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ABSTRACT 
 

Excessive erosion and fine sediment delivery to river corridors and receiving waters 
degrade aquatic habitat, add to nutrient loading, and impact infrastructure. Understanding 
the sources and movement of sediment within watersheds is critical for assessing ecosystem 
health and developing management plans to protect natural and human systems. As our 
changing climate continues to cause shifts in hydrological regimes (e.g., increased 
precipitation and streamflow in the northeast U.S.), the development of tools to better 
understand sediment dynamics takes on even greater importance.  In this research, advanced 
geomatics and machine learning are applied to improve the (1) monitoring of streambank 
erosion, (2) understanding of event sediment dynamics, and (3) prediction of sediment 
loading using meteorological data as inputs. 
 

Streambank movement is an integral part of geomorphic changes along river 
corridors and also a significant source of fine sediment to receiving waters. Advances in 
unmanned aircraft systems (UAS) and photogrammetry provide opportunities for rapid and 
economical quantification of streambank erosion and deposition at variable scales. We assess 
the performance of UAS-based photogrammetry to capture streambank topography and 
quantify bank movement. UAS data were compared to terrestrial laser scanner (TLS) and 
GPS surveying from Vermont streambank sites that featured a variety of bank conditions 
and vegetation. Cross-sectional analysis of UAS and TLS data revealed that the UAS reliably 
captured the bank surface and was able to quantify the net change in bank area where 
movement occurred. Although it was necessary to consider overhanging bank profiles and 
vegetation, UAS-based photogrammetry showed significant promise for capturing bank 
topography and movement at fine resolutions in a flexible and efficient manner. 
 

This study also used a new machine-learning tool to improve the analysis of 
sediment dynamics using three years of high-resolution suspended sediment data collected in 
the Mad River watershed.  A restricted Boltzmann machine (RBM), a type of artificial neural 
network (ANN), was used to classify individual storm events based on the visual hysteresis 
patterns present in the suspended sediment-discharge data. The work expanded the 
classification scheme typically used for hysteresis analysis. The results provided insights into 
the connectivity and sources of sediment within the Mad River watershed and its tributaries.  
A recurrent counterpropagation network (rCPN) was also developed to predict suspended 
sediment discharge at ungauged locations using only local meteorological data as inputs. The 
rCPN captured the nonlinear relationships between meteorological data and suspended 
sediment discharge, and outperformed the traditional sediment rating curve approach. The 
combination of machine-learning tools for analyzing storm-event dynamics and estimating 
loading at ungauged locations in a river network provides a robust method for estimating 
sediment production from catchments that informs watershed management. 
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CHAPTER 1. INTRODUCTION AND COMPREHENSIVE 
LITERATURE REVIEW 

 

Motivation and Objectives 

The dynamics of flowing water moving over the landscape is an immensely complex 

process that plays a crucial role in shaping our environment, both natural and built. As a result, 

the transport of sediment within watersheds has been studied extensively to understand both 

natural processes and anthropogenic impacts. In Vermont, there is increased urgency to 

understand the sources and quantity of sediment being discharged from watersheds due to the 

negative effects caused by excessive sediment loading to receiving waters such as Lake 

Champlain. These include degradation of aquatic habitat, reduced biodiversity, additional 

nutrient loading, and degraded water quality for drinking water sources. The role of excessive 

loading of fine sediments to rivers is of primary concern in the transport of phosphorous, a 

nutrient believed to exacerbate harmful algal blooms in Lake Champlain.  

Recently, new challenges and opportunities in catchment sediment studies have 

presented themselves and motivated this research: (1) the impact of hydrological shifts on 

sediment production caused by a changing climate, (2) the availability of instream sensors 

capable of providing an increased volume of high frequency suspended sediment data, and (3) 

the advancement of machine learning and computer vision algorithms for both data analysis 

and topographic data generation. To this end, the following motivational questions have 

guided this research: 

1. Streambank erosion is a large source of sediment and sediment-bound nutrient 

pollution to downstream waters. Can digital photogrammetry using unmanned aircraft 

systems (UAS) methods improve the measurement of bank surfaces and erosion along river 

corridors? 
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2. The characterization of the suspended sediment – discharge relationship over a 

single storm event can be used to infer mechanisms of sediment processes in a 

catchment. Can high-frequency sediment data and machine learning improve our ability to 

extract information about sediment dynamics. 

3. Prediction of sediment loading and/or concentration in a catchment is important 

for management decisions and scenario analysis.  Can an artificial neural network be 

used to capture the nonlinear relationship between meteorological data and suspended sediment 

discharge in rivers, and then predict sediment discharge at ungauged locations using only 

meteorological data? 

The availability of suspended sediment data and measurements of streambank erosion 

in the Lake Champlain Basin, and Vermont in general, is limited given that traditional data 

collection methods are both time and resource intensive. At the same time, the advent of new 

sensors, designed to collect high-resolution data and reduce the demand on human resources 

needed for field collection efforts, has resulted new challenges – namely, the computational 

tools needed for storing, processing, and helping domain experts analyze and visualize these 

data have lagged behind (Pellerin et al., 2016). As a result, a significant component of this 

research involved monitoring in-stream suspended sediment data and streambank topographic 

measurements) over a three-year period with the goal of having a robust data set necessary to 

develop and test new computational tools. The Mad River watershed in the Lake Champlain 

Basin in Vermont served as the primary study location and area of data collection.  

Organization of Dissertation 

Chapter 1 provides background and literature review on catchment sediment studies, 

event sediment dynamics, digital photogrammetry with UAS, and the application of artificial 

neural networks (ANNs) in hydrology and sediment studies. ANNs collectively are a 

considerably varied set of data-driven tools with applications existing in many subject areas. 

Background on two fundamental types of networks used in this dissertation, the 
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counterpropagation neural network (CPN) and restricted Boltzmann machine (RBM), are 

presented in more detail.  

Chapter 2 focuses on the measurement of streambank surfaces and erosion utilizing 

survey data collected along the Mad River, New Haven River and Winooski River between 

2015 and 2016. It evaluates the potential of digital photogrammetry using an UAS platform to 

measure the topography and movement of streambanks. Topographic surveys from terrestrial 

laser scanning (TLS) and traditional GPS ground surveys are used for comparison and 

evaluation of the UAS photogrammetry technology.  

Chapter 3 presents a complimentary analysis of measurement of streambank erosion 

by comparing differences in multi-temporal digital elevation models (DEMs) generated form 

UAS surveys. Additionally, existing airborne lidar survey data is used to determine multi-year 

estimates of channel movement. The analysis of river characteristics suitable for UAS 

photogrammetry is discussed as well as a summary of fieldwork efforts necessary to complete 

the UAS survey. 

In Chapter 4, a restricted Boltzmann machine (RBM) is applied to the classification of 

hysteresis patterns in instream suspended sediment-discharge relationships using a collection 

of individual storm events. The high-resolution data collection enabled the common hysteresis 

classification system in the literature to be expanded. The expanded hysteresis classification 

process was then automated using the RBM algorithm with 2-D hysteresis images as input 

data. Finally, the results helped infer event sediment dynamics within the Mad River watershed 

and its tributaries. This presents a new approach to analyzing hysteresis patterns by using 

images of hysteresis patterns as inputs to a model. 

Chapter 5 demonstrates the application of a recurrent counterpropagation neural 

network (rCPN) for predicting suspended sediment discharge at ungauged locations using only 
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meteorological data. Data collected between 2013 and 2015 from a network of in-stream 

turbidity sensors and weather stations in the Mad River watershed are utilized for both training 

and testing of the method. The study utilized more than one rCPN in order to be able to 

predict both streamflow and sediment discharge. The model is applied to the Mad River and 

also two of its tributaries, Mill Brook and Shepard Brook.  

Finally, chapter 6 presents a cumulative summary of the research and highlights key 

contributions as well as future directions for further study.  

Catchment Sediment Studies 

Catchment studies of the dynamics of sediment and discharge provide important 

information for understanding the state of hydrologic systems, ecosystem disturbances and 

stressors within watersheds, and the implications for downstream water quality. Suspended 

sediment is of primary concern since it plays a critical role in sediment pollution, water-quality 

degradation, and impairment of ecosystems (Gao 2008). The association of suspended 

sediment and sediment-bound nutrients such as particulate phosphorus motivates the need to 

better characterize watershed sediment dynamics to understand nutrient loading and potential 

risks to aquatic ecosystems such as eutrophication (Walling et al. 2008). Studies of watershed 

sediment dynamics have included identification of sediment sources and connectivity (Abban 

et al., 2016; Fryirs, 2013; Walling et al., 2008), quantification of sediment loading and yield 

(Harrington & Harrington, 2013; Uhrich & Bragg, 2003; Warrick, Melack, & Goodridge, 

2015), creation of sediment budgets (Reid & Dunne, 1996; Walling & Collins, 2008; Weber & 

Pasternack, 2017), characterization of event sediment dynamics (Gao & Josefson, 2012; Seeger 

et al., 2004; Sherriff et al., 2016), measurement of geomorphological change (Bremer & Sass, 

2012; Foucher, Salvador-Blanes, Vandromme, Cerdan, & Desmet, 2017; A. D. Tamminga, 

Eaton, & Hugenholtz, 2015), and modeling of sediment transport (Merritt, Letcher, & 
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Jakeman, 2003; Schmelter & Stevens, 2013; Stryker, Wemple, & Bomblies, 2017). In addition, 

the impact of climate change on sediment processes is currently an area of active research 

(Bussi, Francés, Horel, López-Tarazón, & Batalla, 2014; Gomez, Cui, Kettner, Peacock, & 

Syvitski, 2009; Goode, Luce, & Buffington, 2012).  

Measurement of sediment processes within a catchment often starts with monitoring 

suspended sediment at key locations in the river network (i.e. watershed or subwatershed 

outlet).  Analysis of suspended sediment concentrations yields information on event sediment 

dynamics and allows for quantification of sediment loads and yields.  Suspended sediment 

concentrations can be determined using water quality sampling, indirect measurement of 

surrogates such as turbidity, use of calibrated sensors such as acoustic Doppler current 

profilers (Gao, 2008; Gray & Gartner, 2009), and remote sensing (Wass, Marks, Finch, Leeks, 

& Ingram, 1997).  Fluvial sediment concentration data are then often combined with 

volumetric sediment deposition and erosion measurements calculated using topographical 

surveying methods to provide a more complete picture of sediment processes. The 

topographic measurements of erosion and deposition may often be accomplished using 

traditional bank pin and ground survey techniques, (e.g. Lawler et al. 1999), aerial and ground-

based lidar surveying (e.g. Perroy, Bookhagen, Asner, & Chadwick, 2010), or photogrammetry 

(e.g. Miřijovský and Langhammer 2015). An additional component in many sediment studies 

is the characterization of the sediment composition using sediment fingerprinting in order to 

categorize the source (Abban et al., 2016; Davis & Fox, 2009; Allen C. Gellis & Mukundan, 

2013; Walling et al., 2008). 

Due to the resource intensive monitoring of sediment movement, many catchment 

sediment studies use models to forecast or predict sediment transport and discharge.  

Modeling efforts have included traditional empirical relationships such as the sediment rating 
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curve (SRC) and universal soil loss equation (USLE) (Gao 2008). More recent development 

of physics-based models simulate  watershed sediment processes that include simulate 

sediment transport, hill slope processes, and streambank erosion (Aksoy & Kavvas, 2005; 

Borah & Bera, 2004; Merritt et al., 2003; Stryker et al., 2017). In studies, where suspended 

sediment load prediction is the primary objective, data-driven models have grown in popularity 

and include multiple linear regressions, artificial neural networks, genetic programming, and 

Bayesian methods (Mount & Abrahart, 2011; Mount & Stott, 2008; Solomatine & Ostfeld, 

2008). Sediment modeling using artificial neural networks, in particular, is discussed in more 

detail in following sections. 

Measurement of streambank erosion 

Streambank erosion represents a large portion of the overall sediment and 

phosphorous loading to river systems in Vermont (Langendoen, Simon, Klimetz, Natasha, & 

Ursic, 2012) and is important to quantify as part of comprehensive catchment sediment 

studies. Several methods exist to measure and monitor streambank erosion and retreat.  

Traditional direct measurement methods include cross-sectional surveys and bank pins 

(Foucher et al., 2017; Lawler, 1993; Lawler et al., 1999). The availability of both airborne and 

terrestrial lidar (laser scanning) has resulted in more comprehensive and detailed measurement 

of bank movement. Airborne lidar has been used to quantify geomorphic change along river 

corridors (Grove, Croke, & Thompson, 2013; Thoma, Gupta, Bauer, & Kirchoff, 2005) as 

well as hillslopes and gullies (Perroy et al., 2010; Tseng et al., 2013). Similarly, the availability 

of terrestrial laser scanners (TLS) allowed for quantification of bank erosion at site specific 

scales at extremely high spatial resolution (O’Neal & Pizzuto, 2011; Resop & Hession, 2010). 

Longer term (multiple years or decades) estimates of streambank erosion rates have been 

successful through combining airborne lidar and historical aerial photos (De Rose & Basher, 
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2011; Garvey, 2012; Rhoades, O’Neal, & Pizzuto, 2009). A common approach for quantifying 

geomorphological change involves the creation of digital elevation models (DEMs) from 

sequential surveys and then subtracting the later DEM from the earlier DEM; the resulting 

difference represents land elevation change between the two survey dates. This approach has 

been utilized with survey data collected using photogrammetry, airborne lidar, and TLS 

(Bremer & Sass, 2012; Grove et al., 2013; Milan, Heritage, & Hetherington, 2007; O’Neal & 

Pizzuto, 2011; Perroy et al., 2010; Tseng et al., 2013). Recently, advances in the development 

of digital photogrammetry methods and unmanned aircraft systems (UAS) platforms have 

resulted in a resurgence of photogrammetry being used to generate topographic data and 

detect geomorphic change (Colomina & Molina, 2014; Cook, 2017; Westoby, Brasington, 

Glasser, Hambrey, & Reynolds, 2012). 

Digital Photogrammetry and Unmanned Aerial Systems (UAS) 

The rapid advancement of UAS technology, also referred to as unmanned aerial 

vehicles (UAVs) or drones, offers the ability to overcome some of the existing data collection 

shortcomings of ground surveys and manned aircraft.  While DEMs and contours from aerial 

photography using photogrammetric methods has been available for decades, recent advances 

in image processing software, driven in part by innovations in computer vision and structure 

from motion (SfM) and multi-view stereo (MVS) photogrammetric algorithms, have rapidly 

advanced the resolution of UAS topographic data using basic camera technology at far lower 

costs compared to traditional aircraft aerial imagery. SfM is ideally suited for processing photos 

with a high degree of overlap taken from a wide variety of positions (i.e. a moving sensor) 

(Westoby et al., 2012). Originally developed by the computer vision field during the 1990s, 

SfM and variations have become widely available in desktop software packages such as Agisoft 

PhotoScan, Pix4D, and Microsoft Photosynth. Digital photogrammetric methods such as SfM 
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are applicable to imagery collected using any platform, including handheld smartphone 

cameras (Micheletti, Chandler, & Lane, 2015), but have been widely adopted to process 

imagery collected using UAS (C. H. Hugenholtz et al., 2013).  

Numerous UAS based photogrammetric surveying applications exist; recent reviews 

by Colomina and Molina (2014), Watts (2012), and Whitehead et al. (2014) highlight UAS 

characteristics and applications in photogrammetry and remote sensing. Fluvial study 

applications  include mapping bathymetry (Lejot et al., 2007), channel topography (Miřijovský, 

Michalková, Petyniak, Máčka, & Trizna, 2015; A. Tamminga, Hugenholtz, Eaton, & Lapointe, 

2015; Woodget, Carbonneau, Visser, & Maddock, 2015) and production of very high 

resolution DEMs (Whitehead & Hugenholtz, 2014; Micheletti et al., 2015; Neugirg et al., 

2016). In addition, UAS-derived data have shown potential in quantifying bank erosion and 

monitoring volumetric change in fluvial settings due to flooding (Miřijovský & Langhammer, 

2015; Miřijovský et al., 2015; A. D. Tamminga et al., 2015). However, to date, UAS 

investigations have focused on monitoring change over relatively short sections (<1 km) of 

river channels and have insufficient comparison to other methods such as TLS. The 

comprehensive evaluation of high-resolution UAS topographic data along various river types 

and settings remains an area in need of further study (Woodget et al., 2015; Carbonneau & 

Dietrich, 2017). 

Event Sediment Dynamics 

Event sediment dynamics refer to the various processes of suspended sediment 

transport in watersheds during hydrological events.  Information on the mechanisms 

controlling this sediment transport may be inferred from storm-runoff response and the 

corresponding sediment concentration response (Asselman, 1999; Gao & Josefson, 2012; 

Lefrançois, Grimaldi, Gascuel-Odoux, & Gilliet, 2007; Sherriff et al., 2016). The most practical 
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and common method for capturing event sediment dynamics is to simultaneously monitor 

discharge and sediment concentration, either through direct sampling or surrogate monitoring, 

and then compare how discharge and concentration vary over the event.  Due to the non-

linear processes controlling sediment transport, the relationship of suspended sediment and 

discharge over a single storm event often cannot be described by a simple linear or log-linear 

relationship (Onderka, Krein, Wrede, Martínez-Carreras, & Hoffmann, 2012).  This has given 

rise to a robust study over the last three decades of the hysteretic nature of the suspended 

sediment-discharge relationship for hydrological events (Aich, Zimmermann, & Elsenbeer, 

2014; Asselman, 1999; Duvert et al., 2010; C. Evans & Davies, 1998; Gao & Josefson, 2012; 

Lefrançois et al., 2007; Seeger et al., 2004; Sherriff et al., 2016; Williams, 1989). 

The sediment-discharge hysteresis patterns that result from different peak times and 

shapes of the hydrograph and sedigraph were first comprehensively described by Williams 

(1989). Further research has attempted to connect patterns of hysteresis to watershed 

characteristics such as sediment availability, watershed size, and antecedent conditions 

(Asselman, 1999; Duvert et al., 2010; Gao & Josefson, 2012; Seeger et al., 2004). Hysteresis 

analysis has also been used to estimate the contribution of bank erosion caused by livestock 

in a catchment in France (Lefrançois et al., 2007); and the characteristics of event storm 

dynamics including hysteresis patterns have been shown to be connected to seasons and 

previous storm events (Gao & Josefson, 2012; Lefrançois et al., 2007). Due in part to the 

limited temporal resolution and variability frequently present in suspended sediment data, the 

majority of studies have used a subjective visual classification/interpretation of the basic 

pattern of hysteresis (i.e. clockwise, counterclockwise, figure-eight loop) similar to the patterns 

described by Williams (1989). An alternative approach compresses the hysteresis information 

into a metric (i.e., a continuous variable) that may be used in additional statistical methods. 
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Smith and Dragovich (2009) investigated a dimensionless similarity function to quantitatively 

determine the type of hysteresis present in the sediment concentration-discharge plot; several 

other indices have been proposed (Lawler, Petts, Foster, & Harper, 2006; Lloyd, Freer, Johnes, 

& Collins, 2016b; Zuecco, Penna, Borga, & van Meerveld, 2016). The use of hysteresis indices 

has enabled use in additional statistical methods resulting from the creation of a continuous 

variable. However, a limitation of currently available hysteresis indices is the loss in shape of 

the hysteresis plots when compressing the combined time-series data into a single metric, with 

it being noted that different shapes can have the same value of hysteresis index (Lloyd, Freer, 

Johnes, & Collins, 2016a). The development of more advanced classification and pattern 

recognition tools applied to suspended sediment hysteresis analysis is an area in need of further 

research. 

Artificial Neural Networks 

Artificial neural networks (ANNs) are one method, in the larger field of machine 

learning, capable of identifying complex non-linear relationships and patterns in large data.  In 

general, ANNs may be considered nonparametric statistical tools whose structure is inspired 

by the design of the human brain and nervous system. They may be characterized by three 

main features: a set of artificial neurons (or nodes); connectivity among the nodes representing 

the architecture of the network; and an algorithm for determining the weights of the 

connections, usually called training or learning algorithms (De Castro, 2006). The primary 

differences between types of artificial neural networks lies in the variety of their architecture 

and learning algorithms. 

The multilayer perceptron (MLP) neural network is a common network architecture 

in which the signals propagate through the network layers in a forward direction (referred to 

as feedforward) (De Castro, 2006). In this typical ANN architecture, the most common 
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learning algorithm for updating the weights is the error backpropagation algorithm 

popularized by Rumelhart et al. (1986). The feedforward backpropagation (FFBP) algorithm 

adjusts the network weights by propagating errors backwards through the network using a 

least-square error gradient descent error correction rule. The FFBP ANN is the most popular 

application over the last three decades in many fields due to its simple architecture and ability 

to operate as a universal function approximator (De Castro, 2006).  The error backpropagation 

learning algorithm falls into the category known as supervised learning because it uses a set of 

inputs and known (measured) outputs (this combined input and output data are known as 

training data) to adjust the weights until differences between the predicted network outputs 

and known observations are minimized. Once trained, the learning algorithm ceases; the initial 

weights are fixed; and the algorithm may be used to interpolate or predict a non-linear mapping 

given measured input data not seen before (i.e. data not used for training). In addition to the 

common FFBP network, other types of neural networks and learning algorithms have found 

application in the environmental fields. 

 Counterpropagation Neural Network (CPN) 

The counterpropagation neural network (CPN) is an ANN that combines elements of 

unsupervised and supervised learning.  The CPN is a purely data-driven network and self-

adapts to learn nonlinear mappings between predictor inputs and a set of response vectors or 

classes. The CPN combines two ANN algorithms – a Kohonen self-organizing map (hidden 

layer) and a Grossberg ouster structure (output layer) (Hecht-Nielsen, 1988). The CPN is most 

commonly utilized in a specific configuration referred to as forward only or forward mapping 

CPN in which one is not interested in the inverse relation of inputs to a predictor. Details of 

the CPN algorithm are presented in Chapter 4. 
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While not nearly as widely used in studies as FFBP, CPNs have found many 

applications in science and engineering due in part to a fast learning rate and its usefulness in 

classification and prediction. Among others, it has been used for facial recognition (Adeyanju, 

Awodoye, & Omidiora, 2016), chemical toxicity determination (Drgan, Župerl, Vračko, 

Cappelli, & Novič, 2017), and forecasting freeway travel time (Dharia & Adeli, 2003).  CPNs 

have also found application in hydrological studies as both classifiers and forecasting tools. 

Besaw et al. (2009) utilized a CPN for classification of stream geomorphic conditions. It has 

also been used in groundwater applications to characterize aquifer properties (Rizzo & 

Dougherty, 1994).  

The CPN has also been demonstrated to be capable of forecasting flow in rainfall-

runoff modeling. Chang and Chen (2001) combined the CPN with fuzzy logic for real-time 

streamflow prediction and Coulibaly and Evora (2007) utilized the same type of network for 

filling in gaps in weather station data. Besaw et al. (2010) evaluated the CPN to forecast 

streamflow in ungauged basins, and showed the usefulness of modifying the network structure 

to have “memory” by using lagged inputs and/or having a recurrent feedback connection. 

Similar approaches have been used in other studies utilizing CPN or other ANNs for 

forecasting time series data (F.-John Chang, Chang, & Huang, 2002; Coulibaly & Evora, 2007).  

Restricted Boltzmann Machine (RBM) 

The restricted Boltzmann machine (RBM) (Smolensky, 1986), also referred to as 

harmoniums, is a type of artificial neural network used for unsupervised learning. It has 

experienced an increase in popularity for its extended use as a classification model (Larochelle, 

Mandel, Pascanu, & Bengio, 2012) and more recently its use in deep learning applications 

(Hinton et al. 2012). The RBM is a stochastic, generative model that consists of two layers: a 

layer of visible nodes (input data) and a layer of hidden nodes. After training, the RBM 
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provides a representation of the training data; and its hidden layer may be considered a type 

of feature extractor. Details of the RBM network are described in Chapter 3. 

While RBMs are useful for feature extraction or image generation after initial training; 

in many applications, they may be further extended to a classifier model. This configuration 

has been demonstrated in the classification of handwritten digits using the benchmark MNIST 

data set (Fischer & Igel, 2014), the classification of articles into newsgroups (Larochelle et al., 

2012), and the classification of video segments (J. Yang, Liu, Xing, & Hauptmann, 2007). An 

advantage of RBMs over some other classification networks is that the initial training is 

unsupervised learning and does not require labeled data. The learning embedded in the trained 

hidden nodes can be leveraged to obtain information on inherent structure within data sets; 

in this is case, the hidden nodes act as feature detectors and/or a filter (Fischer & Igel, 2014; 

Testolin, Stoianov, De Filippo De Grazia, & Zorzi, 2013).  RBMs are also frequently used in 

deep learning applications, where they form building blocks of larger deep learning networks. 

Most commonly a stack of RBMs are connected in a network commonly referred to as deep 

belief neural networks (DBNNs) (Hinton et al. 2006) and used in big data and machine 

learning applications (Hinton et al., 2012; Hinton & Salakhutdinov, 2006; O’Connor, Neil, 

Liu, Delbruck, & Pfeiffer, 2013a; Testolin et al., 2013). While not utilized yet in hydrological 

applications, RBMs and deep learning represent a promising tool that links state-of-the-art 

machine learning and modern models of Bayesian inference (O’Connor et al., 2013a). 

Applications of ANNs in Hydrology 

There has been widespread use of ANNs in the hydrology field for the past two 

decades that  includes applications to model hydrology, rainfall-runoff, and water resource 

variables (Abrahart et al., 2012; Govindaraju & Rao, 2000). Initial studies on the applicability 

of ANNs to river forecasting almost exclusively utilized feedforward backpropagation (FFBP) 
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networks. More recent studies have investigated the application of novel or new features of 

the FFBP network and the comparison of different types of neural networks (Abrahart et al. 

2012).  A continued need for applied ANN research exists in the prediction of streamflow in 

ungauged streams because the majority of streams in the world are ungauged (Besaw et al., 

2010; Razavi & Coulibaly, 2013). 

ANNs and other non-parametric statistical methods have been shown to capture the 

complex non-linear aspects of sediment transport better than conventional models and thus, 

are an attractive alternative to complex physics-based models of sediment transport (Kisi & 

Shiri, 2012). Water resource managers are often interested in predicting and estimating 

suspended sediment in rivers where detailed hydraulic data are not available and only flow 

and/or precipitation data exists. A large amount of research has been done on prediction of 

streamflow in ungauged basins and how hydrological models can be transferred 

(regionalization). Razavi and Coulibaly (2013)  recently reviewed regionalization methods for 

models including data-driven methods and found that consideration of climate and catchment 

type will impact the method used. In temperate climates, regionalization methods using linear 

and non-linear regression on catchment attributes have been effective, independent of the 

hydrological model (Razavi & Coulibaly, 2013).  

Applications of ANNs to Sediment Prediction 

The estimation of suspended sediment concentration or load at a location in a 

watershed is often a necessary component of catchment sediment studies. Empirical methods 

such as creation of sediment rating curves (SRCs) using simple linear or multiple regression 

models have been used extensively for decades to predict sediment concentration from 

streamflow measurements and continue to be used today. A variety of other methods have 

been developed including physics-based, conceptual, and data-driven models. However, due 
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in part to the extensive data collection requirements and complex physics associated with 

sediment transport, data-driven methods may be more appropriate for sediment yield 

forecasting (Abrahart, See, Heppenstall, & White, 2008; Merritt et al., 2003). The non-linear 

relationship of sediment concentration to discharge and other variables, have motivated the 

increased use of machine learning and genetic programming methods (Mount and Abrahart 

2011). 

The first published applications of ANNs to sediment prediction appeared in 2001. 

Abrahart and White (2001) utilized a feedforward backpropagation (FFBP) network to predict 

catchment soil loss using precipitation as inputs and compared the FFBP method against a 

multiple linear regression (MLR) model.  Jain (2001) also used FFBP to predict suspended 

sediment concentration (SSC) using time-lagged measurements of sediment concentration, 

stage, and discharge, and found better prediction compared to traditional SRCs. Nagy et al. 

(2002) modeled SSC using a FFBP network and river hydraulic parameters as input data; they 

found the FFBP results comparable to, and in some instances more accurate than, SSC results 

generated using the empirical formulas. The FFBP methodology utilized all available 

parameters, thus avoiding the simplification of conventional empirical models. This FFBP 

approach has also been applied to prediction of bed-load transport and total load sediment 

transport (B. Kumar, 2012; C. T. Yang, Marsooli, & Aalami, 2009).  

A variety of ANN algorithms have since been applied successfully to estimating 

suspended sediment in river systems using a variety of hydrometeorological variables and 

antecedent sediment data as inputs. The most common approach for estimating SSC or 

suspended sediment load (SSL) continues to be the FFBP algorithm, or a variation thereof, 

using a combination of discharge and antecedent sediment data as inputs (Afan, El-shafie, 

Mohtar, & Yaseen, 2016). Variations on the traditional FFBP have include coupling FFBP 
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with adaptive neuro-fuzzy inference (e.g. Rajaee, Mirbagheri, Zounemat-Kermani, & Nourani, 

2009) and wavelets (e.g. Liu, Shi, Fang, Zhu, & Ai, 2013). Other applications of ANN and 

machine learning methods for estimating SSC or SSL include the generalized regression neural 

network (GRNN) (e.g. Cigizoglu & Alp, 2006), radial basis function (RBF) network (e.g. Alp 

& Cigizoglu, 2007), support vector machines (SVMs) (e.g. Kakaei Lafdani, Moghaddam Nia, 

& Ahmadi, 2013), and genetic programming (e.g. Kisi & Shiri, 2012).  All of these applications 

utilize previous observations of suspended sediment as inputs, limiting the application of the 

model to sites that have measured suspended sediment data. The use of time-lagged measured 

suspended sediment data as input data continues to be the most common approach in ANN 

sediment prediction studies (Buyukyildiz & Kumcu, 2017; Joshi, Kumar, & Adhikari, 2016; D. 

Kumar, Pandey, Sharma, & Flügel, 2016; Olyaie, Banejad, Chau, & Melesse, 2015; Zounemat-

Kermani, Kişi, Adamowski, & Ramezani-Charmahineh, 2016), despite Abrahart et al. (2008) 

observing that it makes no operational sense. 

Estimation of suspended sediment in rivers has also been performed using FFBP and 

other algorithms to predict SSC or SSL only using discharge observations as an alternative to 

SRCs. Applications have included the use of single observations (e.g. Cobaner, Unal, & Kisi, 

2009) or multiple lagged observations of discharge (e.g. Cigizoglu & Alp, 2006) as inputs. 

While it should be noted that fitting SRCs to log transformed data is considered best practice 

given the strong heteroscedasticity in the SSC data (Rasmussen, Gray, Glysson, & Ziegler, 

2011), there is no standard approach used by ANN modelers, with raw data being the most 

commonly used. FFBP algorithms are known to be susceptible to overfitting; and a review by 

Mount and Abrahart (2011) found that overfitting to a few upper range data points was 

common, particularly in ANN sediment prediction studies that utilized raw data. They 

concluded that use of log-transformed data is one approach to minimize overfitting; however, 
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there may be little justification for using an ANN over a traditional SRC (Mount and Abrahart 

2011); and the decision to predict SSC or SSL should be based on operational considerations 

of the model. Finally, there is also concern when using discharge to predict SSL given the 

strong correlation between the two variables.  

Another common ANN approach to modeling SSC and SSL is to combine river 

discharge with rainfall or other variables as inputs. Rainfall is the most common input variable 

combined with discharge for suspended sediment prediction (Alp & Cigizoglu, 2007; Kisi & 

Shiri, 2012; D. Kumar, Pandey, Sharma, & Flügel, 2015; Nourani & Kalantari, 2010). Other 

inputs variables include water level (Jain, 2001), temperature (Zhu, Lu, & Zhou, 2007), and 

turbidity (Bayram, Kankal, & Önsoy, 2011). An alternative approach presented by Aiteh et al. 

(2015) used a FFBP ANN with various watershed characteristics as inputs to predict SRC 

parameters, which allowed for estimation of suspended sediment at multiple locations. 

The prediction of suspended sediment data using ANNs in catchments that are 

ungauged both in terms of both discharge and sediment data is limited. Kamel et al. (2014) 

predicted SSL in ungauged catchments using physical watershed characteristics and climate 

inputs, but at the yearly average timescale. Alp and Cigizoglu (2007) evaluated two ANN 

models for predicting daily SSL using only antecedent rainfall, but found the model insufficient 

for reliable SSL prediction compared to using a model that included discharge as an input 

variable.  In contrast, Zhu et al. (2007) and Raghouwanshi et al. (2006) investigated the 

prediction of daily SSL using only rainfall and temperature and found good model 

performance. The vast majority of ANN sediment prediction applications continue to rely on 

measured streamflow as input data, limiting their application to stream-gauged locations. 

Recently, Afan et al. (2016) reviewed studies that applied ANNs to the prediction of sediment 
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concentration and discharge and found that all of the studies used measured discharge as 

inputs.  

Given the frequency with which current peer-reviewed suspended sediment prediction 

models use (1) measured streamflow and antecedent sediment data as model input, (2) FFBP 

networks that are overfit, and (3) a low temporal resolution for prediction (i.e., daily and 

monthly intervals), there remains a need for research in this area, specifically applications that 

can address prediction in ungauged river systems. The availability of high temporally resolved 

turbidity data capable of being monitored at multiple locations on small rivers provides a new 

means and promise for training and validating a sediment prediction ANN methodology.    
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CHAPTER 2. QUANTIFYING STREAMBANK MOVEMENT AND 
TOPOGRAPHY USING UNMANNED AIRCRAFT SYSTEM 

PHOTOGRAMMETRY WITH COMPARISON TO TERRESTRIAL 
LASER SCANNING 

 
Abstract 

Streambank movement is an integral part of geomorphic changes along river corridors 

and affects a range of physical, ecological, and socio‐economic systems including aquatic 

habitat, water quality, and infrastructure. Various methods have been used to quantify 

streambank erosion, including bank pins, ground surveys, lidar, and analytical models, 

however, due to high‐cost or labour intensive fieldwork these are typically feasible or 

appropriate only for site‐specific studies. Advancements in unmanned aircraft systems (UAS) 

and photogrammetry provide opportunities for more rapid and economical quantification of 

streambank erosion and deposition at variable scales. This work assesses the performance of 

UAS‐based photogrammetry for capturing topography of streambank surfaces and 

quantifying bank movement. UAS data are compared to terrestrial laser scanner (TLS) and 

GPS surveying from streambank sites located in Vermont that featured a variety of bank 

conditions and vegetation. Cross‐sectional analysis of data from UAS and TLS revealed that 

the UAS reliably captured the bank surface within 0.2 m of TLS and GPS surveys across all 

sites during leaf‐off conditions. Mean error between UAS and TLS was only 0.11 m in early 

spring conditions. Dense summer vegetation resulted in decreased accuracy and was a limiting 

factor in the ability of the UAS to capture the ground surface. At areas with observed bank 

movement, the change in cross‐sectional area estimated using UAS data compared reliably to 

TLS survey for net cross‐sectional changes greater than 3.5 m2, given a 10% error tolerance. 

At locations with smaller changes, error increased due to the effect of vegetation, 
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georeferencing, and overhanging bank profiles. UAS‐based photogrammetry shows significant 

promise for capturing bank topography and movement at fine resolutions in a flexible and 

efficient manner. 

Introduction 

Measuring the rate and extent of bank movement is a primary component of fluvial 

studies, as these changes impact a wide range of physical, ecological, and socio‐economic 

systems such as aquatic habitat, water quality, and on‐ and near‐stream property and 

infrastructure (Daly, Miller, & Fox, 2015; Simon & Rinaldi, 2006). For example, streambank 

erosion is estimated to account for 30–80% of sediment loading into waterways (D. J. Evans, 

Gibson, & Rossell, 2006; Fox et al., 2007; Simon & Rinaldi, 2006). Additionally, this sediment 

can be a large source of nutrient loading to receiving waters (Langendoen et al., 2012). As 

such, management strategies, including total maximum daily load studies by the U.S. 

Environmental Protection Agency, require estimates of bank erosion within a river system 

(Collins & Walling, 2004). 

Several indirect and direct methods for monitoring or estimating bank movement are 

only appropriate at specific spatial and temporal scales. Indirect predictive tools include 

process‐based models and empirical/analytical models (Chen & Duan, 2006). The latter aim 

to predict equilibrium channel width using either regime equations developed through 

regression of field data (e.g., Eaton, 2006) or external hypotheses based on assumptions (e.g., 

alluvial channels attain equilibrium when unit stream power reaches a maximum or minimum 

threshold; Lai et al., 2015). The process‐based methods include analytical slope stability 

modelling based on the limit equilibrium method (e.g., Darby & Thorne, 1996; Osman & 

Thorne, 1988) and often employ computer programs such as SLOPE/W (e.g., Borg, 
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Dewoolkar, & Bierman, 2014; Dapporto, Rinaldi, Casagli, & Vannocci, 2003) and BSTEM 

(e.g., Langendoen et al., 2012; Simon, Curini, Darby, & Langendoen, 2000). Although these 

models are flexible in application, they rely heavily on characterization of relevant soil 

properties and site conditions (e.g., soil classification, unit weights, shear strength parameters, 

soil suction, root strengths, etc.) and require extensive fieldwork because procedures are time 

intensive and have to be repeated at multiple locations due to the spatial heterogeneity of soils 

(e.g., Borg et al., 2014; Simon et al., 2000). Direct methods for monitoring streambank 

movement often include the use of repeat plan form or cross‐sectional surveys, bank erosion 

pins, and historical photography (Lawler, 1993); and although these methods are valuable for 

estimating sediment loads in small watersheds, they are labour intensive and typically only 

practical for site‐specific studies (Resop & Hession, 2010). 

More recently, bank erosion has been measured using technologies such as lidar and 

advanced photogrammetry. For estimating streambank movement at larger watershed scales, 

high‐resolution topographic data and digital elevation models (DEMs) derived from airborne 

and satellite imagery photogrammetry and aerial lidar can provide a reliable means to monitor 

channel change and bank erosion (De Rose & Basher, 2011; Garvey, 2012; Hughes, 

McDowell, & Marcus, 2006; Reinfelds, 1997). Some have raised concerns that topographic 

data, derived from remote sensing, can be cost and time prohibitive and lack the necessary 

temporal or spatial resolution for studying fluvial systems (Hugenholtz et al., 2013). However, 

recent advances in fine‐scale topographic data‐collection systems, such as terrestrial laser 

scanners (TLSs) and digital photogrammetry, allow increased flexibility in the scale (both 

spatial and temporal) at which fluvial data may be collected. One example is the creation of 

repeat DEMs that enable straightforward quantification of volumetric change along river 
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corridors due to erosion and deposition (Milan, Heritage, & Hetherington, 2007; Tseng et al., 

2013; Wheaton, Brasington, Darby, & Sear, 2010). 

Modern TLSs, introduced in the early 1990s, have seen widespread adoption in fluvial 

applications (Brasington, Vericat, & Rychkov, 2012; Brodu & Lague, 2012; Hohenthal, Alho, 

Hyyppa, & Hyyppa, 2011; Lague, Brodu, & Leroux, 2013; Molina, Rodríguez‐ Gonzálvez, 

Molina, González‐Aguilera, & Espejo, 2014; Williams et al., 2011). Currently, available TLS 

systems have scanning distances that range from 0.1 to 4,000 m and operate at subcentimetre 

accuracies (Hohenthal et al., 2011). Given this flexible range and the ability to scan thousands 

of data points per second, TLS can generate very fine‐scale topographic data quickly and at 

the most precise levels (Molina et al., 2014). Fluvial TLS applications have included 

streambank retreat measurement (O'Neal & Pizzuto, 2011; Resop & Hession, 2010), gully 

erosion (Jaboyedoff et al., 2009; Perroy, Bookhagen, Asner, & Chadwick, 2010), mapping of 

hydraulic biotopes (Milan, Heritage, Large, & Entwistle, 2010), and fine‐scale topography of 

riverbeds and channels (Bangen, Wheaton, Bouwes, Bouwes, & Jordan, 2014; Brodu & Lague, 

2012; Heritage & Milan, 2009; Hodge, Brasington, & Richards, 2009). Despite the applicability 

of TLS for high‐resolution data collection in river systems, the equipment remains quite 

expensive; post‐processing of data is labour intensive and is limited by water absorption of 

near‐infrared lasers, and data collection within river channels may be difficult depending on 

the flow conditions. 

The rapid advancement of unmanned aerial system (UAS) technology, also referred to 

as unmanned aerial vehicles or drones, offers the ability to overcome some of the existing 

data‐collection shortcomings. Production of DEMs and contours from aerial photography 

using photogrammetric methods has been available for decades. However, recent advances in 
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UAS platforms and image‐processing software, driven in part by innovations in computer 

vision and the development of structure from motion (SfM) and multiview stereo 

photogrammetric approaches, have helped advance the resolution of UAS topographic data 

using basic camera technology at far lower costs compared to traditional aircraft aerial imagery. 

Recent reviews by Colomina and Molina (2014); Watts, Ambrosia, and Hinkley (2012); and 

Whitehead et al. (2014) highlight characteristics and UAS applications in photogrammetry and 

remote sensing. The use of nonmetric photogrammetry methods (i.e., SfM) has been 

compared to other survey methods in numerous settings (James & Robson, 2012; Javernick, 

Brasington, & Caruso, 2014; Smith & Vericat, 2015). A meta‐analysis performed by Smith and 

Vericat (2015) found SfM‐based photogrammetry reliable over different spatial scales with 

errors proportional to the range (altitude) of data collection. 

The increased technology and flexibility of UAS‐based photogrammetry has quickly 

led to applications in the environmental fields including fluvial geomorphology. Very high‐

resolution UAS‐based imagery (at <5‐cm resolution) has been used to map bathymetry (Lejot 

et al., 2007), channel topography (Miřijovský, Michalková, Petyniak, Máčka, & Trizna, 2015; 

Tamminga, Hugenholtz, Eaton, & Lapointe, 2015; Woodget, Carbonneau, Visser, & 

Maddock, 2015) and to produce very high resolution DEMs (Micheletti, Chandler, & Lane, 

2015; Neugirg et al., 2016; Whitehead & Hugenholtz, 2014). In addition, UAS‐derived data 

have shown potential in quantifying bank erosion and monitoring volumetric change in fluvial 

settings due to flooding (Miřijovsky ́& Langhammer, 2015; Miřijovsky ́et al., 2015; Tamminga, 

Eaton, & Hugenholtz, 2015). However, to date, UAS investigations have focused on 

monitoring changes over relatively short sections (<1 km) of river channels and have 

insufficient comparison to other methods such as TLS. The comprehensive evaluation of 
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high‐resolution UAS topographic data along various river types and settings remains an area 

in need of further study (Carbonneau & Dietrich, 2017; Woodget et al., 2015) and is the focus 

of this manuscript. There is a continued need to obtain channel geometry data over a large 

spatial expanse because it is still standard practice when modelling river flows (e.g., HEC‐RAS) 

and bank stability (e.g., BSTEM) to use cross‐sectional survey data as inputs (Buchanan, 

Walter, Nagle, & Schneider, 2012; Cook & Merwade, 2009). This survey data are used for 

development and calibration of the models and often require large amounts of human 

resources for field collection efforts. 

In this study, we evaluate opportunities for the reliable capture of topographic data 

using a fixed‐wing UAS platform capable of collecting data covering many kilometres of river 

length during a single field outing. Our focus is on measuring streambank change under 

conditions of interest to agencies responsible for monitoring river systems (i.e., UAS settings 

suitable for data collection at the scale of river networks rather than individual stream reaches). 

We compare the data collected along streambank cross sections with TLS and realtime 

kinematic (RTK)‐GPS measurements at sites, to assess the accuracy in capturing bank 

topography and quantifying bank movement. We also describe current limitations in UAS 

technology development within the context of streambank erosion and deposition monitoring 

applications. 

Methods 

Study Site 

The project study area is in central Vermont within four watersheds that are part of 

the Lake Champlain Basin. Our seven study sites were located along the Winooski River, Mad 
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River (MR), Shepard Brook, and New Haven River (NHR; Figure 2.1), and the total UAS 

flight area covered approximately 20 km of river corridor. Whereas forested areas dominate 

 

Figure 2.1 Map of project area showing locations of streambank monitoring sites and sections of 

river corridors flown with UAS along with detail of MR‐A site and site characteristics. RTK = real‐
time kinematic; TLS = terrestrial laser scanner; UAS = unmanned aircraft system 
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the study area watersheds, the project sites are located across a variety of land uses and geologic 

settings including small towns and agricultural areas on the valley floor. Site selection was 

based in part on the desire to (a) have a variety of bank soil types, vegetation, bank heights, 

and upstream drainage (Figure 2.1), and (b) ensure a range of sensitivity to streambank 

movement (i.e., to have some sites with noticeable erosion and others that remain relatively 

stable) over 3‐year field observations. 

The Winooski River flows through alluvial soils on the valley floor, and the watershed 

encompasses a larger area that includes the MR watershed. The geological setting of the MR 

watershed is dominated by glacial tills and features evidence of glaciation including kame 

terrace deposits, moraines, outwash areas, and lake sediments. In sloped areas, the soils are 

predominantly rocky tills, and on the valley floors, fine sandy loams and silty loams are 

common. The NHR watershed similarly features glacial till‐blanketed slopes in the headwaters, 

but in the lower watershed, the NHR traverses the broad Champlain Valley through alluvial 

soils. Streambanks in the study area typically featured a cohesive fine sandy loam or silt loam 

layer ranging from 1 to 2 m overlaying a loose gravel layer. Active eroding sections typically 

feature steep banks with failure occurring from undercutting of the cohesive layer. 

The MR, NHR, and Winooski River all have a history of flooding that dates back to 

early settlements along the river corridor when historical deforestation of the watershed 

resulted in increased delivery of sediment to the river channel in the 18th and 19th centuries 

(Fitzgerald & Godfrey, 2008; Underwood, 2004). During the 20th century, river channel 

management activities included straightening, dredging, and bank armouring that resulted in 

increased flood flow capacity and decreased access to floodplains (Fitzgerald & Godfrey, 

2008), increasing the river corridors' susceptibility to erosion and channel movement. As these 
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rivers continue to adjust, data collected using UAS methods regarding the current state of the 

river and its geomorphology are useful for broader watershed studies. 

Data Collection 

In this study, a senseFly eBee fixed‐wing UAS (Figure 2.2a) surveyed the river corridor 

study sites. The study employed two eBee models: the standard eBee and eBee RTK. The 

standard eBee has a basic GPS receiver and requires ground control points (GCPs) or other 

methods to georeference the data with submetre accuracy. The eBee RTK is a survey‐grade 

system that features a more accurate GPS receiver that allows direct georeferencing of the 

data. The eBee RTK uses a virtual or local GPS base station option that can eliminate the need 

for GCPs. With virtual base station operation, the eBee system uses cellular connection to a 

continuously operating GPS base station network to obtain the most accurate (nominal 

accuracy of 5 cm) GPS positioning available. 

