly acknowledged the fact that the number of coinciding events depends on which
series is taken as the reference (which is shared by the ES), thereby distinguishing
between the trigger and precursor coincidence rates [44]. In addition to the static
coincidence interval ∆T , in its general formulation ECA also considers a second exter-
nal parameter, the time delay τ , which allows for studying systematic mutual delays
between events of two types. Notably, this effect can also be straightforwardly imple-
mented into ES by shifting all event times in one of the series to be compared by a
fixed value of τ .

With the aforementioned presumptions, for event sequence λ taken as a reference,
the fraction of events in this series that have been preceded by at least one event in the
second series µ within a given time window ∆T is referred to as the precursor event
coincidence rate between the two event series (see Fig. (2.3)):

rλ|µ(∆T, τ) = 1
nλ − n

′
λ

nλ∑︂
l=1

Θ
[︄ nµ∑︂

m=1
1[0,∆T ]((tλ

l − τ) − tµ
m)
]︄

. (2.10)

Here Θ represents the left-continuous Heaviside step function preventing events from
being counted twice and 1I indicates the indicator function of the interval I :

1I(x) =
{︄

1, if x ∈ I
0, otherwise.

(2.11)

For a correct normalization of the precursor event coincidence rate, we subtract
the total number of events occurring at [t0, τ + ∆T + t0] interval (n′

λ) from the total
number of events (nλ). Simply put, due to the nonzero time lag τ , it is not possible
for events at λ occurring at [t0, τ + t0) to coincide with any event at µ. Sequentially,
considering the events in µ as the basis for normalization, we can define the trigger
event coincidence rate as follows:

rµ|λ(∆T, τ) = 1
nµ − n′

µ

nµ∑︂
m=1

Θ
[︄

nλ∑︂
l=1

1[0,∆T ]((tµ
m − τ) − tλ

l )
]︄

. (2.12)
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Figure 2.3.: Schematic illustration of event coincidence analysis

Correspondingly, for the trigger event coincidence rate we exclude those events that
occur at [tf − (τ + ∆T ), tf ] interval to avoid possible errors. Now we can define a
symmetric matrix of pairwise coincidence rate based on the maximum or the mean
value of the two directed trigger events:

QECA,Max
λ|µ = max(r(λ|µ; ∆T ), r(µ|λ; ∆T )) (2.13)

QECA,Mean
λ|µ = (r(λ|µ; ∆T ) + r(µ|λ; ∆T ))

2 (2.14)

Here QECA,Max
λ|µ is preferred for highlighting bidirectional dependencies. In contrast,

QECA,Mean
λ|µ is employed when one needs to determine a strong unidirectional connection

between two event time series.

2.1.2.3. Comparison Between Pearson’s Correlation Coefficient and Event
Synchronization and Event Coincidence Analysis

To demonstrate the difference between the performance of the PCC analysis, ES and
ECA approaches, we produce three different binary time series with length t = 10000
and 100 independently and uniformly randomly chosen components equal to 1. In this
setup, time series x1 and x2 are considered to be independent, while event series x3 and
x1 are dependent. To construct the dependency between x3 and x1, we shift non-zero
components of x1 event series forward in time by a time point randomly selected from
the set {1, ..., 8}. Therefore, events in x3 follow events in x1 with some time window.
Then we attempt to quantify the similarity between x1 and x2 using the three methods
mentioned earlier. This procedure is repeated 1000 times and the resulting histograms
of the corresponding PCC, ES, and ECA values can be seen in Fig. (2.4). According to
Fig. (2.4)a, all the three approaches show no strong relationship between events in x1
and x2, as we expected. However, Fig. (2.4)b reveals that PCC analysis can not capture
the lagged relationship between x1 and x3, where there is an unfixed delay between
events in two different time series, while values of ES and ECA are considerably higher.
We refer to chapter 3, where we pursue a comprehensive numerical study for inter-
comparing the potentials of ES and ECA to identify the underlying network structure
based on event-type dynamics.
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(a)

(b)

Figure 2.4.: Comparison between the performance of Pearson’s correlation coefficient
(PCC), Event Synchronization (ES) and Event Coincidence Analysis (ECA) for binary
data. Here we produce three different event series where x1 and x2 are independent,
while events in x1 are followed by events in x3 within 8 time steps.

2.2. Fundamentals of Stochastic Modelling of Dynamical
Systems

The dynamics of complex systems can be represented by different forms of mathemat-
ical models [56, 69]. In the last decades, a wide range of mathematical modelings that
differ in several aspects (i.e., level of detail or the approximations) has been intro-
duced. Among them, differential equations (e.g., ordinary and stochastic differential
equations) are by far the most preferred mathematical tool for modeling real-world
phenomena. For instance, deterministic ordinary differential equations (ODEs) have
broad applications in fluid mechanics, quantum physics, and statistical physics [109,
128]. An ODE allows us to estimate the evolution of a state variable using the informa-
tion of its previous states. Typically, for any set of parameters and initial conditions,
the solution for a deterministic differential equation is unique and can predict the
future perfectly because ODE contains no stochastic elements [86]. However, com-
plex systems are often governed by nonlinear interactions and intricate fluctuations.
Therefore, the assumption that a deterministic differential equation can fully explain
real-world data is often unrealistic.

A typical approach is then to focus on the comparably few observed, macroscopic
variables, assuming that they determine the key dynamics of the system, while the re-
maining ones are represented by noise. This leads to an approximate, inverse modelling
of such systems in terms of Stochastic Differential Equations (SDEs). In the following,
we introduce and review three different examples of SDEs (i.e., Langevin equation,
Generalized Langevin equation, and Empirical Model Reduction) that are widely used
to identify and reconstruct the time evolution of complex systems [59, 108]. Further,
we discuss how to extract different terms of these equations from stochastic time series
data by employing other data analysis techniques.
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2.2.1. Langevin Equation (LE)

In the early twentieth century, Paul Langevin [116] proposed a quantitative description
of the random motion of colloidal particles suspended in a fluid, known as a critical
problem of non-equilibrium statistical mechanics. This theory’s applicability later has
been extended to express the dynamical behavior of varieties of macroscopic systems
without genuine particle ontologies. The original Langevin Equation is a first-order
differential equation, which represents the time evolution of a subset of degrees of
freedom containing both frictional and random forces that are associated with the
fluctuation-dissipation theorem (FDT) [111]. This theorem implies a systematic inter-
nal relationship between the magnitude of the friction and the strength of fluctuating
forces.

Consider a system for which the evolution of the macroscopic states x(t) obeys the
following equation of motion:

dx(t)
dt

= a(x, t) + b(x, t)η(t). (2.15)

where a(x, t) and b(x, t)η(t) represent the deterministic force (e.g., friction and grav-
ity) and stochastic forces (e.g., noise and chaotic particle interactions in many-body
systems), respectively. Here, η(t) is conventionally a stationary, δ-correlated Gaussian
process with zero mean: < η(t) >= 0 and < η(t)η(t′) >= δ(t − t′). The presence of
δ-correlated noise indicates that the Langevin process is a Markov process.

Stochastic processes can be also viewed from a different perspective, in terms of
the evolution of their conditional probability density function p(x, t|x′, t′). If a single
particle’s motion is governed by the Langevin equation, its probability density can be
developed according to the Fokker–Planck equation (FPE) [97].

∂

∂t
p(x, t|x′, t′) = ∂

∂x
f(x, t)p(x, t|x′, t′)

+ ∂2

∂x2 g(x, t)p(x, t|x′, t′),
(2.16)

Where p(x, t|x′, t′) refers to the probability of a system to be found in state x at
time t. In Eq. 2.16, terms subject to the first and second derivatives are known as drift
and diffusion terms, which can depend on position and time. In practice, the drift
term determines the deterministic part (slow macroscopic variables) of the underlying
dynamics, while the diffusion term reflects fluctuations. One common way to derive the
FPE associated with a Langevin process is the Kramers-Moyal (KM) expansion [58, 59].
The KM terms are constructed from a Taylor series of the fundamental master equation
of a system which describes the probability evolution of a Markov process [203]. The
KM expansion is also called the Generalized FPE since by truncation of the KM
expansion after two terms, one can recover the FPE.

For a Markov process, the evolution of the conditional probability densities given by
the KM equation is as follows:

∂

∂t
p(x, t|x′, t′) =

∞∑︂
j=1

(︃
− ∂

∂x

)︃j

Dj(x)p(x, t|x′, t′), (2.17)
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where the Dm(x) denotes the mth-order KM coefficients that can be defined by
conditional moments M j(x, τ) of the variable x and at time τ :

Dj(x) = 1
j! lim

τ→0

M j(x, τ)
τ

= 1
j! lim

τ→0

1
τ

⟨(x(t + τ) − x(t))j |x(t)=x⟩ .

(2.18)

The beauty of this approach is that one can estimate KM coefficients Dj(x) directly
from experimental data by computing transition probability densities in the limit of
∆t → 0 (numerically, this represents the shortest time increment in the data):

Dj(x) ≈ 1
j!

1
∆t

⟨(x(t + ∆t) − x(t))j |x(t)=x⟩ . (2.19)

Here ⟨(x(t + ∆t) − x(t))j |x(t)=x⟩ represents the mth conditional moment Mm. In
this study, to calculate conditional moments from time-discrete data, we employed the
non-parametric Nadaraya-Watson estimator [155, 213] which relies on convergence in
probability:

1
∆t

< (x(i+1)∆t − xi∆t)j |xi=x >=
∑︁n

i=1 K( (xi∆t−x)
h )(x(i+1)∆t − xi∆t)j∑︁n

i=1 K( (xi∆t−x)
h )∆t

. (2.20)

Here, to calculate Dj(x), we assign each data point in the state space to a kernel
density and then take a weighted average over all data points. Note that, in the
Nadaraya– Watson kernel framework, we need to estimate the kernel and the smoothing
parameter called bandwidth. In this study, the kernel function K is assumed to be
Gaussian.

It has been demonstrated that the performance of the Nadaraya– Watson kernel
estimator largely depends on the smoothing parameter that controls the trade-off be-
tween goodness-of-fit and model complexity [48]. Hence choosing an incorrect band-
width value can lead to an undesirable transformation of the density plot. For in-
stance, a large bandwidth increases the bias by over-smoothing the curve, while a
small bandwidth results in a rough estimation. Various methods have been introduced
to determine optimal bandwidth, such as the rule of thumb, unbiased and biased
cross-validation, and direct plug-in (DPI) [31, 96]. In this thesis the bandwidth h is
determined using Silverman’s rule of thumb: h = 1.06σN

−1
5 where σ is the standard

deviation of the time series under investigation.
As mentioned earlier, for a continuous diffusion process, there is equivalence between

the LE and the FPE descriptions. Therefore we can substitute the drift and the dif-
fusion functions in Eq. 2.15 by the first D1(x) and second D2(x) KM coefficients. In
other words, the drift and the diffusion terms are approximated by average displace-
ment and conditional variance over time interval τ . Using numerical discretization, in
Itô ’s interpretation of stochastic integration (see Appendix B.1), the time derivative
of the system’s trajectory can be written as follows:

dx(t) = D1(x, t)dt +
√︂

D2(x, t)dW (t), (2.21)

where dW denotes the increments of a Wiener process (known as a stochastic process
with stationary independent normally distributed increments). In this thesis, the nu-
merical integration of the Eq. 2.21 is implemented by the Euler-Maruyama scheme [142]
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which is similar to the Euler scheme but also can deal with the stochastic term:

x(t + ∆t) = x(t) + D1(x, t)∆t +
√︂

D2(x, t)∆tη(t). (2.22)

Moreover, the higher-order terms in the KM expansion provide a distinguished test
for the continuity of the underlying process. According to Pawula’s theorem [168], a
stochastic process is statistically continuous and is driven by Gaussian noise if the third
and all higher-order KM coefficients tend to zero. Accordingly, three possible processes
can be classified in terms of KM coefficients. I) Deterministic processes; where the
KM expansion stops at n = 1. II) The KM equation reduces to the Fokker–Planck
equation when the KM coefficients with order n > 2 are negligible. III) For non-
vanishing KM coefficients with n > 2, the system cannot be accounted as a continuous
diffusion process, and the expansion may contain an infinite number of terms. In
this circumstance, to reconstruct the relevant aspect of a system in the presence of
discontinuous jumps, classical KM formalism requires to be revisited.

2.2.1.1. A two-dimensional Diffusion Process

Further in this thesis, we investigate the potential coupling between two well-known
proxies of Greenland ice sheets that contain sudden climate transitions. To this end,
we utilize the bivariant diffusion process and try to non-parametrically estimate the
parameters of the process.

Consider a two-dimensional diffusion process with form:

x.⃗⏟ ⏞⏞ ⏟(︄
dx1(t)
dx2(t)

)︄
=

a⃗⏟ ⏞⏞ ⏟(︄
a1
a2

)︄
⏞ ⏟⏟ ⏞

drift

dt +

b⃗⏟ ⏞⏞ ⏟(︄
b1,1 b1,2
b2,1 b2,2

)︄ dw⃗⏟ ⏞⏞ ⏟(︄
dw1
dw2

)︄
⏞ ⏟⏟ ⏞

diffusion

(2.23)

Analogous to the one-dimensional setting, the unknown functions in the above equa-
tion can be estimated non-parametrically from a bivariate time series (x1(t), x2(t))
using KM analysis. The higher KM coefficients in a two-dimensional setting are given
by [66] :

Dm,n(x1, x2) = 1
m!n! lim

τ→0

Mm,n(x1, x2, τ)
τ

= 1
m!n! lim

τ→0

1
τ

⟨∆xm
1 ∆xn

2 |x1(t)=x1,x2(t)=x2⟩.
(2.24)

Subsequently, the relationship between the functions in Eq. 2.23 and KM coefficients
in Eq. 2.24 can be recovered as follows:

D1,0 = a1, D0,1 = a2, (2.25)

D1,1 = b1,1b2,1 + b1,2b2,2,

D2,0 = 1
2
[︂
b2

1,1 + b2
1,2

]︂
,

D0,2 = 1
2
[︂
b2

2,1 + b2
2,2

]︂
.
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2.2.2. Generalized Langevin Equation (GLE)

In the Langevin equation, the dependencies between slow and fast variables are as-
sumed to be negligible due to the separation of time scales. However, this assumption
is not always well-grounded; for instance, in Brownian motion, when the mass of par-
ticles is comparable with that of the surrounding particles, the random force does not
obey white noise behavior anymore. As van Kampen [98] stated, “Non-Markov is the
rule, Markov is the exception”. In this scenario, employing the Langevin equation does
not lead to an appropriate approximation if the time scale of the macroscopic variables
is not much longer than that of the microscopic variables. Moreover, it is also nec-
essary to modify the fluctuation-dissipation theorem to consider how the correlation
function of fluctuations varies with the memory of the frictional force. Accordingly,
Generalized Langevin Equations (GLE) have been proposed to account for long-range
correlations and memory effects of complex systems that do not exhibit strong time
scale separation. It is shown that the generalized equation fulfills a particular funda-
mental consistency condition, which links the memory function to the auto-correlation
of the stochastic force.

One of the practical tools to derive a GLE is the Mori-Zwanzig (MZ) formalism [38,
77] which has been initially developed in non-equilibrium statistical mechanics for
constructing coarse-grained models. The MZ is a projection-based dimension reduction
method that redefines a set of ordinary differential equations into a reduced system
with a time-independent Hamiltonian as long as the system is close to equilibrium. The
MZ formalism assumes that a macroscopic system can be well described by projecting
the full microscopic dynamics of a system onto the space of macroscopic variables. In
the following, we briefly show how the GLE can be derived using MZ formalism.

Consider a set of observables q(x, t) = f(Φ(x, t)), where f : RN → Rd. The time
evolution of such observables can be defined in the Liouville form as follows :

dq(x, t)
dt

= Lq(x, t), (2.26)

where L is the Liouville operator and q(x, 0) = f(Φ(x, 0)) = f(x). The solution of
Eq. 2.28 can be written:

q(x, t) = eLtq(x, 0) = eLtf(x). (2.27)

eLt is known as the propagator operator and can commute with the Liouville oper-
ator. By substituting q(x, t) with eLtf(x), we can rewrite Eq. 2.28:

deLtf(x)
dt

= eLtLf(x). (2.28)

To construct the reduced-order representation of a system from N components to
d components, MZ exploits a projection operator P, which maps the general system
variables onto the subspace of the resolved observables. Subsequently, a projection
onto an orthogonal subspace is defined as Q = I − P which is the complement of the
projection operator P and satisfies QP = QP = 0. Applying the identity operator
(Q + P), the Eq. 2.28 is converted into :

d(eLtf(x))
dt

= eLtPLf(x) + eLtQLf(x). (2.29)

Using the well-known Dyson Identity [87]:

eLt = e(P+Q)Lt = eQLt +
∫︂ t

t0
ds eL(t−s)PLeQLs, (2.30)
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we can rewrite the Eq. 2.29 in the following form:

d(eLtf(x))
dt

= eLPLf(x) + eQLtQLf(x) +
∫︂ t

t0
ds eL(t−s)PLeQLsQLf(x). (2.31)

Different terms on the right-hand side of Eq. 2.31 have well-known interpretations.
The first term is a Markovian term that refers to the self-interactions of the macroscopic
variables. The second term is related to unresolved variables in the orthogonal space
F (x, t), which often is regarded as random noise. Finally, the last term describes mem-
ory dependencies between the observable and F (x, t). The resulting lower-dimensional
model is known as the generalized Langevin equation that is described as follows:

d

dt
f(x, t) = Ωf(x, t) −

∫︂ t

t0
K(t − t′)f(t′)dt′ + F (x, t). (2.32)

Note that the functional form of MZ may vary depending on the choice of projection
operators. For instance, the Chorin’s Projection [34] provides the evolution equation for
a conditional mean of f while applying the Mori’s projection [226] yields the evolution
of temporal auto-correlation. In this thesis, we focus on MZ formulation based on the
Mori’s finite rank projection operator, which is given by:

Ph(f(x)) =
d∑︂

i,j=1
< h, fi >< fi, fj >−1 fj(x). (2.33)

So far, we have seen the MZ formulation in the continuous-time form. However, to
construct the evolution equation of a system from empirical data where the outputs
are discrete-time snapshots, we require the discrete counterpart of MZ formalism [125,
158]:

f((n + 1)∆t) = Ω∆tf(n∆t) −
n∑︂

k=1
Kk

∆tf((n − k)∆t) + ξn+1(x), (2.34)

where Ω and K represent the deterministic function and memory kernel, respectively
and can be obtained directly from collected data. Using the evolution of two-time
correlation function, we can calculate the Markov matrix Ω = Ċ(0).C(0)−1 and the
memory kernel [124, 224] as follows:

Kn
∆t = (C((n + 1)∆t) −

n−1∑︂
l=0

Kl
∆tC((n − l)∆t))C−1(0) (2.35)

Considering the orthogonal association between the basis function f(0) and the un-
resolved variables, the noise term is eliminated from the evolution equation of C. After
obtaining the memory kernel and the Markov term, we can readily calculate the or-
thogonal term.

2.2.3. Empirical Model Reduction (EMR)

Over the past few years, various linear and nonlinear inverse stochastic modeling ap-
proaches have been intensively developed and applied to obtain reduced models that
can explain the statistics of a full system [3, 169]. One commonly used type of inverse
stochastic model is the Linear inverse model (LIM). The LIM assumes that the relevant
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dynamics can be decomposed into a linear deterministic term and a stochastic white
noise process given by:

dxi = Lijxjdt + dη(t), (2.36)

where L is a D × D dynamical matrix and η is a vector of Gaussian white noise. This
approach allows modeling dynamical systems in which the fast variables and nonlinear
interactions are so fast that they can be approximated by Gaussian white noise.

Although linear simplification (i.e., linearity and stable dynamic) can be considered
a proper tool for describing dynamical systems, it may lead to inaccurate results in the
presence of nonlinearity and serial correlations. To overcome this drawback, the empir-
ical model reduction (EMR) [110] has been proposed as a nonlinear generalization of
LIMs. It has been shown that the EMR with quadratic nonlinearity and additive noise
can adequately capture underlying properties of the whole system’s variability and can
be used later for predictive purposes [30]. For instance, in the context of climate sys-
tems, it has been demonstrated that the EMR can successfully model Madden-Julian
Oscillation [106] and El Niño-Southern Oscillation [110]. In this thesis, we employ the
EMR to reconstruct the dynamics of various synthetic and real-world systems from
available time series.

The EMR approach has the following form:

dxi = (Aijkxjxk + Lijxj + ci)dt + r0,idt, (2.37)

where matrices A and L describe quadratic self-interactions and linear dissipation
processes. Here ci represents intercept vector. Typically to estimate the coefficients in
Eq. 2.37, multiple linear regression is used, which attempts to minimize the difference
between the observed variables and the model outcome. To account for correlated
noise, the EMR models the residual at each level as a linear function of xi and ri,
given by :

dr0,i

dt
= b1

i [x, r] + r1,i

dr1,i

dt
= b2

i [x, r, r1] + r2,i

...
drl,i

dt
= bl+1

i [x, r, r1, r2, ...., rl] + rl+1,i.

(2.38)

The presence of these hidden variables that explicitly depend on the past values
of slow variables brings forth “memory” effects. An optimal number of levels l can
be determined by considering specific stopping criteria. The basic idea is that once
the auto-correlation of the last level of residual noise approaches zero and is well
approximated by a spatially correlated white-noise process, the process of adding more
levels can be terminated. In other words, the residual at the last level in Eq. 2.38, is
assumed to obey the Wiener process.

2.3. Fundamentals of Artificial Neural Networks
The rapid growth of data production/acquisition and advancements of computing
power brought us closer to understanding complex systems. For instance, in climate-
related problems, having access to vast amounts of data gathered from satellites, nu-
merical climate models, and stationary measurement units allow us to extract impor-
tant spatiotemporal interaction among climate variables through constructing data-
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driven models [21, 189]. In recent years, machine learning strategies have emerged as a
powerful tool to distill information and make predictions from piles of raw data, besides
other data-driven techniques [179]. Machine learning algorithms aim to instruct com-
puters to model a system directly without relying on the driving equations. The two
main types of machine learning techniques are supervised, and unsupervised learning,
which are applied in different problems with different datasets [5, 54, 194]. Supervised
learning aims to teach models to produce desired outcomes based on a labeled training
set. In this scenario, we have prior knowledge of what the output should look like.
When conducting supervised learning, the main consideration is to develop a model
that can determine a function, which maps the input variable (x) to the output ob-
servable (y), by minimizing a loss function. On the other hand, unsupervised learning
finds inherent structures and patterns without supervision, e.g., principal component
analysis [118]. This study focuses on predicting the evolution of complex systems using
a form of supervised learning called artificial neural networks (ANNs).

ANNs are information-processing paradigms, inspired by a human brain’s structure,
designed to mimic the brain functions, such as recognition, classification, perception,
and reasoning [129, 179, 212]. The first version of ANNs, known as the Pitts neuron
model (MCP), was created in 1943 to model biological neurons, building brain units,
using electrical circuits. Later in 1950, with the advent of computers, it was possible to
simulate a hypothetical neural network that allows neurons to learn the function that
maps inputs into output. However, computer processors were inferior in numerical
calculations, logical inference, and data storage compared to the human brain. Due
to the recent advance of "big data" and increasing computational power, ANNs have
become the center of a technological revolution in many disciplines [179].

Analogous to interconnection in the human brain’s neurons, ANNs utilize artificial
cells arranged in a layered structure that communicates through weighted connections.
There are several different architectures of ANNs, including Feed-forward Neural Net-
works (FFNNs) [14], Recurrent Neural Networks (RNNs) [67, 146], and Convolutional
Neural Networks (CNNs) [160]. One of the most common and well-known ANNs is
FFNNs, where the information flows in only one direction from input to output. Hence
there exist no feedback connections or loops in this architecture. Generally, FFNNs
comprise of three different layers (see Fig. (2.5)):

1) an input layer that receives input data.
2) hidden layers where the number of layers depends on the complexity of the func-

tion.
3) an output layer.
In FFNN architecture, each node calculates the sum of the weight of the input and

passes this sum to a continuous and differentiable activation function to obtain output
values. The output of the node (i) in the (j) layer can be calculated as follows:

rj
i = F(

N∑︂
k

wj
ikxk + bj

i ) . (2.39)

Here F is a nonlinear activation function that allows constructing a complex mapping
from input to the output. Nonlinear activation functions are preferable since linear
functions can not capture and learn the complex features of input data. There are dif-
ferent possible choices for the activation function; the most commonly used activation
functions are sigmoid, logistic function, hyperbolic tangent, and ReLu functions [190].
In the training process, after a sufficiently large number of training cycles, the weights
are adjusted to minimize the loss function by reducing the difference between the actual
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Figure 2.5.: A depiction of a simple feed-forward neural network

value and the computed output.

L =
∑︂

i

(y − ŷ)2 . (2.40)

The question is how to minimize the loss function and improve the model perfor-
mance by changing the parameters of the network’s layer (e.g., weights and biases). It
can be efficiently evaluated by a supervised learning method called the Backpropaga-
tion algorithm (BP) that calculates the gradients of the cost function with respect to
the parameters. The key idea is to propagate errors from the output to the input layer
and adjust parameters in an iterative process using gradient descent. For instance,
consider a FFNN with two hidden layers in Fig. (2.5). First, we try to calculate the
gradient of the last weight in the network using the chain rule. Hence we get :

∂Lk

∂w(3) = ∂Lk

∂ŷ

∂ŷ

∂w(3) = (y − ŷ)r(2) , (2.41)

Then, we calculate the gradient of layers (2) and (1) as follows:

∂Lk

∂w(2) = ∂Lk

∂ŷ

∂ŷ

∂r(2)
∂r(2)

∂w(2) , (2.42)

∂Lk

∂w(1) = ∂Lk

∂ŷ

∂ŷ

∂r(2)
∂r(2)

∂r(1)
∂r(1)

∂w(1) . (2.43)

Eventually, the model’s parameters can be updated based on the computed gradient:

∆w(i) = γ
∂Lk

∂w(i) . (2.44)

Here γ represents the learning rate that scales the magnitude of parameters updates.
We note that selecting an optimal learning rate can be challenging. For instance, a
too low learning rate requires many updates resulting in slow convergence, while a too
high learning rate can interfere with the convergence leading to divergent behavior.
Therefore we must find a rate range where the loss function falls sharply.
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Figure 2.6.: A depiction of a single hidden layer Recurrent Neural Network (RNN).
The red chain displays the Back-propagation through time (BPTT).

Even though FFNNs are easy to design and are fast, like other techniques, they
show some drawbacks. Their performance is sensitive to the initialization of random
weights and requires lengthy training data. One of the desirable aspects of modeling
a complex system is learning long-term temporal dependencies. However, FFNNs,
have no memory of the input. For instance, given a sequence of letters "COMPLEX"
when it gets to "L," the FFNN algorithm has already forgotten that it just read "P".
Therefore, to learn the temporal behavior, a specific learning framework is required
that can preserve past information and keep track of long-term dependencies.

2.3.1. Echo State Networks (ESN)

A specific kind of NNs best suited to interpret time-dependant and sequential data
(e.g., climate time series) is Recurrent Neural Network (RNN). Unlike traditional
FFNN, where all the inputs and outputs are independent, RNN makes a decision
based on the prior information obtained from the sequence of previous inputs. In
other words, in the RNN algorithm, the output of the current step becomes the input
of the next step allowing the information to persist.

rt = F(xt, rt−1; θ) . (2.45)

The above equation updates the hidden states using the current input vector x(t)
and the context of the previous state r(t). Each hidden state contains information
from all states before r(t) for as long as memory can retain. The expression above can
be re-arranged in a recursive setting as follows:

rt = F(xt, F(xt−1, F(..., F(x1, r0; θ)...; θ); θ) . (2.46)

RNNs exploit the backpropagation through time (BPTT) algorithm to update weights.
Conceptually in the BPTT algorithm, errors are first calculated at each time step and
accumulated. Then the network is roll-up and parameters are updated [165, 216] (see
red chain in Fig. (2.6)).The gradients can be written as a sum of products from the
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Figure 2.7.: A schematic view of Echo State Network

t-th time-step back to the k-th.

∂Lt

∂θ
=

T∑︂
t=1

( ∂Lt

∂r(t)
∂r(t)

∂r(k)
∂r(k)

∂θ
)

∂r(t)

∂r(k) =
∏︂

t>i>k

∂r(i)

∂r(i−1) .

(2.47)

Despite its advantages, we can face two problems during the backpropagation of
time-series data, known as the vanishing and exploding gradient problems. The first
problem arises when ||∂rt+1

∂rt
||2 in Eq. 2.47 goes to zero exponentially fast. When the

gradient vanishes, updating the model’s parameters will no longer be significant in
the learning process, making it difficult to capture some long-range dependencies. In
the second case, the gradient norm grows exponentially fast during training, ending
up with NaNs. To avoid the exploding and vanishing gradients problem, an alter-
native new paradigm called the Reservoir computing (RC) approach has been intro-
duced [135]. In the traditional RRN algorithm, both the hidden layer and the readout
weights get updated during the training phase (see Fig (2.6)). While the reservoir
connection weights in RC are randomly generated and kept unchanged. In the RC
framework, the training is mainly for the readout part, where only weights of the
connections from the reservoir units to the readout are tuned. Since most of the
parameters are fixed, RC requires fewer training data, making the learning process
quick and stable. The three well-known examples of the RC class are Echo State Net-
works (ESNs) [89], backpropagation-decorrelation neural networks, and Liquid State
machines (LSTM) [197]. In this thesis, we concentrate on the simplest form of RC
model, ESN, to predict climate variability.

ESN has been applied in a variety of tasks from classical time-series prediction [120,
167] to language modeling and speech recognition [207] to dynamic pattern classifi-
cation. ESNs are comprised of three parts: an input layer, a so-called reservoir that
processes the input, and an output layer that uses the reservoir output for prediction
(see Fig (2.7)). The internal unit can be considered as a high-dimensional dynamical
system with states r(t) that evolve according to the following equation:

r(t + 1) = F(Wrr(t) + Winx(t)) . (2.48)

Where Win ∈ RN×L is the input matrix mapping the input of dimension L to the
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reservoir space of dimension N . Wr ∈ RN×N is a sparse, weighted adjacency matrix
with elements drawn randomly from a normal distribution with zero mean. Here F
indicates a nonlinear activation function for which we choose the hyperbolic tangent.
Contrary to most conventional NN models, in the ESN setup, the values of Win and
Wr are not optimized but fixed at randomly chosen values. Hence, the only trainable
connections are given by the reservoir-to-output layer matrix Wout, through which the
reservoir states are mapped back to the L-dimensional outputs y(t). Moreover, the
reservoir does not require remembering the entire temporal information of the past;
hence, it skips unnecessary information after some time, resulting in extremely fast
converging of the training. The linear readout can be computed as:

y(t + 1) = (Woutr(t + 1)) . (2.49)

Optimal values for Wout that minimize the loss function can be easily determined
by simple linear regression. However, traditional linear regression can cause unreliable
parameters estimation in ill-posed problems, leading to less generalizability. There are
different variants of ordinary least square methods (OLS), e.g., Ridge regression and
LASSO [80, 205], that have been suggested to improve the numerical instability and
reduce overfilling by introducing a penalty term. This thesis calculates the output unit
weights using Ridge regression (also known as Tikhonov Regularization). The Ridge
regression cost function can be demonstrated mathematically as:

L =
T∑︂

t=0
||Woutr(t) − xd(t)|| + λ||Wout||2 . (2.50)

where ||..|| is the L2-norm of a vector and λ is a regularization parameter which
penalizes larger output weights Wout. Accordingly, the regularized optimal output
matrix Wout is determined via:

Wout = (RT R + λI)−1RT xd (2.51)

Here R refers to the network’s states, and I is the N × N identity matrix. Then
the prediction phase initiates with the information of the reservoir state r(t∗) at the
last time step of the training phase to make the prediction y(t∗ + 1) using the trained
output weights Wout. Further predictions are then iteratively made forward in time
by passing y(t∗ + 1) to the ESN as input to produce a forecast y(t∗ + 2), and so on.
Therefore, with well-defined inner weights, the reservoir can capture the particulars of
the input by developing a high memory capacity.

2.3.1.1. Hyper Parameters of Echo Stat Network

In analogy to other NNs, the predictive performance of the ESN depends on various
hyperparameters, such as the choice of the reservoir size (N), the sparsity (p) of Win,
and the spectral radius ρ of Wr. Reservoir size N identifies the dimension of the space
of the reservoir. Generally speaking, the larger the reservoir, the better the approxi-
mation of the underlying dynamics of the system, and the easier it is to find a linear
combination of the signals to approximate output. However, an extensive network
can be computationally expensive; hence, selecting optimal hyperparameters with a
smaller network and later scaling it to the larger one is advised. Sparsity p is an-
other critical parameter in designing a good ESN, which determines the distribution of
nonzero elements in the reservoir matrix Wr. This can be implemented by a uniform or
normal distribution centered around zero. Sparser networks are preferable to increase
the ESN architecture’s computational efficiency. We note that the input matrix Win
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is usually generated by the same type of distribution as Wr. Another key parameter
affecting the ESN performance is the input scaling of the Win, which determines the
overall nonlinearity of the reservoir units. In other words, the input scaling dictates
how far the network’s hidden states are pushed away from the linear part of the acti-
vation function [148]. For instance, using hyperbolic tangent (tanh) as an activation
function, a small input scaling results in the operation of reservoir states in the more
linear part of the tanh curve.

One of the most critical parameters is the spectral radius ρ of the reservoir connection
matrix Wr. This hyperparameter is the largest absolute eigenvalue of the matrix Wr

and scales the width of the distribution of nonzero elements. This parameter controls
the echo state properties (ESP) [90, 133, 134] of the reservoir, which indicates the rate
at which the history of the input vanishes gradually in time. For a task requiring longer
input memory, the closer ρ is to one, the longer the network’s capability is to memorize
past inputs. It is commonly assumed that ρ must not exceed unity for a reservoir to
show ESP. However, Yildiz et al. [222] demonstrated that spectral radius below unity is
insufficient to guarantee the ESP. Therefore, there is no general condition for optimal
spectral radius, and it must be determined by task-specific experimentation.

2.3.1.2. Comparison Between the ESN and FFNN Performance

Conventional ESN and FFNN have been applied to various nonlinear deterministic
systems (e.g. Lorenz system in Fig. (2.8) and data with low level of noise [28]. Here
we compare the performance of the ESN and FFNN on the Lorenz system which is
a simplified model for atmospheric convection. The dynamics of a Lorenz system can
be described by a set of coupled nonlinear equations for the variables x, y and z as a
function of time:

ẋ(t) = σ(y − x),
ẏ(t) = x(ρ − z) − y, (2.52)
ż(t) = xy − βz.

We generate a long trajectory with 13000 points separated by a time interval ∆t =
0.01. Here, we choose the standard set of parameters σ = 10, ρ = 28, and β = 8

3 .
Fig. (2.8) shows the short-term prediction skills of ESN (solid lines) and FFNN (dashed
lines). We see that the ESN predictions follow the true trajectory with high precision
for a long time, while the predictions from FFNN diverge from the true state after
200∆t. It can be concluded that the ESN significantly outperforms FFNN in the
short-term perdition of sequential data. The x-axis in Fig. (2.8) is in units of the
Lyapunov time λ−1

max, where λmax is the maximum Lyapunov exponent.
As we mentioned in section 2.3.1.1, the performance of the ESN algorithm substan-

tially depends on the value of hyperparameters. Fig. (2.9) displays the performance of
the ESN on forecasting the Lorenz system for hyper-parameters (a) the input scaling,
(b) spectral radius, and (c) reservoir size. For the Lorenz system, we could achieve
the highest performance for the set ( input-scaling= 0.1, ρ = 0.2, and N = 400).
The FNN employed in this study contains three hidden layers, each with 100 neurons.
The network weights are optimized accordingly by the Adam optimizer, a stochastic
gradient descent algorithm.
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Figure 2.8.: Forecasting Lorenz system using the ESN and conventional FFNN algo-
rithms.

2.3.2. Past Noise Forecasting

Most real-world time series are subjected to stochastic forces making it difficult to
fully predict the evolution of variables of interest in the presence of noise. In this
thesis, to improve the prediction of real-world time series, we propose an efficient
technique based on the ESN in combination with a time-series decomposition method
to model the high-frequency fluctuations that have posed substantial problems for
training neural networks in the past. To model the high-frequency component, we
apply the Past-Noise Forecasting (PNF) method [30].

A possible solution is to estimate the time-dependent high-frequency forcing from
suitable samples from its history. Chekroun et al. [30] originally developed a partic-
ular prediction methodology called Past Noise Forecasting (PNF) to circumvent this
problem. The purpose of PNF is to select the best sample of past stochastic forcing to
drive the system into the future, using the knowledge of the past noise trajectory. To
find such potential noise realizations from past parts of the time series, the stochas-
tic forcing is conditioned on the low-frequency component of the underlying system.
They employed the non-parametric Singular Spectrum Analysis (SSA)[74, 209] as a
technique to decompose the time series into a low-frequency component and the cor-
responding high-frequency part. The key idea behind the PNF method is that the
model’s sensitivity to the initial state exhibits linear or weak response in time scales
less than L, and we can assume that the stochastic forcing determines the phase of the
system.

Now, consider the time series of high-frequency variability χt of a system of interest.
One can derive samples of stochastic forcing from the past by splitting the χt time series
into N continuous fragments of length L each {χti : i = 1, ..., N} with ti ∈ [t∗ − L]
that can potentially drive the system, from arbitrary t∗ to t∗ − L. To select the best
noise segment χti , the phase of the system at time t must be inspected. To do so,
the low-frequency component (LFC) is split into different segments of length ∆ and
searched for those segments that resemble the reference LFC segment just preceding
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(a)

(c)

reservoir size

(b)

Figure 2.9.: Root Mean Square Error (RMSE) of the Lorenz system with respect to
variations of (a) input scaling, (b) spectral radius, and (c) reservoir size. The errors
are averaged over 100 realizations for each parameter.

time step t∗, at which we initiate the forecast:

RMSE(LFC(tj + ∆, tj) − LFC(t∗ − ∆, t∗)) ≤ α

CORR(LFC(tj + ∆, tj) − LFC(t∗ − ∆, t∗)) ≥ γ
(2.53)

In practice, the skill of the PNF method depends on the parameters ∆, choice of K
(number of leading reconstructed components that capture the LFC), and L. Hence
they must be appropriately tuned. With these selection criteria, one can then identify
high-frequency components starting at different tj < t∗ −∆, which we then use to force
the ESN prediction for times t > t∗.

Ξt∗(α, γ) := {tj ∈ [0, t∗ − ∆]} (2.54)

F̂ t∗ := {χti ∈ Ft∗ : ti ∈ Ξt∗} (2.55)

Here F̂ t∗ is the subset of noise segments that can be used to drive the system into
the future for times t > t∗.
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3. Using Event Synchrony Measures for
Network Inference From the Timing of
Events

One of the most important types of dynamical processes on real-world complex net-
works are spreading processes in which the effect of a localized incident is propa-
gated throughout the system along the existing connections with a specific proba-
bility. This event (or more generally information) propagation process reflects the
dynamics of many real-world networks, describing such opinion formation [92], disease
outbreak [24], and climate-related extreme events propagation [22]. While the effects
of network topology on spreading efficiency have been vastly studied [166], we here
address the inverse problem of whether we can infer an unknown network structure
from the timing of events observed at different nodes. For this purpose, we numeri-
cally investigate two types of event-based stochastic processes. On the one hand, we
consider a generic model of event propagation on networks where the nodes exhibit
two types of event-like activity: (I) spontaneous events reflecting mutually indepen-
dent Poisson processes, and (II) triggered events that occur with a certain probability
whenever one of the neighboring nodes exhibits any of these two kinds of events. On
the other hand, we study a variant of the well-known Susceptible-Infected-Recovered-
Susceptible (SIRS) model [83] from epidemiology and record only the timings of state
switching events of individual nodes, irrespective of the specific states involved. Based
on simulations of both models on different prototypical network architectures, we study
the pairwise statistical similarity between the sequences of event timings at all nodes
through event synchronization (ES) [174] and event coincidence analysis (ECA) [44]
(see section 2.1.2 in chapter 2). By taking strong mutual similarities of event sequences
(functional connectivity) as proxies for actual physical links (structural connectivity),
we demonstrate that both approaches lead to reasonable prediction accuracy. The
results presented and the figures shown in this chapter are based on publication (Has-
sanibesheli, F., Donner, R. V. (2019). Network inference from the timing of events in
coupled dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(8), 083125) with the permission of AIP Publishing.

3.1. Generic Event propagation model
Event sequences are discrete events that occur at specific times and can be regarded
as stochastic point processes. The first part of our research is to create a stochastic
process model for the propagation of events on a network. Here, we initialize seed
events independently and randomly at each node, which results in homogeneous Pois-
son processes at each node. To simplify the process, we keep the intensity (rate) α of
those processes the same for each node. At this stage, the inter-event times at any
given node follow an exponential distribution with the same characteristic parameter,
while the number of events observed in a given period of time exhibits a Poisson dis-
tribution with the same parameter. To model event propagation along the edges of
G, we now let each individual event at a given node propagate to any of its neighbors
in the network with a certain probability p and time delay τp. Fig. (3.1) provides a
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Figure 3.1.: Schematic illustration of the propagation process between two series of
random events observed at two neighboring nodes i and j. Events can be propagated
through the existing link with a prescribed probability p and time delay τp. Accord-
ingly, some events at node i are followed by events at neighbor j, while others are
not.

schematic illustration of this propagation process. Suppose that at time t, an event
takes place at node i. Then, there is a probability p of this event being propagated
to any of its neighbors independent of each other, which means that at time t + τp,
each of the neighboring nodes can experience such a triggered event with probability
p. In order to avoid back-and-forth propagation of events between two neighbors, we
restrict this propagation to one direction at a time. Hence, the event originally taking
place at time t at node i and being propagated from node i to node j, cannot reappear
at node i at time t + 2τp.

Based upon this construction principle, we can express the appearance of an event
at node i and time t by the binary indicator variable St

i where it equals 1 if and only
if the event takes place. Therefore the probability of an arbitrary node i to experience
an event at time t + τp that has been triggered by an event at one of its neighbors at
time t can be approximated by:

P (St+τp

j = 1) = 1 − (1 − p)
∑︁N

i=1 AijSt
i , (3.1)

where Aij = 1 (Aij = 0) describes the existence (non-existence) of a link from i to
j. Note that we neglected the probability of emergence of a random seed event at
node i (if time is assumed continuous, this would be zero; for discrete-time, we would
just have to add a constant) as well as the above-described prohibition of an event
traveling back-and-forth along with the same bidirectional link. Moreover, the values
of λ and p should be chosen carefully to avoid too frequent events, in which case purely
random co-occurrences may be observed too often to still be able to infer the underlying
network connectivity from the timing of events anymore. Since the inclination of this
study is to work with extreme (rare) event series, we restrict ourselves here to the case
of a fixed τp = 1 and global p = 0.4. It is easy to see that increasing the propagation
probability would increase the event rate.

3.2. Network Inference

One important fact to be realized is that the numerical values of both QECA
µ|λ (∆T, τ)

and QES
µ|λ (see Eq. 2.14 and Eq. 2.9) may have only limited utility for the actual statisti-

cal inference of network links, depending on the respective number of events recorded
and their associated inter-event time distribution [44]. For the case of ECA, corre-

32



3.3. Results and Discussion

sponding pairwise statistical significance tests have been discussed in great detail by
Donges et al. [44]. On the one hand, there exists a simple analytical significance test
against the null hypothesis of two sequences of mutually independent Poisson pro-
cesses, which under the assumption of sufficiently rare events can be formulated as
an exact binomial test. In turn, due to the consideration of data-adaptive dynamical
coincidence intervals (for definition see Eq. 2.6), such an analytical test does not ex-
ist for ES. Therefore, and because the underlying assumptions for the analytical test
for ECA are very restrictive, it is recommended to consistently employ a simple form
of surrogate-based significance tests making use of shuffled events for estimating the
expected distribution of QECA

µ|λ (∆T, τ) and QES
µ|λ in the case of independent event se-

quences. Therefore, we follow the aforementioned concerns regarding the applicability
of statistical tests with analytical form to both ES and ECA and focus on the numer-
ical approximation of the respective test statistics (ES strength and event coincidence
rate, respectively) based on surrogate data. For this purpose, we randomly shuffle
each binary event time series 300 times without replacement (hence, conserving only
the number of events in each series, which is justified as long as serial dependencies
within each sequence are negligible) and calculate the two similarity measures for each
pair of surrogate event series. Then, the distribution of all values from the surrogate
ensemble is used as a numerical estimate of the unknown analytical distribution of the
test statistic, and the empirical values of ES strength and event coincidence rate for
the original sequences are compared with those distributions. Ultimately, we employ
a typical confidence level of 0.05 by considering a link between two nodes to be likely
present if the similarity coefficient of the original event series is larger than the respec-
tive 95th percentile of the test distribution. In other words, when the p-value of the
pairwise ES or ECA based similarity measure is smaller than the associated confidence
level of 0.05, the synchronization between event series likely cannot be explained by
chance.

In summary, we thus obtain an estimate of the unknown adjacency matrix of the
underlying network as follows:

Aλ|µ =
{︄

1, if QECA
λ|µ (∆T, τ) > Q∗ECA

λ|µ (∆T, τ),
0, else (3.2)

(respectively, the same for QES
λ|µ), where the superscript ∗ indicates the value of the

similarity measure corresponding to the respective confidence level of 0.05 obtained
from the surrogates.

3.3. Results and Discussion

We first perform a numerical simulation of the generic event propagation model (see
section 3.1) with an initial event rate of seed events α = 0.006 and T = 5000 time steps
(i.e., having a spontaneous event each 165 time steps on average). As a typical network
size allowing for efficient numerical analysis, we focus on the case of N = 50 unless
stated otherwise. Based on the 50 event series resulting from different model runs,
we have checked those series’ empirical waiting time distributions for their consistency
with an exponential distribution. By employing the Kolmogorov-Smirnov test [145] as
a goodness-of-fit measure that compares the empirical distribution of the data with a
known reference, we find that the observed waiting times of the combined sequences
of spontaneous (seed) and triggered events are statistically indistinguishable from an
exponential distribution.
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Figure 3.2.: ROC analysis characterizing the performance of network inference based
on ECA (blue) and ES (red). From left to right, the results correspond to Erdös-Rényi
(ER) random graphs, Barabási-Albert (BA) scale-free networks, and Watts-Strogatz
(WS) small-world networks (with a rewiring probability of the original underlying
ring lattice of π = 0.3). Top row: ROC curves for randomly chosen realizations of ER
networks with link densities of 0.1 (solid lines) and 0.3 (dashed lines), BA networks and
WS networks with a mean degree of 5 (solid lines) and 10 (dashed lines), respectively,
each with N = 50 nodes. Middle row: Dependency of the reconstruction performance
as expressed by the area under the ROC curve (AUC) on the link density ρ for the
corresponding network topologies for networks consisting of 20 (solid lines) and 50
nodes (dashed lines), respectively. Shown are the mean values and standard deviations
obtained from ensembles of 300 simulations for each setting. Bottom row: Minimum
distance of the ROC curve from the upper left corner of the ROC diagram as a function
of the link density for networks with N = 50 nodes.