Surveys occurred over four campaigns: April‐May 2015, June‐August 2015, November 

2015, and April‐May 2016. The altitude above ground level was approximately 100 m for all 

UAS flights. The ground sample resolution was 3.6 cm with a lateral and longitudinal image 

overlap of 70%. Processed UAS data resulted in point clouds with average point spacing of 

12 cm. For all sites, UAS flight times ranged from 25 to 35 min and covered ~600 m of river 

length and 0.50 km2 ground area. Typically, a single outing accommodated 4–5 UAS flights 

with companion TLS and GPS surveys completed simultaneously. Much higher data‐

collection resolutions are possible with UAS platforms, in particularly multirotor UASs (e.g., 

Woodget et al., 2015), if imagery is taken at low altitudes (< 25 m) to increase the ground pixel 

resolution. However, the increased collection times become impractical with current 

technology compared with a fixed-wing UAS when operating as part of a river network‐wide 



 28 

 

Figure 2.2 Surveying systems used in the study: (a) senseFly eBee UAS; (b) RIEGL VZ‐ 1000 
terrestrial laser scanner; and section of raw point cloud data along streambank at Shepard Brook site 
from (c) unmanned aircraft system flight and (d) terrestrial laser scanner scan collected on November 
10, 2015 

analysis. River flows during UAS‐flights were generally below average based on stream‐gage 

records, but occasionally high enough to be unsafe for wading and collection of traditional 

ground‐based surveying. GPS and TLS data were collected on the same day as UAS flights, 

except when river levels made ground surveying inaccessible. During spring and autumn, UAS 

flights and TLS scans occurred in “leaf‐off” conditions, whereas summer data collection had 

denser vegetation. The first flights occurred in spring 2015 and were collected with the eBee; 

all subsequent flights used the eBee RTK. 
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UAS performance was assessed at selected streambanks using a RIEGL VZ‐1000 TLS 

(Figure 2.2b) to collect detailed ground survey data. The extent of the TLS survey varied by 

site ranging anywhere from 50 to 300 m of river length. The point density of TLS streambank 

survey data varied, but typically averaged less than 1 cm. When multiple scan positions were 

needed, reflector targets were used for data registration. 

When the virtual base station was not used, the UAS data were georeferenced using a 

minimum of four GCPs and surveyed with a TopCon HiperLite + GPS receiver. Using a small 

number of GCPs with a direct georeferencing UAS such as the eBee models has been found 

to be sufficient for removing any overall bias in the positioning of the data (e.g., Carbonneau 

& Dietrich, 2017). We confirmed this at one of the NHR site flights by deploying 10 GCPs 

but using only four in the photogrammetric processing and reserving six as checks on the 

positional accuracy. The mean positional errors of the six reserved GCPs were 0.003, −0.006, 

and 0.04 m in the x, y, and z directions, respectively. These performance accuracies are 

comparable to those reported for the eBee RTK system (Hugenholtz et al., 2016; Roze, 

Zufferey, Beyeler, & McClellan, 2014) and therefore justified our approach of using a smaller 

number of GCPs in combination with direct georeferencing. The GCP positions were 

collected with the GPS rover in a semikinematic (“stop-and‐go”) mode, and the GPS base 

station positions were corrected using the Online Position User Service provided by the 

National Geodetic Survey of the National Oceanic and Atmospheric Administration. TLS data 

were also georeferenced using GCPs and used to both validate the TLS bank surface surveys 

and assess the accuracy of UAS‐derived bank profiles; ground survey points along three cross 

sections were collected at each streambank study site. 



 30 

On June 1, 2015, a bankfull flow event in the MR caused widespread minor bank 

erosion. To capture the potential change, the two most active sites (MR‐D and Shepard Brook) 

were re‐surveyed on June 22, 2015, and August 26, 2015, respectively. An early spring rainfall 

and snowmelt event on February 26, 2016, also caused significant erosion (>1-m retreat) at 

the NHR project site and minor erosion along Winooski River and MR. Field observations 

showed that only the NHR site experienced significant bank erosion. Thus, we performed a 

detailed comparison of both systems and expanded the number of cross sections at the NHR 

site to 10 to capture bank retreats that ranged from 0 to ~13 m. 

Data Processing 

UAS imagery was post‐processed using senseFly's eMotion software package and then 

passed to the Pix4D (Pix4D, Inc.) software package for photogrammetric processing. Pix4D, 

like other digital photogrammetric UAS solutions, has a seamless workflow that ingests UAS 

imagery, generates a 3D point cloud from the overlapping images, and uses the point cloud to 

produce an orthorectified image mosaic and raster digital surface model. TLS data processing 

occurred using RiScan PRO version 2.0. Tie points fixed to surveyed GPS assisted in 

registering multiple scan position data. Examples of the processed data from both methods 

(exported as LAS points clouds with RGB in the UTM Zone 18 N WGS84 coordinate system 

[EPSG: 32618]) are presented in Figure 2.2c,d. 

Data Analysis 

To assess the accuracy of the UAS‐derived elevation data and validate the TLS data as 

ground truth data, the UAS‐ and TLS‐derived streambank profiles were compared to GPS 

cross‐sectional survey data collected using the RTK‐GPS system during the autumn 2015 data‐
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collection period. The distances between the derived profiles and each GPS survey point were 

used to compute the mean, median, standard deviation, and root mean square error (RMSE). 

At each site, the reference cross sections (labelled XS1), and two additional cross 

sections offset 10 m from the reference (e.g., Figure 2.1 inset), were used to compare the UAS 

data to the “true ground” TLS data. Within a 0.25‐m buffer along the cross sections, TLS and 

UAS point cloud data were extracted for further analysis. The bottom of the bank (edge of 

water) to the “top of bank,” determined via visual inspection of the data, defined the 

streambank face. The TLS‐ and UAS‐derived bank profiles were generated using a horizontal 

and vertical reference plane and using 0.05‐m‐spaced intervals for TLS and 0.20‐m‐spaced 

intervals for UAS, respectively. The point with the minimum elevation in each horizontal 

interval (the 2‐D equivalent of a simple minimum‐z or 2.5 D filter used in bare‐earth DEM 

creation; Figure 2.3a), and the maximal distance in each vertical interval (Figure 2.3c) formed 

the basis of the bank profile. 

At each cross section, the differences (at 0.20 m increments) between the TLS and 

UAS data in the vertical direction were computed by subtracting TLS profile from the UAS 

profile, and for the horizontal direction, the UAS profile was subtracted from the TLS profile. 

Therefore, a positive value in either the vertical or horizontal direction implies the same 

direction of error (i.e., UAS overestimates elevation of ground surface). The differences in the 

mean, median, standard deviation, and RMSE were computed for each cross section. 

Differences were recomputed between survey dates to quantify change over time. At each 

cross section, the amounts of streambank erosion and deposition were calculated by 

computing the change in cross‐sectional area for both UAS and TLS survey data. 
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Figure 2.3 Cross sections showing raw point cloud data from unmanned aircraft system (UAS) and 
terrestrial laser scanner (TLS) surveys with realtime kinematic GPS points as well as derived 

streambank profiles. (a) XS1 at Mad River (MR)‐A site on May 4, 2016; (b) photo of streambank at 

XS‐1 location at MR‐A; (c) XS1 at Shepard Brook (SB) site on May 4, 2016; and (d) photo of 

streambank at XS‐1 location at SB 
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Results 

UAS and TLS Comparison to GPS Survey 

Streambank profiles were evaluated using UAS and TLS data from three cross sections 

at each of the seven sites. Examples of the raw data collected along the reference cross sections 

(XS1) for two sites and photographs as they appeared when surveyed are provided in Figure 

2.3. Figures 2.3a and 2.3c highlight the spread in the UAS (larger dots) and TLS (smaller dots) 

point cloud data, especially areas where significant vegetation was present along the bank.  

Table 2.1 shows a summary of the error metrics between surveyed RTK‐GPS points 

and the TLS‐ and UAS‐derived bank profiles. The median error between surveyed points and 

TLS‐derived bank profile ranged from 0.009 to 0.119 m, and median errors ranged from 

<0.001 to 0.103 m. The overall median error across all surveys was 0.047 m. Because the UAS 

manufacturer specifies a maximum vertical accuracy of 0.05 m, using TLS data to generate 

ground surface profiles along streambanks seems justifiable. TLS measurements are capable 

of higher accuracy, but the presence of vegetation and soft soils suggest that attaining more 

precise (< 1 cm) surveying in the field will be unlikely. 

The comparison between RTK‐GPS survey and UAS‐derived bank profiles shows that 

error metrics varied more across the seven streambank sites than the TLS data. Mean errors 

ranged from 0.011 to 0.636 m with median errors between 0.006 and 0.580 m; the overall 

RMSE across all sites for UAS was 0.289 m, compared to 0.089 m for TLS data. 
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Figure 2.4 Comparison of data from two unmanned aircraft system (UAS) flights at streambank site 
at Mad River D site from April 22, 2015, flown within an hour of each other: (a) Flight 1 and (b) 

Flight 2 orthoimagery from UAS showing different shadowing along bank; and (c) cross‐section XS1 
showing raw point cloud data and derived bank profiles from the two flights 

Repeatability of UAS Data 

Streambank site MR‐D was flown twice on April 22, 2015, using the same UAS flight 

parameters. Although the flights were completed back to back, the varying cloud cover and 

lighting conditions altered the location of the shadows (Figure 2.4a,b). The data from these 
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two flights allowed us to evaluate (a) the repeatability of the UAS and (b) the effects of 

shadows along streambanks. Figure 2.4c shows a streambank cross section (XS‐1) at the MR‐

D site and the raw point cloud data from both flights; the data from both flights agree well 

and show little effect of shadows. When the error is averaged across three cross sections (XS‐

1 through XS‐3), the absolute median vertical differences between the two UAS flights were 

0.03 and 0.071 m for the horizontal differencing approach. The RMSE was 0.09 and 0.25 m 

for vertical and horizontal differences, respectively. 

Comparison of UAS to TLS 

For a comprehensive analysis of using UAS data across sites with varying vegetation 

and at different times of the year, the UAS‐derived streambank profiles were compared to the 

TLS‐derived ground surfaces. With three cross sections from each site and multiple UAS and 

TLS survey dates, 56 paired UAS and TLS data sets were available for comparison. Two 

examples are shown in Figure 2.3a,c using both a horizontal and vertical reference plane. Table 

2.2 summarizes the error metrics for the MR‐A site; this site had very dense vegetation along 

the streambank. Values of mean and median errors were nearly all positive indicating that 

UAS‐derived elevations were more biased than the TLS surveyed ground surface. Errors at 

the MR‐A site were smaller for the May 4, 2016, survey date with an overall RMSE of 0.19 m 

across all three cross sections for vertical differences and 0.26 m for horizontal differences. 

These errors were significantly lower than the November 9, 2015, survey date, where RMSE 

calculated using vertical and horizontal differences were 0.84 and 1.40 m, respectively. In all 

cases, RMSE was greater when using horizontal differences than vertical differences. For 

spring and autumn survey dates, vegetation on the bank was bare of leaves; however, dead  
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Figure 2.5 Box plots of (a) median vertical and (b) median horizontal differences between 
unmanned aircraft system and terrestrial laser scanner bank profiles across all sites and cross sections; 
(c) root mean square error (RMSE) of vertical differences; and (d) RMSE of horizontal differences. 
Median values are represented by the horizontal line inside the box with box limits representing the 
upper and lower quartile of the data. Whiskers extend to the minimum and maximum of the data, 
excluding outliers (points greater than 1.5 times the upper quartile and less than 1.5 times the lower 
quartile) 

standing brush was denser in autumn compared to spring when this vegetation was generally 

more matted down. 
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Observed trends in UAS‐derived bank profile error metrics at the MR‐A site were 

similar across all sites. In general, the lowest errors occurred during spring conditions 

compared to summer and autumn. Figure 2.5 summarizes the median and RMS error metrics 

calculated for both horizontal and vertical differences across the different seasonal survey 

periods. Overall median errors of 0.11 and 0.28 m, and RMSE of 0.32 and 0.39 m for vertical 

and horizontal differences, respectively, were obtained across all sites during spring survey 

dates. Greater errors (i.e., median vertical errors of 0.16 and 0.14 m, an increase of 45% to 

28%, respectively) were observed during the summer and autumn surveys. Median errors were 

positive for each survey date at all sites, indicating UAS yielded higher elevation values 

compared to the TLS surveyed bank surfaces. 

Measurement of streambank movement 

A snowmelt event on February 26, 2016, caused significant streambank erosion at two 

locations along the NHR site (Figure 2.6a); cantilever bank failures were observed along the 

channel resulting in bank retreats up to ~13 m. This event provided an opportunity for direct 

comparison of bank erosion between the UAS and TLS data at multiple cross sections (Figure 

2.6a). Table 2.3 shows the mean, median, and standard deviation of bank retreat measurements 

(lateral change made along the bank profile) for each of the cross sections using both the UAS 

and TLS data.  

Bank erosion in Area 1 (Figure 2.6a) was significant enough to cause median bank‐

retreat between 0.03 and 0.92 m as computed from TLS surveys. In Area 2, median bank 

retreats measured between 9.67 and 12.71 m. Negligible erosion was observed at the reference 

cross section (XS1) and at XS2 and XS3 where median bank retreats all measured less than 
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0.05 m, which is equivalent to the overall mean error observed in TLS measurements (Table 

2.3). 

 

Figure 2.6 (a) New Haven River (NHR) site with cross sections and area of terrestrial laser scanner 
(TLS) scan acquisition. Cross sections from Areas 1 and 2 at NHR site showing bank profiles as 
measured using TLS and unmanned aircraft system (UAS) on December 22, 2015, and April 27, 
2016; (b) UAS and TLS bank profiles at XS2 

Cross‐sectional erosion and deposition were computed at the NHR site to quantify the net 

change and error between UAS and TLS measurements (Figure 2.6b,c). The cross‐sectional 

area of erosion as measured by TLS ranged from 0.08 to 21.71 m2 across the 10 cross sections, 
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and the depositional area varied from 0 up to 0.59 m2. The net change at cross sections with 

negligible movement (XS1, XS2, and XS3) ranged from −0.03 to −0.22 m2, where a negative 

area represents net erosion. At Area 1, where moderate erosion occurred, net changes ranged 

from −0.03 to −1.63 m2, and at Area 2, the net change varied from −13.89 to −21.71 m2 

across the three cross sections. The UAS‐based measurements were compared to the TLS 

measurements, and the error in net change ranged from 0.08 to 1.11 m2 with a mean of 0.44 

m2 across the 10 cross sections. Cross‐sectional area and the corresponding net change are 

included in Table 2.3 along with UAS measurement error and percent error of UAS data 

compared to TLS data. 

Vegetation conditions on December 22, 2015, and April 27, 2016, were very similar at 

the NHR site allowing for comparison of UAS and TLS to detect change over time. Figure 

2.6d shows percent error in the net change of UAS measurements as a function of measured 

TLS net change. Percent error decreased by an order of magnitude corresponding to an order 

of magnitude increase in the observed change of area. A simple linear regression model 

estimated the percent error given a measured net change in cross‐sectional area. For a target 

of 10% error, this corresponds to a 3.5 m2 change in area (Figure 2.6d). 
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Effect of vegetation conditions on accuracy 

The UAS‐derived cross sections have greater errors in locations with dense vegetation. 

We used the two streambank sites with negligible erosion over the study period to quantify 

the effects of vegetation on the repeatability and accuracy of the UAS‐derived topography. 

Figure 2.7 shows a streambank cross section (at MR‐D) that was nearly completely bare of 

vegetation (Figure 2.7a), and a bank (at MR‐A) that features dense vegetation (Figure 2.7b). 

The UAS data from each survey date were compared with all other survey dates using both 

horizontal and vertical differences; the median and RMSE values are reported. The median 

vertical difference between all four survey dates averaged across three cross sections at the 

vegetation‐free MR‐D bank was <0.01 m with a corresponding RMSE of 0.17 m. At the 

vegetated MR‐A bank, the differences were nearly 3 times greater with a median of 0.10 m 

and RMSE of 0.46 m. Horizontal differences showed similar trends between the two sites. 

 

Figure 2.7 Comparison of unmanned aircraft system‐derived bank profiles at two stable streambank 
sites where negligible erosion was observed during the study period; (a) cross section XS1 at Mad 

River (MR)‐D site and (b) cross section XS1 at MR‐A site 
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Discussion 

Accuracy of UAS‐derived topography along streambanks 

In this study, the topographic data obtained from UAS were compared to TLS and 

GPS survey data at seven streambank sites representing a variety of river geomorphologies. 

Results demonstrate that the UAS is capable of capturing high‐quality topographic data even 

in challenging landscapes, such as river corridors, provided water levels are low and vegetation 

is minimal. The UAS accuracy (0.14 m) and precision (0.18 m) achieved, whereas not 

representative of the best possible under ideal settings, are similar to existing findings by James 

and Robson (2012), Flener et al. (2013), Woodget et al. (2015), and Carbonneau and Dietrich 

(2017) in vegetative areas and along river corridors. These earlier studies focused at the stream 

reach scale, whereas study presented here achieved similar accuracies at a much broader 

geographic scale. In addition, UAS results are repeatable in areas with minimal vegetation, with 

overall median differences of less than 1 cm across four sample dates of the exposed bank 

MR‐D site. Nearly all of the median RMS errors had positive values indicating a UAS bias in 

yielding higher elevation values. Because UAS data are generated from imagery that includes 

all surface vegetation, this result is expected, but it does indicate that overestimation of erosion 

is possible in vegetated areas. 

Georeferencing the data is one of the most critical aspects for obtaining reliable results. 

This is especially true if data are generated using multiple survey methods such as GPS, TLS, 

and UAS. The use of GCPs, typically surveyed using an RTK‐GPS system, is an effective 

method for georeferencing data. We assessed the ability of using georeferenced UAS data to 

capture streambank topography and detect change. Other UAS‐based photogrammetry 
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studies (Carbonneau & Dietrich, 2017; Hugenholtz et al., 2016; Shahbazi, Sohn, Théau, & 

Menard, 2015) have presented detailed analysis of georeferencing methods and practices. 

Hugenholtz et al. (2016) assessed the accuracy of the same eBee and eBee RTK UASs used in 

this study with and without GCPs. They found that the eBee RTK achieved a horizontal 

accuracy <0.025 m without using GCPs and also obtained vertical accuracy to <0.1 m. 

Carbonneau and Dietrich (2017) found that using a sparse (3 to 4) set of GCPs was sufficient 

to achieve similar accuracies provided a GPS‐equipped UAS is used that allows direct 

georeferencing of the photogrammetric data. Our check on the georeferencing (i.e., horizontal 

accuracy of <0.01 m and vertical accuracy of <0.05 m) showed a similar level of accuracy. 

Therefore, larger differences between UAS and TLS data indicate causes other than 

georeferencing, such as effects of vegetation, which are discussed in further detail in 

subsequent sections. 

Measurements of bank retreat and elevation change 

Selecting a reference plane orientation is inherent when calculating changes in 

elevation between surveys collected at different dates. A comparison of the UAS and TLS data 

across the seven sites shows the effects of a reference plane orientation (i.e., vertical or 

horizontal). The overall mean and median differences between UAS‐ and TLS-derived bank 

profiles derived from a horizontal reference plane were more than double those measured 

vertically. Many traditional streambank erosion methods (e.g., bank erosion pins) enable bank 

retreat to be measured horizontally (Lawler, 1993). Additionally, detailed studies of 

streambank topography using survey instruments such as TLS have utilized a vertical reference 

plane to compute horizontal retreat along the bank (O'Neal & Pizzuto, 2011; Resop & 

Hession, 2010). Therefore, when calculating horizontal bank retreats utilizing UAS‐derived 
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topography, care should be taken when computing UAS data error metrics (i.e., typical RMSE) 

using vertical differences, because they are not directly transferrable. 

Effects of vegetation on accuracy 

Topographic data derived from photogrammetric methods using UAS imagery are 

inherently limited by the need for line of sight from the UAS to the ground. One of the primary 

limitations in capturing topographic data along river corridors is having the ground obscured 

by vegetation. In their study, Woodget et al. (2015) found that UAS was capable of producing 

precise and accurate DEMs in nonvegetated and exposed areas. Unfortunately, vegetation is 

often present along streambanks and river corridors, and as such, one of our research goals 

was to identify the impact of vegetation on accuracy. The highest UAS accuracy (overall 

median error of 0.11 m) was achieved during spring conditions, prior to the onset of 

vegetation. During summer and autumn conditions, the overall median errors worsen to 0.14 

and 0.16 m, respectively, resulting in an increased error of 28% to 45%. We expected the effect 

of vegetation in autumn to be similar to that in spring because both are leaf‐off conditions. 

One explanation for the observed discrepancy may be that dead vegetation becomes more 

matted over the winter, resulting in more exposed ground surface compared to the autumn. 

We observed the latter at multiple cross sections including the one in Figure 2.7b, where the 

autumn UAS‐derived topographic data captured the dead standing vegetation. 

UAS‐based photogrammetry is not currently applicable for capturing the ground 

surface in locations completely obscured by vegetation as was observed in this study. However, 

it did prove surprisingly capable for capturing ground surface along vegetated streambanks 

under the right conditions. At the MR‐B and MR‐C sites, for example, the bank is lined with 

large trees and light brush during early spring, and the UAS surveys were very effective at 
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capturing the ground surface (median vertical errors of 0.05 and 0.11 m, respectively). Cross 

sections with the poorest accuracies featured dense, low brush where median vertical errors 

approached 1 m. However, as noted, these UAS surveys should be conducted when ground 

surfaces are mostly exposed, such as during early spring for regions similar to Vermont. 

UAS for measuring streambank erosion 

Results showed the UAS reliably estimates large amounts of bank movement within 

10% of the change captured by TLS surveys along a typical streambank (Figure 2.6d). The 

threshold of horizontal retreat on streambanks with heights that typically allow this margin of 

error (e.g., 2 m) was found to be about 1.8 m, assuming a slab failure. Quantifying erosion or 

deposition in areas with smaller rates of retreat is more sensitive to the effects of vegetation 

and other sources of error. Estimating small amounts of cross‐sectional erosion (i.e., totalling 

less than 0.25 m2) was highly inaccurate, with percent errors approaching 1,000%; this is likely 

the result of multiple factors including vegetation and residual errors in georeferencing being 

of similar magnitude to the net change in area. With vertical or nearly vertical banks, shadows 

are commonly present in the imagery, which has been found to affect the accuracy of the UAS 

topographic data in other studies (Shahbazi et al., 2015). In this study, however, the effects of 

shadows were negligible based on comparison of two flights done on the same day under 

different daylight conditions (Figure 2.4). A median vertical difference of only 3.4 cm was 

observed, which is approximately equal to ground sample resolution of the UAS data. Vertical 

banks and those with undercuts were common at several of our study sites including the NHR 

site where significant erosion occurred. Undercutting in particular creates a challenge for 

estimating bank erosion areas and bank retreat rates using fixed‐wing UAS, the data from 

which are typically generated from orthomosaics from airborne imagery collected at nadir, and 
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undercut surfaces are not visible and present in the data. Advances in multirotor UAS flight 

capabilities that can capture oblique imagery offer promise to survey areas with extensive 

undercut banks. 

Conclusions and Future Work 

There is considerable interest in monitoring the changing geomorphology of river 

corridors using UAS‐based photogrammetry at site specific to river‐network scale. In this 

work, the efficacy of using UAS‐based photogrammetry for capturing the topography of the 

streambank surfaces at fine detail and from long sight distances was assessed and compared 

to TLS and GPS surveying methods at seven sites encompassing a variety of bank conditions. 

The results show that UAS reliably captures the bank surface and compares well to 

TLS and GPS data. However, the accuracy depends on the density of the vegetation along the 

bank. The highest accuracies were observed during leaf‐off conditions in early spring, when 

dead vegetation is matted down along the banks, and new growth has not yet begun compared 

to the higher errors observed during autumn leaf‐off conditions. Under the optimal spring 

conditions, median vertical errors of 0.11 m were observed in UAS data. Vegetation during 

summer introduced the greatest errors. When surveys were performed over large spatial 

monitoring campaigns (i.e., 10s of kilometres of river length) and when vegetation was 

minimal, UAS‐based photogrammetry reliably captured the bank surface topography within 

0.2m. This matches or improves upon the data resolution currently available from airborne 

lidar surveys, yet it provides greater flexibility in the lead time and ability to capture more 

focused areas. For detailed study of small bank sections, TLS still provides the highest 

resolution and accuracy, albeit at approximately an order of magnitude greater cost for 

equipment and labour. 
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The largest challenge in using UAS‐derived topography for monitoring streambank 

erosion is the effect of vegetation on data accuracy. Dense vegetation introduces large data 

errors and, in some cases, can completely obscure the ground surface. The usefulness of UAS 

for streambank monitoring application is, therefore, limited in areas where vegetation is 

present year round (i.e., subtropical and tropical climates).  

Currently, UAS data acquisition and processing are reasonably efficient over small 

areas (<1 km of river length); however, automating the process over larger areas could be a 

challenge. Additional research into efficient georeferencing of data over large areas is justified. 

The more advanced UAS platforms featuring built‐in GPS, and in particular, the more 

advanced GNSS/RTK on‐board receivers show great potential for eliminating or at the least 

minimizing the number of GCPs required and therefore simplifying field operations. Further 

research into scaling up the application of UAS‐based topography for monitoring bank erosion 

at the river network level is also needed, including automating the delineation of streambank 

areas using DEMs to monitor bank erosion, and identifying changes detected as due to 

vegetation effect or channel movement. In its current state, the UAS technology shows 

promise in capturing bank erosion and deposition in areas where banks are not obscured 

completely by vegetation. 
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CHAPTER 3. APPLICATION OF UNMANNED AIRCRAFT 
SYSTEM (UAS) FOR MONITORING BANK EROSION ALONG A 

RIVER CORRIDOR  
  

Abstract 

Excessive streambank erosion is a significant source of fine sediments and associated 

nutrients in many river systems as well as poses risk to infrastructure. Geomorphic change 

detection using high-resolution topographic data is a useful method for monitoring the extent 

of bank erosion along river corridors. Advances in unmanned aircraft system (UAS) and 

structure from motion (SfM) photogrammetry techniques have provided a powerful new tool 

for capturing high resolution topographic data. To evaluate the effectiveness of UAS-based 

photogrammetry for monitoring bank erosion, a fixed-wing UAS was deployed to survey 20 

km of river corridors in central Vermont, in the north-eastern United States multiple times 

over a two-year period. Digital elevation models (DEMs) and DEMs of difference were 

utilized to quantify the volumetric change along selected portions of the survey area where 

notable erosion occurred. Longer term estimates of change were made by comparison of UAS 

surveys to previously collected airborne lidar surveys. Results showed that UAS was capable 

of collecting high quality topographic data at fine resolutions even along vegetated river 

corridors provided that the survey timing and conditions were optimal. UAS survey data 

compared well to existing airborne lidar surveys and allowed robust quantification of 

significant geomorphic changes along rivers. 
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Introduction 

Monitoring geomorphic change along river corridors is typically an essential 

component of developing watershed and surface water management strategies. Rate of 

streambank erosion is one of the direct measurements of fluvial geomorphic change used to 

analyse river corridors. Streambank erosion can represent a large portion of overall sediment 

and nutrient (e.g. phosphorus) loading to river systems (Bauer et al. 2002; Walling et al. 2008; 

Langendoen et al. 2012; Foucher et al. 2017) and is therefore important to quantify as part of 

comprehensive catchment water quality studies. Measurement of bank erosion and channel 

change is also a critical part of understanding the geomorphic condition of river systems 

(Piégay et al. 2005; Kline & Cahoon 2010). Additionally, monitoring bank erosion provides an 

understanding of the risk to infrastructure and stream habitat posed by fluvial erosion (Kline 

& Dolan 2008; Thakur et al. 2012). 

Several methods exist to measure and monitor streambank erosion and retreat.  

Traditional direct measurement methods include cross-sectional surveys and bank pins 

(Lawler 1993; Lawler et al. 1999). Lidar (laser scanning) from both airborne and terrestrial 

platforms has resulted in more comprehensive and detailed measurement of bank movement 

(Thoma et al. 2005; Resop & Hession 2010; O’Neal & Pizzuto 2011; Grove et al. 2013) and 

hillslope and gully erosion (Perroy et al. 2010; Tseng et al. 2013; Pirasteh & Li 2016; Cavalli et 

al. 2017). Determination of longer term (multiple years or decades) estimates of streambank 

erosion rates has been successful through combining airborne lidar and historical aerial photos 

(Rhoades et al. 2009; De Rose & Basher 2011; Garvey 2012) and by applying digital 

photogrammetry to historical imagery (Bakker & Lane 2017).  

A common approach for quantifying geomorphological change involves the creation 

of digital elevation models (DEMs) from sequential surveys and then subtracting the later 
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DEM from the earlier DEM; the resulting difference represents land elevation change between 

the two survey dates. The dataset from the differencing of sequential DEMs is often referred 

to as a DEM of Difference (DoD). This approach has been utilized with survey data collected 

using photogrammetry, airborne lidar, and TLS (Milan et al. 2007; Perroy et al. 2010; O’Neal 

& Pizzuto 2011; Bremer & Sass 2012; Tseng et al. 2013; Grove et al. 2013; Cavalli et al. 2017). 

Recently, advances in the development of digital photogrammetry methods and unmanned 

aircraft systems (UAS) platforms have resulted in a resurgence of photogrammetry being used 

to generate topographic data and DEMs to detect geomorphic change (Westoby et al. 2012; 

Miřijovský & Langhammer 2015; Eltner et al. 2017; James et al. 2017; Cook 2017). 

Advancements in UAS technology, also known as unmanned aerial vehicles (UAVs) 

or drones, have given rise to a flexible and affordable system for collecting topographic data. 

UAS-based surveying can overcome some of the existing data collection shortcomings of 

ground surveys and manned aircraft systems, such as being limited to specific sites, high costs 

or requiring long data collection lead-times.  While DEMs and contours from aerial 

photography using photogrammetric methods have been available for decades, recent 

advances in image processing software, driven in part by innovations in computer vision and 

structure from motion (SfM) and multi-view stereo (MVS) photogrammetric algorithms, have 

rapidly advanced the resolution of UAS topographic data. In contrast to historical 

photogrammetry surveying, UAV SfM photogrammetry typically uses only basic camera 

technology and an automated processing workflow resulting in far lower costs (Westoby et al. 

2012; Carbonneau & Dietrich 2017). SfM is ideally suited for processing photos with a high 

degree of overlap taken from a wide variety of positions (i.e. a moving sensor) (Westoby et al. 

2012). Originally developed by the computer vision field during the 1990s, SfM and variations 

have become widely available in desktop software packages such as Agisoft PhotoScan, Pix4D, 
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and Microsoft Photosynth. Digital photogrammetric methods such as SfM are applicable to 

imagery collected using any platform, including handheld smartphone cameras (Micheletti et 

al. 2015), but have been more widely adopted to process imagery collected using UAS 

(Hugenholtz et al. 2013).  

UAS-based photogrammetric surveying have seen many applications within recent 

years; reviews by Colomina and Molina (2014), Watts (2012), and Whitehead et al. (2014) 

highlight UAS characteristics and applications in photogrammetry and remote sensing. Fluvial 

study applications include mapping bathymetry (Lejot et al. 2007), channel topography 

(Woodget et al. 2015; A. Tamminga et al. 2015; Miřijovský et al. 2015) and production of very 

high resolution DEMs (Whitehead & Hugenholtz 2014; Micheletti et al. 2015; Neugirg et al. 

2016). In addition, UAS-derived data have shown potential in quantifying bank erosion and 

monitoring volumetric change in fluvial settings due to flooding (Miřijovský et al. 2015; 

Miřijovský & Langhammer 2015; A.D. Tamminga et al. 2015; Cook 2017; Hamshaw et al. 

2017). However, to date, UAS investigations of river channels have utilizes surveys over a 

single river reach (i.e. short sections less than a kilometre in length) typically with multi-copter 

UAS. In addition, applications of UAS for geomorphic change detection along rivers have 

been limited to areas largely clear of obstructing vegetation. There remains need for evaluation 

of UAS-based photogrammetry applied over longer sections of river corridor encompassing 

more varied areas including those with areas of dense vegetation.  

In this study, we present an application of UAS-based photogrammetry for monitoring 

long (approximately 20 km) lengths of river corridors for quantifying streambank erosion rates 

along multiple rivers in the north-eastern US. Calculations of bank erosion from selected sites 

are used to illustrate the performance of the system. In addition, we discuss some of the 

limitations of UAS and recommendations for application in a watershed management setting. 
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Methods 

Study Area 

Data collection took place along four rivers (Shepard Brook, Mad River, Winooski 

River, and New Haven River) located in central Vermont (Figure 3.1). This area of Vermont 

drains the western portion of the Green Mountain Range and is part of the Lake Champlain 

basin. The study area features a humid continental climate with mean annual precipitation of 

40-60 mm. Soils range from fine sandy loams derived from glacial till deposits in the uplands 

to silty loams derived from glacial lacustrine deposits in the lowlands. Streambanks in the study 

area on average are approximately 2 m high, ranging from 1.3 m to 3.8 m high. Vegetation is 

highly varied and ranges from bare soils to tall grass/brush and tree cover.   

All four rivers have a significant history of flooding and resulting channel erosion that 

dates back to early settlements along the river corridor when historical deforestation of the 

watershed resulted in river channel destabilization (Underwood 2004; Fitzgerald & Godfrey 

2008). During the last two decades, multiple flood events in each of the catchments have 

resulted in significant river channel erosion causing damage to infrastructure and impacts to 

water quality. The northeast US is experiencing increase in magnitude and frequency of rainfall 

events, a trend expected to continue (Betts 2012) making the study regionally relevant. Similar 

climate changes are predicted elsewhere in the world. As rivers in such regions continue to 

adjust to a changing hydrological regime, data collected using UAS methods regarding the 

current state of the river and its geomorphology are useful for broader watershed studies. An 

affordable method such as UAS could prove to be very useful in tracking rates of streambank 

erosion if UAS surveys can be done every few years. 
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Figure 3.1. Map of study area and portions of river corridor surveyed with UAS 

 
Table 3.1. UAS used in survey campaigns 

 

UAS 
Model 

Survey Campaigns  Camera model Weight Wingspan 

eBee Spring 2015 Canon S110 (12 MP) 0.69 kg 96 cm 

eBee RTK Summer/Fall 2015, 
Spring/Summer 2016 

Sony WX (18.2 MP) 0.7 kg 96 cm 

eBee Plus Spring 2017 senseFly S.O.D.A. (20 MP) 1.1 kg 110 cm 
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Data Collection 

UAS surveys took place during a two-year period between spring 2015 and spring 

2017. The greatest number of flights were performed in spring months (April-May) when 

vegetation growth is at a minimum in Vermont and snow has melted. Additional survey 

campaigns were conducted along portions of the study rivers during summer (August) and 

late autumn (November-December) months. Topographic data obtained from airborne laser 

scanning (ALS) surveys were also used to calculate longer-term amounts of erosion along 

portions of the New Haven River and Shepard Brook. ALS surveys were collected in May 

2014 along Mad River and Shepard Brook and in November 2012 for the New Haven River. 

The 2014 ALS survey was collected at an average point spacing of 0.7 m and the 2012 ALS 

survey at 1.6 m spacing. 

During the study period, a few large storm events resulted in high river flows and 

caused channel erosion. These include an early spring rainfall event on February 26, 2015 

which caused significant bank erosion along the New Haven River and a mid-summer flash 

flood event on August 17, 2016 which caused moderate bank erosion along Shepard Brook. 

Additionally, a number of large river flows occurred in the New Haven River in between the 

2012 ALS survey and the 2015 UAS survey which resulted in assumed periodic bank erosion. 

However, between the 2014 ALS survey and 2015 UAS surveys along the Mad River and 

Shepard Brook, no major storm events occurred, and therefore, stream bank erosion was 

assumed to be minor. 

UAS surveys were performed using a senseFly eBee fixed-wing UAS equipped with an 

RGB true-color camera (Figure 3.2a). Three models of eBee were used during the study with 

spring 2015 flights performed using the original eBee model and subsequent campaigns 

utilizing the eBee RTK or eBee Plus model (Table 3.1). The RTK and plus models distinguish 
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Figure 3.2. (a) senseFly eBee UAS; (b) section of streambank along Shepard Brook in November 
2015; (c) example of eroding streambank along Mad River in July 2015 with presence of summer 
vegetation growth; (d) section of streambank along New Haven River experience erosion in April 
2016. 

 themselves from the standard model by incorporating a survey-grade RTK GPS receiver in 

order to directly georeference the data with submetre accuracy. For UAS data collected with 

the standard eBee model, ground control points (GCPs) were utilized to accurately 

georeference the data. All UAS flights were collected with a target ground sample distance 

(GSD) of 3.6 cm with a resulting typical altitude above ground level of approximately 100 m. 

Lateral and longitudinal image overlap were both set to 70%. During spring and late autumn 

survey campaigns, UAS flights occurred in “leaf-off” conditions when vegetation was minimal. 
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DEM Analysis 

UAS imagery was first post-processed using senseFly’s eMotion Version 3.3.4 software 

package and then passed to the Pix4D Version 4.0.21 (Pix4D, Inc.) software package for 

photogrammetric processing. Like other digital photogrammetric UAS solutions, Pix4D has a 

seamless workflow that ingests UAS imagery, generates a 3D point cloud from the overlapping 

images, and uses the point cloud to produce an orthorectified image mosaic and raster digital 

surface model. Pix4D also has the capability to automatically generate a DEM (Figure 3.3b), 

also referred to as a digital terrain model (DTM), from the DSM (Figure 3.3a) and point cloud 

using a proprietary, machine-learning based algorithm. The UAS-based DEMs had a cell size 

of 0.15 m compared to 1.0 m and 0.7 cm for the 2012 ALS and 2014 ALS surveys respectively. 

We note that various methods and software packages are available that enable generation of 

DSMs and DEMs from point cloud data. We selected to use the automated method of DEM 

generation provided by the senseFly and Pix4D system as it is representative of an automated 

and efficient workflow that is practical for generation of topographic data over large areas and 

many survey campaigns. 

The accuracies of DEMs were evaluated through the use of GCPs collected along 

selected river reaches. GCPs were surveyed using a TopCon HiperLite+ differential GNSS 

receiver. The GCP positions were collected with the GNSS rover in a semikinematic (“stop‐ 

and‐go”) mode, and the GNSS base station positions were corrected using the Online Position 

User Service (OPUS) provided by the National Geodetic Survey of the National Oceanic and 

Atmospheric Administration. DEMs from the airborne lidar surveys (Figure 3.3c) utilized in 

this study were publicly available from the State of Vermont and are considered a hydro-

flattened DEM. 
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Figure 3.3. View of portion of New Haven River as seen in (a) DSM from April 27, 2016 UAS 
Survey, (b) DEM generated from April 27, 2016 UAS survey, (c) DEM from 2012 ALS survey 

To compare DEMs generated from multiple survey dates, DEMs of difference 

(DoDs) were generated in Quick Terrain Modeler Version 8.0.4 (Applied Imagery). DoDs 

were calculated between successive UAS surveys as well as between UAS DEMs and the ALS 

DEM. DoDs were consistently calculated by subtracting the later date survey from the earlier 

date resulting in negative values indicating erosion. 

Streambank Erosion Calculation 

During the study period, one section of the New Haven River experienced significant 

channel movement and bank erosion (horizontal bank movement > 10 m). This river reach is 

at high risk for channel erosion and has been subject to previous river channel stabilization 

efforts. Other sections of the Shepard Brook, Mad River, and Winooski River, that were within 

the study area, had localized areas of minor to moderate erosion (horizontal bank retreats ~ 1 

m). In this paper, we selected two river reaches to highlight analysis of channel change and 

measurement of streambank erosion: a 1.2 kilometre section of the New Haven River site with 
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significant channel movement and a 1.5 kilometre section of Shepard Brook with minor bank 

erosion (Figure 3.1). 

Measurements of streambank erosion were determined by calculating a volumetric 

change along the river corridor. Volume change was determined from the DoD models within 

a pre-defined river corridor area. The river corridor area was delineated to represent the 

approximate area subject to river flows during high water level or where potential bank erosion 

could occur. Both a total negative (erosion) and positive (aggradation) elevation change along 

the river corridor can be determined as well as a net change.  

Results and Discussion 

Data acquisition and accuracy 

Over the course of a two-year monitoring period, we conducted UAS surveys that 

covered nearly 50 km of river length. An overview of survey coverage and fieldwork effort is 

shown in Table 3.2. The greatest number of flights (55) were completed in 2015 where surveys 

were performed in early spring, mid-summer and late autumn in contrast to 2016 and 2017 

where surveys occurred primarily only in early spring. The average length of river surveyed in 

single flight was 553 m, although longer distances were achieved in 2016 and 2017 surveys 

where average length of river per flight averaged 760 m and 843 m respectively. This greater 

efficiency was likely due to a few factors including better optimization of flight lines, fewer 

equipment issues, and for 2017 surveys, use of the eBee Plus UAV which features greater 

battery capacity. 

The river corridor surveys required a total of 21 full-days in the field to collect. With 

a total of 49.7 km of river corridor surveyed, the average length per day was 2.37 km collected 

in approximately four flights (average of 4.3/field day). Rainy and excessively windy weather 

conditions resulted in requiring rescheduling some field days or cutting them short. Out of 21 
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survey days, 9 (43%) required rescheduling or shortening. Difficulties in having appropriate 

weather conditions varied from year-to-year with spring 2016 being especially challenging 

where all 5 survey days had to be rescheduled.  All days that needed to be rescheduled occurred 

in spring (April and May) when rainfall is more frequent in the north-eastern U.S. than other 

months of the year. 

Table 3.2. Summary of UAS flights and survey coverage 

 

Year 
Number 
of flights 

Total Length of 
River Surveyed 

(km) 

Mean Length 
of River per 
Flight (m) 

Total days** 
in field for 
surveying 

Number of days 
impacted* by 

weather 

2015 55 21.7 395 12 3 

2016 18 13.7 760 5 5 

2017 17 14.3 843 4 1 

* Impacted survey days refer to those that were either cancelled and rescheduled due to rain or wind or those 
days cut short due to wind or rain. 
** A field day was considered 8 hours in the field, with approximately 6 hours available for survey efforts given 
2 hours for travel accommodation. 

 

Results of the comparison of DEM values to a set of GPS surveyed GCPs at the two 

areas is presented in Table 3.3.  Mean errors were lowest for the ALS survey at both areas with 

-0.02 m for New Haven River survey and 0.04 m for Shepard Brook survey. UAS survey 

performance was highest with the April 2017 surveys. Errors for both ALS and UAS surveys 

were higher at the Shepard Brook site compared to the New Haven River area. Across all UAS 

surveys we found an average median error of 0.09 m. This compares well to a previous study 

that found median vertical errors in UAS-derived topographic data of 0.11 m (Hamshaw et al. 

2017).  

We found the utilization of a sparse network of GCPs (i.e. 3-4 GCPs per survey area) 

was helpful to adjust for any overall bias/datum shift and as error check.  The use of direct 

georeferenced topographic data in combination of a small number of GCPs has been found 

effective also by Carbonneau and Dietrich (2017). 
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Table 3.3. Assessment of accuracy of DEMs based on comparison to GCPs 

 
New Haven River Site (n = 16) 

  

 
2012 ALS 2015 UAS 2016 UAS 2017 UAS 

Mean Error (m) 
0.02 0.25 0.12 0.04 

Median Error (m) 
0.02 0.23 0.08 0.02 

Standard Deviation Error (m) 
0.09 0.09 0.15 0.12 

RMSE (m) 
0.09 0.26 0.19 0.12      

Shepard Brook Site (n = 10) 
  

 
2014 ALS 2017 UAS 

 

Mean Error (m) 0.04 -0.09 
 

Median Error (m) 0.00 0.03 
 

Standard Deviation Error (m) 0.20 0.36 
 

RMSE (m) 0.19 0.35 
 

 
 

Calculation of Streambank Erosion  

Application to New Haven River  

We surveyed along a 1.2 km long river section of the New Haven River that 

experienced significant bank erosion and river channel movement during the study period. 

Between the November 2012 ALS survey and December 2015 UAS survey, extensive river 

channel movement was evident (Figure 3.4) as the result of a number of storm events. 

Continued erosion along portions of the streambank was evident from subsequent UAS 

surveys in April 2016 and April 2017. A large amount of erosion was attributed to a February 

2016 rain storm that caused high river flows. All UAS surveys were able to be completed 

during what would be considered “leaf-off” conditions when vegetation growth is minimal 

and deciduous trees have dropped their leaves. During summer, vegetation and tree cover 

along this section of the New Haven were fairly extensive (Figure 3.4d). The December 2015 
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UAS survey ended up covering a smaller area than 2016 and 2017 surveys due to flights being 

cut short by rainfall. 

 

Figure 3.4. Section of the New Haven River as seen in (a) aerial imagery from April 2012, (b) UAS 
orthomosaic imagery from December 2015, (c) UAS orthomosaic imagery form April 2017, and (d) 
aerial imagery from July 2016. Area indicated by yellow boundary represents area of river corridor 
used in analysis of DEMs. 
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Automated DEM generation from 2016 and 2017 UAS surveys produced high quality 

topographic data with few obvious vegetation errors and little missing data (Figure 3.5). At the 

time of spring UAS surveys, vegetation was noticeably less dense than during the December 

2015 UAS survey. The presence of areas of denser vegetation along the river during fall can 

be seen in the December 2015 UAS orthomosaic imagery (Figure 3.4b) in the dark brown 

areas. We observed, in spring, vegetation was matted down form snowpack resulting in greater 

visibility of the ground surface.  

 

Figure 3.5. Digital elevation model (DEM) of New Haven River produced from (a) 2012 ALS 
survey and (b) 2017 UAS survey 

DoDs generated from multiple date DEMs allowed for spatio-temporal analysis of 

topographic change within the river corridor area. Between the April 2017 UAS and 

November ALS 2012 surveys, a net volumetric change of -19,920 m3 occurred over the 15.2 

ha area. The changes included isolated areas of both deposition and erosion (Figure 3.6). In 

all, an estimated 31,509 m3 of erosion occurred and 11,589 m3 of deposition or aggradation 
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Figure 3.6. Elevation change between surveys along a section of the New Haven River as visualized 
by DEMs of difference (DoDs) between (a) 2012 ALS survey and 2016 UAS survey, (b) 2016 UAS 
survey and 2017 UAS survey, and (d) 2012 ALS survey and 2016 UAS survey. 

 

 was evident over the nearly five-year period. We also evaluated the geomorphic change at the 

intermediate survey date of April 2016, which confirmed that the majority of erosion occurred 

between 2012 and 2016, rather than between 2016 and 2017 (Table 3.4). Of note, the net 

change calculated from 2012 to 2016 was -14056 m3 and from 2016 to 2017, -5,866 m3, giving 
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a total net change of -19,922 m3, which is consistent with the direct measurement of 2017-

2012 change above. The average annual rate of volumetric erosion was ~6,300 m3/year. If an 

average stream bank height of 1.9 m (based on field measurements) is assumed over the entire 

1,200 m long river reach, the average annual rate of bank retreat was 1.4 m/yr/m.  

 

Table 3.4. Summary of volumetric change of surface within river corridor area 

 

DoD model 
Positive Change 
(Deposition) m3 

Negative Change 
(Erosion) m3 

Net Change 
m3 

2017 UAS – 2012 ALS 11,589 31,509 -19,920 

2017 UAS – 2016 UAS 5,503 11,369 -5,866 

2016 UAS – 2012 ALS 13,848 27,904 -14,056 

 
 

We utilized the automated DTM (DEM) generation capability integrated into Pix4D 

Mapper (Version 4.0.5). Version 4 of Pix4D was released during the study period and 

highlights that the processing of UAS imagery and SfM photogrammetric techniques, is a 

rapidly evolving area characterized by frequent software releases. With a number of proprietary 

algorithms used in various software packaged we note that it would be expected that different 

software packages produce slightly different DEMs. While we did not study the impact of 

different software packages, Ouédraogo et al.  (2014) found differences in DEM generation 

from two different software packages, Agisoft PhotoScan and MicMac, resulted in DEMs with 

difference in root mean square error (RMSE) of 4.9 cm. Vallet et al. (2012) found a similar 

scale difference in mean error of 6.3 cm between DTMs generated by Pix4D and by a different 

photogrammetric process using SocetSet NGATE. These scale differences were minor 

compared to the scale of geomorphic changes we intended to quantify in our study, and 

therefore, we do not believe would impact our conclusions. Topographic change detection 
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and volume calculations have also been made through comparison of photogrammetric point 

clouds instead of derived DEMs with promising results (Cook 2017). However, we elected to 

use a more conventional DEM analysis since raster datasets are readily compatible in common 

spatial analysis software packages such as ESRI ArcGIS that offer many tools for analysing 

raster datasets.  

The presence of differences in water surface and vegetation growth were potential 

sources of additional error we identified in the DEMs. Errors due to vegetation in the 2016 

and 2017 UAS DEMs were not significant as evidenced by little observed elevation change in 

areas that had significant vegetation. Based on a comparison of water surface across a stable 

portion of the river we found differences in the DEM of ~0.2 m between the UAS surveys 

and the ALS DEM. Negligible differences were observed between the 2016 and 2017 UAS 

surveys. While it is possible that river bed lowering occurred during the study period, we did 

not collect simultaneous field measurements of bathymetry, and given the reliability of SfM 

techniques for measuring bathymetry (Cook 2017), our analysis did not provide conclusive 

evidence of bathymetric changes. Studies have shown that bathymetric UAS measurements 

can be improved through refraction correction (Lejot et al. 2007; Dietrich 2017) to reduce 

errors.  

The DEM quality from the December 2015 UAS survey was poorer in contrast to the 

April 2016 and 2017 surveys. Observation of the DoDs (Figure 3.7) revealed significant areas 

of measured deposition in places where no observed deposition occurred. In referring to the 

aerial imagery (Figure 3.4), these areas correspond to denser vegetation areas and show 

significant interpolation and smoothing in the DEMs. Errors in the 2015 DEM due to 

vegetation are also evident in the volumetric change between the 2017 – 2015 DoD (Figure 

3.7b), which showed a net change of 1,401 m3 when known erosion occurred and a negative 
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net change was expected. The December 2015 UAS flight was also conducted in light rain 

conditions, which resulted in poorer image contrast when compared to the spring 2016 and 

2017 images. The combination of greater density of vegetation in late Autumn and possibly 

other factors made DoD calculations unreliable using the 2015 UAS survey. However, areas 

of significant erosion can be clearly identified in the data set, and therefore, measurement of 

erosion at specific individual areas would be required as opposed to measurement over the 

entire river corridor area. 

 

Figure 3.7. DoD for New Haven River as calculated from (a) 2012 ALS survey and 2015 UAS 
survey and (b) 2015 UAS survey and 2017 UAS survey 

 

Application to Shepard Brook 

UAS surveys collected along a portion of Shepard Brook (Figure 3.1) were also used 

to quantify channel movement over a river reach with observed erosion, but with different 
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characteristics than the New Haven River. In contrast to the New Haven River area, Shepard 

Brook has denser vegetation and greater tree cover in the river corridor; it is a smaller river 

with shorter streambanks (~1.2 m high), and it is less susceptible to channel movement and 

bank erosion. Between the May 2014 ALS survey and April 2017 UAS survey, several medium 

size storm events caused minor observable erosion in isolated locations. A short duration flash 

flood event in summer 2016 caused the greatest amount of bank erosion, but still on only 

short sections (such as site shown in Figure 3.8) and with less than 1 m of retreat over 3 years. 

 

Figure 3.8. Section of Shepard Brook as seen in (a) UAS orthomosaic imagery from April 2017 and 
(b) aerial imagery from July 2016. Area indicated by yellow boundary represents area of river corridor 
used in analysis of DEMs. 

 
 Intermediate UAS surveys were also completed in April 2015, August 2015, November 2015, 

May 2016, and August 2016. In analysing geomorphic change, we only considered in detail the 



 77 

April 2017 UAS survey in comparison to the 2015 ALS survey in order compute the greatest 

amount of change represented in the two DEMs used to generate the DoD. 

Errors in the UAS DEMs were more prevalent at the Shepard Brook site than at the 

NHR site. Large areas of smoothed/interpolated data were present in areas of thick trees cover 

where the UAS imagery could not reliably observe the ground surface (Figure 3.9). Similar 

missing data resulting from smoothing can be observed on much of the streambank area. In 

comparison to the New Haven River, Shepard Brook has greater tree cover along the 

streambanks, which may explain the poorer performance. This can be observed in the DoD 

between 2017 UAS and 2014 ALS survey (Figure 3.9c). The large areas of vegetation along 

the banks resulted over-estimated erosion values along many portions of the river channel. 

This is also evident in the measurement of volumetric change over the river corridor which 

was showed a likely innacurate net change of 13,372 m3, with respective measurements of total 

positive change (deposition) of 21,76 6 m3 and total negative change of 8,034 m3.   However, 

an area with active erosion (shown in Figure 3.9b) within an area with less vegetation is easily 

visible in the DoD showing as bank erosion (Figure 3.9c). The results of DEM generation 

from Shepard Brook indicates that in densely vegetated river corridors, including those with a 

number of evergreen trees, a greater erosion threshold is necessary for UAS survey to be 

reliable. Additionally, measurements of erosion may be most successful if performed over 

specific smaller areas where DEMs are known to be representative of the actual ground 

surface. 
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Figure 3.9. Digital elevation models (DEMs) of New Haven River produced from (a) 2014 ALS 
survey and (b) 2017 UAS survey and (c) DEM of difference (DoD) calculated from 2017 UAS survey 
– 2014 ALS survey. 

Characteristics of river corridor and relation to bank erosion measurement 

The ability to detect geomorphic change the river corridor using topographic data is a 

function of the magnitude of change, resolution of the topographic data, and amount of error 

and noise in the data. We observed the primary source of noise in the topographic data was 

due to the presence of heavy vegetation. Given that photogrammetric methods such as UAS-
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based SfM are line-of-sight survey methods that are dependent on being able to observe the 

surface of interest, the effect of vegetation that obscures or partially obscures the data is 

expected. This is consistent with previous findings that dense vegetation can cause large errors 

(Cook 2017; Hamshaw et al. 2017). As previously noted by Cook (2017), SfM techniques are 

capable of filtering out sparse vegetation effectively. We observed similar results at the New 

Haven River site, where spring UAS DEMs reliably captured the ground surface, filtering out 

the presence of sparse ground vegetation and trees. Therefore, we found that the usefulness 

of UAS-based photogrammetry for capturing streambank topography is driven more by the 

effective density of vegetation than the absolute presence.  

The automated DEM generation method used in our study is surprisingly robust in 

filtering out noise due to sparse vegetation and trees. In climates similar to the north-eastern 

U.S., the timing of survey is critical as river corridors with deciduous tree cover and 

grass/brush are best surveyed in early spring after snowmelt but prior to summer vegetation 

growth. This confirms previous findings that assessed the ability to capture streambank 

topography using UAS by Hamshaw et al. (2017) and found early spring conditions had much 

lower errors than summer and autumn conditions. River corridors that feature year-round 

vegetation (i.e. tropical and subtropical climates) or the dominance of evergreen vegetation 

will offer limited opportunity for photogrammetric methods such as SfM. 

Challenges and Recommendations for UAS river corridor monitoring 

This study utilizes the rapidly advancing technology of UAS and digital 

photogrammetry in surveying river corridors for the monitoring of streambank erosion. Many 

previous studies focused on acquisition and assessment of UAS-based topographic data along 

a single, short river reach. In contrast, we collected survey data over approximately 20 km over 

a varied set of river reaches. Studies seeking to evaluate geomorphic change are necessarily 



 80 

dependent on the timing of surveys capturing the land surface pre- and post- significant storm 

events. While our various study areas were selected in part because of a known occurrences 

of bank erosion and susceptibility to continued erosion, only very limited areas of significant 

bank erosion occurred as no large flood events took place between survey dates. Therefore, 

while we have highlighted the application of UAS-based photogrammetry along two river 

sections, the evaluation of UAS-based bank erosion quantification along many river reaches 

remains to be evaluated.  

We also note there are differences in topography and land cover between our study 

area and many demonstrated applications of UAS for geomorphic change detection. In the 

northeast U.S., many river corridors are purposefully protected to preserve vegetation and tree 

cover, which presents a challenge to remote sensing-based survey methods such as 

photogrammetry. However, because of the flexibility in survey timing offered by UAS, we 

were able to wait for optimal survey conditions in order to acquire high quality topographic 

data along many river sections. In the process, we encountered several challenges in 

completing and processing data due in part to the use of an emerging technology, which in 

certain aspects is still in infancy, but at the same time rapidly advancing in some aspects. We 

make the following recommendations as lessons learned for future applications of UAS for 

surveying along river corridors including the application to geomorphic change detection and 

streambank erosion measurement. 

1. For applications in continental and temperate climates, we recommend surveys 
be performed in spring conditions after snowmelt and prior to “leaf-out” to 
minimize errors caused by vegetation. Late-autumn conditions may also be 
appropriate provided there is not significant dead standing vegetation/brush still 
present.  

2. The ability of the UAS-based photogrammetric method to capture the ground 
surface is dependent on the density of vegetation, not just the presence of 
vegetation. We recommend confirming through site visits or from historical 



 81 

imagery whether at any times of the year, the area of interest is relatively free of 
dense, obscuring vegetation rather than relying on basic presence/absence of 
trees or vegetation in planning surveys.   

3. For climates similar to the north-eastern U.S., we recommend planning on 
accommodating one third of planned survey days to be rescheduled due to 
weather conditions. In our study, we found that 43% of survey days were 
impacted by excessive wind or rain. 

4. We found that a UAS with accurate, direct georeferencing capabilities such as the 
eBee RTK and RTK-enabled eBee Plus greatly, simplified field data collection 
because they eliminated the need for GCPs. However, to achieve maximal 
accuracy or to accommodate a workflow utilizing lower cost UAVs, we 
recommend the collection of at least a sparse network of GCPs encompassing 
the entire survey area. 

 

Conclusions and Future Work 

The UAS application to monitoring of river corridors for streambank erosion 

presented here provides a cost-effective and efficient way to obtain high-resolution 

topography data on river corridors. While accuracy depended heavily on the density of 

vegetation present, we were able to capture high quality DEMs along river corridors with 

significant tree canopy and vegetation provided surveys were conducted in early spring when 

optimal ground conditions occur. We utilized an automated workflow for georeferencing 

UAS-derived topography and generating DEMs that then allowed the direct comparison of 

multiple survey dates or to airborne lidar surveys by using a differencing of DEMs approach. 

The ability to calculate the volume of erosion and deposition along the entire river corridor 

provides a better understanding of the rate and pattern of bank erosion.  

Given sufficient planning and selection of survey dates to achieve optimal vegetation 

and weather conditions, UAS-based photogrammetry provides topographic data that 

improves upon the resolution of currently available airborne lidar survey data. UAS technology 

is a rapid growth area and new camera sensor technology, improvements in photogrammetric 
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software and processing algorithms, and the direct georeferencing capability of GPS equipped 

UAVs should both improve the utility and performance of future systems. 
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CHAPTER 4. A NEW MACHINE-LEARNING APPROACH FOR 
CLASSIFYING HYSTERESIS IN SUSPENDED-SEDIMENT 

DISCHARGE RELATIONSHIPS USING HIGH-FREQUENCY 
MONITORING DATA 

 
 

Abstract  

Studying the hysteretic relationships embedded in high-frequency suspended sediment 

concentration and river discharge data over individual storm events provides insight into the 

drivers and sources of riverine sediment during events. However, the literature remains limited 

to analyses using simple visual classifications (linear, clockwise, counter-clockwise, and figure-

eight patterns) or the collapse of these patterns to a hysteretic index. This study helps automate 

the assessment of event sediment dynamics through the use of machine learning and three 

years of high-frequency suspended sediment and discharge data collected from a medium-

sized watershed and five of its tributaries. Across all sites, 600 events were captured and 

fourteen different types of hysteresis were identified. Event classification was automated by 

training a restricted Boltzmann machine (RBM), a type of artificial neural network, on images 

of the suspended sediment-discharge plots. The expanded classification allowed for new 

insight into drivers of hysteresis types including spatial scale, antecedent conditions, hydrology 

and rainfall. The probabilistic RBM classification network predicted the correct or next most 

similar class 71% of the time. With increased availability of high-frequency suspended 

sediment data, the hysteretic classification approach presented here can be used to inform 

watershed management efforts to identify sediment sources and reduce fine sediment export. 
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Introduction 

Quantifying the relationship between riverine sediment export and discharge provides 

important information for understanding the state of hydrologic systems, ecosystem 

disturbances/stressors, with implications for downstream water quality. In particular, export 

of suspended sediment plays a critical role in sediment pollution, water-quality degradation, 

and ecosystem impairment.1 The association of suspended sediment and sediment-bound 

nutrients such as particulate phosphorus motivates better characterization and understanding 

of watershed sediment dynamics, nutrient loading, and potential risks (e.g., eutrophication) to 

aquatic ecosystems.2  

Processes associated with suspended sediment transport during hydrological events 

can be referred to as event sediment dynamics. Information on these dynamics as well as the 

sediment source may be inferred from the storm-runoff response and corresponding sediment 

concentration response.3–5 Given the underlying complexity and non-linear processes 

controlling sediment transport, the linkage between suspended sediment and discharge over 

single storm events often cannot be described by simple linear or univariate relationships.6 

This has given rise to numerous studies on suspended sediment concentration-discharge (SSC-

Q) relationships, frequently observed as hysteretic in nature.4,5,7–10 

 Williams10 appears to be the first to systematically describe single event SSC-Q 

hysteretic behavior (e.g., linear, clockwise, counter-clockwise, figure-eight loops and a few 

variations) using shapes and timing of the hydrograph and corresponding sedigraph, and offers 

examples of physical watershed processes that cause such patterns. Subsequent studies (1) 

identified these types of hysteresis in the SSC-Q relationships,11,12 (2) validated the physical 

processes that give rise to these patterns and then,7,8,13,14 (3) inferred sediment dynamics 

occurring in the study watersheds.9,15–17 Studies also demonstrated broad applicability of the 
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hysteresis patterns beyond the SSC-Q relationship; including, but not limited to, the 

relationship between discharge and soil moisture,18 discharge to other solute 

concentrations,19,20 and suspended sediment and turbidity.21 

SSC-Q hysteresis has also been used to identify (1) the relative contribution of in-

stream sediment sources and more distant hillslope sources to overall sediment yields,9,16,17,22–

24 (2) whether individual watersheds are supply-limited or transport-limited,3,4,7,19 and (3) the 

predominant sediment source, such as bank erosion.5,17 Studies on the temporal effects on the 

predominant watershed hysteresis types have inferred seasonal dynamics of sediment supply 

and transport,4,5,9,16,17,23,24 and although less extensively, the effect of watershed size,3,17,22 to 

understand how tributary sediment delivery differs from that of the downstream, main channel 

outlet.  

Classification of hysteretic SSC-Q patterns is important when making inferences about 

sediment dynamics. To date, researchers have utilized either a qualitative visual classification 

or hysteresis indices (HI)25 to quantitatively measure differences in the rising and falling limbs 

of the SSC-Q relationship. Various metrics have been proposed to automate and objectively 

classify hysteretic behavior.17,18,21,22,25–27 Some indices facilitate compression of information on 

the shape and pattern of the SSC-Q relationship into a single metric that helps infer event 

sediment dynamics without the need for classification. However, HI values are not unique 

(i.e., individual storm events with different hysteresis patterns can have the same index value) 

and therefore, often require additional metrics such as loop area or direction to preserve 

information lost during data compression.18,25  

Machine learning methods can help identify patterns in hydrological data. For 

example, feed-forward backpropagation algorithms have long been used in rainfall-runoff 

modeling and streamflow prediction.28,29 More recently, a new variety of pattern recognition 
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networks called deep belief neural networks (DBNNs) excel at classification applications such 

as hand-written character recognition,30 sparking extensive research into deep learning. One 

building block of the DBNN is the restricted Boltzmann machine (RBM), which acts as a 

feature extractor for pattern recognition and classification.31 The suite of RBM algorithms, 

now readily available in a variety of computer languages that run on a desktop PC, make them 

attractive in balancing state-of-the art performance with ease of implementation.32 

This study leverages three years of high-resolution riverine suspended sediment time 

series from multiple sites to show proof-of-concept of (1) expanding the existing visual 

classification system of storm-event suspended sediment hysteresis patterns, and (2) 

automating the classification of event hysteresis using a novel machine-learning technology 

designed for high-frequency environmental monitoring data. We then illustrate the utility of 

the technology for understanding the environmental drivers of suspended sediment dynamics 

during storms and suspended sediment provenance. The discussion includes implications and 

opportunities for watershed management communities, future applications, and modifications 

of this approach. 

Methods 

Study Area 

The Mad River watershed, located in the Green Mountains of Vermont within the 

Lake Champlain Basin (Figure 4.S1), was selected as a study site based on available long-term 

stream gauge records and ongoing geomorphic and sediment dynamics studies.33,34 Elevation 

ranges from 132 m to 1,245 m above sea level, with forests (83% of watershed area) 

dominating all but the valley floors, which are occupied by agriculture (8%) and village centers 

and other developed lands (8%) (Table 4.S1). Soils range from fine sandy loams derived from 

glacial till deposits in the uplands to silty loams derived from glacial lacustrine deposits in the 
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lowlands. Erosional watershed processes include bank erosion, agricultural runoff, unpaved 

road erosion, urban stormwater, and hillslope erosion. The Mad River main stem has been 

subjected to channel management activities (e.g. straightening, dredging, and armoring) as 

recent as the mid-20th century contributing to present-day decreased access to flood plains and 

increased erosion hazards.35 Mean annual precipitation in the watershed ranges from 43 mm 

along the valley floor to ~60 mm along the upper watershed slopes.36 

Data Collection 

We selected six study sites for monitoring, one along the main stem and one on each 

of five tributaries (Figure 4.S1). The Mad River is a fifth-order stream and the monitored 

tributaries are all fourth-order except for High Bridge Brook, which is a third-order stream. 

In-situ digital turbidity sensors (Forest Technology Systems model DTS-12) and automated 

samplers (Teledyne Isco 6712) with stage sensors collected river level and water quality data 

for analyzing event sediment dynamics. Both turbidity and discharge data were collected at 15-

min intervals. Suspended sediment concentration (SSC) samples were collected over storm 

events for laboratory analysis. Samples were processed using the standard gravimetric method 

(EPA Method 160.2) for measuring total suspended solids; but we discuss using the term SSC 

for generalizability.  To estimate a continuous (15-min interval) SSC time series, relationships 

between turbidity and SSC were developed for each monitoring station using a rating curve 

(Figure 4.S2). At all sites, turbidity was highly correlated with SSC (Table 4.S2). Tipping bucket 

rain gauges (Onset HOBO) collected precipitation data at seven locations within the 

watershed (Figure 4.S1). A meteorological station, located in the central portion of the 

watershed, provided soil moisture measured as volumetric water content of the soil at multiple 

depths. 
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 Stage-discharge relations were obtained from the existing USGS (Mad River - Station 

ID 04288000) rating curve or rating curves developed from discharge measured on three of 

the tributaries (Mill, Folsom, and Shepard Brook). At the High Bridge Brook and Freeman 

Brook monitoring sites, discharge was estimated by measuring stage and using an 

approximated stage-discharge rating curve based on the Mad River gauge discharge, scaled on 

watershed area. Study sites were instrumented in the spring after ice breakup and maintained 

until the start of ice formation in December from 2013 through 2015. Freeman Brook and 

High Bridge Brook had unstable channels making stage-discharge relationships impractical to 

develop; thus, they were monitored only during the 2013 data collection period.  

The identification of onset and end of individual storm events was semi-automated. 

The onset was set as the first positive rate of change between consecutive 15-min Q 

measurements; while termination was based on manual identification of an end point based 

on the graphical sloped line approximation.37 When multiple, proximate, discharge peaks could 

be attributed to distinct rain bands, they were divided into separate events.9 Rainfall for each 

event was assumed to be equivalent to the nearest rain gauge for each of the five 

subwatersheds, and calculated using a Thiessen polygon weighted average of all rain gauges 

for the main stem.  

A comprehensive range of hydrological conditions characterized the monitoring 

period. May to June 2013 was the wettest consecutive two-month period on record and 

culminated in a large flooding event on July 3, 2013; whereas, late summer 2015 featured very 

low flows and drought conditions. For both the Mad River and all monitored tributaries, 

bankfull flow events occurred during the monitoring period. When comparing our three-year 

monitoring to a flow duration curve generated from the Mad River USGS stream record shows 

the monitoring period adequately encompassed the variety of flow conditions (Figure 4.S4). 



 93 

Across all monitoring sites, 145 storm events were captured resulting in a total of 600 unique 

events (Figure 4.S4 inset). The highest number of events (35) were recorded in July and the 

fewest (7) in December. It should be noted that stations were not always online in May or 

December of a given year because of sensor deployment limitations. 

SSC-Q Plot Image Processing 

For each storm event, SSC-Q plots were generated from the time series. Because the 

visual hysteresis patterns may be affected by noise in the SSC or Q data, the event time series 

for SSC and Q were processed using a Savitsky-Golay smoothing filter38 prior to generating 

the hysteresis plots (Figure 4.S5). A 3rd-order, 21-step filter for the Mad River site and a 3rd-

order, 13-step filter for the tributary sites provided the best reduction of noise, while 

preserving the peaks and shape. Because smoothing was performed solely to simplify visual 

classification, it was applied after calculating the storm metrics. The SSC-Q hysteretic loop 

was shaded to preserve time (i.e., loop direction) (Figure 4.1b). Images used an 8-bit grayscale 

color palette, where white indicates the onset of the storm, and dark gray the end of the event, 

plotted on a black background (Figure 4.1c). To reduce computational time during 

classification, the SSC-Q plots were converted to 28 by 28-pixel resolution; both SSC and Q 

were normalized on a per-event basis. SSC-Q plot images were used to train and test an 

automated classifier using a supervised machine learning approach.  
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Figure 4.1. (a) hydrograph and sedigraph of October 18, 2014 event at Mad River site; (b) SSC-Q 
event plot with time represented by shading; (c) 8-bit grayscale image of SSC-Q plot at reduced 
resolution of 28 x 28 pixels used as input to classification tool where time is represented as going 
from white to gray; (d) restricted Bolztmann machine (RBM) classifier network; and (e) example of 
classification output from RBM network for two SSC-Q images where manually labeled correct class 
indicated by green box. 

Automated SSC hysteresis classification of storm events 

A set of frequently occurring patterns embedded in the 600 SSC-Q plots was 

identified; and the SSC-Q plots were manually labeled with the best-matching type of 

hysteresis. To automate the storm-event classification, a restricted Boltzmann machine (RBM) 

classifier (Figure 4.1d and Appendix 4.S2) was trained on a portion of the data and tested on 

the remaining data. Two examples of each hysteretic type were selected for the training data 
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to ensure each type was represented; the training data were then supplemented with a random 

selection of events until one-third of the events (210) were included for training. The 

remaining 361 events were withheld for testing.  The “complex” hysteresis types were 

excluded from the training and testing data. 

The RBM classifier performance was compared to the manually assigned hysteresis 

type of each storm. Because some hysteresis patterns may be a transition between two types, 

we also evaluated the network using “correct” classification or its next most similar type. The 

number of hidden nodes, mini-batches, and amount of training data all influence the 

prediction results; therefore, we varied the number of each as part of evaluating the RBM 

performance. The results were averaged over 25 model runs, which comprised five network 

simulations each using five different realizations of training data. 

Analysis of storm event variables 

We analyzed a suite of additional hydrological and meteorological variables (see Figure 

4.5) on a per event basis in conjunction with the raw sedigraph and hydrograph data to 

determine whether particular conditions are more conducive to producing a given hysteresis 

type. To determine if differences in the typical storm event were more likely associated with a 

particular hysteresis type, we compared the variable mean between each hysteresis type and all 

other types, repeating for each variable. Means were compared using between group t-tests on 

normally-distributed variables, and Wilcoxon rank tests when normality could not be assumed. 

In addition, a HI was calculated following procedures in Lloyd et al.25 

Two additional event variables were calculated for each event at the Mad River site. 

The coefficient of variation (CV) of the total event rainfall from all rain gauges within the 

watershed was computed to assess the spatial variability of rainfall. Secondly, the total 

stormflows from all events were fit to a lognormal distribution, repeated for each site. This 
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distribution was then used to estimate the quantile of stormflow for each event providing a 

measure of the size of hydrological response associated with each storm event. 

Results 

Hysteresis in SSC-Q event relationships 

Events fell into fourteen SSC-Q hysteresis types that could be grouped into five main 

categories (Class I – V) corresponding to those originally proposed by Williams10; however, 

Classes II, III, and V are now further subdivided into newly proposed types based on patterns 

observed repeatedly at the study sites (Figure 4.2). Class I, consists of Types 1A, 1B, and 1C 

and represents variations on the SSC-Q relationships that do not exhibit any hysteretic 

behavior. Class II behavior (clockwise loops) consists of types 2A, 2B, 2C, 2D, and 2E with 

differences in the timing of the peak SSC and peak Q influencing the shape of the hysteresis. 

Type 2A is indicative of the peak SSC occurring just prior to the peak Q; therefore, resulting 

in a SSC-Q plot with minor amount of hysteresis. In contrast, when the SSC peak occurs well 

before peak Q (i.e. Type 2D), it results in an “L” shaped loop. Type 2E is a variation where 

the peak SSC occurs well before peak Q but has a secondary peak SSC occurring near the peak 

Q. The Class III SSC-Q relationships (counter-clockwise loops) were similarly subdivided into 

Types 3A, 3B, and 3C reflecting separation differences in the timing between the SSC and Q 

peaks. An SSC-Q plot with a linear relationship followed by clockwise loop is indicative of 

Class IV behavior. The figure-eight shaped SSC-Q loops are represented as Class V with 

subcategories Type 5A and Type 5B discriminating between the loop direction. 
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Figure 4.2. Classes of hysteresis in SSC-Q plots from events observed in the Mad River watershed. 
Solid line indicates hydrograph and dashed line indicates sedigraph. (Note: scales are not consistent 
between storms) 

The majority (90.0%) of the monitored SSC-Q event relationships displayed hysteretic 

behavior. Across all study sites, the most commonly observed hysteresis types (63.8%, or 388 

of 600 events) were Class II (clockwise) patterns, indicative of a peak SSC occurring prior to 

the peak discharge. Class III (counter-clockwise) types occurred less frequently (8.5%). We 

were unable to identify a clear hysteresis type in 5.1% of the events and labeled those 

“complex” type hysteresis.  
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The frequency of hysteresis types varied among sites (Figure 4.3a). The Mad River 

(main stem) site featured the most varied hysteresis types including more frequent occurrence 

of counter-clockwise and figure-eight patterns compared to the tributaries. The tributaries 

predominantly featured Class II (clockwise) patterns (73%); however, the distribution of Class 

II subcategories varied among sites. The most common type observed at Freeman, Folsom, 

and Mill Brook was Type 2B; whereas Type 2C and 2D were the most common pattern at 

High Bridge Brook and Shepard Brook, respectively. There was variability in median HI by 

hysteresis type (Figure 4.4). Types 1A, 1B, and 1C had median values of HI near zero as well 

as the figure eight patterns (Types 5A and 5B). As expected, Class II (clockwise) types had 

positive median HI and Class II (counterclockwise) had negative. However, with the exception 

of two types (2C and 3B) median values of HI between types were not statistically different 

from other types (Figure 4.4). 

  
Figure 4.3. (a) Distribution of hysteresis types by site (b) Distribution of hysteresis types by month 
for only 4th order tributaries (Shepard, Mill, Folsom, and Freeman Brook) combined. 
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Figure 4.4. Box plots of Hysteresis Index plotted by hysteresis type. Shaded box plots indicate 
statistical difference from other types. 

Automated classification of hysteresis 

An RBM configuration with 25 hidden nodes and a mini-batch size of 14 provided 

sufficiently good prediction. Tests using smaller numbers of hidden nodes and mini-batch size 

degraded performance; while more hidden nodes resulted in negligible improvement and 

overfitting. This was consistent with the RBM training guidelines of Hinton39, which 

recommend a mini-batch size equal to the number of classes.  

The accuracy (total percentage of correct predictions) was 96% for the training data 

and 52% for the testing data. For the training data, 97% of events were classified correctly or 

into similar classes, and for the testing data, 71% (Figures 4.S7 and 4.S8). Results of some 

model runs showed difficulty in discriminating the hysteresis direction (i.e. classified as 

counterclockwise Type 3B instead of clockwise Type 2B) for some storms indicating that the 
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learning algorithm places a higher weighting on the image shape rather than the direction of 

hysteresis (Figure 4.S9).  

Storm event characteristics of hysteresis types  

Using only a single watershed scale (the fourth-order tributaries) allowed the analysis 

between typical event characteristics and hysteresis types to be performed at a consistent 

spatial scale (Figure 4.5). Patterns exhibiting no hysteresis (Types 1A and 1B) or minor 

hysteresis (Type 2A) occurred relatively infrequently (36 out of 414 events) across the four 

sites. These events were characterized as having low, 14-day antecedent rainfall, low deep soil 

moisture, and a lower and shorter event rainfall duration. In addition, despite having little 

separation between the peaks of the sedigraph and hydrograph, the time between the 

sedigraph peak and rainfall pulse was longer on average than other events.  

Type 2B hysteresis (moderate clockwise loop) was the most commonly observed (96 

events). Compared to all events, larger storms on average were classified as Type 2B, featuring 

greater 3-day and 14-day antecedent rainfall, higher pre-storm baseflows, greater rainfall total 

and maximum rainfall rate. Hydrological metrics also trended higher with large flood intensity, 

stormflow, sediment load, and peak sediment concentration. Similarities in Type 2C and Type 

2B events were observed in terms of larger flow metrics and antecedent rainfall. However, 

Type 2C (pronounced clockwise loops) events differed in that they have higher antecedent 

soil moisture conditions, shorter time span between the rain and sedigraph peaks, and less 

intense and shorter rainfall than Type 2B. Type 2C events would therefore be characterized 

by very wet antecedent conditions in which a non-intense rainfall results in a rapid sediment 

response. 
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Figure 4.5. Hysteresis types with significant difference within type mean compared to overall mean 
for storm event variables from all 4th order tributaries (Shepard, Mill, Freeman, and Folsom brook). 
Normally distributed variables tested with t-test and non-normally distributed variables with the 
Wilcoxon test. 

 

 
The Type 2D events had very different characteristics than Types 2B or 2C events. 

Compared to Types 2B and 2C events, Type 2D events were characterized by drier antecedent 

conditions with on average lower baseflow, less 3-day and 14-day antecedent rainfall, and 

lower soil moisture. In addition, Type 2D events tended to feature lower and shorter rainfall 

and correspondingly less stormflow and less sediment yield. These events were also 

characterized as having the shortest time span between the rainfall peak and sedigraph peak. 

Type 2E clockwise events are characterized by both a rapid sediment response and a delayed, 

second sediment pulse closer to the hydrograph peak. It therefore may be considered a 

combination of Type 2D and Type 2A or 2B patterns. Perhaps owing to its “mixing” of two 

event types, Type 2E events are not distinguished statistically from the overall data for the 



 102 

majority of variables. Of note, Type 2E events feature little separation in the timing of the 

rainfall peak and sedigraph peak, which is consistent with the very early sediment pulse, and 

the tendency for low sediment concentrations and low flow normalized sediment flux. 

Although Class III, IV, and V patterns occurred less frequently (83 out of 414 events) 

in the four tributaries, some patterns emerged between the event metrics and hysteresis types 

classes. The Type 3A and 3B counterclockwise patterns were observed in events that featured 

on average less antecedent rainfall and lower rainfall amount and duration. The flows were 

also characterized as being smaller in magnitude with longer durations and time to peak 

discharge. Interestingly, they also tended to have higher flow normalized sediment fluxes, 

which is likely a result of the sediment peak occurring during a portion of the hydrograph with 

higher flows compared to Type 2D. Type 4 hysteresis, which features a more linear SSC-Q 

relationship followed by a clockwise loop, occurred most frequently during events with a few 

unique characteristics. These events tended to have low rainfall rates that were long in duration 

with corresponding low flood intensity and longer times to peak discharge. These storms also 

occurred most frequently in late spring and late autumn when more typical climate patterns 

comprise slower moving, less intense frontal storms in spring and autumn, as opposed to 

shorter, more intense convective storms typical of the summer. Events displaying Type 5A 

hysteresis were on average small events that occurred with dry antecedent conditions. 

Discussion 

Expanded classification of hysteresis types and comparison to HI 

Expansion of the hysteresis classes helped identify differences among our sites that 

would not be possible using an analysis based solely on the five original classes proposed by 

Williams.10 For example, three tributaries (Shepard, Folsom, and Freeman Brook) were 

essentially dominated by the same percentage (65 – 67%) clockwise (Class II) hysteresis 
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patterns across the three sites. However, classification using this one category obscures the 

fact that in Shepard Brook the most common Type 2D hysteresis differs from that observed 

in Folsom and Freeman Brook where Type 2B is the most frequent. In addition, at the High 

Bridge Brook tributary site a different type of clockwise pattern was most frequent (Type 2C). 

Thus, our expanded classification helps further distinguish in-storm sediment export regimes 

that could provide more insight into dominant drivers of suspended sediment export during 

storm events across different catchments.  

While other studies have suggested the need for an additional new class, we believe 

this study is the first to systematically expand the types of hysteresis observed in the SSC-Q 

relationship. Asselman3 differentiated between two types of clockwise loops (typical and 

pronounced), which would be most similar to our Types 2B and 2C, respectively. Similarly, a 

weak clockwise loop was identified by Gao and Josefson4, which corresponds to Type 2A in 

our classification. Previous studies have also identified a double clockwise loop.11,17 As noted 

by Zuecco et al.18 hydrographs that feature multiple peaks can create complex patterns such as 

the double clockwise loop; but generally, they can be avoided by separating the peaks into 

individual events. The limitation posed by the singular clockwise loop classification was also 

identified by Duvert et al.7, where flash flood type events produced hysteresis patterns that 

could not be easily classified. Our expanded classifications comprise patterns commonly 

observed in our study; they also comprise types considered or proposed in the above studies. 

Hysteresis indices have been adopted widely as a way to expand the analysis of 

hysteresis loop in terms of direction and prominence. The non-uniqueness of HI across types 

as identified by Lloyd et al.25 was evident in our data set. For example, Types 2A and 2D have 

similar HI values as do Types 3A and 3C. However, both pairs of classes differ significantly 

in the distance between peak SSC and Q. Various enhancements to hysteresis indices have 



 104 

been proposed to overcome the issue of non-uniqueness. Lloyd et al.25 proposed also 

computing a loop area; and Zuecco et al.18 proposed using the minimum and maximum 

differences between the rising and falling limbs of the hysteresis plot. However, all the 

hysteresis indices, by design, lose information about the shape of the loop during the 

compression to an index value. Using the entire SSC-Q hysteretic image as proposed here 

avoids such loss of potentially valuable information, as illustrated by the following discussion.  

Drivers of hysteresis type 

 We were able to interpret different drivers of hysteresis type (Figure 4.5).  Antecedent 

watershed conditions related to soil moisture levels at the start of events, and prior rainfall 

amounts had a clear impact on event SSC-Q hysteresis type classification. Previously, wet 

antecedent conditions in the watershed have been connected to clockwise patterns,23 and in 

general, our findings were consistent. However, our results indicate a more nuanced analysis 

is warranted because different types of clockwise patterns were observed to have different 

event drivers including antecedent conditions and storm event characteristics.  

Moderate clockwise hysteresis (i.e., Type 2B) events were on average larger storm 

events that occurred after significant rainfall and with higher pre-storm baseflows. Because 

these events featured higher than average sediment load and peak concentrations, this suggests 

that large rainfall events occurring on relatively wet antecedent watershed conditions cause 

widespread connection and mobilization of sediment sources; but with limited supply. This is 

in line with previous studies that found clockwise patterns were indicative of sediment supply 

in areas nearby the channel,23 and ample sediment supply from channel and gully erosion.17 

Bank erosion and gully erosion are present in all four tributary watersheds. Conversely, smaller 

rainfall events occurring with wet antecedent conditions in the watershed were likely to exhibit 

stronger hysteresis (Type 2C) than observed with larger events. Therefore, sediment sources 
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are still quickly mobilized, but are more limited in supply, suggesting less lateral connectivity 

with sediment sources.  Thus, in these systems, small storms with high antecedent landscape 

moisture can quickly mobilize sediment from available nearby sources, yet have limited supply 

given the rapid decline in sediment concentration around the hydrograph peak.  

Events with dry antecedent conditions likely have limited availability or connection to 

sediment sources, thereby limiting loading. Interestingly, a varied set of hysteresis patterns 

(primarily Types 2D, 3A, 3B, and 5A) were associated with various measures of dry antecedent 

conditions. Type 2D events occurred most frequently; and the very short time from rainfall to 

peak SSC suggests the sediment supply is limited to nearby, overland sediment sources. Thus, 

once rainfall ceases, the sediment supply decreases very rapidly; and typically dry antecedent 

conditions suggest that Type 2D and similar patterns would not have significant overland flow 

or connection to remote sediment sources. This conclusion is consistent with Asselman’s3 

observation that pronounced clockwise hysteresis was attributable to erosion and sediment 

supply just upstream of the measurement location. 

Counter-clockwise (Class III) patterns are typically attributed to sediment sources 

being more distant from the channel15 and may be attributed to storm events where erosion is 

primarily occurring in the far upstream or upslope portions of the watershed. These events 

feature long time delay between rainfall and sediment response. That these events had similar 

characteristics (dry antecedent conditions and smaller storms) to Type 2D events where 

sediment is proximal highlights the spatial complexity likely in the sediment response. In the 

larger Mad River watershed, rainfall events, particularly those during summer months, are 

often spatially isolated. Therefore, events occurring under similar conditions but with very 

different sediment pulse timing, may be the result of spatially isolated areas within the 

watershed mobilizing sediment. Figure eight Type 5A events also were associated with dry 
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antecedent conditions. This is similar to findings of Seeger8 but in contrast to findings reported 

by Buendia et al.,23 who observed figure-eight patterns associated with large events and wet 

antecedent conditions. Figure-eight patterns have also been attributed to a combination of 

streambank and streambed sources with a delayed sediment contribution from distinct 

upstream sources;8,11,40  and therefore, may be considered the result of fairly complex processes 

with drivers that may be more watershed specific. We also note, that our analysis indicates dry 

antecedent conditions promote more spatially and temporally heterogeneous hysteresis types. 

Seasonal changes in hysteresis types suggest shifting drivers and sources of sediment 

to streams. We observed Type 2C and 2B events more frequently during the late spring 

(May/June) and late autumn (November/December) months (Figure 4.3b). In the 

Northeastern U.S., streambanks, fields and hillslopes have less ground cover and are more 

susceptible to erosion during these months. Other studies observed a similar seasonal trend 

with clockwise patterns more prevalent in spring or late autumn/winter conditions.3,9,16 Type 

2D events occurred most frequently during summer and early autumn months (July to 

October). Presentation of hysteresis types were consistent with typical climate patterns 

observed in the Northeastern U.S. (i.e., more frequent rainfall and wetter antecedent 

conditions in June/July and drier conditions in August/September followed by increased 

rainfall and soil moisture again in October/November). During late autumn conditions, Type 

4 events were more prevalent. This type of hysteresis has not been studied as extensively as 

the more common clockwise, counterclockwise, and figure-eight classes; but Williams10 

alluded to a threshold effect at higher discharges. This may suggest sediment sources for Type 

4 events are primarily in-channel or bank sources activated by some discharge threshold. Since 

this event is more common during late autumn and lacks the early sediment pulse present in 
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Type 2D and 2E events, it also suggests possible occurrence of seasonal depletion of proximal 

sediment sources.  

Effect of watershed scale  

The timing of sediment delivery from sources within the watershed to the outlet affects 

the type of hysteresis observed; and therefore, watershed scale needs to be considered. We 

observed a scale effect in our study that manifest in a significantly different distribution of 

hysteresis patterns observed at the Mad River outlet (watershed scale) compared to the 

tributary scale. When comparing the distributions of hysteresis types at Mill, Shepard, and 

Folsom Brook to the distribution at the Mad River outlet, we observed a notable shift from 

predominantly clockwise (Class II) hysteretic types to a more uniform distribution (Figure 

S10). Asselman3 noted a similar shift from clockwise loops in upstream tributaries to counter-

clockwise loops in downstream locations. Analysis also suggests that the river flood wave can 

propagate downstream faster than the sediment pulse and that tributaries of this size often 

produce clockwise SSC-Q loops, both consistent with previous work.10,16,17,23. 

The effect of upstream sediment source delivery on downstream hysteresis type was 

also observed in our rain gauge data. The Mad River subwatersheds are on the spatial scale of 

10 – 50 km2; as a result, they are more uniformly impacted by rainfall events than the entire 

Mad River watershed, which frequently experiences rainfall limited to portions of the 

watershed. Events with large separation between sedigraph and hydrograph peaks (Types 2D, 

3B, 3C) tend to have both smaller total stormflow and higher variability among rain gauge 

totals (Figures 4.S12 and 4.S13). This suggests that at the Mad River scale, hysteresis types 

with the sediment pulse well before or after the hydrograph peak are indicative of rainfall 

localized in only a portion of the watershed. These findings are consistent with those of Smith 

and Dragovich17 who observed small events were dominated by flow and sediment delivery 
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from a localized portion of the upstream watershed.  Gao4 noted that hysteresis analysis is 

most often performed for watersheds smaller than 100 km2; and that application to larger 

watersheds is largely affected by sediment delivery from upstream tributaries and, therefore, 

more difficult to isolate the specific source. Our results support this conclusion; however, our 

simultaneous monitoring of upstream and downstream locations as well as rainfall variability 

within watersheds allowed more robust analysis at the larger watershed scale. 

Implications for watershed management 

Hysteresis analysis has been used to infer sediment dynamics worldwide with the goal 

of reducing soil loss and sediment export.5,9,19 Our study offers an expanded classification 

scheme of hysteresis patterns that leverages high-frequency sediment data to better understand 

sediment dynamics within a watershed. With SSC-Q hysteresis being monitored in watersheds 

around the world, we believe the pattern types observed in our study are likely transferable to 

other locations. However, we do not presume this classification as an exhaustive set of 

patterns.  

Hysteresis analysis relies solely on the timing and shape of the sedigraph and 

hydrograph, relatively low-cost monitoring equipment such as stage and turbidity sensors may 

be used without necessarily creating rating curves for discharge and SSC. Aich et al.22 

demonstrated a rapid assessment survey, in which only a small number of storms are 

monitored, can provide insight into sediment transport processes within a watershed. 

However, as this study demonstrates, longer term monitoring may uncover important seasonal 

trends. 

We noted differences among the subwatersheds in terms of the most frequently 

observed hysteresis types, which help provide insights into sediment sources. In Shepard 

Brook, for example, Type 2D and 2E hysteresis were observed more frequently; and Type 4 
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were less frequent than in other watersheds suggesting the availability of nearby, rainfall-

activated sediment sources and the deficiency of distant, upslope sediment sources. Sediment 

export suppression efforts could, therefore, target sediment sources near the outlet such as 

gravel road ditches. In Mill Brook and Freeman Brook, Type 4 hysteresis was observed 

frequently, which is indicative of sediment sources activated above some discharge threshold. 

Thus, in this watershed, watershed managers might focus on sediment control efforts in areas 

with soils subject to erosion under higher discharges (e.g., streambanks and gullies), and 

monitor for shifts in hysteresis patterns to assess changes in sediment production. 

Challenges and Opportunities for Expansion 

The tools for automating visual pattern recognition from hydrological data presented 

here represent a novel application of artificial neural networks and an advancement beyond 

existing time series forecasting28,29 and clustering applications41,42. Our proof-of-concept using 

an RBM is readily scalable to deep learning algorithms that offer the potential for analyzing 

even larger data sets. The RBM-based classification of SSC-Q relationships also highlights 

opportunities for expansion of the methodology beyond analysis of event sediment dynamics. 

In this study, we combined high frequency monitoring and detailed pattern recognition to 

identify differences in SSC-Q event relationships that would be obscured if using only the 

overall hysteretic behavior (e.g. clockwise vs. counterclockwise behavior) of events. 

Concentration-discharge relationships using other constituents have found hysteresis patterns 

not observed in SSC-Q relationships.18,43 Therefore, potential for broader application of this 

approach to the analysis of event dynamics of other solutes or constituents exists provided 

high frequency monitoring data are available. 

A challenge encountered in our study was the identification of distinct hysteresis types 

used in the classification scheme. A possible solution lies with the nature of the RBM classifier 
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model. Because the RBM is a probabilistic network, the probability of correctly classifying 

each input pattern is computed (i.e. the marginal distribution across classes of hysteresis) along 

with the suggested classification (Figure 4.1e).  If a group of patterns are routinely unable to 

be classified with a significant level of confidence, it may suggest that additional hysteresis 

types exist and that the RBM should be re-trained on a larger set of hysteresis types. Complex 

hysteresis patterns that arise from multiple peak hydrographs (Figure 4.S11a) present an 

additional challenge for visual classification and highlights the need for careful consideration 

of event separation techniques. To minimize the effect of multi-peak hydrographs, we 

followed an approach similar to Sheriff et al.9 and accordingly, whenever possible, split back-

to-back hydrograph rises into individual rainfall events. 

 As more sediment data become available, particularly from other watershed 

locations, classification performance should improve through training RBM models on greater 

numbers of events. We observed differences in the distribution of hysteresis types between 

relatively similar watersheds. Therefore, having a greater number of events from a variety of 

watersheds with different land use, climate, geology, topography, and drainage area offer an 

opportunity for building a greater understanding of drivers of sediment loading during storms 

across both time and space. Building this knowledge and meaning behind an expanded set of 

hysteresis types in SSC-Q relationships offers a practical tool for applications focused on 

sediment connectivity and sources in watersheds. Furthermore, as tools for interpreting big 

data evolve, environmental researchers should continue their application in interpreting large, 

high-frequency datasets to better understand the complex environmental processes and their 

drivers.  



 111 

Acknowledgements  

Support provided by Vermont EPSCoR with funds from the National Science 

Foundation (NSF) Grants EPS-1101317 and EPS-1556770. Additional support provided by 

NSF under Grant DGE-0925179NSF, the Vermont Water Resources and Lake Studies 

Center, and the Robert & Patricia Switzer Foundation. We thank Kristen Underwood for 

fieldwork contributions and acknowledge landowners of study sites for their support. 