We now discuss the performance of both ES and ECA in reconstructing the network
connectivity based on the observed event dynamics. We emphasize that starting with
the directed similarity measures r and q, we have tested two versions of symmetrization
based on taking the mean or maximum of both directions between each pair of nodes
(see Eq. 2.9 and Eq. 2.14), finding no significant differences between the corresponding
results obtained in all situations studied in the following. Accordingly, we will only
report the results where the maxima of the respective similarity coefficients in both
possible directions are considered. To provide a quantitative comparison between ES
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and ECA regarding their performance in the network inference task (discussed in
section 3.2), a corresponding evaluation criterion is required. As a corresponding
framework that is widely applied in binary classification problems, we utilize here the
receiver operating characteristic (ROC) [53, 73] (see Appendix A.2 for more details).
This approach allows quantifying how successfully both similarity measures correctly
identify the presence of links in the underlying network structure. Hence to determine
the optimal threshold for transforming the pairwise similarity matrices resulting from
ES and ECA into the binary adjacency matrix, we first consider all possible values and
subsequently examine the resulting ROC curves. For each point of the obtained curves,
we compute the distance from the upper left corner of the ROC diagram (TPR = 1,
FPR = 0) and identify the point with the shortest distance. Here TPR and FPR stand
for true positive and false positive rates, respectively. The associated threshold value is
then considered the best choice and will be referred to in all following results. To assess
the performance of ES and ECA on different structures, we considered three types of
random graphs: Erdös-Rényi random graphs, scale-free Barabási-Albert networks [12],
and small-world Watts-Strogatz networks [214].

Fig. (3.2) displays the resulting reconstruction performance for different network
topologies. Different colors indicate the two similarity measures for the network recon-
struction (blue: ECA, red: ES). As demonstrated by the resulting area under the curve
(AUC) values, the accuracy of both methods depends on the underlying topology of
the network. In all cases, increasing the mean degree (i.e., increasing the link density
ρ = ⟨k⟩ /(N − 1)) for networks with 50 and 20 nodes, respectively, generally reduces
the AUC. In other words, we obtain a better accuracy of link prediction for sparser
networks. This effect could partially result from the rising number of closed loops in
the network, which generate events circulating among groups of nodes. To account
for the two possible parameters of the ECA, the resulting reconstruction accuracy has
been carefully checked for different combinations, revealing the best performance for
∆T = 1 and τ = 1, i.e., a coincidence delay of one time step corresponding to the
imposed propagation delay as one should have expected. Both similarity measures
successfully identify a vast part of the existing links in all cases. The ECA approach
exhibits a tendency towards achieving slightly higher accuracy than ES at sparse net-
works (for example, in the case of the Erdös-Rényi network with N = 50 nodes and a
link density of ρ =0.2, the AUC based on ECA is 0.869 while dropping to 0.82 for ES).
For denser networks, using ES for link identification commonly results in better net-
work reconstruction, which could be related to the fact that the dynamical coincidence
interval of ES captures associations at different time scales rather than a single scale
as that fixed by the ECA parameters, thereby considering a larger number of events
as coinciding events.

In order to investigate the overall reliability of the respective reconstruction ap-
proaches for a single network realization, we study the empirical distributions of TPR
and FPR as well as AUC obtained from in total 300 different realization of each model,
which are shown in Fig. (3.3). For the specific settings investigated here, ECA shows
its benefit for the Watts-Strogatz network as seen by considerably higher AUC and
TPR values than for the ES based reconstruction at similar FPR values. In turn, for
the Erdös-Rényi networks, both TPR and FPR are larger for the ECA based recon-
struction as compared to the results of ES, leading to overall similar AUC values.

Finally, we examine the sensitivity of the obtained results regarding changes in
the network density ρ and propagation probability p for the example case of ECA-
based network reconstruction applied to an Erdös-Rényi random network with N = 20
nodes. Fig. (3.4) shows the corresponding results. First of all, regarding the effect of
p, we see that in the absence of triggered events (p = 0), the node dynamics exhibits
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Figure 3.3.: Histograms of TPR, FPR and AUC (from top to bottom) for network
reconstructions based on ECA (blue) and ES (red) obtained from 300 realizations of the
generic event propagation model on Erdös-Rényi, Barabási-Albert and Watts-Strogatz
networks with π = 0.3 (from left to right) with 50 nodes and link densities of 0.2.

pairwise independent Poisson processes, so that the network inference behaves like a
random guess (AUC ≈ 0.5) as expected. For very small propagation probabilities, the
random seed events still blur the information provided by the triggered events at small
network density, thereby leading to an imperfect network inference. However, as soon
as sufficiently many events are propagated through the network, the link prediction
becomes rather reliable in sparse networks (small ρ) while successively decreasing in
performance as the network gets denser. In general, we find a maximum link prediction
accuracy at still relatively small yet clearly non-zero propagation probabilities, which
is successively shifted towards smaller p for larger link densities. It is interesting
to note that, if considering the combined effect of ⟨k⟩ p, the resulting AUC values
approximately collapse to a unique, monotonically decreasing curve (for sufficiently
large p ≳ 0.3). The shape of this curve can be related to the changing character of the
considered process at ⟨k⟩ p > 1, becoming essentially a growing branching process. We
only find some deviations from this limiting curve for smaller p and larger ρ, possibly
reflecting the finite network size. In general, alternating the network size (e.g., using
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Figure 3.4.: Dependence of the area under the ROC curve (AUC) for ECA-based
network inference for Erdös-Rényi random networks with N = 20 nodes on the link
density ρ and propagation probability p.
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Figure 3.5.: ROC curves for network inference based on ECA (blue) and ES (red)
for a single realization of the SIRS model on Erdös-Rényi, Barabási-Albert and Watts-
Strogatz networks with π = 0.3 (from left to right) with N = 60 nodes and a mean
node degree of 4 (i.e., a link density of ρ ≈ 0.068).

N = 30 nodes) does not change the reported results qualitatively.
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Further, to investigate the generality of our results obtained for the generic event
propagation model, we perform the same type of analyses for simulations of the SIRS
model (see Appendix A.1 for more details). Considering a microscopic version of the
SIRS model, changes from one state to another depend on the individual’s current
state and contemporary interactions with their neighbors on the network. Susceptible
individuals can become infected by an infected neighbor with a fixed probability β.
Hence, the higher the number of infected neighbors at time t, the more probable a node
becomes infective itself. By choosing the infectious period to be larger than the immune
period (during which an individual can get reinfected by any of its neighbors with
nonzero probability), we guarantee that the spreading process at the individual node’s
scale presents an oscillatory behavior. We note that under the considered parameter
values, there have been some simulation runs leading to a saturated dynamics since the
infectious state has completely disappeared from the network. The results presented
in the following therefore refer to only a single realization where non-trivial dynamics
has been observed over the whole simulation period. For ECA, we have chosen the
parameters ∆T = 1 and τ = 0, reflecting that there is no intrinsic propagation delay as
in the previously considered generic event propagation model. Fig. (3.5) demonstrates
that under a parameter setting with a relatively small link density, network inference
based on ECA outperforms the results based on ES for Erdös-Rényi and Barabási-
Albert networks. In contrast, the results are almost equivalent for small-world networks
generated via the Watts-Strogatz algorithm. This general tendency qualitatively agrees
with the results of the generic event propagation model, though exhibiting certain
differences in the details. Since the underlying network topologies are generally the
same for both models (despite the different parameter values), any observable difference
might point to effects due to the specific dynamics differing among the two considered
models.

3.4. Summary
In the last couple of years, there have been considerable methodological advances in
understanding how different topologies shape the resulting dynamics of different types
of processes on a complex network. Among others, much work has been devoted to
different types of spreading dynamics[166], like in the context of epidemiology, and
cascading failures of functional units (e.g., in electricity or communication networks).
Here, we addressed the inverse problem of network inference from observed event se-
ries reflecting such kind of spreading phenomena on an unknown network structure.
Drawing upon the idea of functional connectivity serving as a proxy for structural con-
nectivity, we presented an inter-comparison between two similarity measures for event
sequences: event synchronization (ES) and event coincidence analysis rates (ECA).
Both methods are based on the same general idea, while differing mainly in utilizing
a static (ECA) versus data-adaptive ”dynamic” coincidence interval (ES) to define
simultaneity of events. Our results revealed that both ES and ECA, indeed, allow
an accurate inference of the underlying network structures from the pattern of events
without employing any prior knowledge on the type of the observed spreading dy-
namics. However, theoretical reasoning suggests that in specific situations with events
arising as clusters in time (i.e., with very short inter-event waiting times) ES might
underestimate the actual number of simultaneous events in two sequences. On the
other hand, ECA does not suffer from the same issue as the fixed coincidence interval
of ECA may still identify events with a certain mutual time lag as being statistically
related.

38



4. Reconstructing dynamics of Complex
System Using Stochastic Differential
Models

Generally, real-world systems are subjected to noise and stochastic fluctuations (e.g.,
thermal fluctuations or internal dynamics) that profoundly affect the overall evolution
of such systems. To consider the effect of these fluctuations on the underlying dynam-
ics, stochastic differential equations (SDEs) have been employed for various random
phenomena such as turbulent cascades [57], nano-friction fluctuations [93], and molec-
ular dynamics [76]. In the framework of SDEs, one can solve the governing motion
equation for a reduced-dimensional system by explicitly modeling macroscopic vari-
ables while microscopic variables are represented by noise. A well-known approach
to retrieving such SDEs from small sets of observed time series is to reconstruct the
drift and diffusion terms of a Langevin equation from the data-derived Kramers-Moyal
(KM) coefficients. For systems where interactions between the observed and the unob-
served variables are crucial, the Mori-Zwanzig formalism (MZ) allows deriving General-
ized Langevin equations (GLEs) that contain non-Markovian terms representing these
interactions. Similarly, the Empirical Model Reduction (EMR) approach has more
recently been introduced. The results presented and the figures shown in this chapter
are based on publication ( Hassanibesheli, F., Boers, N., and Kurths, J. (2020). Re-
constructing complex system dynamics from time series: a method comparison. New
Journal of Physics, 22(7), 073053)

This chapter is organized as follows: In the first part, we systematically investigate
the statistical properties of different dynamical systems using the three aforementioned
methods (KM, MZ, and EMR) (see section 2.2 in chapter 2). To do so, we reconstruct
the dynamical equations of motion of various synthetical and real-world processes
obtained from these three approaches. In the second part, we utilize KM expansion
to analyze abrupt transitions in paleoclimatic records that can be observed in δ18O
and dust counts in Greenland’s ice sheet. Additionally, we investigate the possible
coupling between the temperature and the concentration of dust in the atmosphere.
The results presented in this chapter are based on publication (Rydin, L., Riechers,
K., Hassanibesheli, F., Witthaut, D., Lind, P. G., and Boers,N. (2021). Data-driven
Reconstruction of Last Glacials’ Climate Dynamics Suggests Monostable Greenland
Temperatures and a Bistable Northern Hemisphere Atmosphere. Earth Syst. Dynam.
Discuss. in review. )

4.1. Results and Discussion Part I

4.1.1. Unimodal Synthetic Time Series

As a first example, we begin by considering the dynamics of the Ornstein–Uhlenbeck
(OU) process, which is a stationary Gaussian-Markov process with continuous paths.
Analogous to Brownian motion, which is the scaling limit of a random walk, the OU
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4. Reconstructing dynamics of Complex System Using Stochastic Differential Models

process is known as the scaling limit of the Ehrenfest urn model [100] describing the
diffusion process as a Markov chain. An OU process, satisfies the following SDE:

dx(t)
dt

= θ(µ − x(t)) + ση(t) (4.1)

where η(t) denotes a Gaussian white noise with <η(t)η(t′)> = δ(tt′). Here σ is the
volatility of the process that controls the intensity of the noise. The OU process is
known to be mean-reverting, where the drift coefficient controls the forcing of the state
variable x(t) back to its mean µ with the rate of mean reversion of θ. When approaches
zero, the conventional Gaussian white noise is recovered. Since finding the analytical
solution of stochastic differential equations is challenging, numerical solutions, such as
Euler-Maruyama and the Euler-Milstein methods, can be considered an alternative to
approximate the solution. In this study, to numerically integrate Eq. 4.1, we employ
the Euler-Maruyama method that is based on stochastic calculus. Through stochastic
integration, the discrete-time evolution of x(t) can be written as follows:

x(t + 1) = x(t) + θ(µ − x(t))∆t + σ∆η(t) (4.2)

where ∆η(t) is independent identically distributed Wiener increments and can be ap-
proximated by

√
δN (0, 1).

In addition, we consider an OU process subjected to multiplicative noise [84, 171,
202], where fluctuations are modeled as a function of a random variable. For a system
subjected to an additive noise the deterministic potential corresponds to stochastic
steady-state potentials through Vs = Vd

σ , where σ is the intensity of fluctuations that
are independent of the system state x. It implies that the system exhibits stochastic
fluctuations from its deterministic attractor in response to the stochastic force. In the
case of multiplicative noise, a noise-induced drift becomes visible, and consequently, a
new attractor basin is generated that does not exist in the absence of state-dependent
fluctuations. If we substitute the additive noise in Eq. 4.1 with a multiplicative noise
(i.e., the diffusion term is multiplied by 1 + x2) whose variance depends on the state
variable x(t):

dx(t)
dt

= θ(µ − x(t)) + (1 + x2)η(t) (4.3)

We recall that for stochastic integration, there are two different approaches, Itô and
Stratonovich (see Appendix B.1 for more details). In the case of the OU process, we
observed that these two interpretations are equivalent. To generate an OU process,
we produce 106 data points with θ = 1, µ = 0, σ = 0.5 and time sampling ∆t = 0.01.
Panels (e) and (f) in Fig. (4.1) illustrate the generated OU processes subjected to
additive and multiplicative noise, respectively.

We begin by investigating the non-parametric estimates of the first D1(x) and second
D2(x) KM coefficients (see Eq. 2.19). Panels (a) and (c) in Fig. (4.1) show the KM
coefficients of an one-dimensional time series generated by Eq. 4.1. Panels (b) and
(d) illustrate the D1(x) and the corresponding D2(x) of an OU process subjected to
a multiplicative noise (see Eq. 4.3). As it can be seen, the drift and diffusion terms
of both OU processes can be successfully restored. We usually do not have access to
infinite time resolution. Hence, to investigate the effect of finite sampling interval on
the estimation of D1(x) and D2(x), we compared the analytical solution of AFPE (see
Appendix B.2) with the estimated KM coefficients for OU processes subjected to an
additive and multiplicative noise based on Lade [114, 117] interpretation. As can be
concluded from top (bottom) panels of Fig. (4.2), the values of the KM coefficients
estimated from discrete times series of an OU process with additive (multiplicative)
noise and the corresponding exact solution from AFPE are in a good agreement.
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Figure 4.1.: The non-parametric estimates of KM coefficients. The left column illus-
trates the associated D1(x) and the second D2(x) KM coefficients for an OU process
subject to arbitrary additive noise. Panels (b) and (c) in the right column show the
corresponding estimated KM coefficients for an OU process subjected to the multi-
plicative noise of form 1 + x2. (e) and (f) display original time series of OU processes
subjected to additive and multiplicative noise respectively.

Using the first and second KM coefficients, we can derive the LE (see Eq. 2.21) for the
two OU processes mentioned above. Additionally, we reconstruct the time evolution
of target systems’ underlying dynamics using the GLE and EMR (for definition, see
Eq. 2.32 and Eq. 2.37). We note that throughout this study, the deterministic terms
of simulated time series constructed by the GLE and EMR are estimated directly from
the first KM coefficient. Assuming that the deterministic function of the GLE, Ω(xt),
is known explicitly, we obtain the memory kernel K in Eq. 2.32 as follows:

Ck
y,x = −

k∑︂
l=1

KlCk−l
x,x , (4.4)

where yt = xt − xt−1 − Ω(xt−1). After estimating the memory kernel from the known
correlation structure, we can easily calculate the noise term in Eq. 2.32 from the
available time series.

Fig. (4.3) displays the statistical properties of the time series that obey the OU
dynamics obtained from the three different inverse modeling methods (KM, MZ, and
EMR) in comparison with the original time series. Here, we obtain the PDFs as aver-
ages over 1000 simulated time series, and the error bars are based on the ±σ deviations
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4. Reconstructing dynamics of Complex System Using Stochastic Differential Models

Figure 4.2.: Comparison of the estimated drift (D1(x)) and diffusion (D2(x)) coef-
ficients with corresponding exact solutions for an OU process containing 106 points
with sampling frequency of 10−2. (a) Estimated D1(x) and D2(x) (red) and the values
obtained from the analytical solution via AFPE (blue) for an OU process with additive
noise. (b) Same as (a) for an OU process subject to the multiplicative noise 1 + x2.

around the averages for these 1000 realizations. According to Fig. (4.3) all three SDE
models could perfectly reproduce samples of series obeying the statistic of the un-
derlying dynamics. Here the auto-correlation exponentially decays, and the memory
coefficients of GLE are zero except at τ = 1, which indicates the process is Marko-
vian. Similarly, we repeat the analysis for an OU process subjected to multiplicative
noise. As it can be observed from Fig. (4.4), all three methods work very well in re-
producing the statistical features of the linear system also when exposed to symmetric
multiplicative noise.

For more comparison, we analyzed a system subjected to asymmetric noise, which
results in a skewed distribution. We thus multiply the noise term in Eq. 4.1 by (1 + x)
(instead of (1+x2)) and evaluate the statistical properties of the system. According to
Fig. (4.5), the KM model exhibits better performance in comparison to the two other
models since it can directly estimate the (in this case, asymmetric) state-dependent
noise from the time series.

So far, we have considered additive and multiplicative noise, with η given by Gaus-
sian white noise. However, in many physical and biological systems, fluctuations ex-
hibit some degree of correlation that cannot be explained by uncorrelated white noise.
Therefore we substitute the stochastic term of Eq. 4.1 with a first-order autoregressive
process AR(1) and investigate the performance of the three methods mentioned above
to derive SDEs in the presence of colored noise. An AR(1) process is given by:

Yt+1 = αYt + η(t) (4.5)

where η is a Gaussian white noise process with zero mean and constant variance.
According to Fig. (4.6), the statistical properties of simulated time series constructed
via the KM method can not perfectly follow the original ones. From Tables B.1 and
B.2 it can also be concluded that MZ and EMR perform better (with smaller MSEs).
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4.1. Results and Discussion Part I

Figure 4.3.: A stochastic process with linear drift and additive noise. (a) Original
(red) and randomly chosen simulated time series based on KM, MZ, and EMR methods
(from top to bottom, respectively). (b) Summary statistics (PDFs in the left column
and ACFs in the right column) of original and simulated time series derived from
1000 sample time series reconstructed by the three stochastic models (KM, MZ, and
EMR), from top to bottom as indicated in the legend. The original system is an
Ornstein–Uhlenbeck process with ∆t = 0.01 whose statistical features are shown in
red color.

Figure 4.4.: Statistical properties of the observed and simulated OU with linear drift
and multiplicative noise (1 + x2). The left column illustrates the PDFs for simulated
results obtained as averages over 1000 realization with uncertainties in blue color. The
right column displays the ACFs of ensembles of simulated time series constructed based
on the three different stochastic models (KM, MZ, and EMR, from top to bottom).
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4. Reconstructing dynamics of Complex System Using Stochastic Differential Models

Figure 4.5.: Statistical properties of the observed and simulated OU process subject
to the asymmetric noise (1 + x). The left column illustrates the PDFs for simulated
results obtained as averages over 1000 realization with uncertainties in blue color. The
right column displays the ACFs of ensembles of simulated time series constructed based
on the three different stochastic models (KM, MZ, and EMR, from top to bottom).

This is expected, since the presence of colored noise implies a deviation from the
white-noise assumption of the LE and the KM method to derive it.

It is also of interest to evaluate the performance of these SDEs when the system
exhibits some short-term memory in the deterministic part. For this purpose, we
consider a stochastic delay differential equation given by:

dx(t)
dt

= αx(t) + βx(t − τ) + R(t) (4.6)

The random force R is given by serially correlated noise produced by a second-order
autoregressive AR(2) process in which the current value depends on the two previous
values. As can be observed from Fig. (4.7), the EMR and MZ methods yield signifi-
cantly better approximations of the PDF and ACF than the KM method for this system
with short-term memory in the drift and colored noise. This provides an instructive
example for situations where the MZ and EMR approaches clearly outperform the KM
approach (as theoretically expected).

4.1.2. Bimodal Synthetic Time series

Until now, we studied processes with a unique mode; however, there are various
stochastic dynamics in natural systems that do not exhibit uni-modality. We start
with generating a synthetic process in which a particle moves in a double-well (DW)
potential at ±

√
θ, driven by additive Gaussian noise.

dX(t)
dt

= θ(x(t) − x3(t)) + ση(t) (4.7)
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Figure 4.6.: Summary statistics of an OU process with linear drift and colored noise
time series and simulated time series reconstructed by the three stochastic models
(KM, MZ, and EMR) from top to bottom as indicated in the legend.

According to Eq. 4.7, we generated a process consists of 105 points with sampling
interval ∆t = 0.01. The summary of non-parametric estimations of the first and
second KM coefficients of the process can be found in Fig. (4.8a) and Fig. (4.8c),
respectively. Considering the Markov property of the underlying system, the KM
analysis captures precisely the nonlinear interactions taking place in the macroscopic
scale (see Fig. (4.8a)). In Fig. (4.9), we evaluated the performance of the three SDEs
mentioned above in reconstructing the dynamics of the underlying system. The left
column in Fig. (4.9) illustrates the average PDFs of model-simulated time series in
comparison with the original time series for 1000 realizations, and the right column
displays the associated ACFs. It can be seen that these three stochastic models can
mimic the key features of the original time series very well.

We repeated the KM analysis for a DW process subjected to a multiplicative noise,
see Fig. (4.8b) and Fig. (4.8d). In the presence of a multiplicative noise, estimating
the underlying dynamic is not trivial anymore for the EMR and GLE. As it can be
observed in Fig. (4.10), the average ACFs deviate from the original ones for the MZ
and EMR methods, while the KM method still achieves an excellent approximation of
the PDF and ACF.

4.1.3. Real-World systems

To complement our analysis, we continue by studying three real-world time series, i.e.,
S&P500 stock index, El Niño-Southern Oscillation (ENSO), and the concentration of
[Ca2+] in the Greenland’s ice core.

4.1.3.1. S&P500 Stock Index

In recent years, quantifying stochastic dynamics of financial time series (e.g., stock
prices and stock market indices) using SDEs to describe their evolution has attracted
considerable attention[52, 61]. In this study, we analyzed the weekly S&P500 stock

45



4. Reconstructing dynamics of Complex System Using Stochastic Differential Models

Figure 4.7.: Statistical properties of the observed (red) and simulated (blue) time
series from a delayed OU process, with tau = 2, subject to correlated noise produced
by an AR(2) process. The simulated time series were constructed using KM, MZ, and
EMR methods (from top to bottom), averaged over 1000 different realizations.

index for the time span of 35 years (1950-1985) and analyze its distinctive statistical
properties. Here the stock return price lnp(t+δt)

p(t) represents the state variable x(t). The
statistical results of the simulated time series estimated by the three inverse modeling
methods are shown in Fig. (4.11). According to the KM coefficients, the deterministic
part of the dynamics is described by a linear function of the state variable, while the
stochastic term exhibits nonlinear behavior.

In this first real-world case, the approximation of the PDFs is not perfect anymore.
The results reveal that the MZ formalism outperforms the two other methods in terms
of the ACF, with the perfect agreement to the original return series ( see Fig. (4.11),
second row, second column). It is worth mentioning that the statistical properties of
financial time series exhibit a time-scale dependence and long-range correlations [63,
115]. Therefore we conclude that the memory effects of recent returns occurring in
different time scales (from minutes to several days) can be modeled well by the MZ
technique.