  



 112 

Supporting Information 

 

Figure 4.S1. The Mad River watershed and monitoring site locations 

Table 4.S1. Key characteristics of study watersheds 

  
Shepard 
Brook 

High Bridge 
Brook 

Mill 
Brook 

Folsom 
Brook 

Freeman 
Brook 

Mad 
River 

Area (km2) 44.6 8.6 49.8 18.2 17.0 344.0 

Minimum Elevation (m) 195 225 216 229 266 140 

Maximum Elevation (m) 1117 796 1114 886 860 1245 

Elevation Range (m) 923 571 898 657 594 1105 

Stream Order 4th 3rd 4th 4th 4th 5th 

Drainage Density 
(km/km2) 

2.38 2.45 2.16 1.77 1.95 0.97 

% Forested Land 92.2 66.7 89.2 77.6 76.2 85.5 

% Agricultural Land 1.0 16.6 1.5 12.7 8.3 4.7 

% Developed Land 5.6 15.5 7.0 8.8 14.6 8.0 

% Other Land 1.1 2.1 0.8 0.7 1.7 1.1 

Road density (km/km2) 0.83 2.30 1.19 1.07 1.80 1.32 
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Appendix 4.S1 Development of TSS-Turbidity relationships 

Total suspended solids (TSS) samples and companion measurements of turbidity (Turb) 

were used to generate regression models (rating curves) capable of estimating TSS from 

turbidity. Models were fit using ordinary linear least square regression of the log 

transformed variables. Models are of the form 

log10(𝑇𝑆𝑆) =  𝑏0 + 𝑏1 log10(𝑇𝑢𝑟𝑏)  , 

where b1 and b0 are the slope and intercept, respectively, of the linear regression fit to the 

log transformed variables. Appropriateness of the model was confirmed by there being no 

trend in residuals using the regression model. Regression models were converted to 

normal unit space to give a power curve model of the form: 𝑇𝑆𝑆 = 10𝑏0𝑇𝑢𝑟𝑏𝑏1 or more 

generally, 𝑇𝑆𝑆 = 𝑎𝑇𝑢𝑟𝑏𝑏1, where 𝑎 =  10𝑏0. Retransformation of the data introduces 

bias in the model requiring the application of a bias correction factor (BCF) to the 

estimates of TSS.44  The bias correction factor for base-10 logarithmic transformed data 

is calculated as: 

𝐵𝐶𝐹 =  
∑ 10𝑒𝑖𝑛

𝑖=1

𝑛
 

where n is the number of samples and ei is the residual of each measurement in log units. The 

final model then becomes: 

𝑇𝑆𝑆 = 𝐵𝐶𝐹 × 𝑎𝑇𝑢𝑟𝑏𝑏1. 

Rather than using a single TSS – turbidity relationship for all six sites, a TSS – turbidity 

regression model was fit to each individual site (Figure 4.S2). This was confirmed with an 

ANCOVA test that identified significant differences in the slopes of the regression models 
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across all six sites (p < 0.001). This is further justified by the recognition that individual 

watersheds feature differing soil types suggesting that higher TSS prediction accuracy might 

be provided by TSS-turbidity relationships developed for individual monitoring sites. The 

individual TSS-turbidity regression models show very good model-fit with adj-R2 ranging 

from 0.726 to 0.895 (Table 4.S2).  

 

Table 4.S2. Parameters of fit power law rating curve for monitoring sites.  
Site a b1 BCF n R2 - adjusted 

Mad River 2.8222 0.8292 1.4257 163 0.726 

Shepard Brook 4.2248 0.7034 1.1688 49 0.752 

High Bridge Brook 0.5304 1.1949 1.0532 41 0.895 

Mill Brook 1.2179 1.0022 1.0838 83 0.882 

Folsom Brook 0.6104 1.1415 1.0717 75 0.888 

Freeman Brook 1.2290 0.9670 1.0580 39 0.884 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 4.S2. TSS – turbidity rating curves for the six monitoring sites. Dashed line indicates power 
law fit. 
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Figure 4.S3. Summary of monitoring record at each study site indicated by months when station was 
online 

 
 

 
Figure 4.S4. Flow duration curve for the Mad River monitoring site showing days when suspended 
sediment monitoring occurred. Inset shows count of storm events captured by month across all sites 
combined. 
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Figure 4.S5 – Example of smoothing and image processing applied to discharge and suspended 
sediment data from October 18, 2014 storm event at the Mad River. (a) and (c) depict the raw 15-
min data and (b) and (d) show data after both time series are smoothed. 
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Appendix 4.S2 Restricted Boltzmann Machine (RBM) 

The restricted Boltzmann machine (RBM)45, is a type of artificial neural network 

used for unsupervised learning that has experienced an increase in popularity for its 

extended use as a classification model46 and more recent use in deep learning applications.47 

The RBM is a stochastic, generative model that consists of two layers (Figure 4.S6a): a layer 

of visible nodes (input data) and a layer of hidden nodes. After training, the RBM provides a 

representation of the training data and its hidden layer may be considered a type of feature 

extractor.  

Learning in a RBM is typically unsupervised using contrastive divergence,48 which is 

a form of gradient descent. The goal of training a RBM is to adjust the parameters (weights) 

of the network such that the probability distribution extracted by the RBM becomes 

maximally similar to the training data (i.e. maximizing the log-likelihood of generating the 

observed data). Essentially, there are two phases in the RBM learning algorithm, (1) the 

positive phase where a training pattern is clamped to the visible units and hidden unit 

activations are computed and (2) the negative phase that consists of computing or modeling the 

reconstruction of the training data given the hidden unit states. Computation of the positive 

phase is fairly straightforward; but the negative phase requires inference methods using 

Markov Chain Monte Carlo sampling methods. Different sampling methods have been 

proposed for the contrastive divergence approach, with block Gibbs sampling over a fixed 

number of iterations31 being one of the most common. To improve the learning speed and 

convergence, the dataset is typically split into mini-batches; and the gradient in each learning 

step is averaged over the patterns of the mini-batch. Readers are referred to Fischer and 

Igel49 and Hinton39 for in-depth discussion of RBM training methods.  



 119 

While RBMs are useful in themselves for feature extraction or image generation after 

initial training; in many applications, they are extended to a classifier model. When extended 

to a classifier network algorithm, the trained hidden features are used as input to an 

additional classifier layer (Figure 4.S6b). In this approach, the trained RBM is then connected 

to a subsequent classifier layer; and the entire network is “fine-tuned” by the 

backpropagation learning method.50 RBMs can be used for classification by other methods 

including training a separate RBM for each class39 or by incorporating a “class label” node in 

the visual input layer.46 We selected the former approach as it has been demonstrated to be 

both practical and is similar to the approach implemented in DBNN applications 10.  

 

Figure 4.S6. (a) Network architecture of restricted Boltzmann machine (RBM) and (b) RBM 
classifier neural network. 
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RBM Model Classification Performance 

 

Figure 4.S7. Confusion matrix for results of RBM classifier on training data set. Correct classes are 
indicated in green, shaded cells and what are considered visually similar classes in yellow, hatched 
cells. 

 

 

Figure 4.S8. Confusion matrix for results of RBM classifier on test data set. Correct classes are 
indicated in green, shaded cells and what are considered visually similar classes in yellow, hatched 
cells. 
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(a) (b) (c) (d) 

    

    
Label: 2D Label: 2E Label: 2A Label: 5A 

    
(e) (f) (g) (h) 

    

    
Label: 2B Label: 3B Label: 2B Label: 2D 

Figure 4.S9. Examples of storm events correctly (a,b,c,d) and incorrectly (e,f,g,h) classified by RBM 
model in terms of probability of each class being correct. Label applied to each event from manual 
classification is at bottom and indicated by boxed hysteresis type. 
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Figure 4.S10. Comparison of observed hysteresis types at Mad River watershed outlet and the Mill 
Brook tributary scale 
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(a) 

 
(b) 

 
(c) 

 
Figure 4.S11. Examples of (a) multipeak event and corresponding SSC-Q plot with a complex 
pattern of hysteresis, (b) storm event with Type 2A hysteresis showing peak SSC aligned closely with 
peak Q, and (c) storm event with Type 2D hysteresis showing peak SSC aligned closely with peak 
rainfall. All events are from Mill Brook. 
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Figure 4.S12. Comparison of coefficient of variation in total event rainfall recorded by rainfall 
gauges between storms categorized as little to moderate hysteresis (Types 1A, 1B, 1C, 2A, 3A) and 
those with large separation of rainfall and sediment pulse (Types 2D, 3B, 3C). 

 

Figure 4.S13. Lognormal distribution quantile for stormflow of Mad River events by hysteresis type 
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CHAPTER 5. PREDICTING RIVER SUSPENDED SEDIMENT 
LOADINGS USING HYDROMETEOROLOGICAL VARIABLES 

AND COUNTERPROPAGATION NEURAL NETWORKS 
 

Abstract 

The estimation of suspended sediment discharge in river systems not being monitored 

for sediment or streamflow is essential for watershed monitoring and management needs in 

order to address the impacts of excessive fine sediment and associated nutrient loading. In this 

study, we develop and apply two recurrent counterpropagation networks (rCPN) used in 

tandem; one for predicting streamflow and another for suspended sediment load (SSL) using 

only hydrometeorological data as the input variables. Three years of suspended sediment 

concentration and streamflow data from three sites within a medium sized watershed in 

northeastern United States are used to train and test the rCPN. Predictions of SSL were also 

compared to those generated by a traditional sediment rating curve method. Results show the 

rCPN is capable of reliably estimating both streamflow and SSL using only measurements of 

precipitation and soil moisture as inputs. At all sites, the rCPN outperformed the sediment 

rating curve model. In addition, the rCPN estimation is demonstrated at an ungauged location 

by training on data from one watershed and testing in another similar watershed. 

Introduction 

Fine sediments have been recognized as an important, diffuse source of surface water 

pollution because of their role in the transport and fate of nutrients and contaminants such as 

phosphorous (Krueger et al., 2012; Perks et al., 2015; Walling, Collins, & Stroud, 2008). 

Additionally, suspended sediment and turbidity have been identified as the leading, direct 

cause of stream and river impairment in the United States (US EPA, 2013). Therefore, it is 
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desirable to quantify suspended sediment concentration in river systems when assessing the 

health of river systems, modeling sediment transport, or developing watershed management 

plans.  Unfortunately, the direct measurement of suspended sediment concentration (SSC) 

frequently and over long periods is resource intensive; and as a result, models are typically 

utilized for estimating suspended sediment yields from watersheds.  

Empirical methods, such as the creation of sediment rating curves (SRCs) using simple 

linear or power law regression models, have been used extensively for decades to predict 

sediment concentration from streamflow measurements and continue to be used in current 

practice. SRCs are most applicable to the estimation of daily average SSC and long-term (e.g. 

annual) sediment fluxes in medium to large river systems (Horowitz, 2003).  When used to 

estimate SSC at finer time steps (e.g. hourly) or in very small rivers, they often give poor model 

fit resulting in inaccurate SSC estimates at both peak and/or base flows (Abrahart, See, 

Heppenstall, & White, 2008; Gao, 2008). Artificial neural networks (ANNs), a subset of the 

larger field of machine learning methods, are capable of identifying complex, non-linear 

patterns in large data.  In general, ANNs are nonparametric, statistical tools whose structure 

is inspired by the design of the human nervous system. Because of the inherent complexity in 

sediment transport processes, there is large potential for ANN use in detailed sediment 

modeling (Abrahart et al., 2008). 

A variety of other sediment transport models include physics-based, conceptual, and 

empirical models. Lumped and distributed physics-based models can simulate detailed erosion 

and sediment transport processes and can be advantageous for forecasting conditions outside 

the range of available observations (Mukundan et al., 2013; Pieri, Poggio, Vignudelli, & Bittelli, 

2014; Stryker, Wemple, & Bomblies, 2017). However, physics-based models often require 

extensive data collection and calibration to simulate the complex physics associated with 
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erosion and sediment transport; as such, empirical or data-driven methods offer an alternative 

for sediment yield forecasting (Abrahart et al., 2008; Merritt, Letcher, & Jakeman, 2003). The 

non-linear relationships between sediment concentration, discharge and other variables, as 

well as the greater availability of highly-resolved, suspended sediment data have motivated the 

increased use of data-driven machine learning and genetic programming methods (Mount & 

Abrahart, 2011). Large amounts of suspended sediment data may now be generated using 

either automated samplers (Gettel et al., 2011) or surrogate (e.g. turbidity or acoustic 

backscatter) monitoring (Rasmussen, Gray, Glysson, & Ziegler, 2011; Tananaev & Debolskiy, 

2014). The increased availability of reliable, relatively low-cost turbidity sensors, capable of 

recording at high frequencies (e.g. 5- or 15-minute intervals), offers new opportunities to 

investigate sediment dynamics at the individual storm event scale using ANN algorithms. 

ANNs have found broad application in modeling of hydrology, rainfall-runoff, and 

water resource variables (Abrahart et al., 2012; ASCE, 2000a, 2000b; Firat, 2008; Maier, Jain, 

Dandy, & Sudheer, 2010).  The most popular neural network is the feed forward back 

propagation (FFBP) algorithm due to its ability to form a non-linear mapping between input 

variables and a desired output and the widespread availability of software packages (e.g., 

Matlab Neural Network toolbox). However, the FFBP has been criticized given its high 

susceptibility to overfitting, relatively slow learning (training) algorithm, and its sensitivity to 

initial conditions (Abrahart et al., 2012; Cigizoglu & Alp, 2006; Mount & Abrahart, 2011). 

Thus, caution is needed to ensure users are knowledgeable of the training process and the 

algorithm’s limitations. Despite these limitations, the positive results identified in many studies 

result in its continued use in an ever-expanding list of applications, including the prediction of 

SSC and suspended sediment load (SSL). 
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Similar to ANN applications for predicting streamflow, the most common ANN used 

in the prediction of SSC or SSL is the FFBP algorithm, or a variant thereof (Afan, El-shafie, 

Mohtar, & Yaseen, 2016). Variations on the traditional FFBP algorithm include coupling 

FFBP with adaptive neuro-fuzzy inference (e.g. Rajaee, Mirbagheri, Zounemat-Kermani, & 

Nourani, 2009) and wavelets (e.g. Liu, Shi, Fang, Zhu, & Ai, 2013). Other ANN and machine 

learning methods for estimating SSC or SSL include generalized regression neural networks 

(GRNN) (e.g. Cigizoglu & Alp, 2006), radial basis function networks (e.g. Alp & Cigizoglu, 

2007), support vector machines (e.g. Kakaei Lafdani, Moghaddam Nia, & Ahmadi, 2013), and 

genetic programming (e.g. Kisi & Shiri, 2012).  However, all of these applications used prior 

observations of suspended sediment as inputs to predict suspended sediment, limiting the 

model application to sites that have measured suspended sediment data. Even in recent years, 

the use of time-lagged measured suspended sediment data as input data continues to be the 

most common approach in ANN sediment prediction studies (Buyukyildiz & Kumcu, 2017; 

Joshi, Kumar, & Adhikari, 2016; Kumar, Pandey, Sharma, & Flügel, 2016; Olyaie, Banejad, 

Chau, & Melesse, 2015). Abrahart et al. (2008) are one of the few groups to acknowledge that 

this has little to  no practical value in real-world applications. This raises a related concern 

involving clarity surrounding the intended real-world application of a number of the ANN 

SSC/SSL prediction studies.  In an attempt to identify the optimal set of input variables for 

predicting SSC/SSL, modelers often make direct comparisons between models that utilize 

antecedent measured sediment data as an input variable to those that use only discharge and 

rainfall (Buyukyildiz & Kumcu, 2017; Cobaner, Unal, & Kisi, 2009; Joshi et al., 2016; Kisi, 

2005; Liu et al., 2013; Shiri & Kişi, 2012) without full consideration that the two models are 

completely different from an operational standpoint (i.e. the former uses measured sediment 

data to forecast SSC/SSL at very short time frames into the future (e.g., 1-day or 1-hr) versus 
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an attempt to estimate SSC/SSL at locations without sediment monitoring). Given the 

resources needed for direct measurement of high-frequency SSC over long periods of time, 

we view the former as having very little real-world application. 

The ANN studies that predict SSC or SSL using only discharge and meteorological 

data can be grouped into two broad approaches. The first uses only discharge as input data 

(Cigizoglu & Alp, 2006; Mustafa, Rezaur, Saiedi, & Isa, 2012; Nourani, Parhizkar, Vousoughi, 

& Amini, 2013; Zounemat-Kermani, Kişi, Adamowski, & Ramezani-Charmahineh, 2016). 

This approach acts as an alternative to fitting a SRC and requires measured discharge; but the 

mapping is not constrained to a linear or power-function relationship. The second approach 

combines measured discharge and rainfall data as inputs for predicting SSC or SSL (Alp & 

Cigizoglu, 2007; Heng & Suetsugi, 2013; Kakaei Lafdani et al., 2013; Kisi & Shiri, 2012; Kumar, 

Pandey, Sharma, & Flügel, 2015; Nourani & Kalantari, 2010; Nourani, Kalantari, & Baghanam, 

2012; A. Singh, Imtiyaz, Isaac, & Denis, 2013; Zhu, Lu, & Zhou, 2007), and yields better 

performance compared to traditional statistical methods such as multiple linear regression (e.g. 

Cigizoglu & Kisi, 2006).  

The development of ANN tools for predicting suspended sediment in catchments that 

are not gauged, with respect to both discharge and sediment data, is limited. Kamel et al. (2014) 

predicted SSL in ungauged catchments at the yearly average timescale using physical watershed 

characteristics and climate data as inputs. Alp and Cigizoglu (2007) evaluated a FFBN and 

GRNN for daily SSL prediction in a large, humid temperate watershed using only antecedent 

rainfall, but found the either model insufficient compared to models that included discharge 

as an input variable.  In contrast, Zhu et al. (2007) predicted daily SSL using only rainfall and 

temperature data for a large watershed with a temperate monsoon climate and found good 

model performance. Raghouwanshi et al. (2006) also achieved good ANN performance when 
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predicting SSL in a watershed constrained to monsoon conditions. With the notable exception 

of these few studies, the vast majority of ANN sediment prediction relies on measured 

streamflow as an input variable, limiting the application to stream-gauged locations.  

A more applied approach, which has found success in a few ANN streamflow 

prediction studies, modifies the ANN architecture to include time-delayed feedback (recurrent 

connections), where lagged estimates of streamflow are added as inputs at each prediction time 

step. To predict streamflow at ungauged locations, Chang et al. (2002) employed a recurrent 

FFBP network to predict hourly streamflow; and Besaw et al. (2010) used a recurrent 

counterpropagation network to predict hourly and daily streamflow. To our knowledge, this 

approach has not been utilized for sediment prediction, and offers the ability to leverage the 

temporal autocorrelation in hydrological time series without the need for antecedent measured 

values of suspended sediment. 

The frequency with which current peer-reviewed suspended sediment prediction 

models (1) rely on measured streamflow and antecedent sediment data as model inputs, (2) use 

FFBP networks that overfit the training data, and (3) predict at limited temporal resolution 

(i.e., daily, monthly, and annual intervals) on large rivers, helped motivate our research. We are 

specifically interested in applications that target predictions in ungauged river systems. 

Turbidity data, available at high temporal resolution (hourly) and at multiple locations on small 

rivers, offered additional opportunity for training and validating ANNs to predict SSC or SSL. 

In this study, we use two recurrent counterpropagation networks in tandem to predict 

suspended sediment load using only meteorological data as the input variables. We compare 

the model results to the traditional SRC and test it for application at ungauged locations by 

training at one subwatershed and predicting in another with similar watershed properties. 
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Methods 

Study area and data set 

The Mad River and two of its tributaries, Shepard Brook and Mill Brook, were selected 

as the study area (Figure 5.1). Located in the Lake Champlain basin in central Vermont, the 

Mad River drains a 373 km2 area in the Green Mountains and flows north into the Winooski 

River. The watershed area is approximately 83% forested with agricultural (8%) and developed 

(6%) land uses primarily located along the valley floor. The topography of the Mad River 

watershed is typical of the Northern Green Mountains area and ranges in elevation from 130 

m to 1,245 feet above sea level.  The Mad River main stem is a fifth-order river while the Mill 

Brook and Shepard Brook tributaries are fourth-order streams.  

Discharge data were available from the USGS Geological Mad River gauging station  

(No. 04288000) for the Mad River sediment monitoring site, and by developing stage-

discharge relationships for the Mill Brook and Shepard Brook sites. Suspended sediment data 

were estimated from in situ turbidity sensors (Forest Technology Systems [FTS] Model DTS-

12) and automatic portable samplers (Isco Model 6712). Water temperature was also recorded 

by the turbidity sensors. The Waitsfield Weather station, located centrally in the watershed, 

provided 15-min precipitation measurements and soil moisture (measured as volumetric water 

content) at two soil depths. Seven additional meteorological stations with tipping bucket rain 

gauges (HOBO Model RG-2) were setup throughout the watershed for collection of rainfall 

data (Table 5.1). 
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Figure 5.1. Map of study area identifying locations of monitoring stations 

 

The Mad River watershed has a humid continental climate that features about 1200 

mm of annual precipitation with distinct seasonal variation. Summer months feature warm 

temperatures and frequent, fast-moving, convective, rain storms that produce moderate 

rainfall. Winter can feature heavy snow, particularly on the slopes of the Green Mountains on 

the western portion of the watershed. Fall and spring typically feature slower moving frontal 

rain events. The Mad River and its tributaries ice over in the winter months; and spring 

snowmelt streamflows are typically some of the highest flows during the year. During the 

2013-2015 monitoring period, the Mad River experienced an exceptionally wet period during 

early summer 2013 and moderate drought conditions in later summer 2015. 
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Table 5.1. Summary of spatial locations and data collected at monitoring stations 

 

Monitoring Site Latitude Longitude 
Elevation 

(m) Data Collected 

Meteorological Stations 

Moretown Weather 44.277362 -72.742031 166 Rainfall (mm) 

South Hill Weather 44.220720 -72.756119 430 Rainfall (mm) 

Fayston Weather 44.218954 -72.823194 448 Rainfall (mm) 

Irasville Weather 44.179044 -72.836175 218 Rainfall (mm) 

Sugarbush Weather 44.146823 -72.896246 661 Rainfall (mm) 

Warren Weather 44.114678 -72.853027 273 Rainfall (mm) 

East Warren Weather 44.107008 -72.801123 573 Rainfall (mm) 

Waitsfield Weather 44.194960 -72.818398 207 Rainfall (mm) 
Soil Moisture (% VWC) at 10 

cm and 50 cm depths 

Sediment Monitoring Stations 

Mad River 44.2768039 -72.7420442 166 Turbidity (NTU) 

Shepard Brook 44.2287270 -72.7870840 195 Turbidity (NTU) 
Stage (m) 

Mill Brook 44.1787682 -72.8358413 218 Turbidity (NTU) 
Stage (m) 

 
Methods 

Estimation of suspended sediment  

Suspended sediment was estimated for each site using rating curves developed for the 

in-situ turbidity sensors. Stream samples were collected during rain events using the 

autosamplers and analyzed for total suspended solids (TSS) by the standard gravimetric 

method (U.S. Environmental Protection Agency, 1999). Simultaneous measurements of 

turbidity were then log-transformed and fit to a linear regression model to generate the 

turbidity rating curves. Log-transformation compensated for the presence of 

heteroscedasticity in the data, but resulted in a bias on retransformation; therefore, TSS was 

corrected for each site using: 
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𝑇𝑆𝑆 = 𝐵𝐶𝐹 ∙ 𝑎𝑇𝑢𝑟𝑏𝑏1, 

where the parameter b1 is the slope of the linear regression on the log-transformed data; a is 

the retransformed intercept b0 (𝑎 = 10𝑏0), and the bias correction factors (BCF) for base-10 

logarithmic transformed data is calculated as: 

𝐵𝐶𝐹 =  
∑ 10𝑒𝑖𝑛

𝑖=1

𝑛
  . 

Here, n is the number of samples; and ei is the residual of each measurement in log units. The 

turbidity sensor and autosampler were deployed at a fixed location along the stream bank; and 

thus, represented a point measurement along the river cross section. Sediment concentration 

is known to vary along the cross-section and flow-integrated sampling techniques are often 

necessary (Edwards & Glysson, 1999). However, at our study sites, we believe the high stream-

flow velocities that occurred during storm events contributed to well-mixed profiles and the 

dominance of fine-grained sediment in the suspended load, and as a result, did not warrant 

using a flow-integrated technique. 

Discharge and rainfall data processing 

We used data from all eight of the Mad River watershed rain gauges to compute an 

average basin rainfall using the Thiessen polygon weighted average method. Because some 

rain gauges were not consistently online over the monitoring period, the averaging was 

automated using all available online gauge data and a grid method as described by Han and 

Bray (2006). Average rainfall for the Shepard Brook and Mill Brook subwatersheds used a 

similar approach; however, given the size of these subwatersheds, the average rainfall 

essentially approximates the nearest gauge (i.e., Fayston Weather station) for Shepard Brook 

or nearest two rain gauges (i.e., the Sugarbush and Irasville Weather stations) for Mill Brook. 
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Stage-discharge relationships for Shepard Brook and Mill Brook were established by 

modeling the section of river used for monitoring in the HEC-RAS (version 4.1). The rating 

curves were calibrated using discharge measurements and the velocity area method. See 

Appendix B for details on the development of the stage-discharge relationships. 

Counterpropagation Network 

The counterpropagation network (CPN) is an ANN that combines elements of 

unsupervised and supervised learning.  It is purely data-driven and self-adapts to learn 

nonlinear mappings between predictor inputs and a set of response vectors (desired output 

classes). Hecht-Nielsen (1988), designed the CPN by combining two ANN algorithms – a 

Kohonen self-organizing map (hidden layer) and a Grossberg oustar structure (output layer). 

The architecture most commonly utilizes a configuration referred to as forward-only, in which 

one is not interested in the inverse relation between input variables and target output classes. 

In this study, we used the forward mapping CPN configuration of Figure 5.2 to predict river 

discharge, which was subsequently used as input data to a second CPN for prediction of TSS.  

The supervised learning approach of the forward-only CPN algorithm necessitates 

partitioning the data into training and testing data sets. The portion of data reserved for testing 

varies widely in ANN studies, but generally ranges from 20% to 50% of the data. We opted 

to split the data set chronologically using ~60% of the data for training and 40% for testing. 
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Figure 5.2. Recurrent counterpropagation network (rCPN) architecture with n input variables and m 
recurrent nodes  

 

The network is fully connected meaning all nodes between the input, the Kohonen, 

and the Grossberg layers are connected by weight matrices 𝒘𝑖𝑗and 𝒖𝑗𝑘, respectively. The CPN 

input layer has i=1:I nodes that pass the input values to the hidden layer. The nodes (j=1:J) of 

the hidden layer (or Kohonen layer) cluster the input values based on a similarity metric. The 

output (i.e., Grossberg) layer has k=1:K nodes that help classify the output predicted at the 

Kohonen layer.  

The number (K) of output nodes corresponds to the number of target output classes 

pre-determined by the user. To utilize the CPN for prediction of a continuous variable such 

as TSS or discharge, we discretized the output (target) variable into 100 classes, logarithmically 

spaced over the range of the variable. The target output data, either discharge or TSS, were 

preprocessed by rounding real-valued measurements into the nearest CPN class.  
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Prior to CPN training and training, all of the input data were normalized to values 

between 0 and 1 according to: 

𝑥𝑛𝑜𝑟𝑚𝑖
=

(𝑥𝑖 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
  , 

Inputs were normalized separately over each variable type (e.g. precipitation, soil moisture, 

discharge). 

The forward-only CPN utilizes a hybrid learning approach that features stages of 

unsupervised and supervised learning.  Unsupervised learning is used during the first stage of 

network training (i.e., within the hidden layer) for the purpose of clustering the input data.  An 

input vector x, comprised of I variables, is passed to the hidden layer where a distance metric 

(in this case, Euclidean distance) is calculated between x and the weight vector, wj, associated 

with each Kohonen hidden node. The Kohonen node with the most similar weight vector 

(i.e., minimum Euclidean distance to the input vector, x) is identified as the winning node; and 

the weight vector is updated according to: 

∆𝑤𝑖𝑗 =  {
𝛼(𝒙 − 𝒘𝑗), for 𝑗 = winning node

0                                otherwise ,
 

where 𝛼 is a Kohonen learning rate subject to 𝛼 > 0. We used a constant learning rate (𝛼 =

0.7) in this study. Next, a winner-take-all activation function ensures that the output value, 𝑧𝑗 , 

associated with the winning Kohonen node are set to 1; all other nodes are set to 0. The 

Kohonen layer output may then be propagated to the Grossberg layer where the network 

output vector, �̂�, is computed as: 

�̂� = ∑ 𝒖𝑗𝑧𝑗
𝐽
𝑗=1   . 

The weights �̂�𝑗𝑘are then updated during training as follows: 

∆𝒖𝑗 = 𝛽(𝒚 − �̂�) , 
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where 𝛽 is the Grossberg learning rate and y is the target output vector and �̂�  is the network 

output. The Grossberg learning rate 𝛽 was set to a constant value of 0.1 in this work.  The 

training process is repeated for each of the paired training patterns in the training dataset until 

the CPN has learned the mapping between input variables and known target classes within 

some user-defined convergence criterion (in this work, a summed root-mean-square error 

value of <10-5). After learning (i.e., training) is complete, the CPN hidden weights are fixed 

and the network may be used for prediction. The output vector of the Grossberg layer is 

processed using a winner takes all method such that the output vector component with the 

highest value is identified as the predicted class. In this way, the output layer approximates a 

Bayesian classifier. 

One modification made to the original CPN algorithm for this research was the 

incorporation of a recurrent feedback loop to allow predictions from previous time-steps to 

be used as predictor (i.e., input) variables. The dotted lines in Figure 5.2 show lagged network 

estimates (in this case Discharge or TSS) added to the input vector at the current time step to 

help improve future predictions. We refer to this network as a recurrent counterpropagation 

network (rCPN). All data processing and coding of the rCPN was performed in MATLAB 

(v7.13) 

Model Evaluation 

The rCPN model performance was evaluated using several metrics that compare 

observed measurements to predicted outputs.  One of the most common measures of ANN 

performance is the root mean square of errors (RMSE) calculated as: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝒚𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁
  , 
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where 𝒚𝑖 is the observed target vector (for either discharge or TSS), 𝒚�̂� is the predicted output 

vector after training, and N is the number of observations.  RMSE ranges from 0, indicating 

a perfect fit, to +∞, indicating no fit.  RMSE is sensitive to extreme values, or the occasional 

large error. 

Another assessment metric is the Nash-Sutcliff model efficiency (NSE) given by: 

𝑁𝑆𝐸 = 1 −  
∑ (�̂�𝑖 − �̂�𝑖)

2𝑁
𝑖=1

∑ (𝑌𝑖 − �̅�)2𝑁
𝑖=1

  , 

where Yi and �̂�𝑖 are the observed and predicted variables (discharge or TSS); �̅�𝑖 is the mean of 

the observed variable; and N is the number of patterns. NSE ranges from 1 to −∞ (no fit) 

and is a measure of the overall goodness of fit of the model. A value of 1 indicates a perfect 

fit, a value of 0 indicates poor fit and that the model prediction is no better than using the 

mean of the data, and a value <0 indicates the model performs worse than simply using the 

mean. 

Model Application 

TSS-turbidity rating curve development 

Sampling suspended sediment during hydrological events provided paired TSS and 

turbidity sensor data over the period from 2013 – 2015, which enabled the development of 

TSS-turbidity rating curves. At the Mad River and tributary sites, TSS samples were obtained 

at turbidity values ranging from about 1 NTU to 1,600 NTU. Linear regression models fit to 

log-transformed TSS and turbidity values showed good fit at all sites with R2-adj values ranging 

from 0.726 to 0.882 (Figure 5.3 and Table 5.2). Because the regression model slopes differed 

across the sites, we used individual models for each site. Turbidity and TSS relationships are 

known to be affected by the color and distribution of soil grain size; therefore, finding 
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 (a) (b) 

  

(c) 

 
 

Figure 5.3. Relationship between TSS and turbidity for (a) Mad River, (b) Shepard Brook, and (c) 
Mill Brook. Dashed lines represent log-linear regression models. 

 

Table 5.2. Parameters of fit log-linear rating curve of TSS and turbidity for monitoring sites.  
Site a b1 BCF n R2 - adj 

Mad River 2.8222 0.8292 1.4257 163 0.726 

Shepard Brook 4.2248 0.7034 1.1688 49 0.752 

Mill Brook 1.2179 1.0022 1.0838 83 0.882 
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differences between watersheds was not unexpected. However, because of the strong 

relationships between TSS and turbidity, using turbidity as a surrogate for suspended sediment 

was justified in this watershed; and we therefore calculate suspended sediment concentration 

from turbidity sensor readings to represent the actual suspended sediment concentration. 

The TSS samples were also used to create SRCs at each site, again using log-linear 

regression models. The SRCs showed poorer fit compared to the turbidity-based TSS rating 

curves, especially at the Shepard Brook and Mill Brook sites (Figure 5.4 and Table 5.3). For 

the main stem site, the R2-adj value was 0.594 indicating a reasonable fit. However, at the 

smaller, tributary scale, discharge is a poor predictor of TSS with R2-adj values of only 0.287 

and 0.131 for Shepard Brook and Mill Brook, respectively.   
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(a) (b) 

  

(c) 

 
Figure 5.4. Relationship between TSS and discharge for (a) Mad River, (b) Shepard Brook, and (c) 
Mill Brook. Dashed lines represent log-linear regression models. 

 
 
Table 5.3. Parameters of fit log-linear sediment rating curves for monitoring sites.  

Site a b1 BCF n R2 - adj 

Mad River 1.5545 1.2004 1.7767 163 0.594 

Shepard Brook 32.7971 0.7263 1.7044 49 0.287 

Mill Brook 24.2983 0.6746 1.8424 83 0.131 
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ANN data set preparation 

The measured meteorological, discharge and sediment data were partitioned into a 

training and testing data for use with the rCPN model. Data from 2013 and 2014 comprised 

the training data set, and the data from 2015 was used for testing. Statistical analysis of the 

training and testing data (Table 5.4) showed higher mean, median, and maximum values for 

data (both discharge and TSS values) in the testing data set. While this is not ideal for training 

purposes, splitting the data chronologically is more reflective of real-world applications. 

Table 5.4. Summary of statistical properties of training and testing data sets for each site 

  Mad River Shepard Brook Mill Brook 

 Statistic Train Test Train Test Train Test 

 No. Records 7071 5389 6924 5366 7198 5054 

Discharge (m3/s) 

 Mean 4.00 6.65 0.56 0.53 0.94 1.39 

 Median 2.80 3.49 0.41 0.19 0.64 0.72 

 Min. 0.71 0.73 0.16 0.11 0.18 0.16 

 Max. 93.89 157.40 7.38 15.96 11.23 21.45 

TSS (mg/L) 

 Mean 11.0 19.8 6.5 7.3 5.9 7.8 

 Median 4.4 7.2 3.0 2.6 0.7 1.7 

 Min. 0.0 0.0 0.0 0.0 0.0 0.0 

 Max. 1035.3 1308.9 502.8 303.5 1034.4 1942.0 

 
Temporal autocorrelation and cross-correlation analysis 

To select the time period over which to lag the input variables, we performed a 

temporal autocorrelation for both discharge (Q) and TSS (Figures 5.5a and 5.6a) and cross-

correlation analysis in both and TSS with all other variables (Figures 5.5 and 5.6, panels b-e). 

As expected with watersheds that vary in size, the temporal dependencies within and between 

variables differed among sites, especially between the Mad River and Mill Brook and Shepard 

Brook tributaries. The discharge (Q) correlogram (Figure 5.5a) illustrates strong 

autocorrelation at a time lag of 1 hour across all sites (r of 0.971 to 0.986). The cross-
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correlation of Q with the remaining hydrometeorological variables showed rainfall (P), soil 

moisture at shallow (10 cm depth - SM10) and deep (50 cm depth - SM50) to be positively 

correlated with Q; and water temperature (T) was negatively correlated. The time lags 

corresponding to the highest correlations are shaded; and the most notable differences 

between the Mad River watershed and its tributaries visible in both the (Q - P and Q - SM10 

cross-correlograms of Figure 5.5b and 5.5c). This would be expected given differences in time 

of concentration of flow and varying spatial scales between the main stem and its tributaries.  

We observed similar trends in the autocorrelation and cross-correlation of TSS data as 

displayed with discharge. TSS was positively correlated with other variables (P, SM10, SM50, 

Q); but in contrast to discharge, TSS was also positively correlated to water temperature (T), 

which may be indicative of a strong seasonal component. However, the correlation of both 

TSS and Q with T was weak across all sites (-.081 to 0.103). Analysis also showed soil moisture, 

at both depths, was less correlated with TSS than Q. 

Compared to Q, TSS had higher maximum correlations with rainfall (max r of 0.459 

– 0.569) at the tributary scale than was observed for Q (max r of 0.388 – 0.376) suggesting 

that sediment delivery is driven more by rainfall processes at the flashier, tributary scale 

compared to the main stem. Similar to Q, peak correlations between TSS and P occurred at 

shorter time lags in the tributaries compared to Mad River (Figure 5.6b), again indicating that 

rainfall is a key input for sediment prediction, especially in these smaller, flashier systems. 

While P is a better indicator of TSS at the tributary scale, the strong correlation of TSS with 

Q in the Mad River indicates that Q is the most important input variable for predicting TSS 

in higher-order systems. This implies that the selection of inputs will likely vary between 

watershed scales; and as a result, the rCPN maps different processes at the different watershed 

scales.  
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(a) (b) 

  
(c) (d) 

  
(e)  

 

 

Figure 5.5. (a) Temporal auto-correlogram for discharge in the Mad River, Shepard Brook, and Mill 
Brook. Cross-correlograms of discharge with (b) rainfall, (c) shallow soil moisture (10cm depth), (d) 
deep soil moisture (50 cm depth), and (e) water temperature. Shaded points indicate the time lags 
used for the respective (rCPN) model input variables when predicting discharge. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 5.6. (a) Temporal auto-correlogram for TSS in the Mad River, Shepard Brook, and Mill 
Brook. Cross-correlograms of TSS with (b) rainfall, (c) shallow soil moisture (10cm depth), (d) deep 
soil moisture (50 cm), (e) water temperature, and (f) discharge. Shaded points indicate the time lags 
used for the respective (rCPN) model input variables to predict TSS. 



 153 

rCPN model configuration 

We used the correlograms and cross-correlograms for Q and TSS (Figures 5.5 and 5.6) 

to guide the selection (and temporal lag) of input variables, and then use two rCPN models in 

tandem to predict Q and TSS at both the Mad River and tributary scale. The model inputs are 

summarized in Table 5. Rather than using a single ANN to predict SSL, the tandem rCPN 

configuration (Figure 5.7) enables separate prediction of both Q and TSS without using 

measured antecedent Q or TSS as model inputs. SSL was then directly computed from the 

predicted Q and TSS time series.  

The number of model input variables differed among the rCPN model tests. It is 

common to use multiple time lags of a single input variable, such as P, to a network to leverage 

the range of autocorrelation or cross-correlation. For the prediction of Q, we added three 

input nodes in order to lag P by three hours, two nodes for a two-hour lag for shallow soil 

moisture (SM10), and one node for deep soil moisture (SM50).  

For predicting TSS (second rCPN in the tandem framework of Figure 5.7), we reduced 

the number of soil moisture (SM10) inputs to two time lags in the Mad River model and one 

(hr) lag when predicting at the tributaries. Three input nodes were needed to accommodate 

the lagged rainfall (P) at the Mad River site; and four nodes were used for P at the tributaries. 

In addition, the TSS models use additional nodes to accommodate the estimated Q from the 

prior Q prediction rCPN. We add two input nodes for estimated Q when predicting TSS at the 

Mad River site, and only one additional node for the tributaries.   
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Table 5.5. Summary of inputs to discharge and TSS prediction rCPN models 

 
ANN 
Model 

Inputs 

Mad River 
Discharge 

𝑃𝑡−5 𝑃𝑡−6 𝑃𝑡−7 𝑆𝑀10𝑡−3 𝑆𝑀10𝑡−4 𝑆𝑀50𝑡 𝑇𝑡 �̂�𝒕−𝟏  

Tributary 
Discharge 

𝑃𝑡−3 𝑃𝑡−4 𝑃𝑡−5 𝑆𝑀10𝑡 𝑆𝑀10𝑡−1 𝑆𝑀50𝑡 𝑇𝑡 �̂�𝒕−𝟏  

Mad River 
TSS 

𝑃𝑡−6 𝑃𝑡−7 𝑃𝑡−8 𝑆𝑀10𝑡−1 𝑆𝑀10𝑡−2 𝑇𝑡−12 �̂�𝒕 �̂�𝒕−𝟏 𝑻𝑺�̂�𝒕−𝟏 

Tributary 
TSS 

𝑃𝑡 𝑃𝑡−1 𝑃𝑡−2 𝑃𝑡−3 𝑆𝑀10𝑡 𝑇𝑡−7 �̂�𝒕 𝑻𝑺�̂�𝒕−𝟏  

 
 

 
Figure 5.7. Configuration of suspended sediment load prediction model showing example inputs for 
the Mad River.  

 

River discharge prediction 

The first step toward predicting suspended sediment loads is to estimate river 

discharge (Q). Ideally, one would like to have measured discharge at the location where SSL 

needs to be predicted. Given that one is rarely that fortunate, we assessed the performance of 

the rCPN model for predicting Q at the Mad River and both tributaries, and used those 

predictions as input to a subsequent rCPN model for estimating SSL. Figure 5.8 presents a 
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subset (a 90-day period in the summer of 2015) of the testing data and model predictions for 

the Mad River and Mill Brook. Similar performance (NSE = 0.68) was observed on the testing 

data at both the main stem and the Mill Brook tributary. Model efficiency was lower at Shepard 

Brook with NSE = 0.43 for the testing data, and may be the result of the flashiness of the site 

in response to rainfall, which is also evident in Shepard Brook having the lowest 

autocorrelation in Q of the three sites (Figure 5a). However, model performance (Table 5.6) 

is at or above the performance metrics of existing studies on streamflow prediction at 

ungauged sites using hourly data (Besaw et al., 2010). 

The rCPN predictions of Q showed conditional bias in the under-prediction of peak 

flows across all sites, (Figures 5.6b and 5.6d). This result is not necessarily surprising, as other 

studies have observed similar behavior (Besaw et al., 2010; Fi-John Chang & Chen, 2001; Firat, 

2008), and can be partially attributed to the over-representation of low flows in the training 

data. The prediction of peak flow values can often be improved by training separate ANNs  

(Hu, Lam, & Ng, 2001; P. Singh & Deo, 2007) on different ranges of Q (e.g., train an ANN 

for high flow and another for flow). We used a single rCPN model and trained over the entire 

range of Q in this work because the model performance was acceptable and to simplify the 

model design for proof of concept. 

Table 5.6. Summary statistics of the rCPN model performance for predicting discharge 
 

Training Testing 

Model 
RMSE 
(m3/s) NSE Correlation 

RMSE 
(m3/s) NSE Correlation 

Mad River 
0.95 0.95 0.98 5.44 0.68 0.85 

Shepard Brook 
0.13 0.94 0.98 0.76 0.46 0.71 

Mill Brook 
0.20 0.95 0.98 1.05 0.68 0.83 
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(a)                                                                                                (b)                             

 
(c)                                                                                                (d) 

 
Figure 5.8. Hyetograph plotted against the predicted and observed hydrographs for a portion of the 
testing data set for (a) Mad River and (c) Mill Brook. Comparison of observed versus predicted 
discharge values for (b) Mad River and (d) Mill Brook. 

 

Prediction of TSS and SSL 

We used the predicted discharge from the Q rCPN along with other input data to first 

predict TSS using a second rCPN, and then combined the estimated TSS with the estimated 

Q, to provide predictions of SSL. We evaluated the TSS rCPN by training and testing on each 

of the sites separately, as this is more representative of a real-world application given limited 

historical observations. Based solely on traditional model performance metrics, the prediction 

of TSS using the rCPN is not very reliable (see summary statistics, Table 5.7). NSE ranged 

from 0 to 0.2 and correlation from 0.16 to 0.51 across the three sites.  
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Model predictions were notably biased low during the later summer portion of the 

testing data, compared to the early summer period (Figures 5.9a and 5.9c). This may indicate 

a seasonal trend in watershed TSS response that was not sufficiently represented in the training 

data set to enable the rCPN model to properly map it. The late summer storms are also, on 

average, smaller and shorter hydrological events suggesting the rCPN model may have a 

conditional bias to under-predict TSS during small events. Another explanation for the under 

prediction of certain storms result from rainfall records that do not always capture the actual 

rainfall. In the Mad River watershed, summer storm events are frequently isolated to smaller 

portions of the watershed; and as a result, the location of the rain gauges do not always reflect 

the actual rainfall. Dense rain gauge networks or augmentation of the rainfall record from 

radar data may improve the reliability of predictions. 

(a)                                                                                                 (b) 

 
(c)                                                                                                (d) 

 
Figure 5.9. Hyetograph plotted against the predicted and observed sedigraphs for a portion of the 
testing data set for (a) Mad River and (c) Mill Brook. Comparison of observed versus predicted TSS 
values for (b) Mad River and (d) Mill Brook. 
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Existing studies on the prediction of TSS in ungauged locations are nearly non-

existent; as such, there are few findings for comparison with our results. The few studies that 

have attempted prediction without measured discharge and antecedent sediment have been 

restricted to predicting SSL and at a daily time step (Alp & Cigizoglu, 2007; Raghuwanshi et 

al., 2006; Zhu et al., 2007). The larger prediction errors of TSS compared to Q may be due in 

part to the inherent complexity, hysteretic effects and weak correlations between Q and TSS, 

especially at the tributary scale (see the poor SRC model fit in Table 5.5 and Figures 5.4b and 

5.4c). Training separate rCPNs (i.e., storm events and baseflow conditions separately) is one 

option that could be investigated to improve TSS model performance on an event basis. 

 
Table 5.7. Summary statistics of model performance for TSS and SSL predictions  

 
 

Training 
 

Testing 

Model 
RMSE 
(m3/s) NSE Correlation 

 RMSE 
(mg/L) NSE Correlation 

TSS        

Mad River 11.2 0.88 0.94  60.7 0.0 0.20 

Shepard 
Brook 

12.5 0.56 0.78  16.79 0.23 0.51 

Mill Brook 29.8 0.20 0.60  43.00 0.01 0.16 

SSL        

Mad River - - -  10.67 0.17 0.47 

Shepard 
Brook 

- - -  0.24 0.73 0.86 

Mill Brook - - -  1.76 0.08 0.36 

 
One of the motivations for this research and a key desired outcome was to estimate 

sediment discharge from the river sub-basins. To assess the model performance in this 

manner, we combined the model estimates of Q and TSS to predict SSL, and then compared 

the predicted SSL to both observed SSL and estimates generated using the traditional SRC 

method. Figure 5.10, plots the rCPN predictions of SSL against observations over a portion 
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of the testing data set. Similar to the TSS predictions, the rCPN predictions are reasonable; 

however, portions of the testing data record (specifically the smaller later summer storms) 

have poor performance. Because discharge is an integral component of SSL, the majority of 

sediment load occurs during large hydrological flow events. Therefore, degraded model 

performance on smaller events may be acceptable for predicting long-term sediment 

discharge. 

(a)                                                                                                 (b) 

 
(c)                                                                                                (d) 

 
 
Figure 5.10. Hyetograph plotted against the predicted and observed sediment load for a portion of 
the testing data set for (a) Mad River and (c) Mill Brook. Comparison of observed versus predicted 
SSL values for (b) Mad River and (d) Mill Brook. 

The performance metrics suggest better prediction of SSL compared to TSS (Table 

5.7); however, there is a high degree of variability among sites. NSE ranges between 0.08 and 

0.73; and correlation between 0.36 and 0.86 were observed for the rCPN-based predictions of 

SSL across all sites. Considering that the model uses only two years of measurement data for 
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training, the small size of the subwatersheds, and the time step is hourly, this performance is 

very favorable compared to limited published findings. Alp and Cigizoglu (2007) obtained a 

maximum value of NSE = 0.213 when modeling SSL at the daily time scale using only rainfall 

as inputs and on a much larger watershed compared to the Mad River. The rCPN predictions 

captured the general trend of SSL during hydrological events well. Figure 5.11 shows the rCPN 

and SRC predictions of SSL for Mill Brook over a two-week subset of the testing data and 

illustrates that the sediment pulse observed during events is more accurately modeled by the 

rCPN than using a SRC model. 

 

 
Figure 5.11. Comparison between observed SSL (solid line) and that predicted using a SRC model 
(green dashed line) and the rCPN model (red dashed line) over a two-week portion of testing data set 
for Mill Brook.  