4.1.3.2. El Niño-Southern Oscillation (ENSO)

Another empirical time series that we use is the Niño-3 index [180], which is one of
several ENSO indicators of tropical Pacific sea surface temperatures (SST). During the
last decades, understanding the mechanisms underlying ENSO variability and predic-
tion of future fluctuations has attracted substantial attention [2, 30, 94, 108]. ENSO
describes variations in temperature and pressure in the eastern Pacific ocean and has
significant impacts on global climate variability. We reconstruct the Niño-3 monthly
sea surface temperature (SST) index averages across (5°N–5°S, 150°–90°W) from 1891
to 2015 using the KM, MZ, and EMR inverse modeling approaches. The Non-Gaussian
behavior of Niño-3 indicates a nonlinear process, quantified by the positive skewness
of the SST distribution, which may reside in the interaction of oceanic variables of

46



4.1. Results and Discussion Part I

1.5 0.5 0.5 1.5
X

2

1

0

1

2

D1

(a)                                                               
( x(t)) + (t)

2 1 0 1 2
X

4

0

4

D1
(x

)

(b)                                                               
( x(t)) + (1 + x2) (t)

1.5 0.5 0.5 1.5
X

0.0

0.2

0.4

0.6

D2
(x

)

(c)                                                                   

3 2 1 0 1 2 3
X

0.0

0.3

0.6

0.9

D2
(x

)

(d)                                                                    

(e)                                                               (f)                                                                

Figure 4.8.: The non-parametric estimates of KM coefficients. The left column il-
lustrates the associated D1(x) and the second D2(x) KM coefficients for a process
in a double-well potential subject to arbitrary additive noise. Panels (b) and (c) in
the right column show the corresponding estimated KM coefficients for a process in
a double-well potential subject to the multiplicative noise of form 1 + x2. (e) and (f)
display original time series of processes in a double-well potential subject to additive
and multiplicative noise respectively.

Figure 4.9.: Comparison of the numerical simulation of a process in a double-well
potential subject to an additive Gaussian noise with intensity σ = 0.5 ,106 data points
and a sampling interval of 0.01. The plot displays PDFs and ACFs of the original(red)
and simulated(blue) time series obtained from three different stochastic models (KM,
MZ, and EMR as indicated in the legend), averaged over 1000 realizations.
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Figure 4.10.: Statistical properties of the observed (red) and simulated (blue) time
series related to a particle motion in a double-well potential, subject to multiplicative
noise. The simulated time series were constructed using KM, MZ, and EMR methods
(from top to bottom), averaged over 1000 different realizations.

Figure 4.11.: Summary statistics of S&P500 stock index and simulated time series
over 1000 realizations (blue) created by KM, MZ, and EMR models from left to right,
respectively. The statistics plotted in red correspond to the original weekly S&P500
stocks index for the time span of 35 years (1950-1985).

48



4.1. Results and Discussion Part I

interest and the fast atmospheric forcing [144]. This interaction introduces memory
into the system dynamics that should not be expected to be fully captured by models
established based on Markovian assumptions. Fig. (4.12) displays the PDFs and ACFs
of the resulting simulated time series. Although all three inverse methods produce
similarly skewed and heavy-tailed distributions, comparing the AFCs, MZ achieves a
higher accuracy approximation than KM and EMR. We repeated this procedure for
the Niño-4 index and also, in that case, found that the MZ approach outperforms the
other two methods. According to these results, the most significant characteristic of
these real-world processes leading to ENSO variability is the presence of serial correla-
tions connected to internal interactions between observed (slow) and unobserved (fast)
variables, which can be captured best by the MZ approach.

To investigate whether our results are prone to overfitting, we first calibrated the
three SDEs on the first half of the time series. Then, to validate the parameters, we
compared the resulting time series statistics with the ones of the second half of the
time series Niño-3, see Fig. (B.2). It can be inferred that the longer-term variations
in the ACF are still captured to some degree by the MZ method. For the ENSO case,
the slow variations of the ACF correspond to low-frequency variability present in this
time series, which is not noise but an essential part of (internal) climate variability.
The fact that the reproduction of these slow variability modes is less accurate when
only calibrating on the first half of the time series is due to the fact that capturing
these slow variability modes is harder when considering only a shorter part of the time
series.

Figure 4.12.: Comparison of model performance of KM, MZ, and EMR in recon-
structing dynamics of Niño-3 monthly sea surface temperature (SST) index. The figure
depicts the statistical properties of the observed (red) and simulated (blue) monthly
Niño-3 SST indices from 1891 to 2015.
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4.1.3.3. Ca2+ Proxy

As the final example, we investigated the high-resolution (20yr-average) Ca2+ (inter-
preted as a proxy for atmospheric circulation patterns), collected from the NGRIP ice
core on the GICC05 time scale [177]. Because of the substantially better signal-to-
noise ratio, we focused here on the Ca2+ time series between 60ka and 30ka b2k. We
apply the KM, MZ, and EMR approaches to reproduce dynamical and statistical prop-
erties of the underlying dynamics of Ca2+. Fig. (4.13) shows the statistical properties
(PDFs and ACFs) of the observed and simulated Ca2+ time series. Because of the
large amplitude of the Ca2+ concentration variations, the calculations were conducted
in natural logarithmic scale [19]. The results presented in Fig. (4.13) show that the
modeled time series for all three methods could accurately reproduce the bimodality
of the observed PDFs. However, it should be noted that the LE derived with the KM
approach approximates the observed PDF better than the GLE and EMR approaches.
The depth of the two potential wells in MZ and EMR are shallower than the observed
PDF suggests. It is clear from the results illustrated in the right column of Fig. (4.13)
that the MZ and EMR methods have better performances to construct the underlying
auto-correlation structure of the Ca2+. To study the underlying dynamics of Ca2+

time series we employed Stratonovich calculus instead of Itô (see Appendix B.1.1).
In the Stratonovich calculus, white noise is approximated by continuously fluctuating
noise with finite memory, which may be more suitable for approximating real-world
time series [1].

Figure 4.13.: Statistical properties of the observed and simulated Ca2+ time series
in the interval between 60ka and 30ka b2k. The PDF of the original data is shown in
red color while simulated time series obtained from KM, MZ, and EMR models (from
top to bottom) can be found in blue color. The PDFs for the three stochastic models
are averaged over 1000 realization and therefore considerably smoothed.
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Figure 4.14.: The dust (blue) and the δ18O (red) records from the NGRIP ice core in
Greenland. The dust data is the natural logarithm of the actual dust concentrations.

4.2. Results and Discussion Part II

4.2.1. Dansgaard–Oeschger Events (DO)

Understanding the triggering mechanism of sudden climate transitions in the past is
essential to better identify abrupt warming events and sea ice loss in the future. One
of the best-documented examples is abrupt temperature shifts during the last glacial
period (roughly from 115.000 years to 12.000 years BP), known as Dansgaard-Oeschger
(DO) events which involve a wide range of time scales [19, 20, 41, 43, 113, 126, 127].
These rapid and strong warming events (ranging from 8 to 16.5◦ ) followed by slow-
paced cooling phases can be inferred from the content of stable isotope composition
of water δ18O in different Greenland ice cores. The concentration of δ18O in the ice
core provides reliable information about the evolution of Arctic temperature. Other
properties of the ice, such as dust content and concentration of Calcium ions, can also
be used to study these swift changes [143] (See Fig. (4.14)). The climate of the last
glacial period witnessed about 26 distinct DO events. It has been suggested that the
time interval between two consecutive DO events is roughly about 1500 yr and seems to
be sampled from a Poisson process [42]. It should be emphasized that the corresponding
exponential distribution of waiting times does not support the existence of the periodic
pattern. Many physical mechanisms have been proposed as candidates for explaining
such abrupt transitions; however, the origin and leading causes of DO events are still
debated. One classical hypothesis attributes the DO cycles to the swing between two
stable states of Atlantic meridional overturning circulation (AMOC) [35, 175] due to
freshwater perturbations. In this context, it has been shown that DO events could
be triggered by freshwater from the melting of iceberg discharges [206]. Even though
the AMOC hypothesis mostly reproduces the spatial patterns of the abrupt changes,
due to the insufficient paleoceanographic data, the exact causal relation between DO
events and changes in AMOC still remains unknown. In recenter years, alternative
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Figure 4.15.: Auto-correlation of the increments of δ18O and dust records.

mechanisms such as sea-ice-shelf fluctuation [172], interhemispheric interactions [9],
and internal variabilties [42] have also been introduced to generate DO events. In the
context of dynamical systems, these abrupt changes may be induced by bifurcation
or stochastic perturbations when a stable equilibrium is lost and a system tips to
another attractor. Several studies have been conducted to simulate time series that
reproduce the statistical and dynamical properties of paleoclimate records using data-
driven stochastic models [19, 107]. In the following, we estimate the parameters of
the stochastic process (i.e., drift and the stochastic diffusion components) driving the
δ18O and dust records using non-parametric KM analysis.

4.2.1.1. δ18O and Dust Proxies in a One-dimensional Setting

We considered the paleoclimate records as the realization of a Markovian and station-
ary stochastic process [107, 108]. The ice measurements were taken at a fixed 5 cm
and are not temporally uniform. Therefore, we interpolated the data to an equidistant
time axis of 5 year intervals and fill the missing data with a next-neighbor interpolation
(See Fig. (4.14)). Here, to evaluate whether the data of interest exhibits Markov prop-
erty, we investigated the behavior of the auto-covariance function of its increments. To
do so, we calculated the differences ∆xt = xt+1 − xt, and obtain the auto-correlation
function ρ(τ) as follows:

ρ(τ) = E [(∆xt − µt)(∆xt+τ − µt+τ )]
σtσt+τ

, (4.8)

As it can be concluded from Fig. (4.15), both δ18O and dust records display weak
anti-correlation at the lag τ = 1, and no correlation for τ > 1.

After fulfilling the Markovian assumption, we estimated the first and second KM
coefficients of the dust and the δ18O records derived from Eq. 2.17 in a one-dimensional
setting. Panel (a) and (b) in Fig. (4.16) illustrate the estimated first KM coefficient
for the dust and δ18O respectively. As it can be observed, the drift term for the dust
record exhibits a nonlinear behavior with three fixed points, while in the δ18 case, the
drift has only a single stable fixed point. Panels (c) and (d) display the corresponding
second KM coefficients of the dust and the the δ18 records.

To further understand the physical interpretation of the first KM coefficient, we took
the integral over D1(x), which can be associated with the potential well where the drift
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Figure 4.16.: The non-parametric estimates of the first and second KM coefficients
for the δ18O (panels a,c) and the dust (panels b,d) records in a one-dimensional setting.
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Figure 4.17.: Potential landscape of the drift for the dust and δ18O records.

term drives a particle to the bottom of it

V (x) = −
x∫︂

−∞

D1(x′) dx′ + c. (4.9)

We employed the concept of potential to show the stability configuration of δ18O and
the dust recordings. Fig. (4.17) displays the reconstructed potential wells associated
with the δ18O and the dust recordings. The suggested bistable dynamics for the
dust recording can also be confirmed from the constructed potential with two minima
shown in Fig. (4.17a). Here, the stochastic noise can trigger the switch from one stable
state to another. Despite the apparent sudden regime shifts in the δ18O records, the
reconstructed potential well does not show bistability. According to Fig. (4.17b) δ18O
lives in a single-well potential with a fixed point around zero.

In the following, to distinguish continuous from discontinuous processes, we con-
ducted two distinct analyses. According to the Pawula’s theorem, we consider a
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Figure 4.18.: The ratio D4(x)/D2(x) for the dust (in blue) and the δ18O (in red)
records in a one-dimensional setting.

stochastic process x(t) continuous if higher-order of KM coefficients (Dm(x) = 0; m >
2) are negligible. However, in various real-world systems, we observed non-vanishing
higher-order KM coefficients. To investigate whether our data belong to the class of
continuous processes or not, we calculated the ratio between the fourth and second
KM coefficients (D4(x)/D2(x)) which explains the ratio of jumps to diffusive motion.
As illustrated in Fig. (4.18a), the (D4(x)/D2(x)) ratio for the dust record is negligible,
indicating the underlying dynamics can be regarded as a continuous stochastic process
at the time scale of 5 yr. In other words, the time evolution of the dust record can be
described by a Langevin equation in which the regime shifts are induced by stochastic
force. On the other hand, for the δ18O record, the non-negligible (D4(x)/D2(x)) ra-
tio reflects the contribution of discontinuous events or jumps (see Fig. (4.18b)). The
persistence fourth KM coefficient in the δ18O may suggest a source of forcing other
than Gaussian white noise, which could indicate an external trigger affecting Green-
land temperatures directly. We note here that the interpretation of the fourth KM
coefficient is not straightforward and Further analysis is required to determine the role
of discontinuities in the δ18O record.

To support our assessment regarding the continuity or discontinuity of a process, we
calculate the Lehnertz–Tabar Q-ratio [114].

Q(x, τ) = M6(x, τ)
5M4(x, τ) ∼

{︄
τ, for diffusions,
c, for jumpy processes. (4.10)

The Q-ratio allows distinguishing diffusive and jumpy behavior in time series in
terms of the convergence of the conditional moments with the scaling τ . For a process
with a discontinuous trajectory, Q(x, τ) exhibits no significant scaling relation with
time t. In contrast, Q(x, τ) is linearly dependent on τ for a continuous process. In
Fig. (4.19) we calculated the Q-ratio for the dust and the δ18O records in a double-
logarithmic scale. Accordingly, it can be seen that there is a linear relation between
Q-ratio and time for the dust record while this quantity remains constant for δ18O.
Therefore, we can rule out that the underlying process of the δ18O is diffusive.

4.2.1.2. δ18O and Dust Proxies in a Two-dimensional Setting

As stated above, we used the KM analysis for the δ18O and the dust records in a one-
dimensional setting. Even though the trajectories of the dust and the δ18O are very
similar, we observed that the reconstructed potential of δ18O does not explain regime
shifts of the underlying dynamics. Two plausible scenarios can be considered leading
to these abrupt transitions; 1) It can be due to the presence of correlated noise or 2)
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Figure 4.19.: The Q-ratio for the dust (in blue) and the δ18O (in red) records.

3 2 1 0 1 2
18O

1.0

0.5

0.0

0.5

1.0

1.5

du
st

GI 

GS 

Figure 4.20.: Two-dimensional PDF of the δ18O and dust records. The dotted ele-
ments are the records, separated into stadials (GS) and interstadials (GI).

possible coupling of dust and the δ18O in which one record acts as an external control
parameter for another one. In the following we employ a two-dimensional analysis
(introduced in section 2.2.1.1) to investigate the coupling between these two proxies
(see Fig. (4.20)).

Similar to the one-dimensional setting, we inspect the conditional potentials from
the drift coefficients defined by:

V1,0(x1|x2) = −
x1∫︂

−∞

D1,0(x′
1, x2) dx′

1 (4.11a)

V0,1(x2|x1) = −
x2∫︂

−∞

D0,1(x1, x′
2) dx′

2 (4.11b)
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Figure 4.21.: In panel (a) the two-dimensional potential landscape V1,0(x1|x2) of the
dust, conditional to the value of δ18O has been shown. Depending on the value of
δ18O dust can dust can have three different fixed points. In panel (b) we illustrate
the two-dimensional potential landscape V0,1(x2|x1) of the δ18O conditioned on dust
record .

Where (V0,1) and (V1,0) are the conditional potentials describing the motion of one
variable conditioned on a fixed second dynamical variable. Fig. (4.21a) displays the
reconstructed conditional potential V1,0(x1, x2) for the dust conditioned on δ18O. The
dust appears to have a different number of fixed points, changing from a mono-stable
to a bistable regime, depending on the value of δ18O. According to Fig. (4.21a), the
type of regime-switching in the dust record, from stadial to interstadial phases, can
be related to a double-fold bifurcation. Where for approximately δ18O < −1.0 there
is only one stable fixed point (a global minimum), and for approximately −1.0 < δ18O
< 0.6 there are three fixed points, two stable ones (a local minimum and a global
minimum) and an unstable one (the local maximum) between them. In a similar
manner we investigated the conditional potential V1,0(x1, x2) of the δ18O conditioned
to a value of dust ( see Fig. (4.21b)). We found that the δ18O has one minimum – given
any value of the dust variable– indicating the characteristic of a mono-stable process.
Notably, the position of the minimum of the δ18O potential landscape is explicitly
dependent on the value of the dust. Our results reveal that the abrupt changes are not
intrinsic features of the δ18O proxy and may stem from the coupling to other climate
variables.

4.3. Summary

Stochastic differential equations (SDEs) are a promising approach for studying dynam-
ics of complex systems in situations where only a few variables are actually measured.
For some typical example settings, we studied the performance of three methods to de-
rive SDEs – the Kramer-Moyal approach to derive Langevin equations (LE) with poten-
tially multiplicative noise, the Mori-Zwanzig approach to derive Generalized Langevin
Equation (GLE) including a non-Markovian term, and the Empirical Model Reduction
(EMR) approach to derive GLEs – for various synthetic and real-world time series.

In the first part of this chapter, corresponding numerical simulations of all three
inverse methods (KM, MZ, and EMR) were examined in terms of PDFs and ACFs of the
simulated time series, as metrics for assessing the models’ performance. We generally
observed a nearly optimal performance of all three approaches for unimodal Markovian
systems. For non-Markovian systems, the MZ and EMR strongly outperformed the
KM approach as theoretically expected. According to our results, the performance of
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SDEs strongly relies on the effects of memory on the underlying dynamics. We could
show that LEs (as derived by the KM approach) obtain better results for systems
with weak memory contribution but asymmetric multiplicative noise since they can
directly estimate the state-dependent noise with higher precision. On the other hand,
for systems with memory effects and colored-noise forcing, it is essential to consider the
non-Markovian closure terms. Hence, the MZ and EMR approaches can be regarded
as more reliable in reconstructing the dynamics of systems exhibiting strong memory
effects. In these two methods, the interactions between observed and unobserved
variables are taken into account in terms of memory effects. That is, the EMR approach
incorporates adaptive numbers of memory steps, while the MZ method considers the
full memory of a system via the kernel K.

In the second part, using a data-driven KM approach, we analyzed the stability
landscape of the δ18O and dust recordings in one and two-dimensional frameworks.
We found that, in the decoupled setting, the δ18O displays mono-stable dynamics,
whereas the dust record displays bistability features. An abrupt transition in the
δ18O could then entail a regime switch in the atmospheric configuration. We observed
non-vanishing higher-order KM coefficients in the δ18O suggesting that the dynamics of
δ18O, unlike the dynamics of the dust record, cannot be modeled as a purely continuous
stochastic process. We observed that, even though trajectories of both proxies look
similar, the reconstructed potential from drift dynamics are different. To explore the
origin of this discrepancy, we analyzed the coupled system of δ18O and dust records. In
the two-dimensional setting, we found the position of δ18O’s stable fixed is controlled
by the current value of the dust, suggesting that couplings between the two are indeed
highly relevant.
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5. Predicting Climate Variability Using
Machine Learning Approach

After reconstructing the underlying dynamics of complex systems in the previous chap-
ter, we now continue to forecast their behavior using ANN approach. The main focus of
this chapter is to develop a method based on a recurrent neural network, called Echo
State Network (ESN) (see section 2.3.1) that can reliably predict non-deterministic
time series with comparably low signal-to-noise ratios, which frequently arises in cli-
mate science. In this study, we will apply our developed algorithm to three different
climate oscillations, the El Nino/Southern Oscillation (ENSO), the Pacific Decadal Os-
cillation (PDO), and the Atlantic Multidecadal Oscillation (AMO). These oscillations
are associated with large-scale fluctuations in air pressure, sea temperature, and wind
direction that can substantially impact global weather patterns. Therefore providing
skillful forecasts of these climate modes are essential for society and policymakers. No-
tably, the predictive skill of the conventional ESN algorithm is significantly affected by
the intrinsic characteristic of climate data (i.e., low signal-to-noise ratio). Exploiting
the peculiar aspects of climate variability in which the slow mode can be perturbed by
high-frequency forcing (e.g., westerly wind bursts or the Madden- Julian Oscillation),
we estimate the future behavior of high-frequency variability from its past history us-
ing PNF method [30] (introduced in section 2.3.2). By incorporating such information
into the ESN model, we aim to enhance its ability to forecast the target time series
for a longer lead-time.

The chapter is organized as follows: we first briefly introduce the three climate
oscillations used in this study, then we explain the methodological setup for conducting
the analysis. Finally, the feasibility of our approach will be evaluated based on the
predictive skill of the resulting model. The results presented and the figures shown in
this chapter closely follow the publications ( Hassanibesheli, F., Boers, N., and Kurths,
J. (2021). Long-term ENSO Prediction with Echo-State Network. Environmental
Research: Climate, in review) and ( Hassanibesheli, F., Boers, N., and Kurths, J.
(2022). Predicting Climate Oscillations Using Echo-State Network, in preparation).

5.1. Large-Scale Climate Index Data

5.1.1. El Niño-Southern Oscillation

The El Niño-Southern Oscillation (ENSO) is the dominant variability mode of the
global climate system on interannual time scales originating in the Tropical Pacific
Ocean [173]. This strong climate variability is generated through the atmosphere and
ocean interactions and can impact climate patterns in various parts of the world (e.g.,
associated with floods and droughts). ENSO can be classified into three main vari-
ability modes, namely the warm (i.e., El Niño) and cool (i.e., La Niña) phases with
sea-surface temperature (SST) anomalies substantially above and below average, re-
spectively, as well as the remaining neutral phases [161]. The warm ENSO phases have
typical yet irregular return periods between 3 and 7 years, rendering them challeng-
ing to predict [210]. In the neutral phase, the trade winds blow west resulting in a
pile-up of warm water masses at the western boundary of the tropical Pacific Ocean.
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Figure 5.1.: Monthly sea-surface temperature (SST) anomalies in the Pacific ocean
for the 1997 El Niño event, and SST-based ENSO indices. (a) SST anomalies [99]
in the Pacific ocean for December 1997, known as the strongest El Niño on record.
The blue and black boxes delineate the Niño 3 (5N-5S, 150W-90W) and the Niño 3.4
(5N-5S, 170W-120W) regions from where SST anomalies are used to define the Niño-3
and Niño-3.4 indices [60], respectively. (b) The Niño-3 index, given by a time series
of SST anomalies averaged over the Niño-3 region in the eastern tropical Pacific as
shown in (a), from 1890 to 2019. (c) SST anomalies averaged over the Niño-3.4 region
from 1890 to 2019. Red and blue colors indicate SST anomalies above and below zero,
respectively.

The resulting east-west SST gradient causes air to ascend in the western Pacific and
circulate back to the eastern boundary of the tropical Pacific Ocean, where it de-
scends again. This atmospheric circulation system is called the Walker cell. During El
Niño (La Niña) phases, this circulation is weakened (strengthened), leading to warm
(cool) SST anomalies in the central and eastern parts of the tropical Pacific. The pre-
dictability of ENSO at interseasonal and longer time scales has attracted substantial
attention, using process-based general circulation models [70, 102] and statistical ap-
proaches [91, 108, 170]. Since ENSO dynamics is arguably nonlinear [7], also nonlinear
statistical models have been introduced [30, 108]. In addition to these data-driven
inverse modelling approaches, several statistical forecasts of El Niño events based on
complex network theory have been proposed. Nevertheless, as for the classical sta-
tistical approaches above, the forecast horizon of network-based approaches remains
limited to one year[132, 149]. Here, we employ monthly SST anomalies for the period
1890-2019 [60], averaged over the Niño-3 (5N-5S, 150W-90W) and Niño-3.4 (5N-5S,
170W-120W) regions in the tropical Pacific, which are commonly used to define the
Niño-3 (Fig. (5.1b)) and Niño-3.4 indices (Fig. (5.1c)).
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Figure 5.2.: Pacific Decadal Oscillation (PDO) index time series during 1854-2019,
with warm and cold phases illustrated in red and blue, respectively. The lower panel
displays the distribution of PDO phase lengths.