 
Table 5.8. Summary metrics of modeled SSL and SSY using SRC and the rCPN models compared to 
measured observations for the testing dataset (May 2015 to December 2015) 

 Cumulative SSL (tonnes)  SSY (tonnes/km2)  Percent Error 

Site Observed SRC  rCPN   Observed SRC  rCPN   SRC rCPN 

Mad River 8667 1561 3991  35.5 6.4 16.4  80% -54% 

Shepard 
Brook 

284 986 259  6.4 22.1 5.8  247% -9% 

Mill Brook 730 2585 860  14.7 51.9 17.3  254% 18% 
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We compared the SSL estimates from both the rCPN and SRC models to observed 

SSL by calculating the cumulative SSL over the training data record (Table 5.8 and Figure 

5.12). For all three sites, the cumulative SSL predicted by the rCPN model was closer to 

observed SSL. The percent error in total SSL load for the rCPN model ranged from -54% to 

18%. For all sites, SRCs were found to greatly overestimate SSL with percent errors ranging 

from 80% to 254%, with both tributary sites having approximately 250% error. This is not 

unexpected, given the poor SRC model fit for Mill Brook and Shepard Brook. Other studies 

have found SRCs to be poor models for predicting suspended sediment data (Harrington & 

Harrington, 2013; Uhrich & Bragg, 2003; Warrick, Melack, & Goodridge, 2015). Of note, we 

only evaluated one type of SRC, the commonly applied log-linear regression model; however, 

other types (e.g., power-law or polynomial regression models) may provide some 

improvement in the SRC-based estimates. 
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(a) Mad River (b) Shepard Brook 

  

(c) Mill Brook 
 

 

 

Figure 5.12. Cumulative SSL (observed vs predictions) over the entire testing data set for (a) Mad 
River, (b) Shepard Brook, and (c) Mill Brook. 
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Prediction in ungauged stream locations 

In order to test the applicability of the rCPN model in ungauged stream locations, we 

trained the model on one of the tributaries, Shepard Brook, and then predicted SSL for the 

Mill Brook watershed. Figure 5.13 shows a comparison of the observed and predicted SSL for 

Mill Brook. While the Mill Brook and Shepard Brook watershed are both fourth-order streams, 

the magnitude of median and peak flows differ. To compensate for the difference, we utilized 

a simple scaling method that adjusts estimated discharge values based on the ratio of the 

drainage areas. No scaling factor was applied to estimates of TSS. When comparing the model 

performance at Mill Brook to the performance at Shepard Brook (i.e., rCPN trained on data 

from the same site), the predictions were biased lower and did not capture the magnitude of 

event peaks well. 

The cumulative SSL estimated for Mill Brook using the rCPN model trained on data 

from Shepard Brook, shows predictions to be less accurate (magnitude of percent error 

increasing from 18% to -54%) than using training data from Mill Brook. Although this might 

be expected, the predictions still showed improvement compared to the SRC estimates (Figure 

5.14). Given that larger peak TSS is observed in Mill Brook compared to Shepard Brook, it is 

not unexpected that training the model on Shepard Brook data and predicting in Mill Brook 

would result in lower biased estimates. To account for the difference in sediment yields 

between watersheds, a regionalization method would need to be employed without requiring 

in-stream observations. As such, the model as currently tested would be applicable for 

prediction in watersheds with similarly expected sediment yields. Transferability between 

locations, therefore, should be guided by watershed characteristics with existing studies on 

regionalization of hydrological models (Oudin, Andréassian, Perrin, Michel, & Le Moine, 

2008; Razavi & Coulibaly, 2013) offering a potential guide to metrics such as drainage area, 
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basin relief, drainage density, mean annual rainfall, percent forest cover, mean soil depth and 

percent clay soils. 

 
Figure 5.13. (a) Hyetograph plotted against the predicted and observed sediment load for a portion 
of the testing data set for Mill Brook using the rCPN model trained on Shepard Brook data. (b) 
Comparison between observed and predicted SSL for a two-week portion of testing data set for Mill 
Brook rCPN model trained on Shepard Brook data. SRC-based predictions of SSL shown for 
reference. 
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Figure 5.14. Cumulative SSL (observed vs predictions) over a two-week portion of the testing data 
set for Mill Brook using rCPN model trained on Shepard Brook site. SRC-based prediction of SSL is 
shown for reference 

Conclusions  

We present a versatile ANN model for predicting SSL in river systems using only local 

hydrometeorological inputs of rainfall, soil moisture, and temperature at the hourly time-scale. 

Two recurrent counterpropagation networks (rCPNs) were used in tandem to estimate river 

discharge and suspended sediment concentration in addition to SSL. Comparison to the 

traditional sediment rating curves showed the rCPN model was able to more accurately 

estimate SSL and more realistically model the timing and shape of the sedigraph during 

hydrological evens. The latter is of particular importance for capturing event-scale phenomena 

such as hysteresis in the SSC-Q relationship. Model performance in predicting TSS and SSL 

was better during large events, than the smaller, flashy, summer events indicating the model 

may be sensitive to the training data.  

The rCPN model developed in this work represents an advancement for real-world 

applications over existing ANN suspended sediment prediction methods. To-date, SSC/SSL 
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prediction with ANNs has been restricted to using daily or longer time steps; we demonstrate 

the rCPN model’s capability at finer resolution (hourly data). This is especially important for 

prediction in small river systems where suspended sediment dynamics predominantly occur at 

the sub-daily scale. Importantly, we also found that SSL could be modeled with reasonable 

accuracy, without using measured discharge and sediment data as input variables. This expands 

the utility of suspended sediment prediction made using ANNs to ungauged locations or those 

with limited monitoring records. The tandem rCPN framework accommodates either 

estimated or measured discharge for prediction of TSS and SSL depending on what is available 

at the target site. 

The availability of high-frequency suspended sediment data was essential to the 

success of this study. In-stream turbidity sensors provided a cost-effective and reliable method 

of obtaining high-frequency sediment data; and we recommend their further adoption in 

streams without plankton or soluble colored organic compounds. The rCPN model presented 

here is primarily driven by rainfall data and therefore is a critical input. We recommend the 

deployment of a dense rain gauge network to account for both the spatial variability of rainfall 

and potential equipment malfunctions. The existing rain station network provided hourly 

measurements; however, the number in our study area was not sufficient to characterize the 

spatial variability of rainfall within the catchment. We also recommend the deployment of soil 

moisture sensors, given their relative low-cost and amount of information added to the model. 

If the latter is not possible, then substitution of soil moisture or baseflow indices may be 

appropriate. Finally, we recommend that variables and their respective time lags be selected 

on an individual watershed basis or within similarly grouped watersheds, given the differences 

we observed between the main stem and tributary watersheds.  
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We demonstrated reasonable predictions at watersheds lacking discharge or sediment 

data by using training data from a nearby watershed as a proof of concept.  The nearby 

watershed featured similar topography and land use/cover and as such was expected to have 

similar sediment yields. Further studies on regionalization methods are required to extend this 

work to ungauged locations that are less similar to the training location. As presented, the data-

driven method offers water resources managers a new tool for predicting suspended sediment 

discharge from river systems provided that local hydrometeorological data exist. 

Acknowledgements 

This research was supported by Vermont EPSCoR with funds from the National 

Science Foundation (NSF) Grant EPS-1101317 and EPS-1556770. Additional support 

provided by NSF Graduate Research Fellowship under Grant No. DGE-0925179NSF, The 

Vermont Water Resources and Lake Studies Center, and the Robert & Patricia Switzer 

Foundation. The authors acknowledge the additional contributions of Kristen Underwood, 

Beverley Wemple, Alex Morton, and Jordan Duffy and the support of landowners of 

monitoring sites. 

  



 168 

 
References 

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., … Wilby, R. L. 
(2012). Two decades of anarchy? Emerging themes and outstanding challenges for neural 
network river forecasting. Progress in Physical Geography, 36(4), 480–513. 
https://doi.org/10.1177/0309133312444943 

Abrahart, R. J., See, L. M., Heppenstall, A. J., & White, S. M. (2008). Neural network estimation of 
suspended sediment: potential pitfalls and future directions. In Practical Hydroinformatics (pp. 
139–161). Springer. 

Afan, H. A., El-shafie, A., Mohtar, W. H. M. W., & Yaseen, Z. M. (2016). Past, present and prospect 
of an Artificial Intelligence (AI) based model for sediment transport prediction. Journal of 
Hydrology, 541, Part B, 902–913. https://doi.org/10.1016/j.jhydrol.2016.07.048 

Alp, M., & Cigizoglu, H. K. (2007). Suspended sediment load simulation by two artificial neural 
network methods using hydrometeorological data. Environmental Modelling & Software, 22(1), 
2–13. https://doi.org/10.1016/j.envsoft.2005.09.009 

ASCE. (2000a). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic 
Engineering, 5(2), 115–123. 

ASCE. (2000b). Artificial neural networks in hydrology. II: hydrologic applications. Journal of 
Hydrologic Engineering, 5(2), 124–137. 

Besaw, L. E., Rizzo, D. M., Bierman, P. R., & Hackett, W. R. (2010). Advances in ungauged 
streamflow prediction using artificial neural networks. Journal of Hydrology, 386(1–4), 27–37. 
https://doi.org/10.1016/j.jhydrol.2010.02.037 

Buyukyildiz, M., & Kumcu, S. Y. (2017). An Estimation of the Suspended Sediment Load Using 
Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial 
Neural Network Models. Water Resources Management, 31(4), 1343–1359. 
https://doi.org/10.1007/s11269-017-1581-1 

Chang, F.-J., Chang, L.-C., & Huang, H.-L. (2002). Real-time recurrent learning neural network for 
stream-flow forecasting. Hydrological Processes, 16(13), 2577–2588. 
https://doi.org/10.1002/hyp.1015 

Chang, F.-J., & Chen, Y.-C. (2001). A counterpropagation fuzzy-neural network modeling approach 
to real time streamflow prediction. Journal of Hydrology, 245(1–4), 153–164. 
https://doi.org/10.1016/S0022-1694(01)00350-X 

Cigizoglu, H. K., & Alp, M. (2006). Generalized regression neural network in modelling river 
sediment yield. Advances in Engineering Software, 37(2), 63–68. 
https://doi.org/10.1016/j.advengsoft.2005.05.002 

Cigizoglu, H. K., & Kisi, Ö. (2006). Methods to improve the neural network performance in 
suspended sediment estimation. Journal of Hydrology, 317(3–4), 221–238. 
https://doi.org/10.1016/j.jhydrol.2005.05.019 



 169 

Cobaner, M., Unal, B., & Kisi, O. (2009). Suspended sediment concentration estimation by an 
adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. 
Journal of Hydrology, 367(1–2), 52–61. https://doi.org/10.1016/j.jhydrol.2008.12.024 

Edwards, T. K., & Glysson, G. D. (1999). Field methods for measurement of fluvial sediment: US Geological 
Survey Techniques of Water-Resources Investigations. US Geological Survey. 

Firat, M. (2008). Comparison of artificial intelligence techniques for river flow forecasting. Hydrology 
and Earth System Sciences, 12(1), 123–139. 

Gao, P. (2008). Understanding watershed suspended sediment transport. Progress in Physical Geography, 
32(3), 243–263. https://doi.org/10.1177/0309133308094849 

Gettel, M., S. Gulliver, J., Kayhanian, M., DeGroot, G., Brand, J., Mohseni, O., & J. Erickson, A. 
(2011). Improving suspended sediment measurements by automatic samplers. Journal of 
Environmental Monitoring, 13(10), 2703–2709. https://doi.org/10.1039/C1EM10258C 

Han, D., & Bray, M. (2006). Automated Thiessen polygon generation. Water Resources Research, 42(11), 
W11502. https://doi.org/10.1029/2005WR004365 

Harrington, S. T., & Harrington, J. R. (2013). An assessment of the suspended sediment rating curve 
approach for load estimation on the Rivers Bandon and Owenabue, Ireland. Geomorphology, 
185, 27–38. https://doi.org/10.1016/j.geomorph.2012.12.002 

Hecht-Nielsen, R. (1988). Applications of counterpropagation networks. Neural Networks, 1(2), 131–
139. https://doi.org/10.1016/0893-6080(88)90015-9 

Heng, S., & Suetsugi, T. (2013). Using Artificial Neural Network to Estimate Sediment Load in 
Ungauged Catchments of the Tonle Sap River Basin, Cambodia. Journal of Water Resource and 
Protection, 05(02), 111–123. https://doi.org/10.4236/jwarp.2013.52013 

Horowitz, A. J. (2003). An evaluation of sediment rating curves for estimating suspended sediment 
concentrations for subsequent flux calculations. Hydrological Processes, 17(17), 3387–3409. 
https://doi.org/10.1002/hyp.1299 

Hu, T. S., Lam, K. C., & Ng, S. T. (2001). River flow time series prediction with a range-dependent 
neural network. Hydrological Sciences Journal, 46(5), 729–745. 
https://doi.org/10.1080/02626660109492867 

Joshi, R., Kumar, K., & Adhikari, V. P. S. (2016). Modelling suspended sediment concentration using 
artificial neural networks for Gangotri glacier. Hydrological Processes, 30(9), 1354–1366. 
https://doi.org/10.1002/hyp.10723 

Kakaei Lafdani, E., Moghaddam Nia, A., & Ahmadi, A. (2013). Daily suspended sediment load 
prediction using artificial neural networks and support vector machines. Journal of Hydrology, 
478, 50–62. https://doi.org/10.1016/j.jhydrol.2012.11.048 

Kamel, K., Mahmoud, T., Bissonnais, Y., & Mahmoud, T. (2014). Assessment of the artificial neural 
networks to geomorphic modelling of sediment yield for ungauged catchments, Algeria. 
Journal of Urban and Environmental Engineering, 8(2), 175–185. 
https://doi.org/10.4090/juee.2014.v8n2.175185 



 170 

Kisi, O. (2005). Suspended sediment estimation using neuro-fuzzy and neural network approaches. 
Hydrological Sciences Journal, 50(4). https://doi.org/10.1623/hysj.2005.50.4.683 

Kisi, O., & Shiri, J. (2012). River suspended sediment estimation by climatic variables implication: 
Comparative study among soft computing techniques. Computers & Geosciences, 43, 73–82. 
https://doi.org/10.1016/j.cageo.2012.02.007 

Krueger, T., Quinton, J. N., Freer, J., Macleod, C. J. A., Bilotta, G. S., Brazier, R. E., … Haygarth, P. 
M. (2012). Comparing empirical models for sediment and phosphorus transfer from soils to 
water at field and catchment scale under data uncertainty. European Journal of Soil Science, 
63(2), 211–223. https://doi.org/10.1111/j.1365-2389.2011.01419.x 

Kumar, D., Pandey, A., Sharma, N., & Flügel, W.-A. (2015). Modeling Suspended Sediment Using 
Artificial Neural Networks and TRMM-3B42 Version 7 Rainfall Dataset. Journal of Hydrologic 
Engineering, 20(6), C4014007. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001082 

Kumar, D., Pandey, A., Sharma, N., & Flügel, W.-A. (2016). Daily suspended sediment simulation 
using machine learning approach. CATENA, 138, 77–90. 
https://doi.org/10.1016/j.catena.2015.11.013 

Liu, Q.-J., Shi, Z.-H., Fang, N.-F., Zhu, H.-D., & Ai, L. (2013). Modeling the daily suspended 
sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the 
Wavelet–ANN approach. Geomorphology, 186, 181–190. 
https://doi.org/10.1016/j.geomorph.2013.01.012 

Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of 
neural networks for the prediction of water resource variables in river systems: Current 
status and future directions. Environmental Modelling & Software, 25(8), 891–909. 

Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport 
models. Environmental Modelling & Software, 18(8–9), 761–799. 
https://doi.org/10.1016/S1364-8152(03)00078-1 

Mount, N. J., & Abrahart, R. J. (2011). Load or concentration, logged or unlogged? Addressing ten 
years of uncertainty in neural network suspended sediment prediction. Hydrological Processes, 
25(20), 3144–3157. https://doi.org/10.1002/hyp.8033 

Mukundan, R., Pradhanang, S. M., Schneiderman, E. M., Pierson, D. C., Anandhi, A., Zion, M. S., … 
Steenhuis, T. S. (2013). Suspended sediment source areas and future climate impact on soil 
erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology, 
183(Supplement C), 110–119. https://doi.org/10.1016/j.geomorph.2012.06.021 

Mustafa, M. R., Rezaur, R. B., Saiedi, S., & Isa, M. H. (2012). River Suspended Sediment Prediction 
Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study 
in Malaysia. Water Resources Management, 26(7), 1879–1897. https://doi.org/10.1007/s11269-
012-9992-5 

Nourani, V., & Kalantari, O. (2010). Integrated Artificial Neural Network for Spatiotemporal 
Modeling of Rainfall–Runoff–Sediment Processes. Environmental Engineering Science, 27(5), 
411–422. https://doi.org/10.1089/ees.2009.0353 



 171 

Nourani, V., Kalantari, O., & Baghanam, A. H. (2012). Two semidistributed ANN-based models for 
estimation of suspended sediment load. Journal of Hydrologic Engineering, 17(12), 1368–1380. 

Nourani, V., Parhizkar, M., Vousoughi, F., & Amini, B. (2013). Capability of Artificial Neural 
Network for Detecting Hysteresis Phenomenon Involved in Hydrological Processes. Journal 
of Hydrologic Engineering, 19(5), 896–906. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0000870 

Olson, S. A. (2014). Estimation of Flood Discharges at Selected Annual Exceedance Probabilities for 
Unregulated, Rural Streams in Vermont with a section on Vermont regional skew regression, 
by Veilleux, A.G. (Scientific Investigations Report No. 2014–5078). Reston, VA: US 
Geological Survey. 

 
Olyaie, E., Banejad, H., Chau, K.-W., & Melesse, A. M. (2015). A comparison of various artificial 

intelligence approaches performance for estimating suspended sediment load of river 
systems: a case study in United States. Environmental Monitoring and Assessment, 187(4). 
https://doi.org/10.1007/s10661-015-4381-1 

Oudin, L., Andréassian, V., Perrin, C., Michel, C., & Le Moine, N. (2008). Spatial proximity, physical 
similarity, regression and ungaged catchments: A comparison of regionalization approaches 
based on 913 French catchments: A comparison of regionalization approaches on 913 
catchments. Water Resources Research, 44(3), n/a-n/a. 
https://doi.org/10.1029/2007WR006240 

Perks, M. T., Owen, G. J., Benskin, C. M. H., Jonczyk, J., Deasy, C., Burke, S., … Haygarth, P. M. 
(2015). Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial 
networks draining grassland dominated headwater catchments. Science of The Total 
Environment, 523, 178–190. https://doi.org/10.1016/j.scitotenv.2015.03.008 

Pieri, L., Poggio, M., Vignudelli, M., & Bittelli, M. (2014). Evaluation of the WEPP model and digital 
elevation grid size, for simulation of streamflow and sediment yield in a heterogeneous 
catchment. Earth Surface Processes and Landforms, 39(10), 1331–1344. 
https://doi.org/10.1002/esp.3527 

Raghuwanshi, N., Singh, R., & Reddy, L. (2006). Runoff and Sediment Yield Modeling Using 
Artificial Neural Networks: Upper Siwane River, India. Journal of Hydrologic Engineering, 11(1), 
71–79. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(71) 

Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M., & Nourani, V. (2009). Daily suspended 
sediment concentration simulation using ANN and neuro-fuzzy models. Science of The Total 
Environment, 407(17), 4916–4927. https://doi.org/10.1016/j.scitotenv.2009.05.016 

Rasmussen, P. P., Gray, J. R., Glysson, G. D., & Ziegler, A. C. (2011). Guidelines and procedures for 
computing time-series suspended-sediment concentrations and loads from in-stream 
turbidity-sensor and streamflow data. In Applications of Hydraulics. Reston, VA: US Geological 
Survey. 

Razavi, T., & Coulibaly, P. (2013). Streamflow Prediction in Ungauged Basins: Review of 
Regionalization Methods. Journal of Hydrologic Engineering, 18(8), 958–975. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690 



 172 

Shiri, J., & Kişi, Ö. (2012). Estimation of Daily Suspended Sediment Load by Using Wavelet 
Conjunction Models. Journal of Hydrologic Engineering, 17(9), 986–1000. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000535 

Singh, A., Imtiyaz, M., Isaac, R. K., & Denis, D. M. (2013). Comparison of Artificial Neural Network 
Models for Sediment Yield Prediction at Single Gauging Station of Watershed in Eastern 
India. Journal of Hydrologic Engineering, 18(1), 115–120. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000601 

Singh, P., & Deo, M. C. (2007). Suitability of different neural networks in daily flow forecasting. 
Applied Soft Computing, 7(3), 968–978. https://doi.org/10.1016/j.asoc.2006.05.003 

Stryker, J., Wemple, B., & Bomblies, A. (2017). Modeling sediment mobilization using a distributed 
hydrological model coupled with a bank stability model. Water Resources Research, 53(3), 2051–
2073. https://doi.org/10.1002/2016WR019143 

Tananaev, N. I., & Debolskiy, M. V. (2014). Turbidity observations in sediment flux studies: 
Examples from Russian rivers in cold environments. Geomorphology, 218, 63–71. 
https://doi.org/10.1016/j.geomorph.2013.09.031 

Uhrich, M. A., & Bragg, H. M. (2003). Monitoring Instream Turbidity to Estimate Continuous Suspended-
Sediment Loads and Yields and Clay-Water Volumes in the Upper North Santiam River Basin, Oregon, 
1998–2000 (Water-Resources Investigations Report No. 03-4098). Portland, Oregon: US 
Geological Survey. 

U.S. Environmental Protection Agency. (1999). Method 160.2: Total Suspended Solids (TSS) (Gravimetric, 
Dried at 103–105 ° C). Washington, D.C. 

US EPA. (2013). National Summary of Impaired Waters and TMDL Information. Retrieved October 
14, 2013, from 
http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#causes_303d 

Walling, D. E., Collins, A. L., & Stroud, R. W. (2008). Tracing suspended sediment and particulate 
phosphorus sources in catchments. Journal of Hydrology, 350(3–4), 274–289. 
https://doi.org/10.1016/j.jhydrol.2007.10.047 

Warrick, J. A., Melack, J. M., & Goodridge, B. M. (2015). Sediment yields from small, steep coastal 
watersheds of California. Journal of Hydrology: Regional Studies, 4, 516–534. 
https://doi.org/10.1016/j.ejrh.2015.08.004 

Zhu, Y.-M., Lu, X. X., & Zhou, Y. (2007). Suspended sediment flux modeling with artificial neural 
network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. 
Geomorphology, 84(1–2), 111–125. https://doi.org/10.1016/j.geomorph.2006.07.010 

Zounemat-Kermani, M., Kişi, Ö., Adamowski, J., & Ramezani-Charmahineh, A. (2016). Evaluation 
of data driven models for river suspended sediment concentration modeling. Journal of 
Hydrology, 535, 457–472. https://doi.org/10.1016/j.jhydrol.2016.02.012 

 
  



 173 

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 
 

Context and Conclusions 

The body of work presented in this dissertation was motivated, in part, by witnessing 

first-hand the impact that Tropical Storm Irene had on our landscape and water resources in 

Vermont. At that time, the legacy effects caused by the storm’s geomorphic changes were 

expected to result in years of increased erosion and loading of sediment and sediment-bound 

nutrients. In Vermont and much of the Northeast, comprehensive monitoring of geomorphic 

change and suspended sediment flux is limited in both spatial coverage and frequency. We 

have attempted to mitigate these limitations through the deployment of a network of in-stream 

turbidity sensors, river stage gauges, water quality samplers, and meteorological stations in the 

Mad River Valley between 2013 and 2016. During this same period, we also conducted 

extensive monitoring of geomorphic change along the Mad River and select other locations 

using terrestrial laser scanning (TLS) and unmanned aircraft system (UAS)-based 

photogrammetry.  

The overarching objective of this work was to help improve the monitoring and 

understanding of watershed sediment dynamics in temperate regions with Vermont as a 

setting. This dissertation focuses on the development and evaluation of new measurement 

tools and data-driven methods to address three major gaps in our current state of knowledge; 

these include an ability to: 

(1) more efficiently quantify and monitor streambank erosion across large areas, 

(2) infer event sediment dynamics (i.e. sources and connectivity) within a watershed 

from sediment and discharge monitoring at the watershed and sub-watershed 

outlets, and 
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(3) predict suspended sediment loading from local hydrometeorological data in 

watersheds with limited measured sediment and discharge data. 

In Chapter 2, we evaluated the use of UAS-based photogrammetry for capturing the 

streambank topography and for monitoring bank movement. Over 20 km of the Mad River, 

Shepard Brook, New Haven River, and Winooski River corridors were surveyed using the 

UAS to test the method for monitoring over large spatial areas. Data were collected during 

spring, summer, and autumn conditions between spring 2015 and spring 2016. In addition, we 

compared the UAS data to TLS and GPS surveys at seven sites encompassing a variety of 

streambank conditions. To assess the accuracy of UAS-derived topography for measuring 

horizontal bank retreat rates or changes in ground elevation along streambank surfaces, we 

developed a cross-sectional analysis that compared UAS data surveys to those obtained from 

TLS and GPS ground survey.  

The cross-sectional analysis showed that the UAS-derived data reliably captured the 

bank surface and compared well to TLS and GPS data. However, the accuracy depended on 

the density of the vegetation along the bank. We observed the highest accuracies during “leaf-

off” conditions in early spring. The UAS accuracy (median vertical error of 0.11 m during 

optimal conditions) also matched or improved on the data resolution currently available in 

airborne-lidar data sets, and with the benefit of greater flexibility in the timing and location of 

data collection. Therefore, we concluded that UAS-based photogrammetry shows great 

promise for capturing bank erosion and deposition in areas where banks are not completely 

obscured by vegetation. In addition, based on the efficiency of data collection and post-

processing, UAS-based photogrammetry offers a new tool useful for long-term (annual or 

multi-year) monitoring of geomorphic change along river corridors. The method presented 

here should be broadly applicable to a wide variety of locations and terrain as long as areas are 
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not completely obscured by vegetation year-round as is found in some tropical and sub-

tropical climates. 

In Chapter 3, we furthered the evaluation of UAS-based photogrammetry for 

monitoring river channel movement by taking a complimentary approach the cross-section 

analysis presented in Chapter 2. In Chapter 3, we analyzed bank erosion by using the 

automatically generated digital elevation models (DEMs) from the UAS software to determine 

channel changes over time. We also used existing DEMs generated form earlier airborne lidar 

surveys to compare UAS surveys against early river surveys. We found that that river 

vegetation conditions had a large impact on the applicability of UAS-based photogrammetry 

to capture the topography along the river corridor. At the New Haven River site, reliable 

estimates of volumetric bank erosion was able to be calculated both between UAS surveys as 

well as UAS and lidar survey. Additionally, from our 2 year UAS survey effort we were able to 

make recommendations for future UAS surveying efforts related to river systems as well as 

summarize the effort involved to collect our survey data. 

In Chapter 4, a novel approach for analyzing the suspended sediment concentration-

discharge (SSC-Q) relationship is presented to characterize event sediment dynamics using the 

Mad River watershed as the study site. To do this, we (1) collected high-frequency suspended 

sediment data using in-stream turbidity sensors and identified detailed patterns of hysteretic 

behavior in the SSC-Q relationship for more than 600+ storm events and then (2) developed 

a machine-learning method capable of classifying the hysteretic patterns. We used the 2-D 

hysteresis images as inputs, and adapted an approach often used for handwritten character 

recognition, known as a restricted Boltzmann machine (RBM), to classify images of the SSC-

Q plots. We were able to successfully train and test the RBM model using 600 observed storm 

events from the Mad River and its tributaries. 
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  In analyzing the hysteresis patterns in the Mad River watershed, we identified an 

expanded set of classification patterns. When we investigated the average hydrological and 

meteorological characteristics of the events associated with each type of hysteresis we were 

able to attribute physical processes to specific patterns. By looking at the distribution of 

patterns from each monitoring site we were also able to infer connectivity and proximity of 

sediment sources within the watershed. We believe the hysteretic behavior in the SSC-Q 

relationship is a convenient mechanism for compressing the complexity of sediment dynamics 

in time and space onto a two-dimensional image and the data-driven method presented offers 

a novel tool to gain additional information from hysteresis analysis. The framework described 

is broadly applicable to study in other regions and for analyzing the relationship of discharge 

to variables beyond suspended sediment such other solutes (e.g. nitrate) or hydrological 

variables (e.g. soil moisture); the only limitation being the necessity for high temporal 

resolution data and data sets large enough for use with data-driven methods.   

In Chapter 5, we used a recurrent counterpropagation neural network (rCPN) to 

predict suspended sediment loads (SSL) using only local hydrometeorological data from the 

Mad River and two of its tributaries, Shepard Brook and Mill Brook. The SSL model was 

tested and evaluated using past records and at an ungauged location. The vast majority of 

artificial neural network (ANN) models for predicting SSC and SSL use past measurements of 

discharge and suspended sediment to make predictions, limiting the real-world application to 

one time-step ahead forecasting. In this research, we predicted SSL using only local 

hydrometeorological data in a two-step model that allowed prediction of both discharge and 

suspended sediment at locations where measurements are not available.  

We utilized two rCPN models in tandem to predict SSL by first predicting discharge, 

and then predicting suspended sediment using the estimated discharge. We found 
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performance of the model in predicting discharge met or exceeded previous findings. At all 

locations, we also found the performance of the rCPN model to be superior to the traditional 

sediment rating curve method in predicting SSL. The data-driven method offers water 

resources managers a flexible tool for predicting suspended sediment discharge from river 

systems providing local hydrometeorological data exist as well a limited record of Q and TSS 

data existing for model training from either the study location or from a similar watershed.   

Collectively, this body of research provides new tools for catchment sediment studies 

and demonstrates application using a comprehensive data set collected in the Mad River 

watershed. The research focuses on the development of practical, data-driven approaches that 

can leverage the increasing amounts of data available from advances in water quality sensor 

technology. Because of the increasing volume of spatial and temporal data, there is tremendous 

interest in machine learning and deep learning research in a wide variety of applications. I 

undertook this research with a guiding principle that machine learning methods are most 

effective when grounded in a solid understanding of the research question and tailored to the 

task at hand. As such, the aim of this research was not to develop and utilize the most state of 

the art machine learning algorithm, but instead to combine robust data collection and 

processing with data-driven tools that trade modeling process-based understanding in favor 

of mapping the nonlinear dynamics embedded in the desired phenomena. These data-driven, 

statistical-based methods sacrifice process-based understanding in favor of ease of use and the 

ability to make predictions over broader regional scales. I view this research as a foundation 

for scaling up to incorporate more sensor network data from additional locations in order to 

answer additional questions related to watershed studies. Below, I briefly attempt to lay out a 

few future directions for further study. 
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Future Directions 

Improving data processing workflow for geomorphic change detection using UAS and digital photogrammetry 

The accurate georeferencing of multiple topographic surveys collected at multiple 

dates and sometimes with different types of equipment was an arduous task in the 

measurement of streambank topography. We focused our efforts on analysis at seven specific 

sites and could utilize ground control points (GCPs) for accurate georerencing. The use of 

GCPs become impractical however in scaling up data collection and processing to long river 

corridors. Advances in UAS GPS receiver and photogrammetry technology are expected to 

allow much more accurate direct georeferencing of topographic data. While this technology is 

still relatively new and has yet to meet the same performance standards of GCPs, especially in 

the vertical direction (Hugenholtz et al. 2016), it has the potential to transform the collection 

of topographic data at dramatically reduced costs (Carbonneau and Dietrich 2017). An 

automated workflow for georeferencing UAS-derived topography over entire rivers would 

then allow the direct comparison of multiple survey dates or to airborne lidar surveys by using 

a differencing of DEMs approach. The calculation of volume of erosion and deposition along 

the entire river corridor at a detailed level would provide a better understanding of the rate of 

bank erosion. 

The automation of hydrological event separation and scaling up to larger data sets 

Increasingly greater availability of high frequency suspended sediment and water 

quality data offer many exciting opportunities (Pellerin et al. 2016). Because many sediment 

and nutrient processes are driven by hydrological events, understanding the sediment-

discharge behavior during individual storm events is often desired. Reliable automation of 

identification and separation of hydrological events in time series is of critical importance in 

such studies. In the hysteresis analysis presented in Chapter 3, we used a manual approach in 
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defining storm events in favor of achieving greatest control over the definition of events.  A 

couple recent projects by Mei and Anognastou (2015) and Tang and Carey (2017) have resulted 

in new Matlab functions to automatically separate out hydrological events based on rainfall-

runoff records and offer one potential solution to this challenge. However, this solution 

requires an iterative adjustment of parameters and threshold, and it is also inflexible in the 

ways events are defined. There appears to be unrealized opportunity to apply machine learning 

approaches to identifying hydrological events.  

Understanding how sediment moves in time and space through watersheds 

Recent research has suggested that management of hydrological connectivity of 

sediment sources may be one approach to sediment-bound nutrient management strategies 

(e.g. Sherriff et al. 2016). Reliable characterization of sediment connectivity demands an 

understanding of sediment movement spatially as well as temporally within watersheds. This 

research provides a foundation to undertake this type of study within the Mad River watershed. 

Our analysis of hysteresis patterns presented in Chapter 2 identified a shift in the distribution 

of patterns from upstream tributaries to downstream at the Mad River outlet. In addition, 

discrepancies in suspended sediment yield have been observed between the Mad River and its 

tributary watersheds (Hamshaw 2014). Expanding the analysis of hysteresis patterns to track 

shifts in the sediment response from individual storm events as they move from the tributaries 

to the watershed outlet is an approach worth considering. Additionally, other data sets such 

as the ongoing sediment tracer study and measurement of geomorphic change along the main 

stem channel could be integrated into a comprehensive analysis of sediment sources and 

movement over a multi-year period. 

Implementation – data collection and real-world application 
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A question was posed in relation to this research at its conception stage: “what can 

ANNs and other approaches do to inform rapid analysis of watershed management 

interventions?” While this body of work did not directly address this question, it offers a 

guiding direction for future work. When data collection is based in the local communities, it 

offers an opportunity to further efforts of citizen science, which has shown to be of value for 

watershed management (Starkey et al. 2017). The data-driven approaches to suspended 

sediment monitoring and prediction in this work are based on data obtained from relatively 

low-cost and reliable sensor technology. As such, there is unrealized potential for 

incorporating new technologies in data collection and analysis in citizen and community-based 

monitoring programs. As part of watershed pollution reduction efforts, such as the Lake 

Champlain TMDL Implementation Plan, communities are being asked for greater 

involvement in restoration strategies. Implementation of monitoring system that uses low-cost 

and reliable sensors and is accessible to communities through data-driven analysis tools may 

be a way to support their efforts in watershed management.    
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APPENDIX A: FIELD MONITORING SITES AND DATA 
SUMMARY 

 
Photos of Turbidity Monitoring Stations 

Mad River 

 
Mad River turbidity sensor installation looking downstream. 
USGS gauge on opposite bank 

 

 
Mad River turbidity sensor installation during storm events 
looking upstream 
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Mad River 

 
Mad River turbidity sensor installation looking downstream. 
USGS gauge on opposite bank 

 

 
Mad River turbidity sensor installation during storm event looking 
upstream 
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Shepard Brook 
 

 
Shepard Brook turbidity sensor and stage sensor installation  

 

 
Shepard Brook turbidity sensor installation during storm event 
looking upstream 
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Mill Brook 
 

 
Mill Brook turbidity sensor and stage sensor installation looking 
upstream 

 

 
Mill Brook monitoring site location during storm event looking 
upstream 
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High Bridge Brook 
 

 
High Bridge Brook turbidity sensor and stage sensor installation 
looking upstream 

 

 
Detail of High Bridge Brook sensor installation in channel, 
looking upstream along channel 
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Folsom Brook 
 

 
Folsom Brook turbidity sensor and stage sensor installation 
looking upstream during storm event 
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Freeman Brook 
 

 
Freeman Brook turbidity sensor and stage sensor installation 
looking downstream 
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Study Area Map 
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Summary of Monitoring Data 
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Example of hydrological event data dashboard used for storm event analysis 
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APPENDIX B: STAGE-DISCHARGE RELATIONSHIPS 
 

Stage-discharge rating curves were utilized to estimate discharge at all five study 

tributaries in the Mad River watershed. Two different methods were used to generate rating 

curves. For tributaries with long-term monitoring (Mill Brook, Shepard Brook, and Folsom 

Brook) HEC-RAS models were developed and calibrated. Discharge for High Bridge Brook 

and Freeman Brook was estimated using a drainage-area ratio method based on discharge at 

the Mad River outlet. 

HEC-RAS model based rating curves 
 

A HEC-RAS model (version 4.1) was developed for the stream reach containing the 

gauging station, and used to generate a theoretical rating curve. The model was then calibrated 

to measured discharge by adjusting Manning’s n coefficient in the HEC-RAS model. Surveys 

were performed for all three tributaries in summer 2014 by Alex Morton, supported by 

Beverley Wemple, Kristen Underwood, Scott Hamshaw, and Jordan Duffy. HEC-RAS models 

were built by Alex Morton and Jordan Duffy. Discharge measurements were made by Kristen 

Underwood during 2013 and 2014 using the velocity-area method. Because discharge 

measurements were restricted to only wadeable conditions, the model calibration at higher 

flows may not be very reliable. Model calibration was performed by Scott Hamshaw. 

Drainage-area ratio rating curves 
 

Stage measurements were compared to time delayed measurements of instantaneous 

discharge at the Mad River outlet and a regression model was fit. The time delay was 

determined by observing the typical time lag between peak flow in the tributary to that of the 

Mad River at the USGS gauge. Log-linear regression and quadratic models were explored to 

find the best model fit. 
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Shepard Brook Rating Curve 
 

 
 
Shepard Brook Discharge Measurements 
 
Flow measurements by Kristen Underwood 

Date 

Adjusted 
Sonde Stage 

(m) 

Measured 
Discharge 

(ft3/s) 

Measured 
Discharge 

(m3/s) 

11/6/13 0.231 16.6 0.469 

11/9/13 0.28 25.2 0.713 

11/18/13 0.4765 107.1 3.032 

7/23/14 0.122 6.6 0.187 
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Mill Brook Rating Curve 
 

 
 
Mill Brook Discharge Measurements 
 
Flow measurements made Kristen Underwood 

Date 

Adjusted 
Sonde Stage 

(m) 

Measured 
Discharge 

(ft3/s) 

Measured 
Discharge 

(m3/s) 

11/6/13 0.157 27.28 0.773 

11/9/13 0.209 41.84 1.185 

7/23/14 0.075 7.32 0.207 
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Folsom Brook Rating Curve

 
 
Folsom Brook Discharge Measurements 
 
Flow measurements by Kristen Underwood 

Date 

Adjusted 
Sonde Stage 

(m) 

Measured 
Discharge 

(ft3/s) 

Measured 
Discharge 

(m3/s) 

11/2/13 0.475 14.3 0.40 

11/9/13 0.446 11.4 0.32 

11/18/13 0.589 37.4 1.06 
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High Bridge Brook Rating Curve 
 
Log-linear regression model: 
 

𝑄 = 𝐵𝐶𝐹 ∙ 𝑎 ∙ 𝐻𝑏 + 𝑥 
 

𝑄 (𝑐𝑓𝑠) = 1.0894 ∙ 27.12 ∙ 𝐻1.5318 − 0.3 
 

 
Freeman Brook Rating Curve 
 
Quadratic regression model: 

𝑄 = 𝑎1𝐻2 + 𝑎2𝐻 + 𝑎3 
 

𝑄 (𝑐𝑓𝑠) =  −4.8𝐻2 + 83𝐻 − 10 
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APPENDIX C: CODE FOR MATLAB FUNCTIONS 
 

Streambank Cross-section Analysis Scripts 

% program to view bank cross sections as raw point cloud data and as 
% derived bank ground surface 
  
clc; 
close all; 
clear all; 
  
UAS = load('../Data/UAS/SB/XS1_UAS_4may2016'); 
TLS = load('../Data/UAS/SB/XS1_TLS_4may2016'); 
binSizeUAS = 0.10; %in meters 
binSizeTLS = 0.05; 
xsUASData = sortrows(UAS.xsData,1); 
xsTLSData = sortrows(TLS.xsData,1); 
xUAS = xsUASData(:,1); 
xTLS = xsTLSData(:,1); 
elevUAS = xsUASData(:,2); 
elevTLS = xsTLSData(:,2); 
  
startXS = 14; 
endXS = max(xUAS); 
ind = find(xUAS > endXS | xUAS < startXS); 
xUAS(ind) = []; elevUAS(ind)=[]; 
ind = find(xTLS > endXS | xTLS < startXS); 
xTLS(ind) = []; elevTLS(ind)=[]; 
count = 1; 
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS>=i) & (xUAS<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS(ind)); 
        minZUAS(count) = M; 
        temp = xUAS(ind); 
        LUAS(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
  
count = 1; 
  
for i = startXS:binSizeTLS:endXS 
    ind = find((xTLS>=i) & (xTLS<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevTLS(ind)); 
        minZTLS(count) = M; 
        temp = xTLS(ind); 
        LTLS(count) = temp(I); 
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        count = count+1; 
    end 
     
end 
  
figure() 
plot(xTLS,elevTLS,'.c') 
hold on 
plot(xUAS,elevUAS,'.b','MarkerSize',10) 
%axis('equal') 
xlabel('Distance Along XS (m)'); 
ylabel('Elevation (m)'); 
hold off; 
  
figure() 
plot(LUAS,minZUAS,'--k','LineWidth',2) 
hold on 
plot(LTLS,minZTLS,'-b','LineWidth',2') 
%axis('equal') 
xlabel('Distance Along XS (m)'); 
ylabel('Elevation (m)'); 
hold off; 
 
% program to estiamte bank surface from point cloud data along 
% cross-sections and compare surfaces from two separate surveys 
  
clc; 
close all; 
clear all; 
  
UAS = load('../Data/UAS/SB/XS1_UAS_4may2016'); 
TLS = load('../Data/UAS/SB/XS1_TLS_4may2016'); 
binSizeUAS = 0.2; %in meters 
binSizeTLS = .05; 
startXS = 14; 
endXS = 21; 
xCorrTLS = 0; 
yCorrTLS = 0.00; 
xCorrUAS = 0.00; 
yCorrUAS = 0; 
  
xsUASData = sortrows(UAS.xsData,1); 
xsTLSData = sortrows(TLS.xsData,1); 
xUAS = xsUASData(:,1) + xCorrUAS; 
xTLS = xsTLSData(:,1) + xCorrTLS; 
elevUAS = xsUASData(:,2) + yCorrUAS; 
elevTLS = xsTLSData(:,2) + yCorrTLS; 
  
ind = find(xUAS > endXS | xUAS < startXS); 
xUAS(ind) = []; elevUAS(ind)=[]; 
ind = find(xTLS > endXS | xTLS < startXS); 
xTLS(ind) = []; elevTLS(ind)=[]; 
count = 1; 
for i = startXS:binSizeUAS:endXS 
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    ind = find((xUAS>=i) & (xUAS<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS(ind)); 
        minZUAS(count) = M; 
        temp = xUAS(ind); 
        LUAS(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
  
count = 1; 
  
for i = startXS:binSizeTLS:endXS 
    ind = find((xTLS>=i) & (xTLS<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevTLS(ind)); 
        minZTLS(count) = M; 
        temp = xTLS(ind); 
        LTLS(count) = temp(I); 
        count = count+1; 
    end 
     
end 
count = 1; 
for i = startXS:binSizeUAS:endXS 
    vertError(count) = interp1(LUAS,minZUAS,i)-interp1(LTLS,minZTLS,i); 
    count = count+1; 
end 
meanVertError = mean(vertError,'omitNaN') 
medianVertError = median(vertError,'omitNaN') 
stdevVertError = std(vertError,'omitNaN') 
rmseVert = sqrt(mean((vertError).^2,'omitNaN')) 
  
startZ = min([interp1(LUAS,minZUAS,startXS+binSizeUAS) 
interp1(LTLS,minZTLS,startXS+binSizeUAS)],[],'omitNaN'); 
endZ = max([interp1(LUAS,minZUAS,endXS-binSizeUAS) interp1(LTLS,minZTLS,endXS-
binSizeUAS)]); 
count = 1; 
for i = startZ:binSizeTLS:endZ 
    ind = find((elevTLS>=i) & (elevTLS<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = max(xTLS(ind)); 
        maxXTLS(count) = M; 
        temp = elevTLS(ind); 
        YTLS(count) = temp(I); 
        count = count+1; 
    end 
end 
count = 1; 
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for i = startZ:binSizeUAS:endZ 
    ind = find((elevUAS>=i) & (elevUAS<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = max(xUAS(ind)); 
        maxXUAS(count) = M; 
        temp = elevUAS(ind); 
        YUAS(count) = temp(I); 
        count = count+1; 
    end 
end 
  
count = 1; 
for i = startZ:binSizeUAS:endZ 
     horizError(count) = interp1(YTLS,maxXTLS,i)-interp1(YUAS,maxXUAS,i); 
     count = count+1; 
end 
meanHorizError = mean(horizError,'omitNaN') 
medianHorizError = median(horizError,'omitNaN') 
stdevHorizError = std(horizError,'omitNaN') 
rmseHoriz = sqrt(mean((horizError).^2,'omitNaN')) 
  
ind = find(xTLS > endXS | xTLS < startXS); 
xTLS(ind) = []; elevTLS(ind)=[]; 
ind = find(xUAS > endXS | xUAS < startXS); 
xUAS(ind) = []; elevUAS(ind)=[]; 
xUAS = xUAS-startXS; 
xTLS = xTLS-startXS; 
LUAS = LUAS-startXS; 
LTLS = LTLS-startXS; 
maxXTLS = maxXTLS-startXS; 
maxXUAS = maxXUAS-startXS; 
  
figure() 
plot(xUAS,elevUAS,'.k','LineWidth',2,'MarkerSize',15) 
hold on; 
plot(xTLS,elevTLS,'.m','MarkerSize',15) 
plot(maxXTLS,YTLS,'-b','LineWidth',2) 
plot(maxXUAS,YUAS,'--g','LineWidth',2) 
hold off 
title('Vertical bin derived bank profiles'); 
xlabel('Distance along XS (m)'); 
ylabel('Elevation (m)'); 
legend('raw UAS data','raw TLS data','UAS bank profile','TLS bank 
profile','Location','SouthEast'); 
axis('equal') 
  
figure() 
plot(xUAS,elevUAS,'.k','LineWidth',2,'MarkerSize',15) 
hold on; 
plot(xTLS,elevTLS,'.m','MarkerSize',15) 
plot(LUAS,minZUAS,'--g','LineWidth',2,'MarkerSize',15) 
plot(LTLS,minZTLS,'-b','LineWidth',2') 
axis('equal') 
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title('UAS Comparison MR-D'); 
xlabel('Distance along XS (m)'); 
ylabel('Elevation (m)'); 
legend('Raw UAS Data Flight 1','Raw UAS Data Flight 2','UAS Bank Profile 
Flight 1','UAS Bank Profile Flight 2','Location','SouthEast'); 
hold off; 
%fig2plotly() 
 

% program to calculate erosion along streambank cross-section as change in 
% area. Compares changes in area between two separate surveys 
  
clc; 
close all; 
clear all; 
  
UAS1 = load('../Data/UAS/NHR/Area2_XS3_UAS_12-22-15'); 
UAS2 = load('../Data/UAS/NHR/Area2_XS3_UAS_4-27-16'); 
TLS1 = load('../Data/UAS/NHR/Area2_XS3_TLS_12-14-15'); 
TLS2 = load('../Data/UAS/NHR/Area2_XS3_TLS_4-27-16'); 
binSizeUAS = 0.18; %in meters 
binSizeTLS = .15; 
startXS = 21.0; 
endXS = 34; 
xCorrTLS = 0; 
yCorrTLS = 0; 
xCorrUAS = 0; 
yCorrUAS = 0; 
  
xsUASData1 = sortrows(UAS1.xsData,1); 
xsUASData2 = sortrows(UAS2.xsData,1); 
xsTLSData1 = sortrows(TLS1.xsData,1); 
xsTLSData2 = sortrows(TLS2.xsData,1); 
xUAS1 = xsUASData1(:,1) + xCorrUAS; 
xUAS2 = xsUASData2(:,1) + xCorrUAS; 
xTLS1 = xsTLSData1(:,1) + xCorrTLS; 
xTLS2 = xsTLSData2(:,1) + xCorrTLS; 
elevUAS1 = xsUASData1(:,2) + yCorrUAS; 
elevUAS2 = xsUASData2(:,2) + yCorrUAS; 
elevTLS1 = xsTLSData1(:,2) + yCorrTLS; 
elevTLS2 = xsTLSData2(:,2) + yCorrTLS; 
  
ind = find(xUAS1 > endXS | xUAS1 < startXS); 
xUAS1(ind) = []; elevUAS1(ind)=[]; 
ind = find(xUAS2 > endXS | xUAS2 < startXS); 
xUAS2(ind) = []; elevUAS2(ind)=[]; 
ind = find(xTLS1 > endXS | xTLS1 < startXS); 
xTLS1(ind) = []; elevTLS1(ind)=[]; 
ind = find(xTLS2 > endXS | xTLS2 < startXS); 
xTLS2(ind) = []; elevTLS2(ind)=[]; 
count = 1; 
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS1>=i) & (xUAS1<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
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        [M I] = min(elevUAS1(ind)); 
        minZUAS1(count) = M; 
        temp = xUAS1(ind); 
        LUAS1(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
  
count = 1; 
  
for i = startXS:binSizeTLS:endXS 
    ind = find((xTLS1>=i) & (xTLS1<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevTLS1(ind)); 
        minZTLS1(count) = M; 
        temp = xTLS1(ind); 
        LTLS1(count) = temp(I); 
        count = count+1; 
    end 
     
end 
count = 1; 
  
for i = startXS:binSizeTLS:endXS 
    ind = find((xTLS2>=i) & (xTLS2<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevTLS2(ind)); 
        minZTLS2(count) = M; 
        temp = xTLS2(ind); 
        LTLS2(count) = temp(I); 
        count = count+1; 
    end 
     
end 
count = 1; 
  
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS2>=i) & (xUAS2<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS2(ind)); 
        minZUAS2(count) = M; 
        temp = xUAS2(ind); 
        LUAS2(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
count = 1; 
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for i = startXS:binSizeUAS:endXS 
    vertErrorUAS(count) = interp1(LUAS2,minZUAS2,i)-interp1(LUAS1,minZUAS1,i); 
    count = count+1; 
end 
ind = isnan(vertErrorUAS); 
vertErrorUAS(ind) = []; 
meanVertRetreatUAS = mean(vertErrorUAS,'omitNaN') 
medianVertRetreatUAS = median(vertErrorUAS,'omitNaN') 
stdevVertRetreatUAS = std(vertErrorUAS,'omitNaN') 
temp = vertErrorUAS < 0; 
erosionVertAreaUAS = sum(vertErrorUAS(temp)*binSizeUAS) 
depositionVertAreaUAS = sum(vertErrorUAS(~temp)*binSizeUAS) 
netRetreatVertAreaUAS = meanVertRetreatUAS*(endXS-startXS) 
  
startZ = max([interp1(LUAS1,minZUAS1,startXS+binSizeUAS) 
interp1(LTLS1,minZTLS1,startXS+binSizeUAS)],[],'omitNaN'); 
endZ = min([interp1(LUAS1,minZUAS1,endXS-binSizeUAS) 
interp1(LTLS1,minZTLS1,endXS-binSizeUAS)]); 
%endZ = 108; 
count = 1; 
for i = startZ:binSizeTLS:endZ 
    ind = find((elevTLS1>=i) & (elevTLS1<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = max(xTLS1(ind)); 
        maxXTLS1(count) = M; 
        temp = elevTLS1(ind); 
        YTLS1(count) = temp(I); 
        count = count+1; 
    end 
end 
count = 1; 
for i = startZ:binSizeTLS:endZ 
    ind = find((elevTLS2>=i) & (elevTLS2<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = max(xTLS2(ind)); 
        maxXTLS2(count) = M; 
        temp = elevTLS2(ind); 
        YTLS2(count) = temp(I); 
        count = count+1; 
    end 
end 
count = 1; 
for i = startZ:binSizeUAS:endZ 
    ind = find((elevUAS1>=i) & (elevUAS1<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = max(xUAS1(ind)); 
        maxXUAS1(count) = M; 
        temp = elevUAS1(ind); 
        YUAS1(count) = temp(I); 
        count = count+1; 
    end 
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end 
count = 1; 
for i = startZ:binSizeUAS:endZ 
    ind = find((elevUAS2>=i) & (elevUAS2<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = max(xUAS2(ind)); 
        maxXUAS2(count) = M; 
        temp = elevUAS2(ind); 
        YUAS2(count) = temp(I); 
        count = count+1; 
    end 
end 
count = 1; 
for i = startZ:binSizeTLS:endZ 
     horizErrorTLS(count) = interp1(YTLS1,maxXTLS1,i)-
interp1(YTLS2,maxXTLS2,i); 
     count = count+1; 
end 
count = 1; 
for i = startZ:binSizeUAS:endZ 
     horizErrorUAS(count) = interp1(YUAS1,maxXUAS1,i)-
interp1(YUAS2,maxXUAS2,i); 
     count = count+1; 
end 
ind = isnan(horizErrorTLS); 
horizErrorTLS(ind) = []; 
meanRetreat = mean(horizErrorTLS,'omitNaN') 
medianRetreat = median(horizErrorTLS,'omitNaN') 
stdevRetreat = std(horizErrorTLS,'omitNaN') 
temp = horizErrorTLS < 0; 
erosionArea = sum(horizErrorTLS(temp)*binSizeTLS) 
depositionArea = sum(horizErrorTLS(~temp)*binSizeTLS) 
netRetreatArea = meanRetreat*(endZ-startZ) % square meters 
  
ind = isnan(horizErrorUAS); 
horizErrorUAS(ind) = []; 
meanRetreatUAS = mean(horizErrorUAS,'omitNaN') 
medianRetreatUAS = median(horizErrorUAS,'omitNaN') 
stdevRetreatUAS = std(horizErrorUAS,'omitNaN') 
temp = horizErrorUAS < 0; 
erosionAreaUAS = sum(horizErrorUAS(temp)*binSizeUAS) 
depositionAreaUAS = sum(horizErrorUAS(~temp)*binSizeUAS) 
netRetreatAreaUAS = meanRetreatUAS*(endZ-startZ) 
percError = abs(netRetreatAreaUAS-netRetreatArea)/netRetreatArea 
  
% ind = find(xTLS > endXS | xTLS < startXS); 
% xTLS1(ind) = []; elevTLS(ind)=[]; 
% ind = find(xUAS > endXS | xUAS < startXS); 
% xUAS(ind) = []; elevUAS(ind)=[]; 
xUAS1 = xUAS1-startXS; 
xUAS2 = xUAS2-startXS; 
xTLS1 = xTLS1-startXS; 
maxXTLS1 = maxXTLS1-startXS; 
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maxXUAS1 = maxXUAS1-startXS; 
maxXTLS2 = maxXTLS2-startXS; 
maxXUAS2 = maxXUAS2-startXS; 
  
figure() 
plot(xTLS1,elevTLS1,'.c','MarkerSize',14) 
hold on 
plot(xTLS2,elevTLS2,'.m','MarkerSize',14) 
hold off 
legend('TLS Date 1','TLS Date 2'); 
  
figure() 
plot(xUAS1,elevUAS1,'.c','MarkerSize',14) 
hold on 
plot(xUAS2,elevUAS2,'.m','MarkerSize',14) 
hold off 
legend('UAS Date 1','UAS Date 2'); 
  
figure() 
plot(maxXTLS1,YTLS1,'-b','LineWidth',2) 
hold on 
plot(maxXUAS1,YUAS1,'--g','LineWidth',2) 
plot(maxXTLS2,YTLS2,'-k','LineWidth',2) 
plot(maxXUAS2,YUAS2,'--m','LineWidth',2) 
hold off 
title('UAS and TLS Measured Bank Horizontal Retreat'); 
xlabel('Distance along XS (m)'); 
ylabel('Elevation (m)'); 
legend('TLS Date 1','UAS Date 1','TLS Date 2','UAS Date 2'); 
%axis('equal') 
fig2plotly() 
  
figure() 
plot(LUAS1,minZUAS1,'--g','LineWidth',2) 
hold on 
plot(LTLS1,minZTLS1,'-b','LineWidth',2') 
plot(LUAS2,minZUAS2,'--m','LineWidth',2) 
plot(LTLS2,minZTLS2,'-k','LineWidth',2') 
axis('equal') 
title('UAS and TLS Vertical Erosion Measured Retreat'); 
xlabel('Distance along XS (m)'); 
ylabel('Elevation (m)'); 
legend('UAS Date 1','TLS Date 1','UAS Date 2','TLS Date 2'); 
hold off; 
 
% program to compare four surveys along streambank cross section 
  
clc; 
close all; 
clear all; 
  
UAS1 = load('../Data/UAS/MR-D/Area2_XS1_UAS_22apr2015'); 
UAS2 = load('../Data/UAS/MR-D/Area2_XS1_UAS_22jun2015'); 
UAS3 = load('../Data/UAS/MR-D/Area2_XS1_UAS_10nov2015'); 



 231 

UAS4 = load('../Data/UAS/MR-D/Area2_XS1_UAS_18may2016'); 
binSizeUAS = 0.2; %in meters 
binSizeTLS = 0.1; 
startXS = 8; 
endXS = 14; 
xCorrTLS = 0; 
yCorrTLS = 0; 
xCorrUAS = 0; 
yCorrUAS =0; 
  
xsUAS1Data = sortrows(UAS1.xsData,1); 
xsUAS2Data = sortrows(UAS2.xsData,1); 
xsUAS3Data = sortrows(UAS3.xsData,1); 
xsUAS4Data = sortrows(UAS4.xsData,1); 
xUAS1 = xsUAS1Data(:,1); 
xUAS2 = xsUAS2Data(:,1); 
xUAS3 = xsUAS3Data(:,1); 
xUAS4 = xsUAS4Data(:,1); 
elevUAS1 = xsUAS1Data(:,2); 
elevUAS2 = xsUAS2Data(:,2); 
elevUAS3 = xsUAS3Data(:,2)+.05; 
elevUAS4 = xsUAS4Data(:,2); 
  
ind = find(xUAS1 > endXS | xUAS1 < startXS); 
xUAS1(ind) = []; elevUAS1(ind)=[]; 
ind = find(xUAS2 > endXS | xUAS2 < startXS); 
xUAS2(ind) = []; elevUAS2(ind)=[]; 
ind = find(xUAS3 > endXS | xUAS3 < startXS); 
xUAS3(ind) = []; elevUAS3(ind)=[]; 
ind = find(xUAS4 > endXS | xUAS4 < startXS); 
xUAS4(ind) = []; elevUAS4(ind)=[]; 
count = 1; 
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS1>=i) & (xUAS1<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS1(ind)); 
        minZUAS1(count) = M; 
        temp = xUAS1(ind); 
        LUAS1(count) = temp(I); 
        count = count+1; 
    end   
end 
  
count = 1; 
  
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS2>=i) & (xUAS2<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS2(ind)); 
        minZUAS2(count) = M; 
        temp = xUAS2(ind); 
        LUAS2(count) = temp(I); 
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        count = count+1; 
    end 
     
end 
  
  
count = 1; 
  
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS3>=i) & (xUAS3<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS3(ind)); 
        minZUAS3(count) = M; 
        temp = xUAS3(ind); 
        LUAS3(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
  
count = 1; 
  
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS4>=i) & (xUAS4<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS4(ind)); 
        minZUAS4(count) = M; 
        temp = xUAS4(ind); 
        LUAS4(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
figure() 
plot(LUAS1-startXS,minZUAS1,'--k','LineWidth',2) 
hold on; 
plot(LUAS2-startXS,minZUAS2,'-.m','LineWidth',2) 
plot(LUAS3-startXS,minZUAS3,':g','LineWidth',2) 
plot(LUAS4-startXS,minZUAS4,'-b','LineWidth',2') 
axis('equal') 
title('Comparison of UAS Data'); 
xlabel('Distance along XS (m)'); 
ylabel('Elevation (m)'); 
legend('Spring 2015','Summer 2015','Fall 2015','Spring 2016'); 
hold off; 
fig2plotly() 
 
% program to compare ground survey control points to other surveys 
% generated from point cloude data along streambank cross-sections 
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clc; 
close all; 
clear all; 
  
  
UAS = load('../Data/UAS/SB/XS1_UAS_4may2016'); 
GPS = load('../Data/UAS/SB/XS1_GPS_4may2016'); 
TLS = load('../Data/UAS/SB/XS1_TLS_4may2016'); 
site = 'SB 2016'; 
  
xsGPSData = sortrows(GPS.xsData,1); 
xGPS = xsGPSData(:,1); 
elevGPS = xsGPSData(:,2); 
numGPS = length(xGPS); 
binSizeUAS = 0.20; 
binSizeTLS = .05; 
  
switch site 
    case 'SB 2015' 
        str1 = 'Site: SB Fall 2015'; 
        startGPS = 6; 
        endGPS = 12; 
        xCorrTLS = 0.1; 
        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [14 21]; 
        startXS = 14; endXS = 21; 
    case 'SB 2016' 
        str1 = 'Site: SB Spring 2016'; 
        startGPS = 4; 
        endGPS = numGPS; 
        xCorrTLS = 0; 
        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [14 21]; 
        startXS = 14; endXS = 21; 
    case 'NHR 2016' 
        str1 = 'Site: NHR Spring 2016'; 
        startGPS = 6; 
        endGPS = numGPS; 
        xCorrTLS = 0; 
        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [8 20]; 
        startXS = 8; 
        endXS = 20; 
    case 'NHR 2015' 
        str1 = 'Site: NHR Fall 2015'; 
        startGPS = 1; 
        endGPS = numGPS; 
        xCorrTLS = 0; 
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        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [8 20]; 
        startXS = 8; endXS = 20; 
    case 'MR-A 2015' 
        str1 = 'Site: MR-A Fall 2015'; 
        startGPS = 2; 
        endGPS = 14; 
        xCorrTLS = 0; 
        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [0 8]; 
        startXS = 0; 
        endXS = 8; 
    case 'MR-A 2016' 
        str1 = 'Site: MR-A Spring 2016'; 
        startGPS = 3; 
        endGPS = 11; 
        xCorrTLS = 0; 
        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [0 8]; 
        startXS = 0; 
        endXS = 8; 
    case 'MR-B' 
        str1 = 'Site: MR-B Fall 2015'; 
        startGPS = 2; 
        endGPS = 5; 
        xCorrTLS = 0; 
        yCorrTLS = 0; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [6 16]; 
        startXS = 6; endXS = 16; 
    case 'MR-C' 
        str1 = 'Site: MR-C Fall 2015'; 
        startGPS = 3; 
        endGPS = 9; 
        xCorrTLS = .2; 
        yCorrTLS = -.05; 
        xCorrUAS = 0; 
        yCorrUAS = 0; 
        xlims = [8 16]; 
        startXS = 8; 
        endXS = 16; 
    case 'MR-D' 
        str1 = 'Site: MR-D Fall 2015'; 
        startGPS = 20; 
        endGPS = 30; 
        xCorrTLS = 0; 
        yCorrTLS = -.1; 
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        xCorrUAS = 0; 
        yCorrUAS = .2; 
        xlims = [70 80]; 
        startXS =70; 
        endXS = 80; 
end 
  
xsUASData = sortrows(UAS.xsData,1); 
  
xsTLSData = sortrows(TLS.xsData,1); 
  
xUAS = xsUASData(:,1) + xCorrUAS; 
xTLS = xsTLSData(:,1) + xCorrTLS; 
elevUAS = xsUASData(:,2) + yCorrUAS; 
elevTLS = xsTLSData(:,2) + yCorrTLS; 
  
count = 1; 
for i = startXS:binSizeUAS:endXS 
    ind = find((xUAS>=i) & (xUAS<(i+binSizeUAS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevUAS(ind)); 
        minZUAS(count) = M; 
        temp = xUAS(ind); 
        LUAS(count) = temp(I); 
        count = count+1; 
    end 
     
end 
  
count = 1; 
  
for i = startXS:binSizeTLS:endXS 
    ind = find((xTLS>=i) & (xTLS<(i+binSizeTLS))); 
    tf = isempty(ind); 
    if tf==0 
        [M I] = min(elevTLS(ind)); 
        minZTLS(count) = M; 
        temp = xTLS(ind); 
        LTLS(count) = temp(I); 
        count = count+1; 
    end 
     
end 
% startGPS = 1; 
% endGPS = numGPS; 
  
for i = startGPS:endGPS 
    for j = 1:length(LUAS) 
        distUAS(j) = sqrt((LUAS(j)-xGPS(i))^2 + (minZUAS(j)-elevGPS(i))^2); 
    end 
    nearestUAS(i) = min(distUAS);  
    clear distUAS 
    for j = 1:length(LTLS) 
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        distTLS(j) = sqrt((LTLS(j)-xGPS(i))^2 + (minZTLS(j)-elevGPS(i))^2); 
    end 
    nearestTLS(i) = min(distTLS);   
    clear distTLS 
end 
  
  
meanUAS = mean(nearestUAS) 
medianUAS = median(nearestUAS) 
stdevUAS = std(nearestUAS) 
RMSEUAS = sqrt(mean((nearestUAS).^2)) 
meanTLS = mean(nearestTLS) 
medianTLS = median(nearestTLS) 
stdevTLS = std(nearestTLS) 
RMSETLS = sqrt(mean((nearestTLS).^2)) 
  
  
  
ind = find(xTLS > endXS | xTLS < startXS); 
xTLS(ind) = []; elevTLS(ind)=[]; 
ind = find(xUAS > endXS | xUAS < startXS); 
xUAS(ind) = []; elevUAS(ind)=[]; 
ind = find(xGPS > endXS | xGPS < startXS); 
xGPS(ind) = []; elevGPS(ind)=[]; 
xUAS = xUAS-startXS; 
xTLS = xTLS-startXS; 
xGPS = xGPS-startXS; 
LUAS = LUAS-startXS; 
LTLS = LTLS-startXS; 
  
figure() 
plot(xTLS,elevTLS,'.c') 
hold on 
plot(xUAS,elevUAS,'.b','MarkerSize',10) 
plot(xGPS,elevGPS,'*r'); 
plot(LUAS,minZUAS,'--m'); 
plot(LTLS,minZTLS,'--k'); 
title(str1); 
xlabel('Distance Along XS (m)'); 
ylabel('Elevation (m)'); 
hold off; 
%fig2plotly() 
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 Water Quality Analysis and Storm Event Analysis Scripts 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program to match TSS samples to turbidity sensor data 
% and generate power law regressions 
% Scott Hamshaw 
% Created: 19-Mar-2016 
% Last Modified: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% NOTES: Enter SiteCode desired (MAD = Mad River, FOL = Folsom Brook, FRE = 
% Freeman Brook, HBR = High Bridge Brook, SHP = Shepard Brook, MIL = Mill 
% Brook, DOW = Dowsville Brook 
% Enter water quality parameters desired (TSS, TP, SRP, TDP, NOX, NH3, TN, 
TDN) 
  
clc; clear all; close all; 
disp('Program Started'); 
tic; 
addpath('../Stats'); 
addpath('../Plotting'); 
c = @cmu.colors; 
set(0,'DefaultAxesFontSize',14) 
  
% Choose Site to run  
SiteCode = 'MAD'; 
  
% Choose Parameter to run 
WQParam = 'TSS' 
  
disp(strcat('Site selected for analysis = ',SiteCode)); 
% Setup for Mad River 
switch SiteCode 
    case 'MAD' 
        load('../Data/Mad/SensorData/MAD_Sensor_2012-2015_all'); 
        load('../Data/Mad/WQSamples/MAD_WQ_2012-2015'); 
        str1 = 'Mad River'; 
    case 'FOL' 
        load('../Data/Mad/SensorData/FOL_Sensor_2013-2015_all'); 
        load('../Data/Mad/WQSamples/FOL_WQ_2013-2015'); 
        str1 = 'Folsom Brook'; 
    case 'FRE' 
        load('../Data/Mad/SensorData/FRE_Sensor_2013_all'); 
        load('../Data/Mad/WQSamples/FRE_WQ_2013'); 
        str1 = 'Freeman Brook'; 
    case 'MIL' 
        load('../Data/Mad/SensorData/MIL_Sensor_2012-2015_all'); 
        load('../Data/Mad/WQSamples/MIL_WQ_2013-2015'); 
        str1 = 'Mill Brook'; 
    case 'SHP' 
        load('../Data/Mad/SensorData/SHP_Sensor_2013-2015_all'); 
        load('../Data/Mad/WQSamples/SHP_WQ_2013-2015'); 
        str1 = 'Shepard Brook'; 
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    case 'HBR' 
        load('../Data/Mad/SensorData/HBR_Sensor_2013_all'); 
        load('../Data/Mad/WQSamples/HBR_WQ_2013'); 
        str1 = 'High Bridge Brook'; 
end 
  
switch WQParam 
    case 'TSS' 
        WQVar = TSS; 
        str3 = 'TSS (mg/L)'; % set parameter title and units for y-axis 
    case 'TP' 
        WQVar = TP*1000; 
        str3 = 'TP (\mug/L)'; % set parameter title and units for y-axis 
    case 'TDP' 
        WQVar = TDP*1000; 
        str3 = 'TDP (\mug/L)'; 
end 
  
str2 = 'Turbidity (NTU)'; % set parameter title and units for x-axis 
  
% sort date chronologically to make sure samples match up correctly 
[B,I] = sort(numDateWQ); 
numDateWQ = numDateWQ(I); matDateWQ = matDateWQ(I); 
textDateWQ=textDateWQ(I); WQVar = WQVar(I);  
WQExclude = WQExclude(I); WQHydroLimb = WQHydroLimb(I); 
WQSampleType = WQSampleType(I); WQStormNum = WQStormNum(I); 
  
turbidityTS = timeseries(turbidity,textDate) 
  
  
% exclude bad data points and those missing turbidity data 
ind = logical(logical(WQExclude==1)+logical(WQExclude==3)); %ind = []; 
textDateWQ(ind)=[]; WQVar(ind)=[];numDateWQ(ind)=[];matDateWQ(ind)=[]; 
WQStormNum(ind)=[];WQSampleType(ind)=[];WQHydroLimb(ind)=[]; 
TSSTS = timeseries(WQVar,textDateWQ,'Name','WQ Samples'); 
turbMatchedTS = resample(turbidityTS,textDateWQ); 
  
figure(1) 
loglog(turbMatchedTS.Data,WQVar,'s','MarkerFaceColor','blue','MarkerEdgeColor'
,'black','MarkerSize',8); 
title({str1, strcat(WQParam,' vs. Turbidity')},'FontSize',12); 
xlabel(str2,'FontSize',12); ylabel(str3,'FontSize',12); 
xlim([0.1 10000]); ylim([0.1 10000]); 
ytic=get(gca,'YTick'); % Grab the y tick values 
yticlab=num2str(ytic'); % Convert to string mx 
set(gca,'YTickLabel',yticlab) % Re-label  
xtic=get(gca,'XTick'); % Grab the y tick values 
xticlab=num2str(xtic'); % Convert to string mx 
set(gca,'XTickLabel',xticlab) % Re-label  
hold off 
  
[a,b,n,SF,rsq_adj] = powerFit(turbMatchedTS.Data,WQVar); 
  
figure(2); % Plot TSS vs. Turbidity with Power Law Curve Fit on Log-Log scale 
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%subplot(1,3,1) 
loglog(turbMatchedTS.Data,WQVar,'o','MarkerFaceColor',c('teal'),'MarkerEdgeCol
or',c('teal'),'MarkerSize',6); 
%title({str1, strcat('Power Law Fit of ',WQParam,' vs. Turbidity')}); 
title(str1,'FontSize',26) 
xlabel(str2,'FontSize',22); ylabel(str3,'FontSize',22); 
hold on; 
x = min(turbMatchedTS.Data):1:max(turbMatchedTS.Data); 
y = SF*a*x.^b; 
plot(x,y,'--k','LineWidth',2) 
% str = {strcat(WQParam,sprintf(' = %.4f{} x 
%.4f{}turbidity^{%.3f}',SF,a,b)),sprintf('n = %.0f{}',n),... 
%    sprintf('r^{2}-adj = %.3f{}',rsq_adj)}; 
% 
annotation(figure(2),'textbox',[0.5,0.15,0.40,0.15],'String',str,'EdgeColor','
none',... 
%    'HorizontalAlignment','right','VerticalAlignment','baseline'); 
grid off; 
xlim([0.1 10000]); ylim([0.1 10000]); 
ytic=get(gca,'YTick'); % Grab the y tick values 
yticlab=num2str(ytic'); % Convert to string mx 
set(gca,'YTickLabel',yticlab) % Re-label  
xtic=get(gca,'XTick'); % Grab the y tick values 
xticlab=num2str(xtic'); % Convert to string mx 
set(gca,'XTickLabel',xticlab,'FontSize',20) % Re-label  
set(gca,'YTickLabel',yticlab,'FontSize',20) % Re-label 
  
% separate rising limb vs. falling limb vs. baseflow samples 
ind = find(WQHydroLimb==1); % rising limb samples 
ind2 = find(WQHydroLimb==2); % falling limb Samples 
ind3 = find(WQHydroLimb==3); % baseflow Samples 
risingTurb = turbMatchedTS.Data(ind); risingTSS = WQVar(ind); 
fallingTurb = turbMatchedTS.Data(ind2); fallingTSS = WQVar(ind2); 
baseTurb = turbMatchedTS.Data(ind3); baseTSS = WQVar(ind3); 
  
figure(3) % Plot TSS vs. Turbidity on log-log scale by hydrograph limb 
location 
loglog(risingTurb,risingTSS,'o','MarkerFaceColor','blue','MarkerEdgeColor','bl
ack','MarkerSize',8); 
hold on; 
loglog(fallingTurb,fallingTSS,'s','MarkerFaceColor','green','MarkerEdgeColor',
'black','MarkerSize',8); 
loglog(baseTurb,baseTSS,'d','MarkerFaceColor','yellow','MarkerEdgeColor','blac
k','MarkerSize',8); 
title(strcat(WQParam,' vs. Turbidity by Location on Hydrograph')); 
legend('Rising Limb','Falling Limb','Baseflow','Location','SouthEast'); 
xlabel(str2); ylabel(str3); 
xlim([0.1 10000]); ylim([0.1 10000]); 
ytic=get(gca,'YTick'); % Grab the y tick values 
yticlab=num2str(ytic'); % Convert to string mx 
set(gca,'YTickLabel',yticlab) % Re-label  
xtic=get(gca,'XTick'); % Grab the y tick values 
xticlab=num2str(xtic'); % Convert to string mx 
set(gca,'XTickLabel',xticlab) % Re-label  
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% separate grab samples from storm Isco samples 
ind = find(WQSampleType==2); % grab samples 
ind2 = find(WQSampleType==1); % storm Isco Samples 
grabTurb = turbMatchedTS.Data(ind); grabTSS = WQVar(ind); 
stormTurb = turbMatchedTS.Data(ind2); stormTSS = WQVar(ind2); 
  
figure(4); % Plot TSS vs. Turbidity on log-log scale by sample type 
loglog(stormTurb,stormTSS,'o','MarkerFaceColor','blue','MarkerEdgeColor','blac
k','MarkerSize',8); 
hold on; 
loglog(grabTurb,grabTSS,'s','MarkerFaceColor','green','MarkerEdgeColor','black
','MarkerSize',8); 
title(strcat(WQParam,' vs. Turbidity by Sample Type')); 
legend('Isco Storm Samples','Grab Samples','Location','SouthEast'); 
xlabel(str2); ylabel(str3); 
xlim([0.1 10000]); ylim([0.1 10000]); 
ytic=get(gca,'YTick'); % Grab the y tick values 
yticlab=num2str(ytic'); % Convert to string mx 
set(gca,'YTickLabel',yticlab) % Re-label  
xtic=get(gca,'XTick'); % Grab the y tick values 
xticlab=num2str(xtic'); % Convert to string mx 
set(gca,'XTickLabel',xticlab) % Re-label  
  
% separate data into different storm numbers 
ind2 = isfinite(WQStormNum); 
ind3 = unique(WQStormNum(ind2)); 
% if min(WQStormNum(ind2))>1 
%     WQStormNum = WQStormNum-(min(WQStormNum(ind2)-1)) 
% end 
storms = zeros(length(ind3),3); % initialize variable 
count = 0; 
for i = 1:length(ind3) % compute start and stop rows for each storm 
    ind = find(WQStormNum==ind3(i));  
    storms(i,1) = i; storms(i,2) = min(ind); storms(i,3) = max(ind);  
end 
stormDates = cellstr(datestr(numDateWQ(storms(:,2)),2)); % Get text strings of 
each storm date 
figure(5) 
cc=hsv(length(ind3)); 
for i =1:length(ind3); 
  
    loglog(turbMatchedTS.Data(storms(i,2):storms(i,3)),WQVar(storms(i,2):storm
s(i,3)),'o',... 
        'MarkerFaceColor',cc(i,:),'MarkerEdgeColor','black','MarkerSize',8,'Di
splayName',stormDates{i}); 
    hold on 
end 
title(strcat(WQParam,' vs. Turbidity by Individual Storm')); 
legend('Location','SouthEast'); 
xlabel(str2); ylabel(str3); 
xlim([0.1 10000]); ylim([0.1 10000]); 
ytic=get(gca,'YTick'); % Grab the y tick values 
yticlab=num2str(ytic'); % Convert to string mx 
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set(gca,'YTickLabel',yticlab) % Re-label  
xtic=get(gca,'XTick'); % Grab the y tick values 
xticlab=num2str(xtic'); % Convert to string mx 
set(gca,'XTickLabel',xticlab) % Re-label  
hold off 
disp('program complete'); 
toc 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program to plot storm event analysis 
% and generate storm statistics 
% Scott Hamshaw 
% 07-Nov-2014 
% Revised: 23-May-2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% NOTES: hydrology site codes: [1 - MAD, 2 - SHP, 3 - HBR, 4 - MIL, 5 - FOL, 6 
- FRE] 
% met site codes: [ 1 = MIL, 2 - SUG, 3 - SUL, 4 - WDE, 5 - JFR, 6 - FRE, 7 - 
MAD, 8 - WEM ] 
% If progam is run with plots generated, limiting to maximum of 50 storms 
% is advised 
  
clc; close all; clear all; 
disp('Program started...'); 
tic; 
addpath('../TimeSeries'); 
addpath('../Plotting'); 
load sedRatingCurveParams; 
rainData = load('../Data/Mad/MetData/Mad_AllRainData'); 
load('../Data/Mad/MetData/WEM_SoilMoist_2013-2015_15Min.mat'); 
MapUnderlay = imread('../Plotting/Images/UnderlayMapr.jpg'); 
  
%%%% User set parameters %%%%%%%%%%%%%%%%%%%% 
SiteCode = 'MIL'; % set site code number 
plotYes = 1; % set to 1 for plotting storms or 0 for no plotting 
savePlots = 0; % set to 1 to save plots to pdfs 
saveData = 0; % set to 1 to save data as .csv 
exportPlots = 0; % set to 1 to save individual hysteresis plots 
  
if plotYes==1 
    disp('Program set to display storm plots'); 
else 
    disp('Program set to NOT display plots'); 
end 
  
% load site parameters 
rainStaCodes = {'MIL';'SUG';'SUL';'WDE';'JFR';'FRE';'MAD';'WEM'}; 
rainStaLabels = {'Irasville Weather (MIL)';'Sugarbush Weather (SUG)';... 
    'South Hill Weather (SUL)';'East Warren Weather (WDE)';'Fayston Weather 
(JFR)';... 
    'Warren Weather (FRE)';'Moretown Weather (MAD)';'Waitsfield Weather 
(WEM)'}; 
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hystClassLabels = 
{'1A';'1B';'1C';'2A';'2B';'2C';'2D';'2E';'3A';'3B';'3C';'4';'5A';'5B';'Complex
'}; 
switch SiteCode 
    case 'MAD' 
        load('../Data/Mad/SensorData/MAD_Sensor_2012-2015_15Min'); 
        load ('../Data/Mad/EventData/MAD_Online_2012-2015.mat'); 
        %load ('../Data/Mad/EventData/MAD_Borg_Deploy.mat'); 
        load('Output Data/MAD_stormHystClass.mat'); 
        str1 = 'Mad River'; 
        a = MAD.a; SF=MAD.SF; b=MAD.b; 
        a = 2.1433; SF = 1.4933; b=0.7640; 
        discharge = discharge/35.31; % convert discharge from cfs to m^3/s 
        convFact = 1000; 
        site = 1; 
        staPriority = [8 1 5 7 6 2 4 3]; 
        catchArea = 360008350; %square meters 
        smoothingParam = [3 21]; 
        TribMap = imread('../Plotting/Images/MADMap.jpg'); % set path of map  
    case 'FOL' 
        load('../Data/Mad/SensorData/FOL_Sensor_2013-2015_15Min'); 
        load ('../Data/Mad/EventData/FOL_Events_2013-2015.mat'); 
        %load ('../Data/Mad/EventData/FOL_Phillips_Deploy.mat'); 
        load('Output Data/FOL_stormHystClass.mat'); 
        str1 = 'Folsom Brook'; 
        a = FOL.a; SF=FOL.SF; b=FOL.b; 
        convFact = 1000; 
        site = 5; 
        staPriority = [4 1 8 2 6 5 7 3]; 
        catchArea = 18197700; %square meters 
        smoothingParam = [4 11]; 
        TribMap = imread('../Plotting/Images/FOLMap.jpg'); % set path of map 
    case 'FRE' 
        load('../Data/Mad/SensorData/FRE_Sensor_2013_15Min'); 
        load ('../Data/Mad/EventData/FRE_Events_2013.mat'); 
        load('Output Data/FRE_stormHystClass.mat'); 
        str1 = 'Freeman Brook'; 
        a = FRE.a; SF=FRE.SF; b=FRE.b; 
        convFact = 1000; 
        site = 6; 
        staPriority = [4 6 1 8 2 5 7 3]; 
        p = [-4.8018,83.01,-27]; 
        discharge = polyval(p,stage*3.2808)/35.31; 
        catchArea = 16962300; %square meters 
        smoothingParam = [4 11]; 
        TribMap = imread('../Plotting/Images/FREMap.jpg'); % set path of map 
    case 'MIL' 
        load('../Data/Mad/SensorData/MIL_Sensor_2012-2015_15Min'); 
        load ('../Data/Mad/EventData/MIL_Events_2012-2015.mat'); 
        %load ('../Data/Mad/EventData/MIL_Phillips_Deploy.mat'); 
        load('Output Data/MIL_stormHystClass.mat'); 
        str1 = 'Mill Brook'; 
        a = MIL.a; SF=MIL.SF; b=MIL.b; 
        convFact = 1000; 
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        site = 4; 
        staPriority = [2 1 8 5 6 4 7 3]; 
        catchArea = 49823000; %square meters 
        smoothingParam = [4 11]; 
        TribMap = imread('../Plotting/Images/MILMap.jpg'); % set path of map 
    case 'SHP' 
        load('../Data/Mad/SensorData/SHP_Sensor_2013-2015_15Min'); 
        load ('../Data/Mad/EventData/SHP_Events_2013-2015.mat'); 
        %load ('../Data/Mad/EventData/SHP_Phillips_Deploy.mat'); 
        load('Output Data/SHP_stormHystClass.mat'); 
        str1 = 'Shepard Brook'; 
        a = SHP.a; SF=SHP.SF; b=SHP.b; 
        convFact = 1000; 
        site = 2; 
        staPriority = [5 8 1 2 3 7 4 6]; 
        catchArea = 44611100; %square meters 
        smoothingParam = [4 11]; 
        TribMap = imread('../Plotting/Images/SHPMap.jpg'); % set path of map 
    case 'HBR' 
        load('../Data/Mad/SensorData/HBR_Sensor_2013_15Min'); 
        load ('../Data/Mad/EventData/HBR_Events_2013.mat'); 
        load('Output Data/HBR_stormHystClass.mat'); 
        str1 = 'High Bridge Brook'; 
        a = HBR.a; SF=HBR.SF; b=HBR.b; 
        convFact = 1000; 
        site = 3; 
        staPriority = [8 1 4 6 5 3 7 2]; 
        discharge = (1.0376.*27.12.*(stage*3.28).^2.1277)/35.31; 
        catchArea = 8643600; %square meters 
        smoothingParam = [4 11]; 
        TribMap = imread('../Plotting/Images/HBRMap.jpg'); % set path of map 
end 
%%%% Data pre-processing 
ind = stormHystClass(:,4) == 99; 
stormHystClass(ind,4) = 14; 
%convert precip from in to mm 
rainData.allRainData = rainData.allRainData .* 25.4; 
  
% calculate number of storm events 
numEvents = length(x)/2; 
% determine start and stop of windows to extract for storm event analysis 
% and convert to datetime arrays 
ind = 1:2:numEvents*2; 
startDates = datetime(x(ind),'ConvertFrom','datenum'); 
ind = 2:2:numEvents*2; 
endDates = datetime(x(ind),'ConvertFrom','datenum'); 
  
% initialize variables to NaNs 
[totRain,peakFlow,timeToPeak,totLoad,baseflow,rainDuration,... 
    flowDuration,stormFlow,basinLag,lastEventTime,maxRain,... 
    peakTSS,TSSTimeToPeak,floodIntensity,rainStaCV,avgRainInt,weightAvgRainAmt
,... 
    rainAmt14day, rainAmt10day, rainAmt7day, rainAmt3day, rainAmt1day,... 
    VWC1,VWC2,VWC3,VWC4,HI,meanTSS,totFlow,TSSPeakRainDiff... 
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    rainRunoffRatio] = deal(NaN(numEvents,1)); 
% initialize datetime arrays 
[peakFlowTime,sedPeakTime,rainStart,rainEnd,sedStart,sedEnd,flowStart,... 
    flowEnd,rainCM,flowCM] = 
deal(repmat(datetime(2000,1,1,0,0,0),numEvents,1)); 
  
% store site number and storm numbers  
site = site * ones(numEvents,1); 
% set storm numbers (format siteNum.YYMMDDHH 
stormNum = site + ( startDates.Month*1000 + startDates.Day*10 
+startDates.Hour/10 + (startDates.Year - 2000)*100000)/10000000; 
  
% store start & end times 
startTime = startDates; endTime = endDates; 
% store month 
stormMonth = startDates.Month; 
  
% Loop through storm events 
for i = 1:numEvents 
     
    % isolate data for storm event i 
    IscoData = dataExtractorNum([startDates(i) endDates(i)],[numDate turbidity 
discharge],1); 
    numDateCrop = datetime(IscoData(:,1),'ConvertFrom','datenum');  
    turbidityCrop= IscoData(:,2); dischargeCrop = IscoData(:,3); 
    if i >= 3 && i <= 18 
        if strcmp(SiteCode,'HBR') 
            TSSData = dataExtractorNum([startDates(i)+1/24 
endDates(i)+1/24],[numDate turbidity],1); 
            turbidityCrop = TSSData(:,2); 
        end 
    end 
     
    MetData = dataExtractorNum([startDates(i) 
endDates(i)],[rainData.rainNumDate rainData.allRainData],1); 
    rainDateCrop = datetime(MetData(:,1),'ConvertFrom','datenum'); 
    rainAmtCrop = MetData(:,2:end); % MIL SUG SUL WDE JFR FRE MAD WEM 
     
    SoilMoistData = dataExtractorNum([startDates(i) endDates(i)],[rainNumDate 
WC1 WC2 WC3 WC4],1); 
    soilMoistDateCrop = datetime(SoilMoistData(:,1),'ConvertFrom','datenum'); 
    soilMoistCrop = SoilMoistData(:,2:end); % WC1 WC2 WC3 WC4 
     
    if ~isempty(soilMoistCrop) 
    % average soil moisture for first hour of storm 
    VWC1(i) = mean(soilMoistCrop(1:4,1)); 
    VWC2(i) = mean(soilMoistCrop(1:4,2)); 
    VWC3(i) = mean(soilMoistCrop(1:4,3)); 
    VWC4(i) = mean(soilMoistCrop(1:4,4)); 
    end 
    % compute rain totals at all gauges and find reference station to use 
    % using pre-determined priority station priority list 
    sumRainAmtCrop = sum(rainAmtCrop); 
    siteNaN = isnan(sumRainAmtCrop); 
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    siteInd = find(siteNaN == 0); 
    sitesOnline = ismember(staPriority,siteInd); 
    sitesOnline = staPriority(sitesOnline); 
    if isempty(sitesOnline) 
    refSta = 7; 
    else 
    refSta = sitesOnline(1); 
    end 
     
    % check if no rain recorded at reference station, then use next best 
    % rain gauge that recorded precip 
    if sumRainAmtCrop(refSta)==0 
         
        [~,refSta] = max(sumRainAmtCrop); 
    end 
         
     
    % calculate CV of rain gauges if more than 2 online 
    if length(sitesOnline) >= 3 
        rainStaCV(i) = 
std(sumRainAmtCrop(sitesOnline))/mean(sumRainAmtCrop(sitesOnline)); 
    end 
  
    % find rain start/stop dates, and duration 
    ind = find(rainAmtCrop(:,refSta),1,'first'); 
    if isempty(ind) 
        [~,indNewSta] = max(sumRainAmtCrop); 
        ind = find(rainAmtCrop(:,indNewSta),1,'first'); 
        if isempty(ind) 
            rainStart(i) = rainDateCrop(1); 
        else 
            rainStart(i) = rainDateCrop(ind); 
        end 
        ind = find(rainAmtCrop(:,indNewSta),1,'last'); 
        if isempty(ind) 
            rainEnd(i) = rainDateCrop(2); 
        else 
            rainEnd(i) = rainDateCrop(ind); 
        end 
    else 
        rainStart(i) = rainDateCrop(ind); 
        ind = find(rainAmtCrop(:,refSta),1,'last'); 
        rainEnd(i) = rainDateCrop(ind); 
    end 
  
    dt = rainEnd(i)- rainStart(i); 
    rainDuration(i) = hours(dt); % in hours 
    
  
    % calculate total rainfall and rain center of mass 
    cumRain = cumsum(rainAmtCrop(:,refSta),'omitnan'); 
    totRain(i) = sum(rainAmtCrop(:,refSta),'omitnan'); 
    ind = find(cumRain >= totRain(i)/2,1,'first'); 
    rainCM(i) = rainDateCrop(ind); 
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    % find max hourly rain rate 
    rainRate = rainAmtCrop (1:end-3,refSta)+rainAmtCrop(2:end-
2,refSta)+rainAmtCrop(3:end-1,refSta)... 
        +rainAmtCrop(4:end,refSta); 
    maxRain(i) = max(rainRate); 
    % calculate average hourly rainfall intensity 
    if rainDuration(i) > 0 
    avgRainInt(i) = totRain(i)/rainDuration(i); 
    else 
        avgRainInt(i) = totRain(i)/0.25; 
    end 
     
    %calculate weighted average of rainfall using Thiessen Polygon method 
    rainTot = sum(rainAmtCrop(:,sitesOnline)); 
    rainGaugeWeighting = autoThiessenPoly(sitesOnline); 
    weightAvgRainAmt(i) = sum(rainTot.*rainGaugeWeighting); 
     
    %calculate antecedent rainfall 
    longMetData = dataExtractorNum([startDates(i)-14 
endDates(i)],[rainData.rainNumDate rainData.allRainData],1); 
    longRainDateCrop = datetime(longMetData(:,1),'ConvertFrom','datenum'); 
    longRainAmtCrop = longMetData(:,2:end); % MIL SUG SUL WDE JFR FRE MAD WEM 
     
    longSumRainAmtCrop = sum(longRainAmtCrop); 
     
    siteNaN = isnan(longSumRainAmtCrop); 
    siteInd = find(siteNaN == 0); 
    longSitesOnline = ismember(staPriority,siteInd); 
    longSitesOnline = staPriority(longSitesOnline); 
     
    if isempty(longSitesOnline) 
        [~,longSitesOnline] = min(sum(isnan(longRainAmtCrop))); 
    end  
     
    rainTot = sum(longRainAmtCrop(:,longSitesOnline),'omitnan'); 
    rainGaugeWeighting = autoThiessenPoly(longSitesOnline); 
    rainAmt14day(i) = sum(rainTot.*rainGaugeWeighting); 
     
    ind = find(longRainDateCrop>(startDates(i)-10)); 
    longRainAmtCrop2 = longRainAmtCrop(ind,:); 
    rainTot = sum(longRainAmtCrop2(:,longSitesOnline),'omitnan'); 
    rainAmt10day(i) = sum(rainTot.*rainGaugeWeighting); 
     
    ind = find(longRainDateCrop>(startDates(i)-7)); 
    longRainAmtCrop2 = longRainAmtCrop(ind,:); 
    rainTot = sum(longRainAmtCrop2(:,longSitesOnline),'omitnan'); 
    rainAmt7day(i) = sum(rainTot.*rainGaugeWeighting); 
     
    ind = find(longRainDateCrop>(startDates(i)-3)); 
    longRainAmtCrop2 = longRainAmtCrop(ind,:); 
    rainTot = sum(longRainAmtCrop2(:,longSitesOnline),'omitnan'); 
    rainAmt3day(i) = sum(rainTot.*rainGaugeWeighting); 
     
    ind = find(longRainDateCrop>(startDates(i)-1)); 
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    longRainAmtCrop2 = longRainAmtCrop(ind,:); 
    rainTot = sum(longRainAmtCrop2(:,longSitesOnline),'omitnan'); 
    rainAmt1day(i) = sum(rainTot.*rainGaugeWeighting); 
    
    % find flow start of storm flow 
    temp = diff(dischargeCrop); 
    ind = find(temp > 0,1,'first'); 
    flowStart(i) = numDateCrop(ind); 
    baseflow(i) = dischargeCrop(ind); 
     
    % find end of storm flow 
    ind2 = length(numDateCrop); 
    flowEnd(i) = numDateCrop(ind2); 
    baseflowEnd = dischargeCrop(ind2); 
    % extract storm flow (baseflow separation) 
    baseFlow = interp1([datenum(numDateCrop(ind)) 
datenum(numDateCrop(ind2))],... 
        [baseflow(i) 
baseflowEnd],datenum(numDateCrop(ind)):1/96:datenum(numDateCrop(ind2))); 
    temp = (dischargeCrop(ind:ind2)-baseFlow')*(15*60); 
    temp2 = cumsum(temp); 
    stormFlow(i) = sum(temp); 
    ind3 = find(temp2 >= stormFlow(i)/2,1,'first'); 
    flowCM(i) = numDateCrop(ind3+ind); 
    dt = numDateCrop(ind2)-numDateCrop(ind); 
    flowDuration(i) = hours(dt); 
    totFlow(i) = sum(dischargeCrop(ind:ind2)*(15*60)); 
     