5.1.2. Pacific Decadal Oscillation (PDO)

In the second case study, we focus on the prominent mode of decadal climate variabil-
ity in the Pacific Ocean known as Pacific Decadal Oscillation (PDO) [140, 157]. PDO
has been first identified in the late 1990s [141] as the leading empirical orthogonal
function (EOF) of monthly North Pacific SST variability. It represents a long-lived
El Niño-like pattern in the North Pacific basin that can cause decadal-scale increases
in drought and heavy rainfall frequency over the United States, Canada, and Siberia
through atmospheric teleconnections [211]. The PDO comprises two modes, the warm
phase, which is associated with negative SST anomalies in the central and western
regions of the North Pacific, and the cold phase, during which the opposite pattern
occurs. The amplitude of the PDO reaches its climax during November to June and
then strongly drops throughout the late summer-early autumn. Multiple processes
of different origins may drive PDO variability on different time scales. For instance,
ENSO variability is known as the driving factor for the PDO on the interannual time
scale through the "atmospheric bridge" [200]. Another candidate mechanism is related
to the regional ocean-atmosphere interactions over the mid-latitudes in the North Pa-
cific [218]. Remote forcing from the western Pacific and the eastern Indian Ocean is
another relevant driving process [95]. Some other research on the PDO demonstrated
the impact of stochastic forcing from internal atmospheric dynamics on North Pacific
SST anomalies [221]. Different approaches from stochastic models [188] and linear
inverse models [156] to fully coupled climate models [147, 195] have been introduced
to identify and predict the underlying dynamics of PDO variability. Although mecha-
nisms contributing to the PDO are relatively well-understood, tracing out the actual
evolution of this phenomenon remains challenging. A possible explanation for this com-
plication is that PDO variability emerges as a manifestation of interactions of multiple
phenomena on different timescales with different forces. For instance, it has been
shown that under the influence of greenhouse-gas-induced warming conditions [122],
the PDO prediction skill of coupled general circulation models drastically decreases.
It has been demonstrated that greenhouse warming forces can prompt Rossby waves
to propagate faster, which consequently results in decreasing the amplitude of the
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Figure 5.3.: Atlantic Multidecadal Oscillation (AMO) index time series. Warm and
cold phases are illustrated in red and blue respectively.

PDO [122]. The PDO index used in this study is a monthly SST anomaly poleward of
20N in the Pacific basin from 1854-2019 (see Fig. (5.2)).

5.1.3. Atlantic Multidecadal Oscillation (AMO)

As the final case study, we apply our model to predict Atlantic Multidecadal Oscil-
lation (AMO) index. AMO is a significant component of climate variability in the
North Atlantic basin constructed based on average sea surface temperature anomalies
(SST). By changing the air temperatures and rainfall, the AMO can trigger promi-
nent decadal-scale climate anomalies, including drought in Africa, severe hurricanes in
northern America regions [85], and variability in northeast Brazilian rainfall [55]. It has
also been shown that AMO can significantly affect the Indian monsoon rainfall [121]
that consequently impacts the southern part of Central Asia. The transition between
warm and cold phases of AMO occurs every 20–40 years [4]. During AMO’s warm
phase, more hurricanes occur in the Atlantic region. While its cooler phase is associ-
ated with reduced rainfall in the Sahel region of Africa. Due to AMO’s multidecadal
time scale and intricate interactions of various climate sub-components, understanding
possible forcing mechanisms driving the AMO are under considerable debate. Accord-
ing to one school of thought, based on climate model simulations, Atlantic Meridional
Overturning Circulation (AMOC) [39] is the primary driver of AMO, which is asso-
ciated with internal ocean variability. On the other hand, others argue that external
forcing such as volcanic eruption and solar variability contribute to the multidecadal
SST variability and are key drivers of AMO [105, 162]. Some other processes, such as
changes in the strength of the ocean gyres and Gulf Stream or decadal fluctuations in
sea ice, can also contribute to decadal variability over the Atlantic [40]. During the
last decades, substantial progress has been made to model and predict the temporal
structure of the AMO using different methods from coupled global atmosphere–ocean
models [33] to probabilistic approaches [201] and statistical methodologies [220]. In
this study we use the unsmoothed monthly AMO index calculated from the Kaplan
SST dataset [50] that covers the period from 1856 to 2020.
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Figure 5.4.: Schematic diagram of ESN-PNF setup.

5.2. Method

5.2.1. ESN Implementation and Combination with PNF method

Our proposed ESN implementation consists of two main steps; the training phase
during which a loss function is minimized to find optimal output weights, and the
prediction phase during which the optimized ESN is used to predict unseen data.

Our approach’s fundamental assumption is that climate variability can be disen-
tangled into high- and low-frequency modes, where the dynamics of low-frequency
variability is under the influence of high-frequency forcing. Several methodologies and
techniques have been developed to decompose time series into slow and fast variability
components, such as, e.g., singular spectrum analysis (SSA) [74, 209], spectral meth-
ods such as the Butterworth (BW) filter [62, 182], or moving average (MA) filters [6].
Upon a careful evaluation of their performance, we employ the BW filter to decompose
the training data into a low- and high-frequency component. The latter is treated as
noise forcing. We then pass both components as input to the ESN. At each time, we
perturb the low-frequency component at time t by noise at time t + 1. We train the
ESN based on 80% of the original dataset which is prior to t∗, the time that we aim
to commence the prediction task (see Fig. (5.4)). The weights of the output matrix
Wout (see Eq. 2.51) are then optimized by minimizing the loss function given by the
root-mean-squared error (RMSE) between the values of the actual time series confined
to the training interval and the corresponding simulated values, using ridge regres-
sion [80]. For an appropriate ESN, numerous iterations with random initializations
must be carried out to tune the hyperparameters (see section 2.3.1.1).

Then, using the optimized Wout, the trained model starts recursively forecasting L
consecutive time steps ahead of t∗. In the prediction phase, since we do not have any
information about the future of the noise, we apply the Past-Noise Forecasting (PNF)
method (for further details, see section 2.3.2). Based on perturbation techniques, this
approach attempts to forecast the actual path of the future noise from the past noise
segments. Within the framework of PNF, we select noise segments with length L = 25
where the phase of the system resembles the one just preceding the state at t∗. To
find an analogous phase, we look at the difference between t∗ − ∆ and [tj , tj + ∆] in
the smoothed version of the target time series obtained from BW low-pass filter. We
consider these two segments analogous if α ≤ 0.5 and γ ≥ 0.9 ( see Eq. 2.53). Here,
respectively, α and γ denote RMSE and PCC threshold values. Depending on the
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system of interest, these two parameters must be tuned accordingly to avoid an empty
set. Once the selection criteria are fulfilled, we can determine noise segments from
the time series of the noise [tj , tj + L] that potentially can drive the system into the
future from t∗ to t∗ + L. The prediction for the first time step is then, together with
corresponding candidate noise analogues, passed to the ESN as inputs to predict the
second time step, and so on. We repeat these training and prediction procedures for
each time step i within the prediction interval. Finally, we can extract the predicted
time series based on different lead times ranging from 1 to 25 time steps.

5.3. Results and Discussion
5.3.1. ESN-PNF Performance on Predicting ENSO Indices
In the following, We focus on forecasting the Niño-3 and Niño-3.4 indices (Fig. (5.5))
using the ESN-PNF model during the period of 1982-2019. To evaluate the skill of the
proposed model, we consider four different metrics, namely (I) the Root Mean Square
Error (RMSE) and (II) the Pearson correlation coefficient (PCC) to evaluate the overall
performance in predicting the ENSO index, as well as (III) the Heidke-Skill Score (HSS)
and (IV) the probability of detection (POD) to evaluate the binary prediction of El
Niño events ( for more details see Appendix C.1.1). For Niño-3 (Niño-3.4) the RMSE
remains almost constant at around 0.5◦C for lead times between one and 14 months
and then increases linearly up to about 1.4◦C at 24 months lead-time (Fig. (5.5a)). The
PCC between the observed and simulated time series for the prediction phase remains
constant around 0.8 also up to lead times of around 14 months and drops below 0.5
after 18 months (Fig. (5.5b)). To better evaluate the performance of our ESN-based
model in comparison to the existing predictive models, we depict the ENSO correlation
skill of the previously introduced CNN [72] and some dynamical forecast systems [36,
136, 150]. It can be observed from (Fig. (5.5b)) that our model is superior to dynamical
systems at lead times longer than six months. For instance, the correlation skill of the
Niño-3 index in the ESN model (red) is above 0.5 for a lead time of up to 18 months,
while it is 0.35 at a lead of 18 months in the SINTEX-F5 [136](green). Note that,
following [72] we consider forecasts as skillful if the correlation coefficients are above
0.5. To assess the skill of our model in predicting El Niño events (i.e., time steps with
ENSO index larger than one), we applied the Heidke skill score (HSS) and the the
Probability of Detection (POD) (for more details see C.1). According to panels c and
d in Fig. (5.5, both event-based metrics show high skill up to forecast lead times of
18 months. Our results remain similar when 5-month running averages of the Nino-3
index are considered and when El Niño events are defined as periods for which the
smoothed index is above 0.5◦ for six consecutive months.

Generally, the performance of a predictive model depends on the length of the pro-
vided training data. One of the fundamental questions during training NNs is how
much data is required to reasonably approximate the unknown mapping function from
input to output. It is common knowledge that training a model on larger volumes of
data can result in better performance since it can capture the inherent features and
dependencies more efficiently. In Fig. (5.6), we demonstrate how the size of the train-
ing dataset can directly affect our model’s prediction skills. It can be observed that
with increasing the size of the training data, the forecast skill of the ESN-PNF model
increases (i.e., higher values in terms of PCC, HSS, and POD). Additionally, similar
to Fig. (5.5), we evaluate the overall performance of the ESN-PNF model trained on
longer data from 1981-1991 (see Fig. (5.7)). We can see that the model achieves an
even higher skill during the first 14 months compared to the training data from the
interval 1891-1982.
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Figure 5.5.: Summary of the ESN-PNF forecast skill for the Niño-3 and Niño-3.4
indices. Panels (a) and (b) show the prediction skill of the model in terms of the Root
Mean Square Error (RMSE) and the Pearson correlation coefficient (PCC) between
predicted and observed values, respectively. The model is trained with a fixed training
data length T = 1092 and the prediction task starts from 1982. Results for Niño-3
are shown in blue and results for Niño-3.4 in red color. In panel (b) the magenta
curve shows the ENSO correlation skill of a previously introduced CNN[72] together
with a comparison to other process-based based ENSO predictions. The ability of our
ESN-PNF model to predict El Niño events (i.e., times with Niño-3 index above 1 ◦C)
are assessed by two binary classifiers, the Heidke Skill Score (HSS) and the Probability
Of Detection (POD), in (c) and (d), respectively. Solid lines indicate the average over
100 realizations of the forecast, and shading around the lines represent ±1σ.

Figure 5.6.: Dependency of the forecast skill on the training length. Panel (a)
illustrates the RMSE and Pearson correlation coefficient (PCC) values between the
predicted and absolute values of Niño-3 index at a lead of 12 months with respect to
different starting points. Panel (b) shows HSS and POD for the corresponding lead
time. Our ESN model exhibits overall better performance the longer the training data.
Shading around lines represents ±1σ.
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Figure 5.7.: Summary of the ESN-PNF forecast skill for the Niño-3 index. Panels
(a) and (b) respectively show the prediction skill of the model in terms of Root Mean
Square Error (RMSE) and Pearson correlation coefficient (PCC) between predicted and
observed values. The ability of the model to detect El Niño events (i.e., times with
Niño-3 index above 1 ◦C) are assessed by two binary classifiers, the Heidke skill score
(HSS) and the Probability of detection (POD), in (c) and (d), respectively. Solid
lines indicate the average over 100 realizations of the forecast, and shading around
lines represent ±1σ. The results correspond to the reservoir setup trained with a fixed
training data length T = 1212 and the prediction starts from 1992.

To further evaluate the reliability of our ENSO forecast, we investigated the sensi-
tivity of the model’s forecast skill to the target months at different lags, see Fig. (5.8).
In agreement with previous study [72], our ESN model exhibits the longest forecast
horizon for target months in boreal winter (the correlation between the observed and
simulated ENSO index is above 0.5 for 21 months) and the shortest forecast hori-
zon (18 months) for target months in late boreal spring. This spring predictability
barrier [215] may be a result of the comparably weak Walker circulation and suscepti-
bility of the coupled ocean-atmosphere system to the external forcing at that time of
the year. Nevertheless, a recent CNN model [72] has a valid forecast horizon (i.e., lead
times at which the correlation remains above 0.5) substantially longer than process-
based dynamical models (11 months vs. 4 months) for the May-June-July season. For
the May–June–July season, the valid forecast horizon of our ESN-PNF model is even
substantially longer compared to the CNN model(18 months vs. 11 months). This
indicates that our method is less affected by the spring predictability barrier than the
CNN and process-based models, possibly because we estimate the future fast vari-
ables that can drive the system. As an example, the predicted SST anomaly between
1983 and 2019, at the 18-month lead-time, shows a high visual resemblance to the
observational Niño-3 index (Fig. (5.9a)), although this is the longest lead time for
which we consider our forecast to exhibit skill. The predicted values are computed
as averages over 100 realizations at the 18-month lead-time. We also examined the
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performance of our ESN-PNF model by comparing the statistical properties such as
the auto-correlation functions (ACFs, Fig. (5.9b)) and probability density functions
(PDFs, Fig. (5.9c)) of the predicted and observational time series. The ACF shows a
very close resemblance between the observed and simulated indices in terms of their
correlation structure, and according to the Kolmogorov–Smirnov test, the hypothesis
that the underlying distributions of the observed and simulated indices are identical
cannot be rejected (p = 0.35).

Figure 5.8.: Correlation skill of the ESN-PNF model as function of lead time and
target month for the Niño-3 index. The Pearson correlation coefficient (PCC) between
the predicted and observed Niño-3 index targeted to each calendar month at different
lead times, averaged over 100 realizations. Here we train the model on a fixed training
data length T = 1092 and start forecasting from 1982.

Note that the prediction accuracy of our ESN-PNF model varies moderately over
time, depending on the absolute values of the employed ENSO index. In Fig. (5.10)
we have analyzed the twelve-month running mean of the Niño-3 index from 1983 to
2018. We can observe higher RMSEs during the 1997-98 and 2015-2016 El Niño events
when the maximum SST anomalies reaches about 3.5◦ in both cases. Hence, for El
Niño and La Niña events with particularly high or low values of the ENSO index,
the RMSE is comparably higher. Additionally, the performance of our ESN-based
prediction scheme can be slightly affected by varying the cutoff value C of the low-
pass filter used to separate the low- from the high-frequency components of the ENSO
index. We found that C = 0.03 is the optimal choice of the cutoff value in terms of
the overall forecast skill ( see Fig. (C.1)).

Further, we evaluated the ESN-PNF performance in predicting the Niño-3.4 index
and compared its predictive skill with the SINTEX-F dynamical model [72] in terms of
PCC. Fig. (5.11a) displays the PCC between the predicted and observed Niño-3.4 index
targeted for each calendar month at different lead times. We trained the model on a
fixed training data length T = 1092 and started forecasting from 1984 to 2017. It can be
observed from Fig. (5.11b) that the forecast skill targeting the May–June–July season
has a correlation skill above 0.5 only up to a lead of four months in the SINTEX-F dy-
namical model, while the ESN-based model shows a higher correlation skill for almost
all targeted seasons. Additionally, we compared the predicted time series of the De-
cember–January–February (DJF) Niño-3.4 index for the 17-month-lead obtained from
our model with the CNN and SINTEX-F dynamical models. It can be observed from
Fig. (5.12) that the ESN-based model (blue) correctly predicts the ENSO amplitude
and exhibits better performance. We further investigated the statistical properties of
the predicted and observed Niño-3.4 index for a 17-month-lead forecast using the ESN-
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Figure 5.9.: Comparison between the statistical properties of the predicted and ob-
served Niño-3 indices. (a) Time series of SST anomalies of the Niño-3 index (red)
and the predicted time series (blue) at the 18-month lead-time. The model is trained
with a fixed training data length T = 1092 and the prediction task starts from 1982.
(b) and (c) compare the statistics (ACF and PDF) of the original and predicted time
series; for the predictions, averages over 100 realizations at the 18-month lead-time are
taken.

based model (see Fig. (5.13)). Similar to the Niño-3 index, our model can successfully
follow the underlying statistical properties of the Niño-3.4 index.

5.3.2. ESN-PNF Performance on Predicting PDO Index

In contrast to ENSO, there have been relatively fewer efforts to forecast PDO vari-
ability using ANNs [64]. Here, we proceed with an analogous analysis conducted in
section 5.3.1 by employing the ESN-PNF model on the monthly PDO index. Some of
the previous studies [119, 131] applied low-pass filters with 5 to 11-year cutoffs to filter
out higher interannual frequencies. However, we try to predict the temporal evolution
of the monthly PDO index using the information of both low and high-frequency vari-
ability. To learn the underlying features of the PDO index, we trained the ESN-PNF
with a fixed training data length of T = 1450 months and started prediction from 1981
onward until 2019.

As we mentioned in section 5.3.1, the performance of our model can be influenced
by varying the cutoff value of the low-pass filter. To investigate that, we measured
the RMSE and PCC between observational and predicted data at different cutoffs.
We observed that the most extended forecast horizon can be obtained at C = 0.03
(months−1) (see Fig. (C.3) and Fig. (C.4 )). As it can be observed from Fig. (5.14a), the
RMSE at this cutoff remains almost constant at around 0.5◦C for lead times between 1
to 10 months and then increases linearly up to about 1.8◦C at 24-month lead-time. The
corresponding PCC remains constant at around 0.8 also up to lead times of around 10
months and eventually drops below 0.5 after 18 months (see Fig. (5.14b)). Compared
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Figure 5.10.: Dependence of the forecast skill on the target year for the Niño-3
index. (a) Twelve-month running mean of the Niño-3 index from 1983 to 2018, here
the training length is equal to 1092 . (b) Forecast skill of our ESN model from 1983 to
2018 in terms of the RMSE. Each yearly value is the average RMSE over all months of
the corresponding year, calculated on 12-month lead. We note that in some years with
exceptionally strong El Niño events, the prediction accuracy of the model is affected
slightly.

(a)

(b)

Figure 5.11.: Same as (Fig. 5.8) but for Niño-3.4 index. (a) The Pearson correlation
coefficient (PCC) between the predicted (obtained from ESN-PNF) and observed Niño-
3.4 index targeted to each calendar month from January to December, at different lead
times. Hatches indicate combinations of target months and lead times for which the
correlation of observed and predicted ENSO index is above 0.5. (b) The correlation
skill of the Niño-3.4 index in the SINTEX-F dynamical forecast system [72]. The
prediction period for both models is between 1984 and 2017.

to the model proposed by Gordon et.al. [64], our model exhibits better performance.
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Figure 5.12.: Time series of December–January–February (DJF) season Niño-3.4
index for an 17-month lead forecast using the ESN-based model (blue), CNN (green),
and the SINTEX-F model (red).

Figure 5.13.: Same as (Fig.( 5.9)) of the main text, but for the Niño 3.4 index.
(a) Time series of SST anomalies of the Niño 3 index (red) and the predicted time
series (blue) at the 17-month lead-time during 1984-2017. (b) and (c) compare the
statistics (ACF and PDF) of the original time series and predicted time series; for for
the predictions averages over 100 realizations at the 17-month lead-time are taken.
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Their model, which is based on a single-layer ANN, could only predict PDO for up to
12 months.
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Figure 5.14.: Summary of the ESN forecast skill for PDO. Panels (a) and (b) show
the prediction skill of the model in terms of Root Mean Square Error (RMSE) and
Pearson correlation coefficient (PCC) between predicted and observed values.

Finally, in Fig. (5.15), we compared the statistical properties of the predicted and ob-
servational data at the 18-month lead-time in terms of the ACF and PDF. In particular,
Fig. (5.15a) shows that most of the transitions between positive and negative phases
can be captured by the model, even at the 18-month lead-time (see also Fig. (C.6)).
Even though the PCC stays above 0.5 up to 18 months, the statistical properties of
the predicted time series can not properly follow the original PDO index as we expect.
That may be due to the low signal-to-noise ratio of the PDO index, which can decrease
the ability of the ESN-PNF to predict accurately at a longer lead-time. Comparing
the PDO and ENSO indices in terms of spectrum frequencies ( see Fig. (C.2)), we can
observe that the PDO has a high amplitude at higher frequencies.

5.3.3. ESN-PNF Performance on Predicting AMO Index

In the final case study, we use ESN-PNF to predict the monthly AMO index dur-
ing 1969-2017. Similar to the previous cases, we evaluated the performance of our
model with different smoothing levels in terms of RMSE and PCC (see Fig. (C.5)).
We observed that our model achieves better performance at low-pass cutoff C = 0.03
(months−1). According to Fig. (5.16b), the correlation skill of the AMO index in the
ESN-PNF model exceeds 0.5 for lead times up to 16 months. Additionally, we com-
pared 6-,9-,12-, and 15-month-lead AMO index prediction to evaluate the ESN-PNF
performance at different lead times effectively. Conspicuously, the higher the lead-time,
the poorer ESN-PNF can follow the trajectory of the original index (see Fig. (5.17)).
This observation was corroborated by comparing the PDFs of the predicted and cor-
responding original data. Fig. (5.18) displays the PDFs associated with 6-,9-,12-, and
15-month lead times of AMO index predictions. According to the p-values of the
Kolmogorov-Smirnov (KS) test at different lead times, we can see that the predictive
skill of the ESN-PNF at 6-, 9-, and 12-months are significantly higher than 15-month
lead-time. The p-value at 15-month lead-time is equal to 0.04, indicating that the
underlying distributions of the observed and predicted indices are not identical. This
poor performance may stem from the complexity of the high-frequency components in
the AMO index.
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Figure 5.15.: (a) Time series of SST anomalies of the PDO index (red) and the
predicted time series (blue) at the 18-month lead-time. The model is trained with a
fixed training data length T = 1450 months and the prediction task starts from 1981.
(b) compare the ACF of the original and predicted time series; for the predictions,
averages over 100 realizations at the 18-month lead-time are taken.

5.4. Summary

There have been considerable advances in machine-learning-based approaches to pre-
dict SST variability in different ocean basins. One of the critical obstacles most deep
learning models encounter in predicting climate phenomena is the unavailability of
sufficiently long observational time series. Therefore, deep-learning models must be
additionally trained on process-based dynamical model simulations to tackle this lim-
itation. This approach forces deep-learning models to learn the biases and structural
errors present in these climate models. In contrast to deep ANNs, the comparably
simple ESN we employed here can learn the dynamics of the underlying system from
limited amounts of training data. Here, we expanded the ESN approach to predict
climate time series. To do so, we combined the ESN model for the low-frequency com-
ponent with the previously introduced past-noise forecasting (PNF) method, which
models the high-frequency component of the time series in question.

In the first case study, we decomposed ENSO indices (i.e., Niño-3, Niño-3.4) into
dominant low- and high-frequency variability using low-pass filter techniques and
trained the ESN model on the slow mode of the system. To model the effect of the high-
frequency forcing on the low-frequency variability, we estimated the potential future
high-frequency forcing of the system by relying on the PNF method. This improved
predictability shows that interactions across multiple time scales play a crucial role in
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Figure 5.16.: Summary of the ESN-PNF forecast skill for the AMO index. Panels (a)
and (b) show the prediction skill of the model in terms of Root Mean Square Error
(RMSE) and Pearson correlation coefficient (PCC) between predicted and observed
values. Panel (c) displays time series of SST anomalies of AMO (green) and the
predicted time series (blue) at the 12-month lead-time during 1969-2017. Panel (d)
illustrates the comparison between the ACF of the original time series and predicted
time series.

generating ENSO dynamics. Our ESN-PNF model exhibits high skill in forecasting
ENSO variability and predicting El Niño events up to lead times of 18 months, despite
the fact that we have trained our model only on single scalar ENSO indices. Our
approach outperforms existing statistical, process-based, and deep-learning methods
at lead times beyond one year.