    % find peak flow and time to peak flow 
    [peakFlow(i),ind4] = max(dischargeCrop); 
    peakFlowTime(i) = numDateCrop(ind4); 
    dt = peakFlowTime(i)-flowStart(i); 
    timeToPeak(i) = hours(dt); 
    dt = flowCM(i)-rainCM(i); 
    basinLag(i) = hours(dt); 
    % calculate flood intensity and rainfall-runoff ratio 
    floodIntensity(i) = (peakFlow(i)-baseflow(i))/timeToPeak(i); 
    rainRunoffRatio(i) = stormFlow(i)/(catchArea*(totRain(i)/1000)); 
     
    % last event time 
    if i ==1 
        lastEventTime(i) = 0; 
    else 
        dt = rainStart(i)-rainEnd(i-1); 
        if hours(dt) >= 0 
            lastEventTime(i) = hours(dt); 
        else 
            lastEventTime(i)=0; 
        end 
    end 
     
  
    TSS =(SF*a*(turbidityCrop).^b); % turbidity based estimate of TSS (mg/L) 
    meanTSS(i) = mean(TSS); 
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     % find start of sediment flow 
    temp = diff(TSS); 
    ind = find(temp > 0,1,'first'); 
    if isempty(ind) 
        ind = 1; 
    end 
    sedStart(i) = numDateCrop(ind); 
    sedEnd(i) = flowEnd(i); 
     
    % find tss  and time to peak tss 
    [peakTSS(i),ind4] = max(TSS); 
    sedPeakTime(i) = numDateCrop(ind4); 
    dt = peakFlowTime(i)-sedStart(i); 
    TSSTimeToPeak(i) = hours(dt); 
    dt = sedPeakTime(i)-rainCM(i); 
    TSSPeakRainDiff(i) = hours(dt); 
    TSS = TSS./1000; 
    Load = TSS(ind:end).*dischargeCrop(ind:end)*convFact*(15*60)*(1/10^6); % 
time series of sediment load (kg/15-min) 
  
    totLoad(i) = sum(Load,'omitnan'); 
     
  if startDates(i) < flowStart(i) 
        ind5 = find(numDateCrop >= flowStart(i)); 
  else 
      ind5 = 1:length(TSS); 
  end 
     
    % smooth TSS data for use in hysteresis plots 
    if length(TSS(ind5))>=smoothingParam(2) 
     tssSmooth = sgolayfilt(TSS(ind5),smoothingParam(1),smoothingParam(2)); 
    else 
        tssSmooth = TSS(ind5); 
    end 
    % smooth discharge data 
    if length(dischargeCrop(ind5))>=smoothingParam(2) 
        dischargeSmooth = 
sgolayfilt(dischargeCrop(ind5),smoothingParam(1),smoothingParam(2)); 
    else 
        dischargeSmooth = dischargeCrop(ind5); 
    end 
  
    % calculate HI 
    plotHI = hystInd(dischargeSmooth,tssSmooth); 
    HI(i) = mean(plotHI); 
     
    if exportPlots == 1 
        % call function to generate hysteresis plots 
        [A,B,C,D] = 
hysteresisPlots(dischargeSmooth,tssSmooth,stormNum(i),site(i),i,plotHI); 
        BW28x28(i,:) = A; 
        Grayscale28x28(i,:) = B; 
        HI28x28(i,:) = C; 
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        RGB28x28(i,:) = D; 
    end 
    
if plotYes == 1     
    scrsz = get(groot,'ScreenSize'); 
     
    h = figure('Position',[50 50 1100 860]); 
    %h = figure('Position',[1 scrsz(4)/4 scrsz(3)/2 2*scrsz(4)/3]); 
    annoFontSize = 11; 
    str1b=strjoin({SiteCode,'\bf',num2str(i)}); 
    t = 
annotation('textbox',[0.05,0.95,.4,.05],'String',str1b,'LineStyle','none'); 
    t.FontSize =  14; 
    str1a=strjoin({'Storm Date: ','\bf',datestr(numDateCrop(1))}); 
    t = 
annotation('textbox',[0.05,0.89,.4,.05],'String',str1a,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str2=strjoin({'Storm Number: ','\bf',num2str(stormNum(i),9)}); 
    t = 
annotation('textbox',[0.05,0.92,.4,.05],'String',str2,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str3a=strjoin({'Rainfall Station: ','\bf',rainStaLabels{refSta}}); 
    t = 
annotation('textbox',[0.05,0.86,.4,.05],'String',str3a,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str3=strjoin({'Total Rainfall (mm): ','\bf',sprintf(' 
%.2f{}',totRain(i))}); 
    t = 
annotation('textbox',[0.05,0.83,.4,.05],'String',str3,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str4=strjoin({'Time Since Last Event (hr): 
','\bf',num2str(lastEventTime(i))}); 
    t = 
annotation('textbox',[0.05,0.80,.4,.05],'String',str4,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str5 = strjoin({'Rainfall-Runoff Ratio: ','\bf',sprintf(' 
%.2f{}',rainRunoffRatio(i)*100),'%'}); 
    t = 
annotation('textbox',[0.05,0.77,.4,.05],'String',str5,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str6 = strjoin({'Turbidity Based Load (kg): ','\bf',sprintf(' 
%.0f{}',totLoad(i))}); 
    t = 
annotation('textbox',[0.05,0.74,.4,.05],'String',str6,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str7 = strjoin({'Flood Intensity: ','\bf',sprintf(' 
%.3f{}',floodIntensity(i))}); 
    t = 
annotation('textbox',[0.05,0.71,.4,.05],'String',str7,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str8 = strjoin({'Antecedent Soil Moisture (%): ','\bf',sprintf(' 
%.2f{}',VWC2(i)),'%'}); 
    t = 
annotation('textbox',[0.05,0.68,.4,.05],'String',str8,'LineStyle','none'); 
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    t.FontSize =  annoFontSize; 
    str9 = strjoin({'Antecedent 7-Day Rainfall (mm): ','\bf',sprintf(' 
%.2f{}',rainAmt7day(i))}); 
    t = 
annotation('textbox',[0.05,0.65,.4,.05],'String',str9,'LineStyle','none'); 
    t.FontSize =  annoFontSize; 
    str10 = strjoin({'Class ','\bf',hystClassLabels{stormHystClass(i,4)}}); 
    t = 
annotation('textbox',[0.51,0.47,.1,.05],'String',str10,'LineStyle','none'); 
    t.FontSize =  14; 
     
    t = 
annotation('textbox',[0.39,0.95,.2,.05],'String',str1,'LineStyle','none'); 
    t.FontSize =  12; 
     
    set(gca,'Visible','off'); 
    posVect4 = [0.32,0.66,0.28,0.33]; 
    subplot('Position',posVect4) 
    image(MapUnderlay); 
    axis image; 
    axis off; 
    posVect3 = [0.32,0.66,0.28,0.33]; 
    subplot('Position',posVect3) 
    image(TribMap); 
    axis image; 
    axis off; 
     
    posVect1 = [0.05,0.05,0.4,0.4]; 
    subplot('Position',posVect1) 
    yyaxis left 
    plot(numDateCrop,dischargeCrop,'LineStyle','-','LineWidth',2); 
    ylabel('Discharge (m^{3}/s)'); 
    text(datenum(peakFlowTime(i)),peakFlow(i),num2str(peakFlow(i),'% 
10.1f'),'HorizontalAlignment','left') 
    yyaxis right 
    plot(numDateCrop,TSS,'LineStyle','--','LineWidth',2); 
    ylabel('TSS (mg/L)'); 
    text(datenum(sedPeakTime(i)),peakTSS(i),num2str(peakTSS(i),'% 
10.1f'),'HorizontalAlignment','right') 
     
    posVect5 = [0.05,0.49,0.4,0.15]; 
    subplot('Position',posVect5); 
    bar(datenum(rainDateCrop),rainAmtCrop(:,refSta),'EdgeColor','none','FaceCo
lor',[.27 .51 .70]); 
    ylabel('15-min Rain (in)'); 
    set(gca,'Ydir','reverse','xtick',[]); 
    grid off; 
     
    t = annotation('textbox',[0.68,0.95,.3,.05],'String','Watershed Rainfall 
Summary','LineStyle','none'); 
    t.FontSize =  12; 
    posVect6 = [0.65,0.82,0.30,0.15]; 
    subplot('Position',posVect6); 
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    bar(sumRainAmtCrop(sitesOnline),'EdgeColor','none','FaceColor',[.27 .51 
.70]); 
    ylabel('Total Rainfall (mm)'); 
    set(gca,'XTickLabel',rainStaCodes(sitesOnline)) 
    grid off; 
  
    posVect2 = [0.55,0.05,0.4,0.4]; 
    subplot('Position',posVect2); 
    plot_dir(dischargeSmooth,tssSmooth); 
    ylabel('TSS (mg/L)'); 
    xlabel('Discharge (m^{3}/s)'); 
    grid off; 
     
    subplot('Position',[0.65,0.52,0.30,0.25]); 
    t = linspace(0,1,length(plotHI)); 
    area(t,plotHI,'FaceColor',[.27 .51 .70],'EdgeColor','none'); 
    ylabel('H-index'); 
    xlabel('Normalized discharge (m^{3}/s)'); 
    ylim([-1 1]); 
  
    if savePlots == 1 
        strsave = strcat('Output Data/StormDashboard_',sprintf(' 
%.8f',stormNum(i)),'.pdf'); 
        h.PaperOrientation = 'landscape'; 
        print(h,'-dpdf',strsave,'-bestfit'); 
    end 
         
end % end if 
  
     
if saveData == 1 
    dataTSOut(i,1) = {numDateCrop}; 
    dataTSOut(i,2) = {dischargeCrop}; 
    dataTSOut(i,3) = {TSS}; 
    dataTSOut(i,4) = {rainAmtCrop(:,refSta)}; 
end 
if plotYes == 1 
    %close(h); 
end 
disp(strcat('Storm_', num2str(i),'_of_', num2str(numEvents), '_complete')) 
end % storm event loop 
  
if exportPlots == 1 
    save(strcat('Output Data/',SiteCode,'_BW28x28_Output.mat'),'BW28x28'); 
    save(strcat('Output 
Data/',SiteCode,'_Grayscale28x28_Output.mat'),'Grayscale28x28'); 
    save(strcat('Output Data/',SiteCode,'_HI28x28_Output.mat'),'HI28x28'); 
    save(strcat('Output Data/',SiteCode,'_RGB28x28_Output.mat'),'RGB28x28'); 
end 
  
disp('Storm Event Analysis Complete'); 
if saveData == 1 
dataOut = 
table(startTime,endTime,rainStart,rainCM,rainEnd,site,stormNum,flowStart,... 
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    peakFlowTime,flowCM,flowEnd,sedStart,sedPeakTime,sedEnd,stormMonth,... 
    lastEventTime,basinLag,totRain,maxRain,avgRainInt,weightAvgRainAmt,rainDur
ation,rainStaCV,totFlow,stormFlow,peakFlow,... 
    rainAmt14day, rainAmt10day, rainAmt7day, rainAmt3day, 
rainAmt1day,VWC1,VWC2,VWC3,VWC4,... 
    flowDuration,timeToPeak,baseflow,floodIntensity,rainRunoffRatio,peakTSS,me
anTSS,TSSTimeToPeak,TSSPeakRainDiff,totLoad,HI); 
writetable(dataOut,'Output Data/OutputStormDataTable.csv'); 
save('Output Data/OutputStormTSData','dataTSOut'); 
disp('Data saved'); 
end     
toc 
 
function [A,B,C,D] = hysteresisPlots (Q,C,stormNum,site,stormInd,HI) 
% normalize data then interpolate along line to ensure consistent spacing 
% of points 
Qnorm = (Q - min(Q))./(max(Q)-min(Q)); 
Cnorm = (C - min(C))./(max(C)-min(C)); 
Qnorm_dense = Qnorm(1); 
Cnorm_dense = Cnorm(1); 
for i = 1:length(Qnorm)-1 
    dist = Qnorm(i+1) - Qnorm(i); 
    if dist > 0.001  
        dq = Qnorm(i):0.001:Qnorm(i+1); 
        Cq = interp1(Qnorm(i:(i+1)),Cnorm(i:(i+1)),dq); 
       Qnorm_dense = horzcat(Qnorm_dense,dq(2:end)); 
       Cnorm_dense = horzcat(Cnorm_dense,Cq(2:end)); 
    elseif dist < -0.001 
        dq = Qnorm(i):-0.001:Qnorm(i+1); 
        Cq = interp1(Qnorm(i:(i+1)),Cnorm(i:(i+1)),dq); 
       Qnorm_dense = horzcat(Qnorm_dense,dq(2:end)); 
       Cnorm_dense = horzcat(Cnorm_dense,Cq(2:end)); 
    else 
        Qnorm_dense = horzcat(Qnorm_dense,Qnorm(i+1)); 
        Cnorm_dense = horzcat(Cnorm_dense,Cnorm(i+1)); 
    end 
     
end 
Qnorm_dense = horzcat(Qnorm_dense,Qnorm(1)); 
Cnorm_dense = horzcat(Cnorm_dense,Cnorm(1)); 
  
        % save grayscale 28 x 28 pixel and 72 x 72 pixel .bmp images 
        h_fig = figure(1); 
         
        plot(Qnorm_dense,Cnorm_dense,'-w','linewidth',35); 
         h_fig.Color = 'k'; 
         h_fig.InvertHardcopy = 'off'; 
         set(gca,'Visible','off'); 
        strsave = strcat('Output Plots/BW28x28_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        strsave2 = strcat('Output Plots/BW72x72_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        F = getframe(gcf); 
        print(h_fig,'-opengl','-dbmp256',strsave2,'-r72'); 
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        I = frame2im(F); 
        newI = imresize(I,[28 28]); 
        imwrite(newI,strsave); 
         
        A = reshape(newI(:,:,1),1,numel(newI(:,:,1))); 
              
        clf(h_fig); 
        t = length(Qnorm_dense); 
        for i = 1:length(Qnorm_dense)-1 
            tDist(i) = sqrt((Qnorm_dense(i)-Qnorm_dense(i+1))^2 + 
(Cnorm_dense(i)-Cnorm_dense(i+1))^2); 
        end 
        sumDist = sum(tDist); 
        cumDist = cumsum(tDist); 
        ind = find(cumDist > 0.10*sumDist,1); 
        ind1 = find(cumDist > 0.20*sumDist,1); 
        ind2 = find(cumDist > 0.30*sumDist,1); 
        ind3 = find(cumDist > 0.40*sumDist,1); 
        ind4 = find(cumDist > 0.50*sumDist,1); 
        ind5 = find(cumDist > 0.60*sumDist,1); 
        ind6 = find(cumDist > 0.70*sumDist,1); 
        ind7 = find(cumDist > 0.80*sumDist,1); 
        ind8 = find(cumDist > 0.90*sumDist,1); 
%         plot(Qnorm_dense(1:ind),Cnorm_dense(1:ind),'-w','linewidth',35); 
%         hold on 
%         plot(Qnorm_dense(ind:ind1),Cnorm_dense(ind:ind1),'-','color',[0.9 
0.9 0.9],'linewidth',35); 
%         plot(Qnorm_dense(ind1:ind2),Cnorm_dense(ind1:ind2),'-','color',[0.8 
0.8 0.8],'linewidth',35); 
%         plot(Qnorm_dense(ind2:ind3),Cnorm_dense(ind2:ind3),'-','color',[0.7 
0.7 0.7],'linewidth',35); 
%         plot(Qnorm_dense(ind3:ind4),Cnorm_dense(ind3:ind4),'-','color',[0.6 
0.6 0.6],'linewidth',35); 
%         plot(Qnorm_dense(ind4:ind5),Cnorm_dense(ind4:ind5),'-','color',[0.5 
0.5 0.5],'linewidth',35); 
%         plot(Qnorm_dense(ind5:ind6),Cnorm_dense(ind5:ind6),'-','color',[0.4 
0.4 0.4],'linewidth',35); 
%         plot(Qnorm_dense(ind6:ind7),Cnorm_dense(ind6:ind7),'-','color',[0.3 
0.3 0.3],'linewidth',35); 
%         plot(Qnorm_dense(ind7:ind8),Cnorm_dense(ind7:ind8),'-','color',[0.2 
0.2 0.2],'linewidth',35); 
%         plot(Qnorm_dense(ind8:end),Cnorm_dense(ind8:end),'-','color',[0.1 
0.1 0.1],'linewidth',35); 
         
        plot_dir2(Qnorm_dense,Cnorm_dense); 
        set(gca,'Visible','off'); 
        strsave = strcat('Output Plots/Grayscale28x28_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        strsave2 = strcat('Output Plots/Grayscale72x72_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        F = getframe(gcf); 
        print(h_fig,'-opengl','-dbmp256',strsave2,'-r72'); 
        I = frame2im(F); 
        newI = imresize(I,[28 28]); 
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        imwrite(newI,strsave); 
         
        B = reshape(newI(:,:,1),1,numel(newI(:,:,1))); 
  
         
         clf(h_fig); 
        t = linspace(0,1,length(HI)); 
        area(t,HI,'FaceColor','w','EdgeColor','none'); 
        ylim([-1 1]); 
        set(gca,'Visible','off'); 
        strsave = strcat('Output Plots/HI28x28_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        strsave2 = strcat('Output Plots/HI72x72_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        F = getframe(gcf); 
        print(h_fig,'-opengl','-dbmp256',strsave2,'-r72'); 
        I = frame2im(F); 
        newI = imresize(I,[28 28]); 
        imwrite(newI,strsave); 
         
        C = reshape(newI(:,:,1),1,numel(newI(:,:,1))); 
         
        clf(h_fig); 
         
        map = colormap(hot(257)); 
        h_fig.Color = 'w'; 
        t = length(Qnorm_dense); 
        for i = 1:length(Qnorm_dense)-1 
            tDist(i) = sqrt((Qnorm_dense(i)-Qnorm_dense(i+1))^2 + 
(Cnorm_dense(i)-Cnorm_dense(i+1))^2); 
        end 
        sumDist = sum(tDist); 
        cumDist = cumsum(tDist); 
        ind = find(cumDist > 0.33*sumDist,1); 
        ind3 = find(cumDist > 0.66*sumDist,1); 
        c = @cmu.colors; 
         
        plot(Qnorm_dense(1:ind),Cnorm_dense(1:ind),'-r','linewidth',35); 
        hold on 
        plot(Qnorm_dense(ind:ind3),Cnorm_dense(ind:ind3),'-g','linewidth',35); 
        plot(Qnorm_dense(ind3:end),Cnorm_dense(ind3:end),'-b','linewidth',35); 
        hold off 
        set(gca,'Visible','off'); 
        strsave = strcat('Output Plots/RGB28x28_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        strsave2 = strcat('Output Plots/RGB72x72_',sprintf(' 
%.8f',stormNum),'.bmp'); 
        F = getframe(gcf); 
        print(h_fig,'-opengl','-dbmp256',strsave2,'-r72'); 
        I = frame2im(F); 
        newI = imresize(I,[28 28]); 
        imwrite(newI,strsave);      
        D = reshape(newI,1,numel(newI)); 
        clf(h_fig);  



 255 

end 
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Restricted Boltzmann Machine Script and Functions 

%%%%%%%%%%% 
% Driver to create training data set and train and test an RBM classifier on 
hysteresis plots 
  
% set parameters 
numTrials = 5; % number of trials to train and fine-tune classifier 
numSets = 5; % number of times to generate new training/test data set 
batchsize = 14; 
numHidNodes=30; 
nnType = 'RBM'; % set to RBM or DBN 
dataSet = 'select+rand'; % set to one of 'select+rand', 
'synth+rand','cleanonly','tribsonly','all' 
  
addpath('Output Data'); 
addpath('../ANNs'); 
  
% pre-initialize variables 
trainError = NaN(1,numTrials*numSets); 
testError = NaN(1,numTrials*numSets); 
trainDataSummary = NaN(numSets,15); 
testDataSummary = NaN(numSets,15); 
testConfMatrix = NaN(16,16,numSets*numTrials); 
trainConfMatrix = NaN(16,16,numSets*numTrials); 
trainClassAccuracy = NaN(numSets*numTrials,15); 
testClassAccuracy = NaN(numSets*numTrials,15); 
meanTest1OffAccuracy = NaN(1,numSets*numTrials); 
meanTrain1OffAccuracy = NaN(1,numSets*numTrials); 
% loop through numSets 
count = 1; 
for idxSet = 1:numSets 
     
    switch dataSet 
        case 'all' 
            [batchdata,batchtargets,batchstormnums,testbatchdata,testbatchtarg
ets,testbatchstormnums]... 
                = 
RBMpreprocessGrayscale(0.66,batchsize,15,0,0,'Gray_All_25_50_50'); 
         
        case 'cleanonly' 
        case 'tribsonly' 
        case 'synth+rand' 
            [batchdata,batchtargets,batchstormnums,testbatchdata,testbatchtarg
ets,testbatchstormnums]... 
                = 
RBMpreprocessSynthGrayscale(0.50,batchsize,15,0,0,'Gray_SynthRand_50_50_50'); 
        case 'select+rand' 
            [batchdata,batchtargets,batchstormnums,testbatchdata,testbatchtarg
ets,testbatchstormnums]... 
                = 
RBMpreprocessSelectGrayscaleBalanced(0.50,batchsize,15,1,0,'Gray_SelRand_25_50
_50'); 
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         case 'select+randColor' 
            [batchdata,batchtargets,batchstormnums,testbatchdata,testbatchtarg
ets,testbatchstormnums]... 
                = 
RBMpreprocessSelectColorBalanced(0.50,batchsize,15,1,0,'Color_SelRand_25_50_50
');     
    end 
    trainDataSummary(idxSet,:) = sum(sum(batchtargets,3)); 
    testDataSummary(idxSet,:) = sum(sum(testbatchtargets,3)); 
    fprintf(1,'Using training data set realization number %d...\n', idxSet); 
    % loop through numTrials 
    for idxTrial = 1:numTrials 
        % create and pre-train DBNN/RBM 
        fprintf(1,'Pre-training network on GPU, trial number %d...\n', 
idxTrial); 
        DN = deeptrain_GPU(batchdata,[numHidNodes 25 50],batchsize); 
         
        % fine tune classifider 
        switch nnType 
            case 'RBM' 
                fprintf(1,'fine tuning RBM classifier, trial number %d...\n', 
idxTrial); 
                [w1,wClass,test_err,test_crerr,train_err,train_crerr,confusion
MatrixTrain,... 
                    confusionMatrixTest,mean1OffTrainError,mean1OffTestError,m
eanTestError,meanTrainError,... 
                    testPredProbs, trainPredProbs] ... 
                    = 
finetune_RBM_classifier(DN,batchdata,testbatchdata,batchtargets,testbatchtarge
ts); 
            case 'DBN' 
                 
        end 
        testError(count) = meanTestError; 
        trainError(count) = meanTrainError; 
        testConfMatrix(:,:,count) = confusionMatrixTest; 
        trainConfMatrix(:,:,count) = confusionMatrixTrain; 
        trainClassAccuracy(count,:) = confusionMatrixTrain(16,1:15); 
        testClassAccuracy(count,:) = confusionMatrixTest(16,1:15); 
        meanTest1OffAccuracy(count) = mean1OffTestError; 
        meanTrain1OffAccuracy(count) = mean1OffTrainError; 
        count = count+1; 
    end % end numTrials loop 
     
end % end numSets loop 
% calculate average training and testing accuracy 
meanTrainAccuracy = 1 - mean(trainError) 
meanTestAccuracy = 1- mean(testError) 
meanTrainClassAccuracy = mean(trainClassAccuracy,'omitnan') 
meanTestClassAccuracy = mean(trainClassAccuracy,'omitnan') 
  
  
mean1OffTrainAccuracy = 1-mean(mean1OffTrainError) 
mean1OffTestAccuracy = 1-mean(mean1OffTestError) 
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figure(1); 
plot_L1(DN,numHidNodes); 
  
DN.L{1}.vishid = w1(1:end-1,:); 
figure(2); 
plot_L1(DN,numHidNodes); 
  
disp('program completed'); 
  
 
 
 
function 
[batchdata,batchtargets,batchstormnums,testbatchdata,testbatchtargets,testbatc
hstormnums]... 
    = 
RBMpreprocessGrayscale(testDataPortion,batchsize,K,onlyCleanData,onlyTribs,fna
me) 
  
addpath('Output Data'); 
  
load trainSelectStorms 
  
% prepare training data 
digitdata = []; 
targets   = []; 
cleanPattern = []; 
stormNum = []; 
  
for n = 1:size(trainStormNumbers,1) 
    [X,hystClass] = subsetHystPlots28Gray(trainStormNumbers(n,:)); 
    randomorder = randperm(14); 
    digitdata = [digitdata; X(randomorder,:)]; 
    targetVect = zeros(size(trainStormNumbers,2),K); 
    t = 1:14; 
    ind = sub2ind(size(targetVect),t,hystClass); 
    targetVect(ind) = 1; 
    targets = [targets; targetVect(randomorder,:)]; 
    stormNums = trainStormNumbers(n,:)'; 
    stormNum = [stormNum; stormNums(randomorder)]; 
end 
  
digitdata = digitdata/255; 
  
traindigitdata = digitdata(1:28,:); 
traintargets = targets(1:28,:); 
trainstormNum = stormNum(1:28,:); 
  
  
% prepare testing data 
  
digitdata = []; 
targets   = []; 
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cleanPattern = []; 
stormNum = []; 
K = 15; 
    % Folsom Brook Data 
    load FOL_Grayscale28x28_Output; load FOL_stormHystClass; 
    targetClass = stormHystClass(:,4); 
    targetVect = zeros(size(Grayscale28x28,1),K); 
    ind = sub2ind(size(targetVect), (1:size(Grayscale28x28,1))', targetClass); 
    targetVect(ind)=1; 
    cleanPattern = [cleanPattern; stormHystClass(:,5)]; 
    stormNum = [stormNum; stormHystClass(:,1)]; 
    digitdata = [digitdata; Grayscale28x28]; 
    targets = [targets; targetVect]; 
    % Shepard Brook Data 
    load SHP_Grayscale28x28_Output; load SHP_stormHystClass; 
    targetClass = stormHystClass(:,4); 
    targetVect = zeros(size(Grayscale28x28,1),K); 
    ind = sub2ind(size(targetVect), (1:size(Grayscale28x28,1))', targetClass); 
    targetVect(ind)=1; 
    cleanPattern = [cleanPattern; stormHystClass(:,5)]; 
    stormNum = [stormNum; stormHystClass(:,1)]; 
    digitdata = [digitdata; Grayscale28x28]; 
    targets = [targets; targetVect]; 
    % Mill Brook Data 
    load MIL_Grayscale28x28_Output; load MIL_stormHystClass; 
    targetClass = stormHystClass(:,4); 
    targetVect = zeros(size(Grayscale28x28,1),K); 
    ind = sub2ind(size(targetVect), (1:size(Grayscale28x28,1))', targetClass); 
    targetVect(ind)=1; 
    cleanPattern = [cleanPattern; stormHystClass(:,5)]; 
    stormNum = [stormNum; stormHystClass(:,1)]; 
    digitdata = [digitdata; Grayscale28x28]; 
    targets = [targets; targetVect]; 
    % Freeman Brook Data 
    load FRE_Grayscale28x28_Output; load FRE_stormHystClass; 
    targetClass = stormHystClass(:,4); 
    targetVect = zeros(size(Grayscale28x28,1),K); 
    ind = sub2ind(size(targetVect), (1:size(Grayscale28x28,1))', targetClass); 
    targetVect(ind)=1; 
    cleanPattern = [cleanPattern; stormHystClass(:,5)]; 
    stormNum = [stormNum; stormHystClass(:,1)]; 
    digitdata = [digitdata; Grayscale28x28]; 
    targets = [targets; targetVect]; 
    % Mad River Data 
    if onlyTribs == 0 
        load MAD_Grayscale28x28_Output; load MAD_stormHystClass; 
        targetClass = stormHystClass(:,4); 
        targetVect = zeros(size(Grayscale28x28,1),K); 
        ind = sub2ind(size(targetVect), (1:size(Grayscale28x28,1))', 
targetClass); 
        targetVect(ind)=1; 
        cleanPattern = [cleanPattern; stormHystClass(:,5)]; 
        stormNum = [stormNum; stormHystClass(:,1)]; 
        digitdata = [digitdata; Grayscale28x28]; 
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        targets = [targets; targetVect]; 
    end 
    % High Bridge Brook Data 
    load HBR_Grayscale28x28_Output; load HBR_stormHystClass; 
    targetClass = stormHystClass(:,4); 
    targetVect = zeros(size(Grayscale28x28,1),K); 
    ind = sub2ind(size(targetVect), (1:size(Grayscale28x28,1))', targetClass); 
    targetVect(ind)=1; 
    cleanPattern = [cleanPattern; stormHystClass(:,5)]; 
    stormNum = [stormNum; stormHystClass(:,1)]; 
    digitdata = [digitdata; Grayscale28x28]; 
    targets = [targets; targetVect]; 
  
  
digitdata = double(digitdata); 
if onlyCleanData == 1 
    ind = find(cleanPattern == 0); 
    count = 1; 
    for i = 1:length(ind) 
        digitdata(ind(count),:)=NaN; 
        targets(ind(count),:)=NaN; 
        stormNum(ind(count))=NaN; 
        count = count+1; 
    end 
    digitdata(any(isnan(digitdata),2),:)=[]; 
    targets(any(isnan(targets),2),:)=[]; 
    stormNum(any(isnan(stormNum),2),:)=[]; 
  
end 
    
 ind = find(targets(:,15) == 1); 
    count = 1; 
    for i = 1:length(ind) 
        digitdata(ind(count),:)=NaN; 
        targets(ind(count),:)=NaN; 
        stormNum(ind(count))=NaN; 
        count = count+1; 
    end 
    digitdata(any(isnan(digitdata),2),:)=[]; 
    targets(any(isnan(targets),2),:)=[]; 
    stormNum(any(isnan(stormNum),2),:)=[]; 
     
[Lia,Locb] = ismember(stormNum,trainstormNum); 
ind = find(Locb ~= 0); 
  
  
  
count = 1; 
    for i = 1:length(ind) 
        digitdata(ind(count),:)=NaN; 
        targets(ind(count),:)=NaN; 
        stormNum(ind(count))=NaN; 
        count = count+1; 
    end 
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    digitdata(any(isnan(digitdata),2),:)=[]; 
    targets(any(isnan(targets),2),:)=[]; 
    stormNum(any(isnan(stormNum),2),:)=[]; 
  
digitdata = digitdata/255; 
  
% Randomize order  
testNum = size(digitdata,1); 
randomorder = randperm(testNum); 
tempDigitData = digitdata(randomorder,:); 
tempTargetData = targets(randomorder,:); 
tempStormNum = stormNum(randomorder,:); 
  
numRandTrain = 250; 
  
traindigitdata = [traindigitdata; tempDigitData(1:numRandTrain,:)]; 
    traintargets = [traintargets; tempTargetData(1:numRandTrain,:)]; 
    trainstormNum = [trainstormNum; tempStormNum(1:numRandTrain,:)]; 
     
    testDigitData = tempDigitData(numRandTrain+1:end,:); 
    testTargetData = tempTargetData(numRandTrain+1:end,:); 
    testStormNum = tempStormNum(numRandTrain+1:end,:); 
  
    trainNum = numel(trainstormNum); 
    testNum = size(testDigitData, 1); 
    fprintf(1, 'Size of the training dataset = %5d \n', trainNum); 
fprintf(1, 'Size of the testing dataset = %5d \n', testNum); 
% batch training data 
numbatches   = floor(trainNum/batchsize); 
numdims      = size(traindigitdata, 2); 
batchdata    = zeros(batchsize, numdims, numbatches); 
batchtargets = zeros(batchsize, K, numbatches); 
batchstormnums = zeros(batchsize,1,numbatches); 
for b=1:numbatches 
    batchdata(:,:,b)  = traindigitdata(1+(b-1)*batchsize:b*batchsize, :); 
    batchtargets(:,:,b) = traintargets(1+(b-1)*batchsize:b*batchsize, :); 
    batchstormnums(:,:,b) = trainstormNum(1+(b-1)*batchsize:b*batchsize); 
end 
  
  
% batch testing data 
randomorder = randperm(testNum); 
numbatches   = floor(testNum/batchsize); 
numdims      = size(testDigitData, 2); 
testbatchdata    = zeros(batchsize, numdims, numbatches); 
testbatchtargets = zeros(batchsize, K, numbatches); 
testbatchstormnums = zeros(batchsize,1,numbatches); 
for b=1:numbatches 
    testbatchdata(:,:,b)  = testDigitData(randomorder(1+(b-
1)*batchsize:b*batchsize), :); 
    testbatchtargets(:,:,b) = testTargetData(randomorder(1+(b-
1)*batchsize:b*batchsize), :); 
    testbatchstormnums(:,:,b) = testStormNum(randomorder(1+(b-
1)*batchsize:b*batchsize), :); 
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end 
% save dataset as a 3D matrix 
temp = datevec(now); 
fname = ['../Data/Mad/Hyst/' fname num2str(temp(1)) num2str(temp(2)) 
num2str(temp(3)) '_' num2str(temp(4)) num2str(temp(5)) num2str(temp(6),2)]; 
save(fname, 
'batchdata','batchtargets','batchstormnums','testbatchdata','testbatchtargets'
,'testbatchstormnums'); 
  
end 
  
 
function [DN] = deeptrain_GPU(batchdata,layers,batchsize) 
% Version 1.000 
% 
% Code provided by Ruslan Salakhutdinov and Geoff Hinton 
Modified by Scott Hamshaw 
% 
% Permission is granted for anyone to copy, use, modify, or distribute this 
% program and accompanying programs and documents for any purpose, provided 
% this copyright notice is retained and prominently displayed, along with 
% a note saying that the original programs are available from our 
% web page. 
% The programs and documents are distributed without any warranty, express or 
% implied.  As the programs were written for research purposes only, they have 
% not been tested to the degree that would be advisable in any important 
% application.  All use of these programs is entirely at the user's own risk. 
  
% Version 1.100 
% 
% Updated by Computational Cognitive Neuroscience Lab 
% University of Padova 
% ccnl.psy.unipd.it 
% 
% Implementation on graphic processors (GPUs) using MATLAB Parallel Computing 
Toolbox 
  
% Program modified by Scott Hamshaw 
  
tic 
% DEEP NETWORK SETUP 
% (parameters and final network weights will be saved in structure DN) 
DN.layersize   = layers;            % network architecture 
DN.nlayers     = length(DN.layersize); 
DN.maxepochs   = 200;                    % unsupervised learning epochs 
DN.batchsize   = batchsize;                   % mini-batch size 
sparsity       = 1;                     % set to 1 to encourage sparsity on 
third layer 
spars_factor   = 0.05;                  % how much sparsity? 
epsilonw_GPU   = gpuArray(0.1);         % learning rate (weights) 
epsilonvb_GPU  = gpuArray(0.1);         % learning rate (visible biases) 
epsilonhb_GPU  = gpuArray(0.1);         % learning rate (hidden biases) 
weightcost_GPU = gpuArray(0.0002);      % decay factor 
init_momentum  = 0.5;                   % initial momentum coefficient 
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final_momentum = 0.9;                   % momentum coefficient 
  
% load training dataset 
% fname = ['Hyst_Grayscale_select_b14.mat']; 
% load(fname); 
fprintf(1,'\nUnsupervised training of a deep belief net\n'); 
DN.err = zeros(DN.maxepochs, DN.nlayers, 'single'); 
tic(); 
  
for layer = 1:DN.nlayers 
     
    % for the first layer, input data are raw images 
    % for next layers, input data are preceding hidden activations 
    fprintf(1,'Training layer %d...\n', layer); 
    if layer == 1 
        data_GPU = gpuArray(single(batchdata)); 
    else 
        data_GPU  = batchposhidprobs; 
    end 
     
    % initialize weights and biases 
    numhid  = DN.layersize(layer); 
    [numcases, numdims, numbatches] = size(data_GPU); 
    numcases_GPU     = gpuArray(numcases); 
    vishid_GPU       = gpuArray(0.1*randn(numdims, numhid, 'single')); 
    hidbiases_GPU    = gpuArray(zeros(1,numhid, 'single')); 
    visbiases_GPU    = gpuArray(zeros(1,numdims, 'single')); 
    vishidinc_GPU    = gpuArray(zeros(numdims, numhid, 'single')); 
    hidbiasinc_GPU   = gpuArray(zeros(1,numhid, 'single')); 
    visbiasinc_GPU   = gpuArray(zeros(1,numdims, 'single')); 
    batchposhidprobs = gpuArray(zeros(DN.batchsize, numhid, numbatches, 
'single')); 
     
    for epoch = 1:DN.maxepochs 
        errsum = 0; 
        for mb = 1:numbatches 
            data_mb = data_GPU(:, :, mb);  % select one slice (mini-batch) 
            rbm_GPU;  % learn an RBM with 1-step contrastive divergence 
            errsum = errsum + err; 
            if epoch == DN.maxepochs 
                batchposhidprobs(:, :, mb) = poshidprobs_GPU; 
            end 
            if sparsity && (layer == 3) 
                poshidact = sum(poshidprobs_GPU); 
                Q = poshidact/DN.batchsize; 
                if mean(Q) > spars_factor 
                    hidbiases_GPU = hidbiases_GPU - epsilonhb_GPU*(Q-
spars_factor); 
                end 
            end 
        end 
        DN.err(epoch, layer) = errsum; 
    end 
    % save learned weights 
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    DN.L{layer}.hidbiases  = gather(hidbiases_GPU); 
    DN.L{layer}.vishid     = gather(vishid_GPU); 
    DN.L{layer}.visbiases  = gather(visbiases_GPU); 
    DN.L{layer}.batchposhidprobs = gather(batchposhidprobs); 
     
end 
  
DN.learningtime = toc(); 
fprintf(1, '\nElapsed time: %d \n', DN.learningtime); 
fname = 'DBN_Grayscale_select_14.mat'; 
% save final network and parameters 
save (fname, 'DN'); 
hidrecbiases = DN.L{1,1}.hidbiases; 
visbiases = DN.L{1,1}.visbiases; 
vishid = DN.L{1,1}.vishid; 
save mnistvhclassify vishid hidrecbiases visbiases; 
penrecbiases = DN.L{1,2}.hidbiases; 
hidgenbiases = DN.L{1,2}.visbiases; 
hidpen = DN.L{1,2}.vishid; 
save mnisthpclassify hidpen penrecbiases hidgenbiases; 
penrecbiases2 = DN.L{1,3}.hidbiases; 
hidgenbiases2 = DN.L{1,3}.visbiases; 
hidpen2 = DN.L{1,3}.vishid; 
save mnisthp2classify hidpen2 penrecbiases2 hidgenbiases2; 
toc 
end 
 
% Version 1.000  
% 
% Code provided by Geoff Hinton and Ruslan Salakhutdinov  
% Modified by Scott Hamshaw 
% 
% Permission is granted for anyone to copy, use, modify, or distribute this 
% program and accompanying programs and documents for any purpose, provided 
% this copyright notice is retained and prominently displayed, along with 
% a note saying that the original programs are available from our 
% web page. 
% The programs and documents are distributed without any warranty, express or 
% implied.  As the programs were written for research purposes only, they have 
% not been tested to the degree that would be advisable in any important 
% application.  All use of these programs is entirely at the user's own risk. 
  
% This program trains Restricted Boltzmann Machine in which 
% visible, binary, stochastic pixels are connected to 
% hidden, binary, stochastic feature detectors using symmetrically 
% weighted connections. Learning is done with 1-step Contrastive 
Divergence.    
% The program assumes that the following variables are set externally: 
% maxepoch  -- maximum number of epochs 
% numhid    -- number of hidden units  
% batchdata -- the data that is divided into batches (numcases numdims 
numbatches) 
  
% Version 1.100 
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% 
% Updated by Computational Cognitive Neuroscience Lab 
% University of Padova 
% ccnl.psy.unipd.it 
% 
% Implementation on graphic processors (GPUs) using MATLAB Parallel Computing 
Toolbox 
  
momentum_GPU    = gpuArray(init_momentum); 
  
%%%%%%%%% START POSITIVE PHASE %%%%%%%%% 
poshidprobs_GPU = 1./(1 + exp(-data_mb * vishid_GPU - repmat(hidbiases_GPU, 
numcases, 1))); 
posprods_GPU    = data_mb' * poshidprobs_GPU; 
poshidact_GPU   = sum(poshidprobs_GPU); 
posvisact_GPU   = sum(data_mb); 
%%%%%%%%% END OF POSITIVE PHASE  %%%%%%%%% 
poshidstates_GPU = poshidprobs_GPU > rand(numcases, numhid); 
  
%%%%%%%%% START NEGATIVE PHASE  %%%%%%%%% 
negdata_GPU     = 1./(1 + exp(-poshidstates_GPU * vishid_GPU' - 
repmat(visbiases_GPU, numcases, 1))); 
neghidprobs_GPU = 1./(1 + exp(-negdata_GPU * vishid_GPU       - 
repmat(hidbiases_GPU, numcases, 1))); 
negprods_GPU    = negdata_GPU' * neghidprobs_GPU; 
neghidact_GPU   = sum(neghidprobs_GPU); 
negvisact_GPU   = sum(negdata_GPU); 
%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%% 
  
err = gather(sqrt(sum(sum((data_mb - negdata_GPU).^2)))); 
if epoch > 5, 
    momentum_GPU = gpuArray(final_momentum); 
end 
  
%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%% 
vishidinc_GPU  = momentum_GPU * vishidinc_GPU  + epsilonw_GPU*( (posprods_GPU-
negprods_GPU)/numcases_GPU - weightcost_GPU * vishid_GPU); 
visbiasinc_GPU = momentum_GPU * visbiasinc_GPU + 
(epsilonvb_GPU/numcases_GPU)*(posvisact_GPU-negvisact_GPU); 
hidbiasinc_GPU = momentum_GPU * hidbiasinc_GPU + 
(epsilonhb_GPU/numcases_GPU)*(poshidact_GPU-neghidact_GPU); 
vishid_GPU     = vishid_GPU + vishidinc_GPU; 
visbiases_GPU  = visbiases_GPU + visbiasinc_GPU; 
hidbiases_GPU  = hidbiases_GPU + hidbiasinc_GPU; 
%%%%%%%%% END OF UPDATES %%%%%%%%% 
 
function 
[w1,w_class,test_err,test_crerr,train_err,train_crerr,confusionMatrixTrain,... 
    confusionMatrixTest,mean1OffTrainError,mean1OffTestError,meanTestError,mea
nTrainError,... 
    testPredProbs, trainPredProbs] = finetune_RBM_classifier... 
    (DN,batchdata,testbatchdata,batchtargets,testbatchtargets) 
% Version 1.000 
% 
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% Code provided by Ruslan Salakhutdinov and Geoff Hinton 
% Modified by Scott Hamshaw 
% 
% Permission is granted for anyone to copy, use, modify, or distribute this 
% program and accompanying programs and documents for any purpose, provided 
% this copyright notice is retained and prominently displayed, along with 
% a note saying that the original programs are available from our 
% web page. 
% The programs and documents are distributed without any warranty, express or 
% implied.  As the programs were written for research purposes only, they have 
% not been tested to the degree that would be advisable in any important 
% application.  All use of these programs is entirely at the user's own risk. 
  