In the second and third case studies, we focused on predicting the PDO and AMO
indices using the ESN-PNF. Similarly, we showed that our model can capture the
critical features of the underlying dynamics of the PDO and AMO. For instance, in
the case of monthly PDO, we showed that the predictive skill of our model is much
higher than the model presented in [64]. Following the same rationale used in predicting
ENSO indices, we demonstrated that cross-scale interactions are also highly relevant
for predicting PDO and AMO indices.
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Figure 5.17.: Predicted and actual values of AMO index for different lead-times.

Figure 5.18.: PDFs of the predicted and actual monthly AMO index for different
lead-times.
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6. Conclusions and Outlook

The main objective of this thesis is to advance our understanding of complex systems.
Two overarching questions that were investigated are: (I) how one can infer the un-
derlying dynamics of complex systems from given time series and (II) how one can
enhance the prediction of future behaviors of such systems. In the following, we re-
view the main findings of the five studies conducted for achieving the mentioned aims
and finally finish the thesis with an outlook on future research.

6.1. Conclusion from study 1: Reconstructing Complex
Network’s Structure from the Timing of Events

In Chapter 3, we have comprehensively compared different strategies to reconstruct
the structural connectivity of unknown networks based on their associated functional
networks. The functional representations of networks were obtained from statistical
associations between the dynamics at each pair of nodes from given event series. To ob-
tain the statistical relationships, we employed event coincidence analysis (ECA) and
event synchronization (ES). These two nonlinear similarity measures are commonly
used for identifying pairwise statistical associations among discrete event series in neu-
roscience [174] and climatology [44]. We specifically considered complex networks that
exhibit event propagation occurring simultaneously or with some delay from one node
to another. To simulate event propagation processes, we studied two different spread-
ing models (i.e., a generic event propagation model and SIRS model) on three different
network architectures (i.e., Erdös-Rényi, Barabási-Albert, and Watts-Strogatz net-
works). In all studied cases, we showed that both similarity measures can successfully
capture a vast part of the existing links. However, we showed that in sparse networks,
ECA results in a better network reconstruction than ES. On the other hand, in the
case of denser networks, we observed that ES compared to ECA performs better in
identifying existing connections. Notably, the disparity between the performance of
Es and ECA might be related to the characteristics of their coincidence intervals. The
coincidence interval in ES is dynamic and local, while it is global and fixed in ECA.
Our findings imply that implementing the data-adaptive "dynamic" coincidence inter-
val in ES allows for studying associations at different time scales non-parametrically.
Additionally, using the ES for studying synchrony between two event series, which
are clustered in time, results in underestimating the number of existing events. This
underestimation is due to ES’s dynamical coincidence interval shrinkage. Finally, our
results revealed that ECA is more suitable than Es when one has prior knowledge
about the possible propagation delays. This stems from the fixed coincidence interval
of ECA that permits the time scale of interest to be manually determined.

6.1.1. Outlook

In Chapter 3, we employed ES and ECA to capture the statistical similarities between
time series of events. However, various alternative approaches can be used to quantify
the similarities of regularly sampled event sequences. For instance, one possible strat-
egy would be to use distance measures (e.g., Euclidean or Hamming distances) [159],
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which can be easily computed for binary sequences. A second strategy is to inter-
pret individual binary values as symbolic sequences and utilize mutual information as
a corresponding similarity measure [198]. Therefore, a systematic comparison of the
performance of network inference based on ES and ECA with those measures would be
an interesting topic for further studies. Moreover, we considered an unconditional ap-
proach, which may lead to overestimating the number of existing links due to indirect
linkages (mediated via third nodes). For further investigations, conditional associa-
tion measures can be employed to disentangle direct from such indirect connections.
To the best of our knowledge, only few studies tried to expand the causal network
inference developed for time-continuous dynamics [184, 185] to the case of discrete
event data [15]. Within the framework of ECA, multivariate and conditional versions
have been recently introduced [193] but not yet systematically applied. Future studies
should, therefore, focus on the future development of conditional versions of event dis-
crete statistical association measures and their utilization in combination with causal
inference algorithms.

6.2. Conclusion from study 2 & 3 : Reconstructing
Underlying Dynamics of Complex Systems using
Data-Driven Approaches

In chapter 4, we reconstructed equations of motion and corresponding statistical prop-
erties of underlying dynamics of complex systems from time series. For this purpose,
we employed different reduced-dimension models which characterize the underlying
dynamics by isolating a small number of relatively slow degrees of freedom. Using
this approach, we could solve the governing equation of motion for different sys-
tems using three different stochastic differential equations (SDEs): Langevin equation
(LE) [82], generalized Langevin equation (GLE) [38], and Empirical Model Reduc-
tion (EMR) [110]. We retrieved the LE and GLE from the Kramers-Moyal analysis
(KM) [82] and the Mori-Zwanzig formalism (MZ) [154], respectively. To derive the
EMR, we estimated the deterministic term from KM and the stochastic term from
data using a recursive procedure. The results in this chapter were divided into two
parts.

In the first part, we investigated the performance of three SDEs (i.e., LE, GLE,
and EMR) in reconstructing the underlying dynamics of various synthetic and real-
world time series. A primary motivation was to comprehensively evaluate the ability
of these approaches to solve particular classes of problems. Our results indicated
that intrinsic dynamics of systems of interest greatly influence the performance of the
resulting SDEs. For instance, statistical properties of systems exhibiting weak history-
dependence but strong state-dependence to the noise forcing (i.e., Markov processes)
can be approximated better by LE than by the GLE and EMR. In such situations,
the LE is of a considerable advantage since it can directly approximate the state-
dependent noises. However, we showed that limitations of LE approximation arise
in cases where non-Markovian effects are crucial in the system’s dynamics. Through
extensive analyses of various systems, our results signify that SDEs considering memory
effects, i.e., GLE and EMR, are comparatively better approaches for understanding
complex systems. For instance we observed that GLE can reproduce the underlying
dynamics of Niño-3 index with higher accuracy than LE.

In the second part, using the knowledge gained from the first part, we employed
KM to study the underlying mechanism of paleoclimate proxy records (i.e., δ18O and
dust concentrations) obtained from the NGRIP ice core. The central point here was to
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examine the stability configuration of the coupled δ18O–dust process by reconstructing
its potential landscape. We observed that the minimums’ positions in the monostable
potential of the δ18O are controlled by the value of the dust record. According to this
finding, we could confirm the existence of possible couplings between the δ18O and
dust time series. Additionally, we found non-vanishing higher-order KM coefficients
for δ18O, indicating the presence of discontinuities in the record. This led to the
conclusion that the conventional LE is not suitable to fully describe the underlying
process of the δ18O and requires adding a new term that takes into account jumps.
Conversely, we observed that isolated dust record is a continuous process that LE can
describe it successfully.

6.2.1. Outlook

Understanding the physical causes of past abrupt climate changes is crucial for im-
proving the predictive capability of Earth System Models. In chapter 4, we considered
only coupling between two Greenland ice core proxies (the δ18O and dust records)
to understand the triggering mechanism of abrupt transitions. However, it has been
argued that abrupt transitions can be the results of a more complex interplay of the
North Atlantic and Nordic Sea’s ice cover and several climatic subsystems, such as
ice sheets or the East Asian Monsoon system [32]. As an extension of the approach
described in this chapter, we suggest analogous analyses for other pairs of Greenland
proxies. Additionally, we considered classical Gaussian random noise to describe the
high-frequency variability. However, it has been shown that selecting stochastic forc-
ing other than Gaussian can provide insight into the abrupt climate changes [223].
Therefore, in real-world phenomena, it is vital to consider an adaptive SDE framework
capable of reconstruct the underlying dynamics of systems driven by, e.g., Lévy noise.
The adaptability of the three investigated SDE models can be further investigated for
reproducing dynamical characteristics of multi-variate time series.

6.3. Conclusion from study 4 & 5: Predicting Complex
Systems Dynamics Using Artificial Neural Network

In the last part of this thesis (chapter 5), we focused on developing an ANN algorithm
that can predict climate variability from limited-time series with a low signal-to-noise
ratio. For this purpose, we chose Echo State Network (ESN), which is suitable for in-
vestigating complex nonlinear time series. The challenging part of predicting climate
time series was understanding the dynamics of high-frequency variability that can influ-
ence the prediction of low-frequency variability. To tackle this problem, we estimated
the future behavior of high-frequency variability from its past history using the PNF
method [30]. By providing the essential information about the high-frequency vari-
ability of the target system (e.g., external forcings), we could predict different climate
indices, such as ENSO, PDO, and AMO. The rationale behind our proposed model
(called ESN-PNF) was that climate can be approximately decomposed into slow and
fast variability modes, where the slow mode is only mildly perturbed by high-frequency
forcing. Our results demonstrated that the ESN-PNF model can capture the key fea-
tures of the target indices and predict their dynamics with a reasonable long forecast
horizon. For instance, we could achieve long-term perdition of ENSO indices far be-
yond the spring barrier. The improved predictability demonstrated that interactions
across multiple time scale play a crucial role in generating the dynamics of ENSO,
PDO, and AMO indices. Moreover, in contrast to different ANNs and deep-learning
models [72], we showed that our model does not require massive data for training. This
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feature is especially important considering that additional data provided by process-
based models might cause unintended biases and structural errors.

6.3.1. Outlook
In chapter 5, we focused on predicting complex systems’ behavior using the ANN ap-
proach. As an extension of this methodology, one can combine physics-based models
with different ANN algorithms to enhance the predictions of the system in question.
Even though physics-based models advanced our understanding of natural principles,
they mostly rely on existing knowledge and cannot extract more information from
available data. On the other hand, even though ANNs are skillful in predicting with-
out theoretical knowledge of the underlying dynamics, their large data requirements
make the training procedure computationally expensive. Moreover, the performance
of ANNs can be adversely affected when the quality of data is low. Understandably,
there is a consensus [101, 151, 176, 186] that ANNs can be assisted by providing ad-
ditional information derived from mathematical models and physical laws. This prior
knowledge about the system can constrain the space of possible solutions by neglecting
irrelevant ones, which results in faster convergence to the optimal solution and better
predictive performance.
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Figure A.1.: Schematic illustration of the epidemic spreading models. Panels (a) and
(b) show a single realization of the SIR and SIRS models respectively with β = 0.3,
γ = 0.1 and δ = 0.1.

A. Using Event Synchrony Measures for
Network Inference From the Timing of
Events

A.1. SIRS Model

The Susceptible–Infected–Recovered (SIR) model emerged from the area of epidemiol-
ogy to understand the time evolution of infectious diseases in a fixed population of N.
This model assumes that the interaction between individuals can be descried by two
specific parameters, the disease transmission and removal rates. However, in various
real-world examples like the seasonal influenza, in which an infection can be spread
repeatedly among a given population, it is not realistic to presume individuals have
permanent immunity . In this thesis, we therefore employ one variant of the well-known
SIRS (Susceptible-Infected-Recovered-Susceptible) model of epidemic spreading [83].
This model comprises three distinctive “health” states of each individual: susceptible
(S), infected (I) and recovered (R). In the conventional SIRS model, the densities of
individuals in each of those three states follow the macroscopic evolutionary equations:

dS

dt
= −βIS + δR,

dI

dt
= βIS − γI,

dR

dt
= γI − δR,

(A.1)

where β and γ denote the infection rate and natural recovery rate, respectively, while
δ describes the probability of recovered individuals to lose their immunity.
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A.2. Receiver operating characteristic (ROC)
Instead of predicting the class of binary events, we can alternatively predict the proba-
bilities of the classes. This alternate approach enables us to choose the optimal thresh-
old in which the model exhibit better performance in classification task. The receiver
operating characteristic (ROC) [53, 73] is ubiquitously employed in many areas such
as medicine, natural hazards, and machine learning, when predicting the probability of
binary classification problems. The ROC curve shows the trade-off between true posi-
tive rates (TPR) and false positive rates (FPR) over a range of different cut-off points
of a parameter. The TPR rate (also known as sensitivity rate) indicates the propor-
tion of positive classes that the model could correctly classify, and by contrast, FPR
measures the proportion of negative classes that have been incorrectly classified in the
presence of a predetermined condition. The area under the ROC curve (AUC) provides
a convenient way to summarize the model skill.This value reflects the overall accuracy
of a classification approach and demonstrate how a model can distinguish between
different classes. A ROC curve that falls together with the diagonal (TPR = FPR)
is characterized by a value of AUC = 0.5, which indicates a classification with a per-
formance equal to that of a random forecast (and, hence, the inability to discriminate
between true and false links), while AUC = 1 would indicate a perfect classification.
The probabilistic interpretation of the AUC can be demonstrated as follows.

AUC = P (p(X ′) :> p(X)|L(X ′) = 1, L(X) = 0) (A.2)

Where p(X) denotes the probability score that the model assigns to a random variable
X if it belongs to the binary class 1, and the L(.) determines class labels. According
to the Eq. A.2, AUC shows that the model give higher score to X ′ rather than X.
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B. Fundamentals of Dynamical Systems

B.1. Stochastic calculus
Equation (2.15) with a given initial condition x(t0) = x0 has a unique solution which
satisfies the following integral form:

x(t) = x(t0) +
∫︂ t

t0
f(x(t′))dt′ +

∫︂ t

t0
g(x(t′))η(t′)dt′ (B.1)

A Wiener process is non-smooth and nowhere differentiable, hence translating the
second integral in the equation (B.1) using a conventional Riemann sum is not uniquely
defined. To interpret the noise term, two different formulations of stochastic calcu-
lus have been introduced for computing the solutions of SDEs; known as Itô and
Stratonovich calculi, respectively [103, 199].

In the Itô prescription, the evaluations of the function g(x(t)) are uncorrelated with
the (infinitesimal) increments of the Wiener process dW (t). In fact, the Itô integral
is defined as the limit of a left Riemann sum (where the function g(x(t)) is evaluated
at the left of the interval [t, t + ∆t]) with an Itô correction. The resulting stochastic
integration in the Itô scheme is given:∫︂ t

t0
W (s)dW (s)ds = 1

2[(W 2(t) − W 2(t0)) − (t − t0)] . (B.2)

Although the Itô convention does not preserve the chain rule of calculus, employing
Itô’s Lemma maintains the Martingale property. Owing to this property, the Itô cal-
culus is used extensively in finance [191].

The most common alternative to the Itô integral that does satisfy the chain rule of
classical calculus is the Stratonovich scheme. From that point of view, a function can
be evaluated at the midpoint of the time interval [t, t + ∆t]. Because the midpoint
selection rule is associated with the finite noise autocorrelation [153], the Martingale
property does not hold. In contrast to the Itô, the Stratonovich calculus approximates
the Wiener process as the limit of a correlated process when the correlation time
approaches zero: ∫︂ t

t0
W (s) ◦ dW (s) = 1

2(W 2(t) − W 2(t0)) (B.3)

This approximation leads to difficulties e.g. for the calculation of expectation values,
since stochastic variables and noise are not independent: < x(t)η(t) > ̸= 0. It should
be underlined that the Itô and Stratonovich calculi have the same solution if their drift
terms fulfill the following relationship, which is called Itô-Stratonovich drift correction:

fS(x(t)) = fI(x(t)) − 1
2(g(x(t))∂g(x(t))

∂x
, (B.4)

where fI denotes the drift of the Itô calculus and fS the drift of the Stratonovich
calculus.

Even though both interpretations are mathematically consistent, one obvious ques-
tion that may arise is which interpretation is the right one for desribing or approx-
imating a particular set of physical processes. In order to answer this, we have to
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Figure B.1.: Comparison between PDFs obtained from the Itô scheme (left panel)
and the Stratonovich scheme (right panel) for the Ca2+ ice core time series.

look at the origin of the noise in the stochastic system. It has been shown that, if the
relaxation time of a system is large enough in comparison with the noise correlation
time, then the Itô interpretation is appropriate. On the other hand, if the noise is
colored, i.e., it has finite correlation time, the limiting SDE must be treated in the
Stratonovich framework [88, 112, 153].

As noted above, different stochastic calculi (Itô or Stratonovich) are associated
with different kinds of discritization for numerical integration [183]. It must hence
be stated upfront which stochastic calculus is going to be considered. The simplest
and most widely used discretization scheme to numerically integrate SDEs is the Euler-
Maruyama method, which converges to the Itô interpretation:

x(t + ∆t) = x(t) + f(x(t))∆t + g(x(t))η(t)
√

∆t (B.5)

Another numerical method that we used in this paper (for approximating the Ca2+

ice core time series), called Heun method[68], leads to the Stratonovich scheme. This
method is an example of a predictor-corrector method in which the predictor is calcu-
lated by a simple Euler type integration as follows:

x̂(t + ∆t) = x(t) + f(x(t))∆t + g(x(t))
√

∆tη(t) (B.6)

x(t + ∆t) = x(t) + 1
2(f(x(t)) + f(x̂(t + ∆t))∆t

+1
2(g(x(t)) + g(x̂(t + ∆t))

√
∆tη(t)

(B.7)

In this thesis, based on different systems we utilized both methods.

B.1.1. Comparison between Itô and Stratonovich

We compared the performances of both stochastic calculi and corresponding discretiza-
tion schemes (Euler-Maruyama and Heun, respectively) for the Ca2+ ice core time
series. According to Fig. (B.1), we observed that the Stratonovich calculus performs
better than the Itô calculus in terms of approximating the PDF.

B.2. Adjoint Fokker-Planck Equation (AFPE)
The estimation of KM coefficients obtained from equation 2.17 requires small τ → 0,
whereas we always deal with time series that are recorded at finite sampling inter-
vals [114, 117]. Therefore the effect of finite-time distortions can reduce the accuracy
of the estimated drift and diffusion terms using KM method. An elegant way to obtain
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B.3. Supplementary Figures

Time Series KM MZ EMR
OU additive noise 0.00003 0.00032 0.00003

OU multiplicative noise 0.0013 0.0021 0.004
OU colored noise 0.002 0.00001 0.00001

S&P500 0.05 0.03 0.06
Niño-3 0.01 0.001 0.001

DW additive noise 0.0004 0.00042 0.0021
DW multiplicative noise 0.0008 0.0009 0.001

[Ca2+] 0.004 0.009 0.009

Table B.1.: Summary of Mean Squared Error (MSE) between PDFs of different
systems and corresponding averaged PDF of simulated time series over several realiza-
tions.

the effect of finite-time distortions is adjoint Fokker-Planck equation (AFPE) [82]. If
we define the FPE operator as J ,

J = ∂

∂x
D1 + ∂2

∂x2 D2 (B.8)

Then the solution of FPE with the initial condition δ(x′ −x) can be defined as follows:

p(x′, t + τ |x, t) = exp J (x′)τδ(x′ − x) (B.9)

By substituting the p(x′, t + τ |x, t) in the Dj(x) = 1
j!
∫︁∞

−∞(x(t + τ) − x(t))jp(x(t +
τ)|x(t)), dx, which is the continuous version of Eq. 2.19, we obtain:

Dm(x) = exp J +(x′)τ(x′ − x)j |x′ = x (B.10)

Where J + denotes the adjoint FPE operator. Using Heisenberg approach, Lade[114]
proposed that the solution of the following partial differential equation will give us
Dm(x).

∂

∂t
Qj(x, t) = J +Qj(x, t) (B.11)

with initial condition of Qj(x, t) = 1
j!(x′ − x)j .

B.3. Supplementary Figures
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Time Series KM MZ EMR
OU additive noise 0.00013 0.00021 0.00034

OU multiplicative noise 0.00038 0.0003 0.00027
OU colored noise 0.07 0.00004 0.00013

S&P500 0.002 0.001 0.0008
Niño-3 0.01 0.003 0.006

DW additive noise 0.00015 0.00002 0.00031
DW multiplicative noise 0.0009 0.005 0.001

[Ca2+] 0.026 0.004 0.004

Table B.2.: The table illustrates MSE (as an error metric) between ACFs of original
systems and corresponding average ACFs of simulated time series.

Figure B.2.: Comparison between ACFs obtained from calibrating different models
(KM,MZ,EMR) on the first half of Niño-3 monthly SST.
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C. Predicting Climate Variability Using
Machine learning Approach

C.1. Forecasting skill scores

Extreme events are rare events that ubiquitously observed in many natural systems
from financial crisis and natural disaster. Therefore, accurately forecasting rare high-
impact events, like extreme temperature and high precipitation, will be of high value
for decision makers. The usage of binary classification happens frequently when we
need to characterize and predict extreme events in the observed time series. In such
models, extremes are often displayed as probability levels such as above or below a
critical value. Several scores have been developed to evaluate the predictive capability
of binary classifiers for choosing “the best” model that can identifies these rare events.
In this study we employ Heidke Skill Score and probability of detection.

C.1.1. Heidke Skill Score (HSS)

One of the scores that is widely applied for assessing categorical forecast performance
is the Heidke Skill Score (HSS) [13], known outside of meteorology as kappa. The
derivation of HSS is based on information summarized in a contingency table, known
as an error matrix. This table indicates the relationship between the forecasts and the
respective observation.

Observation = Yes Observation = No
Forecasting = Yes TP FP
Forecasting = No FN TN

The HSS measures the accuracy of a forecast with respect to a randomly generated
forecast, adjusted to predictions that are correct by chance:

HSS = TP + TN − CRF

N − CRF
(C.1)

where TP and TN stand for true positives and true negatives, respectively, N is
the total number of possible events, and CRF indicates the number of correct random
forecasts, which can be calculated as follows:

CRF = (TP + FN)(TP + FP ) + (TN + FN)(TN + FP )
N

. (C.2)

Negative HSS values imply that the forecast skill of the model is worse than a random
forecast, HSS = 0 indicates that the forecast is just as good as the random forecast,
and HSS = 1 would indicate a perfect binary forecast.
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C.1.2. Probability of detection (POD)
The probability of detection is another quantitative evaluation metric widely used
to interpret the model’s success in forecasting events correctly. POD measures the
number of correct event forecasts divided by the total number of observed events.

POD = TP

TP + FN
(C.3)

C.2. Supplementary Figures

Figure C.1.: Summary of the ESN-PNF forecast skill for Niño-3 index for different
cutoff choices to decompose the index into slow and fast components. Panels (a)
and (b) show the prediction skill of the model in terms of Root Mean Square Error
(RMSE) and Pearson correlation coefficient (PCC) between predicted and observed
values. The ability of the model to detect El Niño events (i.e., months with Niño-3
index above 1 ◦C) is assessed by two binary classifiers, the Heidke score skill (HSS)
and the Probability of detection (POD), panels (c) and (d), respectively.The model
is trained with a fixed training data length T = 1092 and the prediction task starts
from 1982. Here the solid lines indicate the average over 100 different realizations and
colored shadings around lines correspond to ±1σ. Different colors, as indicated in the
legend of panel (a), correspond to results for different cutoff thresholds to decompose
the ENSO index. In order to determine the optimal cutoff value, we additionally
investigated the dependency of the binary forecast skill of predicting El Niño events,
using HSS and POD metrics. The ESN model exhibits overall best performance at a
cutoff value of C = 0.03 (months−1). Even though a cutoff at C = 0.02 (months−1)
displays a higher correlation skill for very long lead times, the forecast of El Niño
events, and also the reproduction of statistical properties such as the ACF and PDF
is worse in this case.
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C.2. Supplementary Figures

Figure C.2.: The frequency spectrum of Niño-3 Aand PDO

Figure C.3.: Summary of the ESN forecast skill for PDO index at different cutoff
choices used to decompose the index into slow and fast components. Panels (a) and
(b) show the prediction skill of the model in terms of Root Mean Square Error (RMSE)
and Pearson correlation coefficient (PCC) between predicted and observed values
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Figure C.4.: Summary of the ESN forecast skill for PDO index for different cutoff
choices to decompose the index into slow and fast components. This figure illustrates
the boundary - marked in magenta- in which we can narrow down our search for the
best low-pass filter cutoff.
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C. Predicting Climate Variability Using Machine learning Approach

Figure C.5.: Summary of the ESN forecast skill for AMO index at different cutoff
choices used to decompose the index into slow and fast components. Panels (a) and
(b) show the prediction skill of the model in terms of Root Mean Square Error (RMSE)
and Pearson correlation coefficient (PCC) between predicted and observed values

Figure C.6.: Detecting phase changes from five years moving average of predicted
PDO index (solid lines). As it can be seen the ESN-PNF model can perfectly detect
shifts between warm and cold phases at the 18-month lead-time.

Figure C.7.: Detecting phase changes from five years moving average of predicted
AMO index (solid lines). As it can be seen the ESN-PNF model can successfully detect
shifts between warm and cold phases at the 16-month lead-time.

90



Bibliography

[1] Amir AghaKouchak, David Easterling, Kuolin Hsu, Siegfried Schubert, and
Soroosh Sorooshian. Extremes in a changing climate: detection, analysis and
uncertainty. Vol. 65. Springer Science & Business Media, 2012.

[2] Michael A Alexander, Ileana Bladé, Matthew Newman, John R Lanzante,
Ngar-Cheung Lau, and James D Scott. „The atmospheric bridge: The influence
of ENSO teleconnections on air–sea interaction over the global oceans“. In:
Journal of Climate 15.16 (2002), pp. 2205–2231.

[3] Michael A Alexander, Ludmila Matrosova, Cécile Penland, James D Scott,
and Ping Chang. „Forecasting Pacific SSTs: Linear inverse model predictions
of the PDO“. In: Journal of Climate 21.2 (2008), pp. 385–402.

[4] Jürgen Alheit, Priscilla Licandro, Steve Coombs, Alberto Garcia, Ana Giráldez,
Maria Teresa Garcia Santamarıa, Aril Slotte, and Athanassios C Tsikliras.
„Reprint of “Atlantic Multidecadal Oscillation (AMO) modulates dynamics
of small pelagic fishes and ecosystem regime shifts in the eastern North and
Central Atlantic”“. In: Journal of Marine Systems 133 (2014), pp. 88–102.

[5] Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain, and
Ahmed J Aljaaf. „A systematic review on supervised and unsupervised ma-
chine learning algorithms for data science“. In: Supervised and unsupervised
learning for data science (2020), pp. 3–21.

[6] Jose Alvarez-Ramirez, Eduardo Rodriguez, and Juan Carlos Echeverrıa. „De-
trending fluctuation analysis based on moving average filtering“. In: Physica
A: statistical mechanics and its applications 354 (2005), pp. 199–219.

[7] Soon-Il An and Fei-Fei Jin. „Nonlinearity and asymmetry of ENSO“. In: Jour-
nal of Climate 17.12 (2004), pp. 2399–2412.

[8] M Anvari, B Werther, G Lohmann, M Wächter, J Peinke, and H-P Beck.
„Suppressing power output fluctuations of photovoltaic power plants“. In: So-
lar Energy 157 (2017), pp. 735–743.

[9] Rubén Banderas, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Mon-
toya. „An interhemispheric mechanism for glacial abrupt climate change“. In:
Climate Dynamics 44.9 (2015), pp. 2897–2908.

[10] Yaneer Bar-Yam. Dynamics of complex systems. Addison-Wesley Reading,
MA, 1997.

[11] Yaneer Bar-Yam, Susan R McKay, and Wolfgang Christian. „Dynamics of
complex systems (Studies in nonlinearity)“. In: Computers in Physics 12.4
(1998), pp. 335–336.

[12] Albert-László Barabási and Réka Albert. „Emergence of Scaling in Random
Networks“. In: Science 286.5439 (1999), pp. 509–512.

[13] Anthony G Barnston. „Correspondence among the correlation, RMSE, and
Heidke forecast verification measures; refinement of the Heidke score“. In:
Weather and Forecasting 7.4 (1992), pp. 699–709.

91



Bibliography

[14] George Bebis and Michael Georgiopoulos. „Feed-forward neural networks“. In:
IEEE Potentials 13.4 (1994), pp. 27–31.

[15] Debarun Bhattacharjya, Dharmashankar Subramanian, and Tian Gao. „Prox-
imal Graphical Event Models“. In: Proceedings of the 32Nd International Con-
ference on Neural Information Processing Systems. NIPS’18. Montr&#233;al,
Canada: Curran Associates Inc., 2018, pp. 8147–8156.

[16] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U
Hwang. „Complex networks: Structure and dynamics“. In: Physics Reports
424.4-5 (2006), pp. 175–308.

[17] Niklas Boers, Bodo Bookhagen, Henrique MJ Barbosa, Norbert Marwan, Jür-
gen Kurths, and JA Marengo. „Prediction of extreme floods in the eastern
Central Andes based on a complex networks approach“. In: Nature Commu-
nications 5 (2014), p. 5199.

[18] Niklas Boers, Bodo Bookhagen, Norbert Marwan, Jürgen Kurths, and José
Marengo. „Complex networks identify spatial patterns of extreme rainfall
events of the South American Monsoon System“. In: Geophysical Research
Letters 40.16 (2013), pp. 4386–4392.

[19] Niklas Boers, Mickael D Chekroun, Honghu Liu, Dmitri Kondrashov, Denis-
Didier Rousseau, Anders Svensson, Matthias Bigler, and Michael Ghil. „In-
verse stochastic–dynamic models for high-resolution Greenland ice core records“.
In: (2017).

[20] Niklas Boers, Michael Ghil, and Denis-Didier Rousseau. „Ocean circulation,
ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles“. In: Pro-
ceedings of the National Academy of Sciences 115.47 (2018), E11005–E11014.

[21] Niklas Boers, Jürgen Kurths, and Norbert Marwan. „Complex systems ap-
proaches for Earth system data analysis“. In: Journal of Physics: Complexity
2.1 (2021), p. 011001.

[22] Niklas Boers, Aljoscha Rheinwalt, Bodo Bookhagen, Norbert Marwan, and
Jürgen Kurths. „A complex network approach to investigate the spatiotempo-
ral co-variability of extreme rainfall“. In: Machine Learning and Data Mining
Approaches to Climate Science. Springer, 2015, pp. 163–174.

[23] Lorenzo Boninsegna, Feliks Nüske, and Cecilia Clementi. „Sparse learning of
stochastic dynamical equations“. In: The Journal of chemical physics 148.24
(2018), p. 241723.

[24] Dirk Brockmann and Dirk Helbing. „The hidden geometry of complex, network-
driven contagion phenomena“. In: science 342.6164 (2013), pp. 1337–1342.

[25] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. „Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical
systems“. In: Proceedings of the national academy of sciences 113.15 (2016),
pp. 3932–3937.

[26] Enrique Castillo. „Functional Networks“. In: Neural Processing Letters 7.3
(1998), pp. 151–159.

[27] Chris Chatfield. Time-series forecasting. Chapman and Hall/CRC, 2000.
[28] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian. „Data-

driven predictions of a multiscale Lorenz 96 chaotic system using machine-
learning methods: reservoir computing, artificial neural network, and long
short-term memory network“. In: Nonlinear Processes in Geophysics 27.3
(2020), pp. 373–389.

92



[29] Ashesh Chattopadhyay, Ebrahim Nabizadeh, and Pedram Hassanzadeh. „Ana-
log forecasting of extreme-causing weather patterns using deep learning“. In:
Journal of Advances in Modeling Earth Systems 12.2 (2020), e2019MS001958.

[30] Mickaël David Chekroun, Dmitri Kondrashov, and Michael Ghil. „Predict-
ing stochastic systems by noise sampling, and application to the El Niño-
Southern Oscillation“. In: Proceedings of the National Academy of Sciences
108.29 (2011), pp. 11766–11771.

[31] Su Chen. „Optimal bandwidth selection for kernel density functionals estima-
tion“. In: Journal of Probability and Statistics 2015 (2015).

[32] Hai Cheng, Ashish Sinha, Francisco W. Cruz, Xianfeng Wang, R. Lawrence
Edwards, Fernando M. D’Horta, Camila C. Ribas, Mathias Vuille, Lowell D.
Stott, and Augusto S. Auler. „Climate change patterns in Amazonia and bio-
diversity“. In: Nature Communications 4 (2013), p. 1411.

[33] Yoshimitsu Chikamoto, Masahide Kimoto, Masayoshi Ishii, Takashi Mochizuki,
Takashi T Sakamoto, Hiroaki Tatebe, Yoshiki Komuro, Masahiro Watanabe,
Toru Nozawa, Hideo Shiogama, et al. „An overview of decadal climate pre-
dictability in a multi-model ensemble by climate model MIROC“. In: Climate
Dynamics 40.5-6 (2013), pp. 1201–1222.

[34] Alexandre J Chorin, Ole H Hald, and Raz Kupferman. „Optimal prediction
with memory“. In: Physica D: Nonlinear Phenomena 166.3-4 (2002), pp. 239–
257.

[35] Peter U Clark, Shawn J Marshall, Garry KC Clarke, Steven W Hostetler,
Joseph M Licciardi, and James T Teller. „Freshwater forcing of abrupt climate
change during the last glaciation“. In: Science 293.5528 (2001), pp. 283–287.

[36] William D Collins, Cecilia M Bitz, Maurice L Blackmon, Gordon B Bonan,
Christopher S Bretherton, James A Carton, Ping Chang, Scott C Doney,
James J Hack, Thomas B Henderson, et al. „The community climate system
model version 3 (CCSM3)“. In: Journal of Climate 19.11 (2006), pp. 2122–
2143.

[37] Louise K Comfort. „Self-organization in complex systems“. In: Journal of
Public Administration Research and Theory: J-PART 4.3 (1994), pp. 393–
410.

[38] Eric Darve, Jose Solomon, and Amirali Kia. „Computing generalized Langevin
equations and generalized Fokker–Planck equations“. In: Proceedings of the
National Academy of Sciences 106.27 (2009), pp. 10884–10889.

[39] Thomas L Delworth and Michael E Mann. „Observed and simulated multi-
decadal variability in the Northern Hemisphere“. In: Climate Dynamics 16.9
(2000), pp. 661–676.

[40] Clara Deser, Marika Holland, Gilles Reverdin, and Michael Timlin. „Decadal
variations in Labrador Sea ice cover and North Atlantic sea surface temper-
atures“. In: Journal of Geophysical Research: Oceans 107.C5 (2002), pp. 3–
1.

[41] PD Ditlevsen, KK Andersen, and A Svensson. „The DO-climate events are
noise induced: statistical investigation of the claimed 1470 years cycle“. In:
Climate of the Past Discussions 2.6 (2006), pp. 1277–1292.

[42] Peter D Ditlevsen, Katrine Krogh Andersen, and Anders Svensson. „The
DO-climate events are probably noise induced: statistical investigation of the
claimed 1470 years cycle“. In: Climate of the Past 3.1 (2007), pp. 129–134.

93



Bibliography

[43] Peter D Ditlevsen, Mikkel S Kristensen, and Katrine K Andersen. „The recur-
rence time of Dansgaard–Oeschger events and limits on the possible periodic
component“. In: Journal of Climate 18.14 (2005), pp. 2594–2603.

[44] Jonathan F Donges, C-F Schleussner, Jonatan F Siegmund, and Reik V Don-
ner. „Event coincidence analysis for uantifying statistical interrelationships
between event time series“. In: The European Physical Journal Special Topics
225.3 (2016), pp. 471–487.

[45] Jonathan F Donges, Yong Zou, Norbert Marwan, and Jürgen Kurths. „Com-
plex networks in climate dynamics“. In: The European Physical Journal Special
Topics 174.1 (2009), pp. 157–179.

[46] Reik Donner, Susana Barbosa, Jürgen Kurths, and Norbert Marwan. „Un-
derstanding the Earth as a Complex System–recent advances in data analysis
and modelling in Earth sciences“. In: The European Physical Journal Special
Topics 174.1 (2009), pp. 1–9.

[47] Reik V. Donner, Marc Wiedermann, and Jonathan F. Donges. „Complex
Network Techniques for Climatological Data Analysis“. In: Nonlinear and
Stochastic Climate Dynamics. Ed. by Christian L. E. Franzke and Terence
J.Editors O’Kane. Cambridge University Press, 2017, pp. 159–183.

[48] Uwe Einmahl and David M Mason. „Uniform in bandwidth consistency of
kernel-type function estimators“. In: The Annals of Statistics 33.3 (2005),
pp. 1380–1403.

[49] Nicole El Karoui, Shige Peng, and Marie Claire Quenez. „Backward stochastic
differential equations in finance“. In: Mathematical finance 7.1 (1997), pp. 1–
71.

[50] David B Enfield, Alberto M Mestas-Nuñez, and Paul J Trimble. „The At-
lantic multidecadal oscillation and its relation to rainfall and river flows in
the continental US“. In: Geophysical Research Letters 28.10 (2001), pp. 2077–
2080.

[51] Ernesto Estrada. The structure of complex networks: theory and applications.
Oxford University Press, 2012.

[52] F Farahpour, Z Eskandari, A Bahraminasab, GR Jafari, F Ghasemi, Muham-
mad Sahimi, and M Reza Rahimi Tabar. „A Langevin equation for the rates
of currency exchange based on the Markov analysis“. In: Physica A: Statistical
Mechanics and its Applications 385.2 (2007), pp. 601–608.

[53] Tom Fawcett. „An introduction to ROC analysis“. In: Pattern Recognition
Letters 27.8 (2006), pp. 861–874.

[54] Thomas Finley and Thorsten Joachims. „Supervised clustering with support
vector machines“. In: Proceedings of the 22nd international conference on Ma-
chine learning. 2005, pp. 217–224.

[55] Chris K Folland, Andrew W Colman, David P Rowell, and Mike K Davey.
„Predictability of northeast Brazil rainfall and real-time forecast skill, 1987–
98“. In: Journal of Climate 14.9 (2001), pp. 1937–1958.

[56] Andrew Cadle Fowler, Anna C Fowler, and AC Fowler. Mathematical models
in the applied sciences. Vol. 17. Cambridge University Press, 1997.

[57] Rudolf Friedrich and Joachim Peinke. „Description of a turbulent cascade by
a Fokker-Planck equation“. In: Physical Review Letters 78.5 (1997), p. 863.

94



[58] Rudolf Friedrich and Joachim Peinke. „Statistical properties of a turbulent
cascade“. In: Physica D: Nonlinear Phenomena 102.1-2 (1997), pp. 147–155.

[59] Rudolf Friedrich, Joachim Peinke, Muhammad Sahimi, and M Reza Rahimi
Tabar. „Approaching complexity by stochastic methods: From biological sys-
tems to turbulence“. In: Physics Reports 506.5 (2011), pp. 87–162.

[60] GCOS-AOPC/OOPC. Working group on surface pressure. https://psl.
noaa.gov/gcos_wgsp/Timeseries/Nino3/. (accessed December 15, 2019).

[61] Fatemeh Ghasemi, Muhammad Sahimi, J Peinke, R Friedrich, G Reza Jafari,
and M Reza Rahimi Tabar. „Markov analysis and Kramers-Moyal expansion
of nonstationary stochastic processes with application to the fluctuations in
the oil price“. In: Physical Review E 75.6 (2007), p. 060102.

[62] Victor Gomez. „The use of Butterworth filters for trend and cycle estimation
in economic time series“. In: Journal of Business & Economic Statistics 19.3
(2001), pp. 365–373.

[63] Parameswaran Gopikrishnan, Vasiliki Plerou, Yan Liu, LA Nunes Amaral,
Xavier Gabaix, and H Eugene Stanley. „Scaling and correlation in financial
time series“. In: Physica A: Statistical Mechanics and its Applications 287.3-4
(2000), pp. 362–373.

[64] Emily M Gordon, Elizabeth A Barnes, and James Wilson Hurrell. „Oceanic
harbingers of Pacific Decadal Oscillation predictability in CESM2 detected by
neural networks“. In: Geophysical Research Letters (2021), e2021GL095392.

[65] Rydin Gorjao, Benjamin Schäfer, Dirk Witthaut, and Christian Beck. „Spatio-
temporal complexity of power-grid frequency fluctuations“. In: New Journal
of Physics 23.7 (2021), p. 073016.

[66] Leonardo Rydin Gorjão, Jan Heysel, Klaus Lehnertz, and M Reza Rahimi
Tabar. „Analysis and data-driven reconstruction of bivariate jump-diffusion
processes“. In: Physical Review E 100.6 (2019), p. 062127.

[67] Alex Graves. „Generating sequences with recurrent neural networks“. In: arXiv
preprint arXiv:1308.0850 (2013).

[68] A Greiner, W Strittmatter, and J Honerkamp. „Numerical integration of
stochastic differential equations“. In: Journal of Statistical Physics 51.1-2
(1988), pp. 95–108.

[69] Volker Grimm. „Mathematical models and understanding in ecology“. In: Eco-
logical modelling 75 (1994), pp. 641–651.

[70] Eric Guilyardi, Andrew Wittenberg, Alexey Fedorov, Mat Collins, Chunzai
Wang, Antonietta Capotondi, Geert Jan Van Oldenborgh, and Tim Stock-
dale. „Understanding El Niño in ocean–atmosphere general circulation models:
Progress and challenges“. In: Bulletin of the American Meteorological Society
90.3 (2009), pp. 325–340.

[71] Seungwoong Ha and Hawoong Jeong. „Unraveling hidden interactions in com-
plex systems with deep learning“. In: Scientific reports 11.1 (2021), pp. 1–13.

[72] Yoo-Geun Ham, Jeong-Hwan Kim, and Jing-Jia Luo. „Deep learning for multi-
year ENSO forecasts“. In: Nature 573.7775 (2019), pp. 568–572.

[73] James A Hanley and Barbara J McNeil. „[The meaning and use of the area
under a receiver operating characteristic (ROC) curve“. In: Radiology 143.1
(1982), pp. 29–36.

95

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino3/
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino3/


Bibliography

[74] Hossein Hassani. „Singular spectrum analysis: methodology and comparison“.
In: (2007).

[75] Klaus Hasselmann. „Stochastic climate models part I. Theory“. In: tellus 28.6
(1976), pp. 473–485.

[76] Rainer Hegger and Gerhard Stock. „Multidimensional Langevin modeling of
biomolecular dynamics“. In: The Journal of chemical physics 130.3 (2009),
p. 034106.

[77] Carmen Hijón, Pep Español, Eric Vanden-Eijnden, and Rafael Delgado-Buscalioni.
„Mori–Zwanzig formalism as a practical computational tool“. In: Faraday dis-
cussions 144 (2010), pp. 301–322.

[78] Jaroslav Hlinka, David Hartman, and Milan Paluš. „Small-world topology of
functional connectivity in randomly connected dynamical systems“. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science 22.3 (2012), p. 033107.

[79] Jaroslav Hlinka, David Hartman, Martin Vejmelka, Jakob Runge, Norbert
Marwan, Jürgen Kurths, and Milan Paluš. „Reliability of inference of di-
rected climate networks using conditional mutual information“. In: Entropy
15.6 (2013), pp. 2023–2045.

[80] Arthur E Hoerl and Robert W Kennard. „Ridge regression: applications to
nonorthogonal problems“. In: Technometrics 12.1 (1970), pp. 69–82.

[81] Christopher J Honey, Rolf Kötter, Michael Breakspear, and Olaf Sporns. „Net-
work structure of cerebral cortex shapes functional connectivity on multi-
ple time scales“. In: Proceedings of the National Academy of Sciences 104.24
(2007), pp. 10240–10245.

[82] Christoph Honisch and Rudolf Friedrich. „Estimation of Kramers-Moyal coef-
ficients at low sampling rates“. In: Physical Review E 83.6 (2011), p. 066701.

[83] Mevin B Hooten, Jessica Anderson, and Lance A Waller. „Assessing North
American influenza dynamics with a statistical SIRS model“. In: Spatial and
Spatio-Temporal Epidemiology 1.2-3 (2010), pp. 177–185.

[84] Werner Horsthemke. „Noise induced transitions“. In: Non-Equilibrium Dy-
namics in Chemical Systems. Springer, 1984, pp. 150–160.

[85] Qi Hu and Song Feng. „Variation of the North American summer monsoon
regimes and the Atlantic multidecadal oscillation“. In: Journal of Climate
21.11 (2008), pp. 2371–2383.

[86] Edward L Ince. Ordinary differential equations. Courier Corporation, 1956.
[87] Denis J Evans and Gary P Morriss. Statistical mechanics of nonequilbrium

liquids. ANU Press, 2007.
[88] Kurt Jacobs. Stochastic processes for physicists: understanding noisy systems.

Cambridge University Press, 2010.
[89] Herbert Jaeger. „Echo state network“. In: scholarpedia 2.9 (2007), p. 2330.
[90] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. „Op-

timization and applications of echo state networks with leaky-integrator neu-
rons“. In: Neural networks 20.3 (2007), pp. 335–352.

[91] Nikola Jajcay, Sergey Kravtsov, George Sugihara, Anastasios A Tsonis, and
Milan Paluš. „Synchronization and causality across time scales in El Niño
Southern Oscillation“. In: npj Climate and Atmospheric Science 1.1 (2018),
pp. 1–8.

96



[92] Mahdi Jalili. „Social power and opinion formation in complex networks“. In:
Physica A: Statistical mechanics and its applications 392.4 (2013), pp. 959–
966.

[93] M Jannesar, A Sadeghi, E Meyer, and GR Jafari. „A Langevin equation that
governs the irregular stick-slip nano-scale friction“. In: Scientific reports 9.1
(2019), pp. 1–7.

[94] Scot D Johnson, David S Battisti, and ES Sarachik. „Empirically derived
Markov models and prediction of tropical Pacific sea surface temperature
anomalies“. In: Journal of climate 13.1 (2000), pp. 3–17.

[95] Zachary F Johnson, Yoshimitsu Chikamoto, S-Y Simon Wang, Michael J
McPhaden, and Takashi Mochizuki. „Pacific decadal oscillation remotely forced
by the equatorial Pacific and the Atlantic Oceans“. In: Climate Dynamics 55.3
(2020), pp. 789–811.

[96] M Chris Jones, James S Marron, and Simon J Sheather. „A brief survey
of bandwidth selection for density estimation“. In: Journal of the American
statistical association 91.433 (1996), pp. 401–407.

[97] Richard Jordan, David Kinderlehrer, and Felix Otto. „The variational for-
mulation of the Fokker–Planck equation“. In: SIAM journal on mathematical
analysis 29.1 (1998), pp. 1–17.

[98] Nicolaas G van Kampen. „Remarks on non-Markov processes“. In: Brazilian
Journal of Physics 28 (1998), pp. 90–96.

[99] Alexey Kaplan, Mark A Cane, Yochanan Kushnir, Amy C Clement, M Benno
Blumenthal, and Balaji Rajagopalan. „Analyses of global sea surface tempera-
ture 1856–1991“. In: Journal of Geophysical Research: Oceans 103.C9 (1998),
pp. 18567–18589.

[100] Samuel Karlin and James McGregor. „Ehrenfest urn models“. In: Journal of
Applied Probability 2.2 (1965), pp. 352–376.

[101] K Kashinath, M Mustafa, A Albert, JL Wu, C Jiang, S Esmaeilzadeh, K Az-
izzadenesheli, R Wang, A Chattopadhyay, A Singh, et al. „Physics-informed
machine learning: case studies for weather and climate modelling“. In: Philo-
sophical Transactions of the Royal Society A 379.2194 (2021), p. 20200093.

[102] Ben P Kirtman and Dughong Min. „Multimodel ensemble ENSO prediction
with CCSM and CFS“. In: Monthly Weather Review 137.9 (2009), pp. 2908–
2930.

[103] Peter E Kloeden and Eckhard Platen. „Stratonovich and Itô stochastic taylor
expansions“. In: Mathematische Nachrichten 151.1 (1991), pp. 33–50.

[104] Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia
Clementi, and Christof Schütte. „Data-driven approximation of the Koopman
generator: Model reduction, system identification, and control“. In: Physica
D: Nonlinear Phenomena 406 (2020), p. 132416.

[105] Mads Faurschou Knudsen, Bo Holm Jacobsen, Marit-Solveig Seidenkrantz,
and Jesper Olsen. „Evidence for external forcing of the Atlantic Multidecadal
Oscillation since termination of the Little Ice Age“. In: Nature Communica-
tions 5.1 (2014), pp. 1–8.

[106] D Kondrashov, MD Chekroun, AW Robertson, and M Ghil. „Low-order stochas-
tic model and “past-noise forecasting” of the Madden-Julian Oscillation“. In:
Geophysical Research Letters 40.19 (2013), pp. 5305–5310.

97



Bibliography

[107] Dmitri Kondrashov, Mickaël D Chekroun, and Michael Ghil. „Data-driven
non-Markovian closure models“. In: Physica D: Nonlinear Phenomena 297
(2015), pp. 33–55.

[108] Dmitri Kondrashov, S Kravtsov, Andrew W Robertson, and Michael Ghil. „A
hierarchy of data-based ENSO models“. In: Journal of climate 18.21 (2005),
pp. 4425–4444.

[109] Pavel L Krapivsky, Sidney Redner, and Eli Ben-Naim. A kinetic view of sta-
tistical physics. Cambridge University Press, 2010.

[110] S Kravtsov, D Kondrashov, and M Ghil. „Multilevel regression modeling of
nonlinear processes: Derivation and applications to climatic variability“. In:
Journal of Climate 18.21 (2005), pp. 4404–4424.

[111] Rep Kubo. „The fluctuation-dissipation theorem“. In: Reports on progress in
physics 29.1 (1966), p. 255.

[112] R Kupferman, Grigorios A Pavliotis, and Andrew M Stuart. „Itô versus Stratonovich
white-noise limits for systems with inertia and colored multiplicative noise“.
In: Physical Review E 70.3 (2004), p. 036120.

[113] Frank Kwasniok. „Analysis and modelling of glacial climate transitions using
simple dynamical systems“. In: Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 371.1991 (2013),
p. 20110472.

[114] Steven J Lade. „Finite sampling interval effects in Kramers–Moyal analysis“.
In: Physics Letters A 373.41 (2009), pp. 3705–3709.

[115] Salim Lahmiri. „Multi-scaling analysis of the S&P500 under different regimes
in wavelet domain“. In: International Journal of Strategic Decision Sciences
(IJSDS) 5.2 (2014), pp. 43–55.

[116] Paul Langevin. „Sur la théorie du mouvement brownien“. In: Compt. Rendus
146 (1908), pp. 530–533.

[117] Klaus Lehnertz, Lina Zabawa, and M Reza Rahimi Tabar. „Characterizing
abrupt transitions in stochastic dynamics“. In: New Journal of Physics 20.11
(2018), p. 113043.

[118] Jake Lever, Martin Krzywinski, and Naomi Altman. „Points of significance:
Principal component analysis“. In: Nature methods 14.7 (2017), pp. 641–643.

[119] Andy K Li, Houk Paek, and Jin-Yi Yu. „The changing influences of the AMO
and PDO on the decadal variation of the Santa Ana winds“. In: Environmental
Research Letters 11.6 (2016), p. 064019.

[120] Decai Li, Min Han, and Jun Wang. „Chaotic time series prediction based on a
novel robust echo state network“. In: IEEE Transactions on Neural Networks
and Learning Systems 23.5 (2012), pp. 787–799.

[121] Shuanglin Li, Judith Perlwitz, Xiaowei Quan, and Martin P Hoerling. „Mod-
elling the influence of North Atlantic multidecadal warmth on the Indian sum-
mer rainfall“. In: Geophysical Research Letters 35.5 (2008).

[122] Shujun Li, Lixin Wu, Yun Yang, Tao Geng, Wenju Cai, Bolan Gan, Zhao-
hui Chen, Zhao Jing, Guojian Wang, and Xiaohui Ma. „The Pacific Decadal
Oscillation less predictable under greenhouse warming“. In: Nature Climate
Change 10.1 (2020), pp. 30–34.

98



[123] Zhen Li, Xin Bian, Xiantao Li, and George Em Karniadakis. „Incorporation of
memory effects in coarse-grained modeling via the Mori-Zwanzig formalism“.
In: The Journal of chemical physics 143.24 (2015), p. 243128.

[124] Zhen Li, Hee Sun Lee, Eric Darve, and George Em Karniadakis. „Computing
the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig
formalism in molecular systems: Application to polymer melts“. In: The Jour-
nal of chemical physics 146.1 (2017), p. 014104.

[125] Kevin K Lin and Fei Lu. „Data-driven model reduction, Wiener projections,
and the Koopman-Mori-Zwanzig formalism“. In: Journal of Computational
Physics 424 (2021), p. 109864.

[126] Johannes Lohmann and Peter Ditlevsen. „Variability, correlation and forcing
of Dansgaard-Oeschger cycles constrain underlying mechanism.“ In: Geophys-
ical Research Abstracts. Vol. 21. 2019.

[127] Johannes Lohmann and Peter D Ditlevsen. „Random and externally con-
trolled occurrences of Dansgaard–Oeschger events“. In: Climate of the Past
14.5 (2018), pp. 609–617.

[128] Harvard Lomax, Thomas H Pulliam, David W Zingg, Thomas H Pulliam,
and David W Zingg. Fundamentals of computational fluid dynamics. Vol. 246.
Springer, 2001.

[129] Erick López, Carlos Valle, Héctor Allende, Esteban Gil, and Henrik Madsen.
„Wind power forecasting based on echo state networks and long short-term
memory“. In: Energies 11.3 (2018), p. 526.

[130] Edward N Lorenz. „Deterministic nonperiodic flow“. In: Journal of atmo-
spheric sciences 20.2 (1963), pp. 130–141.

[131] Zhenghui Lu, Naiming Yuan, Qing Yang, Zhuguo Ma, and Jürgen Kurths.
„Early warning of the Pacific Decadal Oscillation phase transition using com-
plex network analysis“. In: Geophysical Research Letters 48.7 (2021), e2020GL091674.

[132] Josef Ludescher, Avi Gozolchiani, Mikhail I Bogachev, Armin Bunde, Shlomo
Havlin, and Hans Joachim Schellnhuber. „Improved El Niño forecasting by
cooperativity detection“. In: Proceedings of the National Academy of Sciences
110.29 (2013), pp. 11742–11745.

[133] Mantas Lukoševičius. „A practical guide to applying echo state networks“. In:
Neural networks: Tricks of the trade. Springer, 2012, pp. 659–686.

[134] Mantas Lukoševičius and Herbert Jaeger. „Reservoir computing approaches to
recurrent neural network training“. In: Computer Science Review 3.3 (2009),
pp. 127–149.

[135] Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. „Reservoir
computing trends“. In: KI-Künstliche Intelligenz 26.4 (2012), pp. 365–371.

[136] Jing-Jia Luo, Sébastien Masson, Swadhin K Behera, and Toshio Yamagata.
„Extended ENSO predictions using a fully coupled ocean–atmosphere model“.
In: Journal of Climate 21.1 (2008), pp. 84–93.

[137] Andrew J Majda, Ilya Timofeyev, and Eric Vanden Eijnden. „Models for
stochastic climate prediction“. In: Proceedings of the National Academy of
Sciences 96.26 (1999), pp. 14687–14691.

[138] Andrew J Majda, Ilya Timofeyev, and Eric Vanden Eijnden. „A mathematical
framework for stochastic climate models“. In: Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathe-
matical Sciences 54.8 (2001), pp. 891–974.

99



Bibliography

[139] Nishant Malik, Bodo Bookhagen, Norbert Marwan, and Jürgen Kurths. „Anal-
ysis of spatial and temporal extreme monsoonal rainfall over South Asia using
complex networks“. In: Climate Dynamics 39.3-4 (2012), pp. 971–987.

[140] Nathan J Mantua and Steven R Hare. „The Pacific decadal oscillation“. In:
Journal of oceanography 58.1 (2002), pp. 35–44.

[141] Nathan J Mantua, Steven R Hare, Yuan Zhang, John M Wallace, and Robert
C Francis. „A Pacific interdecadal climate oscillation with impacts on salmon
production“. In: Bulletin of the american Meteorological Society 78.6 (1997),
pp. 1069–1080.

[142] Xuerong Mao. „The truncated Euler–Maruyama method for stochastic differ-
ential equations“. In: Journal of Computational and Applied Mathematics 290
(2015), pp. 370–384.

[143] Nigel D Marsh and Peter D Ditlevsen. „Climate during glaciation and deglacia-
tion identified through chemical tracers in ice-cores“. In: Geophysical research
letters 24.11 (1997), pp. 1319–1322.

[144] Cristian Martinez-Villalobos, Matthew Newman, Daniel J Vimont, Cécile Pen-
land, and J David Neelin. „Observed El Niño-La Niña Asymmetry in a Linear
Model“. In: Geophysical Research Letters 46.16 (2019), pp. 9909–9919.

[145] Frank J Massey Jr. „The Kolmogorov-Smirnov test for goodness of fit“. In:
Journal of the American statistical Association 46.253 (1951), pp. 68–78.

[146] Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and
applications. CRC press, 1999.

[147] Gerald A Meehl, Haiyan Teng, and Julie M Arblaster. „Climate model sim-
ulations of the observed early-2000s hiatus of global warming“. In: Nature
Climate Change 4.10 (2014), pp. 898–902.

[148] Boudjelal Meftah, Olivier Lézoray, and Abdelkader Benyettou. „Novel ap-
proach using echo state networks for microscopic cellular image segmentation“.
In: Cognitive Computation 8.2 (2016), pp. 237–245.

[149] Jun Meng, Jingfang Fan, Yosef Ashkenazy, Armin Bunde, and Shlomo Havlin.
„Forecasting the magnitude and onset of El Niño based on climate network“.
In: New Journal of Physics 20.4 (2018), p. 043036.

[150] William J Merryfield, Woo-Sung Lee, George J Boer, Viatcheslav V Kharin,
John F Scinocca, Gregory M Flato, RS Ajayamohan, John C Fyfe, Youmin
Tang, and Saroja Polavarapu. „The Canadian seasonal to interannual predic-
tion system. Part I: Models and initialization“. In: Monthly weather review
141.8 (2013), pp. 2910–2945.

[151] George S Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. „Physics-
informed neural networks for power systems“. In: 2020 IEEE Power & Energy
Society General Meeting (PESGM). IEEE. 2020, pp. 1–5.

[152] Melanie Mitchell and Mark Newman. „Complex systems theory and evolu-
tion“. In: Encyclopedia of evolution 1 (2002), pp. 1–5.

[153] W Moon and JS Wettlaufer. „On the interpretation of Stratonovich calculus“.
In: New Journal of Physics 16.5 (2014), p. 055017.

[154] Hazime Mori. „Transport, collective motion, and Brownian motion“. In: Progress
of theoretical physics 33.3 (1965), pp. 423–455.

[155] Elizbar A Nadaraya. „On estimating regression“. In: Theory of Probability &
Its Applications 9.1 (1964), pp. 141–142.

100



[156] Matthew Newman. „Interannual to decadal predictability of tropical and North
Pacific sea surface temperatures“. In: Journal of climate 20.11 (2007), pp. 2333–
2356.

[157] Matthew Newman, Michael A Alexander, Toby R Ault, Kim M Cobb, Clara
Deser, Emanuele Di Lorenzo, Nathan J Mantua, Arthur J Miller, Shoshiro
Minobe, Hisashi Nakamura, et al. „The Pacific decadal oscillation, revisited“.
In: Journal of Climate 29.12 (2016), pp. 4399–4427.

[158] Markus Niemann, Thomas Laubrich, Eckehard Olbrich, and Holger Kantz.
„Usage of the Mori-Zwanzig method in time series analysis“. In: Physical Re-
view E 77.1 (2008), p. 011117.

[159] Mohammad Norouzi, David J Fleet, and Russ R Salakhutdinov. „Hamming
distance metric learning“. In: Advances in neural information processing sys-
tems 25 (2012).

[160] Keiron O’Shea and Ryan Nash. „An introduction to convolutional neural net-
works“. In: arXiv preprint arXiv:1511.08458 (2015).

[161] Yuko M Okumura and Clara Deser. „Asymmetry in the duration of El Niño
and La Niña“. In: Journal of Climate 23.21 (2010), pp. 5826–5843.

[162] Odd Helge Otterå, Mats Bentsen, Helge Drange, and Lingling Suo. „Exter-
nal forcing as a metronome for Atlantic multidecadal variability“. In: Nature
Geoscience 3.10 (2010), pp. 688–694.

[163] Milan Paluš, David Hartman, Jaroslav Hlinka, and Martin Vejmelka. „Dis-
cerning connectivity from dynamics in climate networks“. In: Nonlinear Pro-
cesses in Geophysics 18.5 (2011), pp. 751–763.

[164] Hae-Jeong Park and Karl Friston. „Structural and Functional Brain Networks:
From Connections to Cognition“. In: Science 342.6158 (2013), p. 1238411.

[165] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. „On the difficulty of
training recurrent neural networks“. In: International conference on machine
learning. PMLR. 2013, pp. 1310–1318.

[166] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessan-
dro Vespignani. „Epidemic processes in complex networks“. In: Reviews of
modern physics 87.3 (2015), p. 925.

[167] Jaideep Pathak, Zhixin Lu, Brian R Hunt, Michelle Girvan, and Edward Ott.
„Using machine learning to replicate chaotic attractors and calculate Lya-
punov exponents from data“. In: Chaos: An Interdisciplinary Journal of Non-
linear Science 27.12 (2017), p. 121102.

[168] RF Pawula. „Approximation of the linear Boltzmann equation by the Fokker-
Planck equation“. In: Physical review 162.1 (1967), p. 186.

[169] Cecile Penland. „Random forcing and forecasting using principal oscillation
pattern analysis“. In: Monthly Weather Review 117.10 (1989), pp. 2165–2185.

[170] Cécile Penland and Theresa Magorian. „Prediction of Niño 3 sea surface tem-
peratures using linear inverse modeling“. In: Journal of Climate 6.6 (1993),
pp. 1067–1076.

[171] Josep Perelló, JM Porra, Miquel Montero, and Jaume Masoliver. „Black–
Scholes option pricing within Itô and Stratonovich conventions“. In: Physica
A: Statistical Mechanics and its Applications 278.1-2 (2000), pp. 260–274.

101



Bibliography

[172] Sierra Victoria Petersen, Daniel P Schrag, and Peter U Clark. „A new mecha-
nism for Dansgaard-Oeschger cycles“. In: Paleoceanography 28.1 (2013), pp. 24–
30.

[173] S George H Philander. „El Nino southern oscillation phenomena“. In: Nature
302.5906 (1983), pp. 295–301.

[174] R. Quian Quiroga, Thomas Kreuz, and Peter Grassberger. „Event synchro-
nization: a simple and fast method to measure synchronicity and time delay
patterns“. In: Physical Review E 66.4 (2002), p. 041904.

[175] Stefan Rahmstorf. „Bifurcations of the Atlantic thermohaline circulation in
response to changes in the hydrological cycle“. In: Nature 378.6553 (1995),
pp. 145–149.

[176] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. „Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations“. In: Journal of
Computational Physics 378 (2019), pp. 686–707.

[177] Sune O Rasmussen, Matthias Bigler, Simon P Blockley, Thomas Blunier, Su-
sanne L Buchardt, Henrik B Clausen, Ivana Cvijanovic, Dorthe Dahl-Jensen,
Sigfus J Johnsen, Hubertus Fischer, et al. „A stratigraphic framework for
abrupt climatic changes during the Last Glacial period based on three syn-
chronized Greenland ice-core records: refining and extending the INTIMATE
event stratigraphy“. In: Quaternary Science Reviews 106 (2014), pp. 14–28.

[178] Stephan Rasp and Sebastian Lerch. „Neural networks for postprocessing en-
semble weather forecasts“. In: Monthly Weather Review 146.11 (2018), pp. 3885–
3900.

[179] Stephan Rasp, Michael S Pritchard, and Pierre Gentine. „Deep learning to
represent subgrid processes in climate models“. In: Proceedings of the National
Academy of Sciences 115.39 (2018), pp. 9684–9689.

[180] NAA Rayner, De E Parker, EB Horton, Chris K Folland, Lisa V Alexander,
DP Rowell, EC Kent, and A Kaplan. „Global analyses of sea surface tem-
perature, sea ice, and night marine air temperature since the late nineteenth
century“. In: Journal of Geophysical Research: Atmospheres 108.D14 (2003).

[181] Philippe Renard, Andres Alcolea, and David Ginsbourger. „Stochastic versus
deterministic approaches“. In: Environmental modelling: Finding simplicity in
complexity (2013), pp. 133–149.

[182] Jo Roberts and Thomas D Roberts. „Use of the Butterworth low-pass filter
for oceanographic data“. In: Journal of Geophysical Research: Oceans 83.C11
(1978), pp. 5510–5514.

[183] W Rüemelin. „Numerical treatment of stochastic differential equations“. In:
SIAM Journal on Numerical Analysis 19.3 (1982), pp. 604–613.

[184] Jakob Runge, Vladimir Petoukhov, Jonathan F Donges, Jaroslav Hlinka, Nikola
Jajcay, Martin Vejmelka, David Hartman, Norbert Marwan, Milan Paluš, and
Jürgen Kurths. „Identifying causal gateways and mediators in complex spatio-
temporal systems“. In: Nature communications 6.1 (2015), pp. 1–10.

[185] Jakob Runge et al. „Inferring causation from time series in Earth system
sciences“. In: Nature Communications 10.1 (2019), p. 2553.

[186] Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and
Ellen Kuhl. „Physics-informed neural networks for cardiac activation map-
ping“. In: Frontiers in Physics 8 (2020), p. 42.

102



[187] Maxi San Miguel, Jeffrey H Johnson, Janos Kertesz, Kimmo Kaski, Albert
Dıaz-Guilera, Robert S MacKay, Vittorio Loreto, Péter Érdi, and Dirk Hel-
bing. „Challenges in complex systems science“. In: The European Physical
Journal Special Topics 214.1 (2012), pp. 245–271.

[188] Niklas Schneider and Bruce D Cornuelle. „The forcing of the Pacific decadal
oscillation“. In: Journal of Climate 18.21 (2005), pp. 4355–4373.

[189] Viktor Sebestyén, Tımea Czvetkó, and János Abonyi. „The applicability of
Big Data in climate change research: the importance of system of systems
thinking“. In: Frontiers in Environmental Science 9 (2021), p. 70.

[190] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. „Activation functions
in neural networks“. In: towards data science 6.12 (2017), pp. 310–316.

[191] Steven Shreve. Stochastic calculus for finance I: the binomial asset pricing
model. Springer Science & Business Media, 2005.

[192] Alexander F Siegenfeld and Yaneer Bar-Yam. „An introduction to complex
systems science and its applications“. In: Complexity 2020 (2020).

[193] Jonatan F Siegmund, Tanja GM Sanders, Ingo Heinrich, Ernst van der Maaten,
Sonia Simard, Gerhard Helle, and Reik V Donner. „Meteorological drivers of
extremes in daily stem radius variations of beech, oak, and pine in northeast-
ern Germany: an event coincidence analysis“. In: Frontiers in Plant Science 7
(2016), p. 733.

[194] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. „A review of su-
pervised machine learning algorithms“. In: 2016 3rd International Conference
on Computing for Sustainable Global Development (INDIACom). Ieee. 2016,
pp. 1310–1315.

[195] Abhishekh Srivastava and Timothy DelSole. „Decadal predictability without
ocean dynamics“. In: Proceedings of the National Academy of Sciences 114.9
(2017), pp. 2177–2182.

[196] Clara Stegehuis, Remco Van Der Hofstad, and Johan SH Van Leeuwaarden.
„Epidemic spreading on complex networks with community structures“. In:
Scientific reports 6.1 (2016), pp. 1–7.

[197] Jochen J Steil. „Backpropagation-decorrelation: online recurrent learning with
O (N) complexity“. In: 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No. 04CH37541). Vol. 2. IEEE. 2004, pp. 843–848.

[198] Ralf Steuer, Jürgen Kurths, Carsten O Daub, Janko Weise, and Joachim Sel-
big. „The mutual information: detecting and evaluating dependencies between
variables“. In: Bioinformatics 18.suppl_2 (2002), S231–S240.

[199] Rouslan L Stratonovich. Topics in the theory of random noise. Vol. 2. CRC
Press, 1967.

[200] Courtenay Strong and Gudrun Magnusdottir. „The role of tropospheric Rossby
wave breaking in the Pacific decadal oscillation“. In: Journal of Climate 22.7
(2009), pp. 1819–1833.

[201] Emma B Suckling, Geert Jan van Oldenborgh, Jonathan M Eden, and Ed
Hawkins. „An empirical model for probabilistic decadal prediction: global
attribution and regional hindcasts“. In: Climate Dynamics 48.9-10 (2017),
pp. 3115–3138.

[202] Philip Sura, Matthew Newman, Cécile Penland, and Prashant Sardeshmukh.
„Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes?“
In: Journal of the atmospheric sciences 62.5 (2005), pp. 1391–1409.

103



Bibliography

[203] Rahimi Tabar. Analysis and data-based reconstruction of complex nonlinear
dynamical systems. Vol. 730. Springer, 2019.

[204] Stefan Thurner, Rudolf Hanel, and Peter Klimek. Introduction to the theory
of complex systems. Oxford University Press, 2018.

[205] Robert Tibshirani. „Regression shrinkage and selection via the lasso“. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996),
pp. 267–288.

[206] Axel Timmermann, Hezi Gildor, Michael Schulz, and Eli Tziperman. „Coher-
ent resonant millennial-scale climate oscillations triggered by massive meltwa-
ter pulses“. In: Journal of Climate 16.15 (2003), pp. 2569–2585.

[207] Matthew H Tong, Adam D Bickett, Eric M Christiansen, and Garrison W Cot-
trell. „Learning grammatical structure with echo state networks“. In: Neural
networks 20.3 (2007), pp. 424–432.

[208] Anastasios A Tsonis and Paul J Roebber. „The architecture of the climate
network“. In: Physica A: Statistical Mechanics and its Applications 333 (2004),
pp. 497–504.

[209] Robert Vautard, Pascal Yiou, and Michael Ghil. „Singular-spectrum analysis:
A toolkit for short, noisy chaotic signals“. In: Physica D: Nonlinear Phenom-
ena 58.1-4 (1992), pp. 95–126.

[210] JM Wallace, EM Rasmusson, TP Mitchell, VE Kousky, ES Sarachik, and H
Von Storch. „On the structure and evolution of ENSO-related climate variabil-
ity in the tropical Pacific: Lessons from TOGA“. In: Journal of Geophysical
Research: Oceans 103.C7 (1998), pp. 14241–14259.

[211] Shanshan Wang, Jianping Huang, Yongli He, and Yuping Guan. „Combined
effects of the Pacific decadal oscillation and El Nino-southern oscillation on
global land dry–wet changes“. In: Scientific reports 4.1 (2014), pp. 1–8.

[212] Sun-Chong Wang. „Artificial neural network“. In: Interdisciplinary computing
in java programming. Springer, 2003, pp. 81–100.

[213] Geoffrey S Watson. „Smooth regression analysis“. In: Sankhyā: The Indian
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