% This program fine-tunes an autoencoder with backpropagation. 
% Weights of the autoencoder are going to be saved in mnist_weights.mat 
% and trainig and test reconstruction errors in mnist_error.mat 
% You can also set maxepoch, default value is 200 as in our paper.   
  
maxepoch=200; 
fprintf(1,'\nTraining discriminative model on MNIST by minimizing cross 
entropy error. \n'); 
  
%load MNIST_data_125.mat; 
  
%load Hyst_Grayscale_cleanonly_b25.mat; 
  
%load DBN_Grayscale_clean_25_25_50.mat; 
hidrecbiases = DN.L{1,1}.hidbiases; 
visbiases = DN.L{1,1}.visbiases; 
vishid = DN.L{1,1}.vishid; 
  
  
[numcases,numdims,numbatches]=size(batchdata); 
N=numcases; 
K = 15; 
  
%%%% PREINITIALIZE WEIGHTS OF THE DISCRIMINATIVE 
MODEL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
w1=[vishid; hidrecbiases]; 
%w2=[hidpen; penrecbiases]; 
%w3=[hidpen2; penrecbiases2]; 
w_class = 0.1*randn(size(w1,2)+1,K); 
  
  
%%%%%%%%%% END OF PREINITIALIZATIO OF 
WEIGHTS  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
l1=size(w1,1)-1; 
l2=size(w1,2); 
%l3=size(w3,1)-1; 
%l4=size(w_class,1)-1; 
l5=K;  
test_err=[]; 



 267 

train_err=[]; 
  
  
for epoch = 1:maxepoch 
  
%%%%%%%%%%%%%%%%%%%% COMPUTE TRAINING MISCLASSIFICATION ERROR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
err=0;  
err_cr=0; 
counter=0; 
[numcases,numdims,numbatches]=size(batchdata); 
N=numcases; 
  
confusionMatrixTest = zeros(K+1,K+1); 
confusionMatrixTrain = zeros(K+1,K+1); 
trainPredProbs = []; 
 for batch = 1:numbatches 
  data = batchdata(:,:,batch); 
  target = batchtargets(:,:,batch); 
  data = [data ones(N,1)]; 
  w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs  ones(N,1)]; 
  %w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; 
  %w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs  ones(N,1)]; 
  targetout = exp(w1probs*w_class); 
  targetout = targetout./repmat(sum(targetout,2),1,K); 
  trainPredProbs = [trainPredProbs; targetout]; 
  [I,J]=max(targetout,[],2); 
  [I1,J1]=max(target,[],2); 
  counter=counter+length(find(J==J1)); 
  err_cr = err_cr- sum(sum( target(:,1:end).*log(targetout))) ; 
  % create matrix of error by class type 
  for i = 1:numcases 
     confusionMatrixTrain(J(i),J1(i)) = confusionMatrixTrain(J(i),J1(i))+1; 
  end 
   
 end 
  
  
 confusionMatrixTrain(1:K,K+1) = 
diag(confusionMatrixTrain(1:K,1:K))./sum(confusionMatrixTrain(1:K,1:K),2); 
 confusionMatrixTrain(K+1,1:K) = 
diag(confusionMatrixTrain(1:K,1:K))'./sum(confusionMatrixTrain(1:K,1:K),1); 
      
  
 train_err(epoch)=(numcases*numbatches-counter); 
 train_crerr(epoch)=err_cr/numbatches; 
  
%%%%%%%%%%%%%% END OF COMPUTING TRAINING MISCLASSIFICATION ERROR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% COMPUTE TEST MISCLASSIFICATION ERROR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
err=0; 
err_cr=0; 
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counter=0; 
[testnumcases,testnumdims,testnumbatches]=size(testbatchdata); 
N=testnumcases; 
testPredProbs = []; 
for batch = 1:testnumbatches 
  data = testbatchdata(:,:,batch); 
  target = testbatchtargets(:,:,batch); 
  data = [data ones(N,1)]; 
  w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs  ones(N,1)]; 
  %w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; 
  %w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs  ones(N,1)]; 
  targetout = exp(w1probs*w_class); 
  targetout = targetout./repmat(sum(targetout,2),1,K); 
  testPredProbs = [testPredProbs; targetout]; 
  [I,J]=max(targetout,[],2); 
  [I1,J1]=max(target,[],2); 
  counter=counter+length(find(J==J1)); 
  err_cr = err_cr- sum(sum( target(:,1:end).*log(targetout))) ; 
   
   % create matrix of error by class type 
  
    for i = 1:numcases 
     confusionMatrixTest(J(i),J1(i)) = confusionMatrixTest(J(i),J1(i)) +1; 
     end 
  
end 
  
  
 confusionMatrixTest(1:K,K+1) = 
diag(confusionMatrixTest(1:K,1:K))./sum(confusionMatrixTest(1:K,1:K),2); 
 confusionMatrixTest(K+1,1:K) = 
diag(confusionMatrixTest(1:K,1:K))'./sum(confusionMatrixTest(1:K,1:K),1); 
   
 test_err(epoch)=(testnumcases*testnumbatches-counter); 
 test_crerr(epoch)=err_cr/testnumbatches; 
 fprintf(1,'Before epoch %d Train # misclassified: %d (from %d). Test # 
misclassified: %d (from %d) \t \t \n',... 
            epoch,train_err(epoch),numcases*numbatches,test_err(epoch),testnum
cases*testnumbatches); 
  
%%%%%%%%%%%%%% END OF COMPUTING TEST MISCLASSIFICATION ERROR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 for batch = 1:numbatches 
 fprintf(1,'epoch %d batch %d\r',epoch,batch); 
  
 data = batchdata(:,:,batch);  
 targets = batchtargets(:,:,batch); 
  
%%%%%%%%%%%%%%% PERFORM CONJUGATE GRADIENT WITH 3 LINESEARCHES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  max_iter=3; 
  
  if epoch<6  % First update top-level weights holding other weights fixed.  
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    N = size(data,1); 
    XX = [data ones(N,1)]; 
    w1probs = 1./(1 + exp(-XX*w1)); %w1probs = [w1probs  ones(N,1)]; 
    %w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; 
    %w3probs = 1./(1 + exp(-w2probs*w3)); %w3probs = [w3probs  ones(N,1)]; 
  
    VV = (w_class(:)')'; 
    Dim = [l2; l5]; 
    [X, fX] = 
minimize(VV,'CG_CLASSIFY_INIT_RBM',max_iter,Dim,w1probs,targets,K); 
    w_class = reshape(X,l2+1,l5); 
  
  else 
    %VV = [w1(:)' w2(:)' w3(:)' w_class(:)']'; 
    VV = [w1(:)' w_class(:)']'; 
    %Dim = [l1; l2; l3; l4; l5]; 
    Dim = [l1; l2; l5]; 
    [X, fX] = minimize(VV,'CG_CLASSIFY_RBM',max_iter,Dim,data,targets,K); 
  
    w1 = reshape(X(1:(l1+1)*l2),l1+1,l2); 
    xxx = (l1+1)*l2; 
    %w2 = reshape(X(xxx+1:xxx+(l2+1)*l3),l2+1,l3); 
    %xxx = xxx+(l2+1)*l3; 
    %w3 = reshape(X(xxx+1:xxx+(l3+1)*l4),l3+1,l4); 
    %xxx = xxx+(l3+1)*l4; 
    w_class = reshape(X(xxx+1:xxx+(l2+1)*l5),l2+1,l5); 
  
  end 
%%%%%%%%%%%%%%% END OF CONJUGATE GRADIENT WITH 3 LINESEARCHES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 end 
  
 save weights_RBM_Grayscale_synth_25 w1 w_class 
 save error_RBM_Grayscale_synth_25 test_err test_crerr train_err train_crerr 
confusionMatrixTrain confusionMatrixTest; 
  
  
end 
  
%meanTestError = test_err(end)/(testnumbatches*testnumcases) 
%meanTrainError = train_err(end)/(numbatches*numcases) 
confMatrix1OffInd = [1 2 3 4 9 13 14 18 28 35 49 52 53 68 69 70 72 76 85 86 87 
... 
    103 104 118 119 120 129 137 138 153 154 155 170 171 188 205 222]; 
mean1OffTrainError = 
sum(sum(confusionMatrixTrain(confMatrix1OffInd)))/sum(sum(confusionMatrixTrain
(1:14,1:14))); 
mean1OffTestError = 
sum(sum(confusionMatrixTest(confMatrix1OffInd)))/sum(sum(confusionMatrixTest(1
:14,1:14))); 
meanTestError = 
sum(diag(confusionMatrixTest(1:14,1:14)))/sum(sum(confusionMatrixTest(1:14,1:1
4))) 
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meanTrainError = 
sum(diag(confusionMatrixTrain(1:14,1:14)))/sum(sum(confusionMatrixTrain(1:14,1
:14))) 
 
% Version 1.000 
% 
% Code provided by Ruslan Salakhutdinov and Geoff Hinton 
% Modified by Scott Hamshaw 
% 
% Permission is granted for anyone to copy, use, modify, or distribute this 
% program and accompanying programs and documents for any purpose, provided 
% this copyright notice is retained and prominently displayed, along with 
% a note saying that the original programs are available from our 
% web page. 
% The programs and documents are distributed without any warranty, express or 
% implied.  As the programs were written for research purposes only, they have 
% not been tested to the degree that would be advisable in any important 
% application.  All use of these programs is entirely at the user's own risk. 
  
  
function [f, df] = CG_CLASSIFY_INIT_RBM(VV,Dim,w1probs,target,K); 
l1 = Dim(1); 
l5 = Dim(2); 
N = size(w1probs,1); 
% Do decomversion. 
  w_class = reshape(VV,l1+1,l5); 
  w1probs = [w1probs  ones(N,1)];   
  
  targetout = exp(w1probs*w_class); 
  targetout = targetout./repmat(sum(targetout,2),1,K); 
  f = -sum(sum( target(:,1:end).*log(targetout))) ; 
IO = (targetout-target(:,1:end)); 
Ix_class=IO;  
dw_class =  w1probs'*Ix_class;  
  
df = [dw_class(:)']';  
  
 
% Version 1.000 
% 
% Code provided by Ruslan Salakhutdinov and Geoff Hinton 
% Modified by Scott Hamshaw 
% 
% Permission is granted for anyone to copy, use, modify, or distribute this 
% program and accompanying programs and documents for any purpose, provided 
% this copyright notice is retained and prominently displayed, along with 
% a note saying that the original programs are available from our 
% web page. 
% The programs and documents are distributed without any warranty, express or 
% implied.  As the programs were written for research purposes only, they have 
% not been tested to the degree that would be advisable in any important 
% application.  All use of these programs is entirely at the user's own risk. 
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function [f, df] = CG_CLASSIFY_INIT(VV,Dim,w3probs,target,K); 
l1 = Dim(1); 
l2 = Dim(2); 
N = size(w3probs,1); 
% Do decomversion. 
  w_class = reshape(VV,l1+1,l2); 
  w3probs = [w3probs  ones(N,1)];   
  
  targetout = exp(w3probs*w_class); 
  targetout = targetout./repmat(sum(targetout,2),1,K); 
  f = -sum(sum( target(:,1:end).*log(targetout))) ; 
IO = (targetout-target(:,1:end)); 
Ix_class=IO;  
dw_class =  w3probs'*Ix_class;  
  
df = [dw_class(:)']';  
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Recurrent Counterpropagation Network Script and Functions 

 
%%% Program to perform data pre-processing 
  
addpath('Output Data'); 
addpath('../TimeSeries'); 
addpath('../Plotting'); 
  
%rainData = load('../Data/Mad/MetData/Mad_AllRainData_Hr'); 
rainData = load('../Data/Mad/MetData/MAD_AvgRain_Hr.mat'); 
load('../Data/Mad/MetData/WEM_SoilMoist_2013-2015_15Min.mat'); 
SiteCode = 'MIL' 
  
load sedRatingCurveParams; 
  
switch SiteCode 
    case 'MAD' 
        load('../Data/Mad/SensorData/MAD_Sensor_2012-2015_Hourly'); 
        load ('../Data/Mad/EventData/MAD_Online_2012-2015_Daily.mat'); 
        str1 = 'Mad River'; 
        a = MAD.a; SF=MAD.SF; b=MAD.b; 
        discharge = discharge/35.31; % convert discharge from cfs to m^3/s 
        convFact = 1000; 
        site = 1; 
        staPriority = [8 1 5 7 6 2 4 3]; 
        catchArea = 360008350; %square meters 
        smoothingParam = [3 21]; 
%     case 'FOL' 
%         load('../Data/Mad/SensorData/FOL_Sensor_2013-2015_15Min'); 
%         load ('../Data/Mad/EventData/FOL_Events_2013-2015.mat'); 
%         str1 = 'Folsom Brook'; 
%         a = FOL.a; SF=FOL.SF; b=FOL.b; 
%         convFact = 1000; 
%         site = 5; 
%         staPriority = [4 1 8 2 6 5 7 3]; 
%         catchArea = 18197700; %square meters 
%         smoothingParam = [4 11]; 
%     case 'FRE' 
%         load('../Data/Mad/SensorData/FRE_Sensor_2013_15Min'); 
%         load ('../Data/Mad/EventData/FRE_Events_2013.mat'); 
%         a = FRE.a; SF=FRE.SF; b=FRE.b; 
%         convFact = 1000; 
%         site = 6; 
%         staPriority = [4 6 1 8 2 5 7 3]; 
%         p = [-4.8018,83.01,-27]; 
%         discharge = polyval(p,stage*3.2808)/35.31; 
%         catchArea = 16962300; %square meters 
%         smoothingParam = [4 11]; 
    case 'MIL' 
        load('../Data/Mad/SensorData/MIL_Sensor_2012-2015_HR'); 
        load ('../Data/Mad/EventData/MIL_Online_2012-2015.mat'); 
        str1 = 'Mill Brook'; 
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        a = MIL.a; SF=MIL.SF; b=MIL.b; 
        convFact = 1000; 
        site = 4; 
        staPriority = [2 1 8 5 6 4 7 3]; 
        catchArea = 49823000; %square meters 
        smoothingParam = [4 11]; 
    case 'SHP' 
        load('../Data/Mad/SensorData/SHP_Sensor_2013-2015_HR'); 
        load ('../Data/Mad/EventData/SHP_Online_2013-2015.mat'); 
        str1 = 'Shepard Brook'; 
        a = SHP.a; SF=SHP.SF; b=SHP.b; 
        convFact = 1000; 
        site = 2; 
        staPriority = [5 8 1 2 3 7 4 6]; 
        catchArea = 44611100; %square meters 
        smoothingParam = [4 11]; 
%     case 'HBR' 
%         load('../Data/Mad/SensorData/HBR_Sensor_2013_15Min'); 
%         load ('../Data/Mad/EventData/HBR_Events_2013.mat'); 
%         str1 = 'High Bridge Brook'; 
%         a = HBR.a; SF=HBR.SF; b=HBR.b; 
%         convFact = 1000; 
%         site = 3; 
%         staPriority = [8 1 4 6 5 3 7 2]; 
%         discharge = (1.0376.*27.12.*(stage*3.28).^2.1277)/35.31; 
%         catchArea = 8643600; %square meters 
%         smoothingParam = [4 11]; 
end 
  
TSS =(SF*a*(turbidity).^b); % turbidity based estimate of TSS (mg/L) 
  
%convert precip from in to mm 
  
% rainData.allRainData = rainData.allRainData .* 25.4; 
% rainAmt = NaN(size(rainData.allRainData,1),1); 
% for i = 1:size(rainData.allRainData,1) 
%     siteNaN = isnan(rainData.allRainData(i,:)); 
%      
%     siteInd = find(siteNaN == 0); 
%     sitesOnline = ismember(staPriority,siteInd); 
%     sitesOnline = staPriority(sitesOnline); 
%     rainTot = sum(rainData.allRainData(i,sitesOnline),1,'omitnan'); 
%     rainGaugeWeighting = autoThiessenPoly(sitesOnline); 
%     rainAmt(i) = sum(rainTot.*rainGaugeWeighting); 
% end 
  
% calculate number of storm events 
numEvents = length(x)/2; 
% determine start and stop of windows to extract for storm event analysis 
% and convert to datetime arrays 
ind = 1:2:numEvents*2; 
startDates = datetime(x(ind),'ConvertFrom','datenum'); 
ind = 2:2:numEvents*2; 
endDates = datetime(x(ind),'ConvertFrom','datenum'); 
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IscoData = dataExtractorNum([startDates endDates],[numDate discharge TSS 
waterTemp],1); 
numDate = IscoData(:,1); discharge = IscoData(:,2); TSS= IscoData(:,3); 
waterTemp = IscoData(:,4); 
  
PrecipData = dataExtractorNum([startDates endDates],[rainData.rainNumDate 
rainData.rainAmt],1); 
rainData.rainNumDate = PrecipData(:,1); rainAmt = PrecipData(:,2); 
  
PrecipData = dataExtractorNum([startDates endDates],[rainNumDate WC2 WC3 WC1 
WC4],1); 
wcNumDate = PrecipData(:,1); WC2 = PrecipData(:,2); WC3 = PrecipData(:,3); WC1 
= PrecipData(:,4); WC4 = PrecipData(:,5); 
  
rainNumDate = rainData.rainNumDate; 
  
% match rain amounts to stream data time steps 
rainAmtMatched = zeros(length(numDate),1); 
vwc1Matched = zeros(length(numDate),1); 
vwc2Matched = zeros(length(numDate),1); 
vwc3Matched = zeros(length(numDate),1); 
vwc4Matched = zeros(length(numDate),1); 
for i = 1:length(numDate) 
    datelow = numDate(i)-1/1440; 
    datehigh = numDate(i) + 1/1440; 
    ind = find(rainNumDate > datelow & rainNumDate < datehigh); 
    TF = isempty(ind); 
    if TF == 0 
        if numel(ind) > 1 
            ind = ind(1); 
        end 
        rainAmtMatched(i) = rainAmt(ind); 
    end 
    ind = find(wcNumDate > datelow & wcNumDate < datehigh); 
    TF = isempty(ind); 
    if TF == 0 
        if numel(ind) > 1 
            ind = ind(1); 
        end 
        vwc1Matched(i) = WC1(ind); 
        vwc2Matched(i) = WC2(ind); 
        vwc3Matched(i) = WC3(ind); 
        vwc4Matched(i) = WC4(ind); 
    end 
end 
  
% to remove later 
% [n, bin] = histc(numDate, unique(numDate)); 
% multiple = find(n > 1); 
% index    = find(ismember(bin, multiple)); 
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% numDate(index) 
t = 1:length(TSS); 
t = t/96; 
  
[fh ah] = scrollPlot3(14,t,[rainAmtMatched discharge vwc2Matched],[],'on'); 
title(ah(3),{'Mill Brook','Precipitation, Discharge, and SM'}) 
grid(ah(1)); grid(ah(2)); grid(ah(3)); 
ylabel(ah(1),'Turbidity (NTU)'); 
ylabel(ah(2),'Discharge (cfs)'); 
xlabel(ah(3),'Time (Days)'); 
xlabel(ah(1),'Time (Days)'); 
xlabel(ah(2),'Time (Days)'); 
ylabel(ah(3),'15-Min Rainall (in)'); 
h =findobj('Type','line'); 
set(h(1),'Color','red','LineWidth',2); 
set(h(2),'Color','blue','LineWidth',2); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Driver program for running recurrent CPN w/time series data 
% Scott Hamshaw 
% Created 19-Sep-2013 
% Last Revised  
%%%%%%%%%%%%%%%%%%%%%%%% 
  
% NOTES: 
addpath('../TimeSeries'); 
addpath('../ANNs'); 
addpath('../Normalization'); 
addpath('../Stats'); 
  
close all; 
disp('Program started...'); 
tic; 
  
siteCode = 'MAD' 
switch siteCode 
    case 'MAD' 
         
        load('Output Data/MAD_Hr_rCPNdata.mat'); 
        load('../Data/Mad/EventData/MAD_Events_2013-2015'); 
         
        trainStartInd = 3589;   % 7/31/13 11:00 
        testStartInd = 10660;   % 4/28/15 00:00 
        testEndInd = 16048;     % 12/8/15 12:00; 
        trainStartStormInd = 25; 
        testStartStormInd = 96; 
        testEndStormInd = 143; 
         
    case 'SHP' 
         
        load('Output Data/SHP_Hr_rCPNdata.mat'); 
        load('../Data/Mad/EventData/SHP_Events_2013-2015'); 
         
        trainStartInd = 468;   % 7/31/13 11:00 
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        testStartInd = 7392;   % 4/28/15 00:00 
        testEndInd = 12757;     % 12/8/15 12:00; 
        trainStartStormInd = 5; 
        testStartStormInd = 63; 
        testEndStormInd = 102; 
         
    case 'MIL' 
        load('Output Data/MIL_Hr_rCPNdata.mat'); 
        load('../Data/Mad/EventData/MIL_Events_2012-2015'); 
         
        trainStartInd = 2802;   % 7/31/13 11:00 
        testStartInd = 10000;   % 4/28/15 00:00 
        testEndInd = 15053;     % 12/8/15 12:00; 
        trainStartStormInd = 36; 
        testStartStormInd = 107; 
        testEndStormInd = 154; 
end 
  
  
ind = find(vwc1Matched == 0); 
vwc1Matched(ind) = NaN; vwc2Matched(ind) = NaN; vwc3Matched(ind) = NaN; 
vwc4Matched(ind) = NaN; 
ind = find(waterTemp >= 25); 
waterTemp(ind) = NaN; 
  
% determine start and stop of windows to extract for storm events 
% and convert to datetime arrays 
numEvents = length(x)/2; 
ind = 1:2:numEvents*2; 
startDates = datetime(x(ind),'ConvertFrom','datenum'); 
ind = 2:2:numEvents*2; 
endDates = datetime(x(ind),'ConvertFrom','datenum'); 
  
for i = 1:numEvents-1 
    if startDates(i+1) <= endDates(i) 
        startDates(i+1) = endDates(i)+1/24; 
    end 
end 
  
  
%discharge = (log(discharge)+1)*10; 
stormflow = discharge - baseflow; 
ind = find(stormflow <0); 
stormflow (ind) = 0; 
  
% Setup output classes and convert prediciton variable to classificaiton 
K = 100; 
targetClasses = linspace(1,K)';  
targetQClasses = logspace(0,2.5,K)'; targetQClasses = 
round(targetQClasses*10)/10; 
% targetQClasses = linspace(1,ceil(max(discharge)),K); 
targetBaseflowClasses = logspace(0,1.5,K)'; targetBaseflowClasses = 
round(targetBaseflowClasses*10)/10; 
% targetBaseflowClasses = linspace(1,ceil(max(baseflow)),K); 
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targetTSSClasses = logspace(0,3.25,K)'; targetTSSClasses = 
round(targetTSSClasses*10)/10; 
% targetTSSClasses = linspace(1,ceil(max(TSS)),K); 
targetDischarge = roundtowardvec(discharge,targetQClasses,'round'); 
[~, targetDischargeClassNum] = ismember(targetDischarge, targetQClasses); 
targetBaseflow = roundtowardvec(baseflow,targetBaseflowClasses,'round'); 
[~, targetBaseflowClassNum] = ismember(targetBaseflow, targetBaseflowClasses); 
targetStormflow = roundtowardvec(stormflow,targetQClasses,'round'); 
[~, targetStormflowClassNum] = ismember(targetStormflow, targetQClasses); 
targetTSS = roundtowardvec(TSS,targetTSSClasses,'round'); 
[~, targetTSSClassNum] = ismember(targetTSS, targetTSSClasses); 
  
  
  
  
% create lagged time values of variables 
lagDischarge = timelagdata(discharge,12); 
lagPrecip = timelagdata(rainAmtMatched,24); 
lagVWC1 = timelagdata(vwc1Matched,12); 
lagVWC2 = timelagdata(vwc2Matched,12); 
lagVWC3 = timelagdata(vwc3Matched,12); 
lagVWC4 = timelagdata(vwc4Matched,12); 
lagTemp = timelagdata(waterTemp,12); 
lagBaseflow = timelagdata(baseflow,12); 
lagStormflow = timelagdata(stormflow,12); 
lagTSS = timelagdata(TSS,12); 
  
alpha=0.7;  %Kohonen weight layer learning constant 
beta=0.1;   %Grosberg weight layer learning constant  
Thresh=0.00001; %Network will train until this threshold is met 
maxIter = 100; 
numRecNodes = 1; 
  
% %% stormflow rCPN 
% % build input data matrices 
% data1 = [lagPrecip(:,2:6) lagVWC1(:,2:3) targetStormflowClassNum]; % +1 
recurrent nodes 
% trainData1 = data1(trainStartInd:testStartInd-1,:); 
% testData1 = data1(testStartInd:testEndInd,1:7); 
% typeKey1 = [1 1 1 1 1 2 2 3]; 
%  
% tempData = 
dataExtractorNum([startDates(trainStartStormInd:testStartStormInd-1) 
endDates(trainStartStormInd:testStartStormInd-1)],... 
%     [numDate(trainStartInd:testStartInd-1) trainData1 
targetStormflow(trainStartInd:testStartInd-1) 
rainAmtMatched(trainStartInd:testStartInd-1)],1); 
%     numDateTrainCrop = tempData(:,1); 
%     trainData1 = tempData(:,2:end-2); 
%     targetStormflowTrainCrop = tempData(:,end-1); 
%     rainAmtTrainCrop = tempData(:,end-1); 
%      
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%     tempData = 
dataExtractorNum([startDates(testStartStormInd:testEndStormInd) 
endDates(testStartStormInd:testEndStormInd)],... 
%     [numDate(testStartInd:testEndInd) testData1 
targetStormflow(testStartInd:testEndInd) 
rainAmtMatched(testStartInd:testEndInd)],1); 
%     numDateTestCrop = tempData(:,1); 
%     testData1 = tempData(:,2:end-2); 
%     targetStormflowTestCrop = tempData(:,end-1); 
%     rainAmtTestCrop = tempData(:,end-1); 
%      
%  
% [predictTrain, predictTest,~,~] = rCPNv2(trainData1,testData1,1,1,... 
%     2,1,alpha,beta,Thresh,0,typeKey1,50,1,400,1,'_weights_stormflow'); 
% ind = find(predictTest == 0); 
% predictTest(ind) = 1; 
% for i = 1:length(predictTrain) 
%     estTrainStormflow(i) = targetQClasses(predictTrain(i)); 
% end 
% for i = 1:length(predictTest) 
%     estTestStormflow(i) = targetQClasses(predictTest(i)); 
% end 
% disp('Training Data - Stormflow'); 
% evalANN(estTrainStormflow',targetStormflowTrainCrop,numDateTrainCrop,... 
%     rainAmtTrainCrop,'Stormflow (cms)','Training Data - Stormflow',1); 
%  
% disp('Testing Data - Stormflow'); 
% evalANN(estTestStormflow',targetStormflowTestCrop,numDateTestCrop,... 
%     rainAmtTestCrop,'Stormflow (cms)','Testing Data - Stormflow',0); 
%  
% estStormflow = zeros(length(numDate),1); 
% for i = 1:length(estStormflow) 
%     datelow = numDate(i)-1/1440; 
%     datehigh = numDate(i) + 1/1440; 
%     if i < testStartInd 
%         ind = find(numDateTrainCrop(2:end) > datelow & 
numDateTrainCrop(2:end) < datehigh); 
%     else 
%         ind = find(numDateTestCrop > datelow & numDateTestCrop < datehigh); 
%     end 
%     TF = isempty(ind); 
%      
%     if TF == 0 
%         if numel(ind) > 1 
%             ind = ind(1); 
%         end 
%         if i < testStartInd 
%             estStormflow(i) = estTrainStormflow(ind); 
%         else 
%             estStormflow(i) = estTestStormflow(ind); 
%         end 
%     end 
%      
% end 
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%  
% lagEstStormflow = timelagdata(estStormflow,12); 
%  
% %% baseflow rCPN 
% data2 = [lagTemp(:,6) lagPrecip(:,12) vwc4Matched lagVWC1(:,5) 
targetBaseflowClassNum]; % +1 recurrent node 
% trainData2 = data2(trainStartInd:testStartInd-1,:); 
% testData2 = data2(testStartInd:testEndInd,1:4); 
% typeKey2 = [1 2 3 4 5]; 
%  
% [predictTrain, predictTest,~,~] = rCPNv2(trainData2,testData2,3,1,... 
%     2,1,alpha,beta,Thresh,0,typeKey2,25,1,400,1,'_weights_baseflow'); 
% ind = find(predictTest == 0); 
% predictTest(ind) = 1; 
% ind = find(predictTrain == 0); 
% predictTrain(ind) = 1; 
% for i = 1:length(predictTrain) 
%     estTrainBaseflow(i) = targetBaseflowClasses(predictTrain(i)); 
% end 
% for i = 1:length(predictTest) 
%     estTestBaseflow(i) = targetBaseflowClasses(predictTest(i)); 
% end 
%  
% disp('Training Data - Baseflow'); 
% evalANN(estTrainBaseflow',targetBaseflow(trainStartInd:testStartInd-
1),numDate(trainStartInd:testStartInd-1),... 
%     rainAmtMatched(trainStartInd:testStartInd-1),'Baseflow (cms)','Training 
Data - Baselow',1); 
%  
% disp('Testing Data - Baseflow'); 
% 
evalANN(estTestBaseflow',targetBaseflow(testStartInd:testEndInd),numDate(testS
tartInd:testEndInd),... 
%     rainAmtMatched(testStartInd:testEndInd),'Baseflow (cms)','Testing Data - 
Baselow',0); 
%  
% disp('Training Data - Discharge'); 
% evalANN((estTrainBaseflow'+estStormflow(trainStartInd+1:testStartInd-
1)),targetDischarge(trainStartInd:testStartInd-
1),numDate(trainStartInd:testStartInd-1),... 
%     rainAmtMatched(trainStartInd:testStartInd-1),'Discharge (cms)','Training 
Data - Discharge',1); 
%  
% disp('Testing Data - Discharge'); 
% 
evalANN((estTestBaseflow'+estStormflow(testStartInd:testEndInd)),targetDischar
ge(testStartInd:testEndInd),numDate(testStartInd:testEndInd),... 
%     rainAmtMatched(testStartInd:testEndInd),'Discharge (cms)','Testing Data 
- Discharge',0); 
%  
% estBaseflow = [repmat(0,trainStartInd-1,1); 
baseflow(trainStartInd:testStartInd-1); ... 
%     repmat(1,numRecNodes,1); estTestBaseflow';repmat(0,16515-testEndInd,1)]; 
% lagEstBaseflow = timelagdata(estBaseflow,12); 
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%  
% estDischarge = [repmat(0,trainStartInd-1,1); 
discharge(trainStartInd:testStartInd-1); ... 
%     repmat(1,numRecNodes,1); 
(estTestBaseflow'+estStormflow(testStartInd:testEndInd));repmat(0,16515-
testEndInd,1)]; 
% lagEstDischarge = timelagdata(estDischarge,12); 
% %% TSS with baseflow and stormflow rCPN 
%  
%  
% data3 = [estDischarge lagEstDischarge(:,1:2) lagPrecip(:,6:7) lagVWC1(:,4) 
targetTSSClassNum]; % +1 recurrent node 
% trainData3 = data3(trainStartInd:testStartInd-1,:); 
% testData3 = data3(testStartInd:testEndInd,1:6); 
% typeKey3 = [1 1 1 2 2 3 4]; 
%  
% [predictTrain, predictTest,~,~] = rCPNv2(trainData2,testData2,3,1,... 
%     2,1,alpha,beta,Thresh,0,typeKey2,100,2,maxIter,1,'_weights_TSS'); 
%  
% for i = 1:length(predictTrain) 
%     estTrainTSS(i) = targetTSSClasses(predictTrain(i)); 
% end 
% for i = 1:length(predictTest) 
%     estTestTSS(i) = targetTSSClasses(predictTest(i)); 
% end 
%  
% disp('Training Data - TSS'); 
% evalANN(estTrainTSS',targetTSS(trainStartInd:testStartInd-
1),numDate(trainStartInd:testStartInd-1),... 
%     rainAmtMatched(trainStartInd:testStartInd-1),'TSS (mg/L)','Training Data 
- TSS',1); 
%  
% disp('Testing Data - TSS'); 
% 
evalANN(estTestTSS',targetTSS(testStartInd:testEndInd),numDate(testStartInd:te
stEndInd),... 
%     rainAmtMatched(testStartInd:testEndInd),'TSS (mg/L)','Training Data - 
TSS',0); 
  
%% 
data4 = [waterTemp vwc3Matched lagVWC1(:,3:4) lagPrecip(:,5:8) 
targetDischargeClassNum]; % +2 recurrent node 
trainData4 = data4(trainStartInd:testStartInd-1,:); 
testData4 = data4(testStartInd:testEndInd,1:8); 
typeKey4 = [1 2 3 3 5 5 5 5 6]; 
  
[predictTrain, predictTest,~,~] = rCPNv2(trainData4,testData4,1,1,... 
    2,1,alpha,beta,Thresh,0,typeKey4,100,2,40,1,'_weights_discharge'); 
  
ind = find(predictTest == 0); 
predictTest(ind) = 1; 
ind = find(predictTrain == 0); 
predictTrain(ind) = 1; 
for i = 1:length(predictTrain) 
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    estTrainDischarge(i) = targetQClasses(predictTrain(i)); 
end 
for i = 1:length(predictTest) 
    estTestDischarge(i) = targetQClasses(predictTest(i)); 
end 
  
disp('Training Data - Discharge'); 
evalANN(estTrainDischarge',targetDischarge(trainStartInd:testStartInd-
1),numDate(trainStartInd:testStartInd-1),... 
    rainAmtMatched(trainStartInd:testStartInd-1),'Discharge (cms)','Training 
Data - Dischaerge',1); 
  
disp('Testing Data - Discharge'); 
evalANN(estTestDischarge',targetDischarge(testStartInd:testEndInd),numDate(tes
tStartInd:testEndInd),... 
    rainAmtMatched(testStartInd:testEndInd),'Discharge (cms)','Testing Data - 
Discharge',0); 
  
estDischarge = [repmat(0,trainStartInd-1,1); 
discharge(trainStartInd:testStartInd-1); ... 
    repmat(1,numRecNodes,1); estTestDischarge';repmat(0,16515-testEndInd,1)]; 
lagEstDischarge = timelagdata(estDischarge,12); 
  
save('MAD_Q3','discharge','estTestDischarge','estTrainDischarge','numDate','es
tDischarge','rainAmtMatched','vwc1Matched','vwc3Matched','waterTemp') 
%%  
data5 = [estDischarge lagEstDischarge(:,1) lagPrecip(:,6:8) lagVWC1(:,1:2) 
lagTemp(:,12) targetTSSClassNum]; % +2 recurrent node 
trainData5 = data5(trainStartInd:testStartInd-1,:); 
testData5 = data5(testStartInd:testEndInd,1:8); 
  
typeKey5 = [1 1 2 2 2 3 3 4 5]; 
  
[predictTrain, predictTest,~,~] = rCPNv2(trainData5,testData5,1,1,... 
    2,1,alpha,beta,Thresh,0,typeKey5,500,2,40,1,'_weights_TSS'); 
  
ind = find(predictTest == 0); 
predictTest(ind) = 1; 
for i = 1:length(predictTrain) 
    estTrainTSS(i) = targetTSSClasses(predictTrain(i)); 
end 
for i = 1:length(predictTest) 
    estTestTSS(i) = targetTSSClasses(predictTest(i)); 
end 
  
disp('Training Data - TSS'); 
evalANN(estTrainTSS',targetTSS(trainStartInd:testStartInd-
1),numDate(trainStartInd:testStartInd-1),... 
    rainAmtMatched(trainStartInd:testStartInd-1),'TSS (mg/L)','Training Data - 
TSS',1); 
  
disp('Testing Data - TSS'); 
evalANN(estTestTSS',targetTSS(testStartInd:testEndInd),numDate(testStartInd:te
stEndInd),... 
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    rainAmtMatched(testStartInd:testEndInd),'TSS (mg/L)','Testing Data - 
TSS',0); 
  
  
save('MAD_TSS2','estTrainTSS','estTestTSS','TSS','discharge','estTestDischarge
','estTrainDischarge','numDate','estDischarge','rainAmtMatched','vwc1Matched',
'vwc3Matched','waterTemp') 
%% 
  
% plot  
  
  
  
% testRegPredict = -74.765 + 
0.463*lagPrecip(testStartInd:testEndInd,6)+0.661*lagPrecip(testStartInd:testEn
dInd,6) ... 
%     +0.354*vwc1Matched(testStartInd:testEndInd) + 
2.268*vwc2Matched(testStartInd:testEndInd)... 
%     +0.216*vwc3Matched(testStartInd:testEndInd) 
+0.083*vwc4Matched(testStartInd:testEndInd)... 
%     +0.401*waterTemp(testStartInd:testEndInd); 
  
% prep training data 
% data = rainAmtMatched(trainStartInd:testStartInd-1); 
% data2 = discharge(trainStartInd:testStartInd-1); 
%  
% lag_output1 = timelagdata(data(:,size(data,2)),lags); 
% Nind = find(isnan(lag_output1)); %% find indeces with NaNs (due to time lag) 
% lag_output1(Nind) = 0; 
% lag_output2 = timelagdata(data2(:,size(data,2)),2); 
% Nind = find(isnan(lag_output2)); %% find indeces with NaNs (due to time lag) 
% lag_output2(Nind) = 0; 
  
% trainData = [lag_output1 vwc2Matched(trainStartInd:testStartInd-1) 
vwc3Matched(trainStartInd:testStartInd-1)... 
%     vwc4Matched(trainStartInd:testStartInd-1) 
vwc1Matched(trainStartInd:testStartInd-1) ... 
%     waterTemp(trainStartInd:testStartInd-1) 
targetClass(trainStartInd:testStartInd-1)]; 
  
  
% Set Coefficients and Constants 
alpha=0.5;  %Kohonen weight layer learning constant 
beta=0.1;   %Grosberg weight layer learning constant  
Thresh=0.00001; %Network will train until this threshold is met 
numWIN = 1; %Num of K-winners for IDW interpolation 
lag_outputs = 2; %number of recurrent nodes for target data 
seed = 1*ones(lag_outputs,1); % initialization values for recurrent nodes 
norm = 2; %normalization mode  1=L2_ 
numHidNodes = 158; 
wijInitMode = 1; % 1 for random, 2 for set equal to normalized training data 
maxIterations = 25; 
trainMode = 1; %1 = random training data, 2 = sequential training data 
fname = 'Weights_rCPN_150' % filename for saved weights; 



 283 

%% 
%[TRAIN,INTERP,winnode]=CounterProp_recurrent(raw,test,numWIN,lag_outputs,norm
,seed,) 
% [train, interp,Wij,Wjk] = rCPNv2(trainData,testData,numWIN,lag_outputs,... 
%     norm,seed,alpha,beta,Thresh,0,typeKey,numHidNodes,wijInitMode,maxIter,tr
ainMode,fname); 
% %% Evaluation 
% t = 1:length(interp); 
% t = t/24; 
% figure() 
% subplot(3,1,2:3) 
% h = plot(t,testTarget,t,interp); 
% xlabel('Time (days)'); 
% ylabel('Turbidity (NTU)'); 
% legend('Observed Turbidity','Estimated Turbidity','Location','Northwest') 
% set(h(2),'LineWidth',1.5,'LineStyle','--','Color','m') 
% set(h(1),'LineWidth',1.5,'Color','k') 
% subplot(3,1,1) 
% bar(t,rainAmtMatched(testStartInd:testEndInd)); 
% set(gca,'Ydir','reverse'); 
% ylabel('15-Minute Rainfall (in)'); 
% xlabel('Time (days)'); 
%  
% figure() 
% x = 0.1:max(testTarget); 
% loglog(testTarget,interp,'.'); 
% xlim([0.1 10000]); 
% ylim([0.1 10000]); 
%  
%  
% hold on 
% plot(x,x); 
% xlabel('Observed Turbidity (NTU)','FontSize',12); 
% ylabel('Predicted Turbidity (NTU)','FontSize',12); 
% str1 = {'Mill Brook - 8/1/13 - 9/23/13', 'Sugarbush Rain Gauge'}; 
% title(str1,'FontSize',12); 
%  
% figure() 
% x = 0:1:max(trainTarget); 
% loglog(trainTarget(3:end),train,'.'); 
% %loglog(trainTarget,train,'.'); 
%  
% figure() 
% t = 1:length(train); 
% t = t/24; 
% subplot(3,1,2:3) 
% h = plot(t(2:end),trainTarget(1:end-3),t(2:end),train(1:end-1)); 
% xlabel('Time (days)'); 
% ylabel('Turbidity (NTU)'); 
% legend('Observed Turbidity','Estimated Turbidity','Location','Northwest') 
% set(h(2),'LineWidth',1.5,'LineStyle','--','Color','m') 
% set(h(1),'LineWidth',1.5,'Color','k') 
% subplot(3,1,1) 
% bar(t,rainAmtMatched(trainStartInd+2:testStartInd-1)); 
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% set(gca,'Ydir','reverse'); 
% ylabel('15-Minute Rainfall (in)'); 
% xlabel('Time (days)'); 
%  
% RMSE = rmse(testTarget,interp) 
% Corr= corr(testTarget,interp) 
% Rsquare = rsquare(testTarget,interp) 
% %save('FOL_Estimates7.mat','numDate','discharge','turbidity','interp'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Recurrent Counterpropogation Network Function 
% Scott Hamshaw 
% Created: 19-Oct-2013 
% Last Revised: Sept-2017 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% NOTES: Input file must be formatted with last column representing output. 
% Rows represent samples and columns represent variables 
% 
% INPUTS: 
% train = training data (n samples/patterns by N+1 variables). last column 
% represents target output data 
% predict = test/prediction data (n samples patterns by N variables) 
% numWin = number of k-winners for interpolation mode 
% numRecNode = number of recurrent nodes (number of previous estimated outputs 
to 
% use as input data) 
% normMode = normalization method (1 = none, 2 = L2, 3 = unit sphere) 
% initSeed = initial seed to use for recurrent nodes 
% alpha = Kohonen weights learning rate 
% beta = Grossberg weights learning rate 
% trainThresh = training threshold for RMSE 
% trainMode = skip training if = 1 
% 
% OUTPUTS: 
% 
function [trainLoc,interp,Wij,Wjk] = 
rCPNv2(train,predict,numWin,numRecNode,... 
    normMode,initSeed,alpha,beta,trainThresh,trainMode,typeKey,numHidNodes,wij
InitMode,... 
    maxIterations,trainSort,fname) 
  
trainRaw = train; % store original training data 
predictRaw = predict; % store original prediction data 
[~,N] = size(train); 
[M2,~] = size(predict); 
numInVar = N-1; % number of input variables 
  
%% Data Pre-processing 
if numRecNode >0 
    % Generate lagged values of target data for training 
    lagPredict = timelagdata(train(:,N),numRecNode); % call function to time 
lag target data 
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    ind = find(isnan(lagPredict)); % find indeces with NaNs created by time 
lag 
    [Nrow,Ncol] = ind2sub(size(lagPredict),ind); % convert indeces 
    Ncol = unique(Ncol); 
    lagPredict = lagPredict(:,Ncol); % retain only time lagged data 
    Nrow = unique(Nrow); 
    train = [train(:,1:numInVar) lagPredict train(:,N)]; % create training 
data set with 
     
    train(Nrow,:) = []; %%% remove rows that contain NaNs (due to time lag) 
end 
% add mean of target output to prediction data for normalization purposes 
for i = 1:numRecNode 
    predict = [predict ones(M2,1)*mean(trainRaw(:,N))]; 
end 
  
if numRecNode ==0 
    train = [train(:,1:numInVar) train(:,N)]; 
end 
  
% Normalize Data based on menu choice 
% normMode = menu('Select Desired Data Normalization for use in CPNN',... 
%     'No Normalization / Data Already Normalized','L2 Normalization (use 
Euclidean Distance)',... 
%     'L2 Normalization then Unit Sphere Normalization (use dot product)'); 
  
switch normMode 
    case 1 % no normalization 
        normTrain = train(:,size(train,2)); 
        normPredict = predict; 
    case 2 % L2 normalization (returns data without target/output column 
        disp('Using L2 Normalization') 
        [normTrain,normPredict,max_target,min_target]=L2_Norm(train,predict,ty
peKey); 
    case 3 % unit sphere (returns data without target/output column but with 
extra dimension 
        disp('Using Unit Sphere Normalization') 
        [normTrain,normPredict,normN]=sphere_norm(train,predict); 
end 
  
%K=max(train(:,N)); % set number of output classes (K) 
K = 150; 
[numPatt,numCol] = size(normTrain); 
  
% convert target data to binary 
target = zeros(numPatt,K);       % create empty target vector matrix 
for i = 1:numPatt % loop through training patterns 
    if(train(i,numCol)==0) 
        target(i,1) = 1;  % if zero assign to class 1 to avoid error 
    else 
        target(i,train(i,N)) = 1; % enter 1 in row corresponding to class 
    end 
end 
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%% Network Training Phase 
if trainMode ==0 
    disp('Network Training has begun...'); 
    tic % start timer 
    J =  numHidNodes; % set number of Kohonen nodes 
     
    Wij = rand(numCol,J); % initialize Kohonen weights to random numbers 
     
    if wijInitMode == 2 
        Wij = normTrain'; % initialize Kohonen Weights 
        J = numPatt; % Set number of Kohonen nodes 
    end 
     
    Wjk = rand(J,K); % initialize Grossberg weights to random numbers 
     
    iteration = 1;                              % set starting iteration to 1 
    RMSE = 1;                                   % set initial RMSE value to 1 
     
     
   for epoch = 1:maxIterations  
        errorCalc = 0; % initialize calculation variable for RMSE 
         
        if trainSort == 1 
            randomorder = randperm(numPatt); 
            randNormTrain = normTrain(randomorder,:); 
            randTarget = target(randomorder,:); 
        else 
            randNormTrain = normTrain; 
            randTarget = target; 
        end 
            if iteration == maxIterations 
                randNormTrain = normTrain; 
                randTarget = target; 
                disp('max iterations reached'); 
            end 
        for n = 1:numPatt % loop through training patterns 
  
            x = randNormTrain(n,:); % peel off vector of training pattern at 
step n 
             
            switch normMode 
                case 1 % no normalization 
                    for j=1:J % find distance to each Kohonen node 
                        dist(j)=sqrt(sum((x'-Wij(:,j)).^2)); 
                    end 
                     
                    [minZ,ind] = min(dist); % find minimum distance 
                case 2 % L2 normalization 
                    for j=1:J % find distance to each Kohonen node 
                        dist(j)=sqrt(sum((x'-Wij(:,j)).^2)); 
                    end 
                    [minZ,ind] = min(dist); % find minimum distance 
                     
                case 3 % Unit sphere normalization 
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                    for j=1:J % find dot product for each Kohonen node 
                        Zj(j)=x * Wij(:,j); 
                    end 
                    [maxZ,ind] = max(Zj); % find maximum 
            end 
             
            Zj = zeros(1,J); % all or nothing winner 
            Zj(ind) = 1; 
             
            if iteration ~= maxIterations 
                Wij(:,ind) = Wij(:,ind) + alpha*(x'-Wij(:,ind)); % update 
Kohonen weights 
            end 
             
            yEst=Zj*Wjk; % estimate output/target 
             
            if iteration ~= maxIterations 
                Wjk(ind,:)=Wjk(ind,:)+beta*(randTarget(n,:)-yEst); % update 
Grosberg weights 
            end 
             
            errorCalc=errorCalc+sum((randTarget(n,:)-yEst).^2); % perform 
calculation for RMSE 
             
            trainOutput(n,:)=Zj*Wjk; % store output 
        end 
         
        % display iteration count every 5th iteration 
        RMSE=sqrt(errorCalc/(numPatt*K)); %keep track of RMSE 
        if mod(iteration,5) == 0 
            disp(['Iteration ',num2str(iteration)]) 
            disp(num2str(RMSE)); 
        end 
         
        saveRMSE(iteration) = RMSE; 
        iteration = iteration + 1; 
        if iteration > (maxIterations/4) && iteration < (maxIterations/4)*3 
            alpha = alpha - (alpha - 0.1)*(iteration/((maxIterations/4)*3-
maxIterations/4)); 
        elseif iteration >= (maxIterations/4)*3 
            alpha = 0.05; 
        end 
    end 
     
    figure(3) 
    plot(1:length(saveRMSE),saveRMSE,'b-') 
    title('Plot of RMSE vs Iteration') 
    xlabel('Iteration') 
    ylabel('RMSE') 
    % convert target/output data back to numerical value 
    for i=1:numPatt 
        [Max,ind]=max(trainOutput(i,:)); 
        trainOut(i,ind)=1; 
        trainLoc(i,1)=ind; 
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    end 
     
    display('Network Training Completed') 
    trainingTime = toc 
else 
    load ('Output Data/rCPN Output/SHP_TSS1_weights.mat'); 
    J = size(Wij,2); 
    trainLoc = []; 
end 
  
%% Prediction Mode 
  
% Normalize seed values based on normalized target 
[numTest,numCol] = size(normPredict); 
predictOutput = zeros(numTest,1); 
switch normMode 
    case 1 % no normalization 
        ntarget = target; 
        nseed = seed; 
    case 2 % L2 normalization 
        % get min and max of target/output vector then normalize 
        % target/output 
        %min_target = min(train(:,numCol)); 
        %max_target = max(train(:,numCol)); 
        %min_target = 0.7080; 
        %max_target = 158.4058; 
        ntarget = (train(:,numCol)-min_target)/(max_target-min_target); 
        % if seed exists, then normalize that also 
        if exist('initSeed')==1 
            nseed = (initSeed - min_target)/(max_target-min_target); 
        end 
         
    case 3 % unit sphere normalization 
        ntarget = train(:,numCol)/normN; % normalize taget using normN from 
unit sphere normalization 
        place = 0; % initialize extra dimension for unit sphere norm. 
        % if a seed exists, then normalize that also 
        if exist('initSeed')==1 
            nseed = initSeed/normN; 
        end 
end 
  
for n=1:numTest % loop through training patterns 
    % lag output variable in time 
    if numRecNode >=1; 
        Loutput = []; % initialize empty lagged output vector 
        for t = 1:numRecNode % step through recurrent nodes/lagged estimates 
            ind = n-t; % compute lag from current time step 
            if ind>0 % if lagged estimates exist add them to vector 
                Loutput = [Loutput normPredictOutput(ind)]; 
            else % if lagged estimates doen't exist yet, then use seed value 
                if exist('initSeed') == 1; 
                    Loutput = [Loutput nseed(abs(ind) + 1)]; 
                end 
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            end 
        end 
    end 
    if numRecNode==0; 
        Loutput = []; 
    end 
    switch normMode 
        case 1 % no normalization 
            % replace "dummy" mean lagged values with estimates from 
            % previous time step calculated above 
            normPredict2(n,:) = [normPredict(n,1:size(predictRaw,2)) Loutput]; 
             
        case 2 % L2 normalizaton 
            % replace "dummy" mean lagged values with estimates from 
            % previous time step calculated above 
            normPredict2(n,:) = [normPredict(n,1:size(predictRaw,2)) Loutput]; 
             
        case 3 % unit sphere normalization 
            %             normPredict2(n,:) = 
[normPredict(n,1:size(predictRaw,2)) Loutput place]; % add extra dimension to 
prediction data set 
            %             nuvect(n,:) = [normPredict2(n,[1:numInVar-1])*normN 
normPredict2(n,[numInVar:size(normPredict2,2)])*normN]; 
            %             L(n,1) = sqrt(sum(nuvect(n,:).^2)); 
            %             d(n,1) = sqrt(normN^2-L(n,1)^2)/normN; 
            %             normPredict2(n,size(normPredict2,2)) = d(n,1); 
    end 
     
    x=normPredict2(n,:); % strip off input pattern for current iteration 
     
    switch normMode 
        case 2 % L2 normalization 
            for j=1:J % loop through each Kohonen node 
                dist(j)=sqrt(sum((x'-Wij(:,j)).^2)); % calculate distance for 
each Kohonen node 
            end 
             
            [minZ,ind] = min(dist); % find minimum 
            ind = 1:J; 
            distTemp = [dist' ind']; 
            distTemp = sortrows(distTemp,1); % sort by distance 
            kWinners = distTemp(1:numWin,2); 
            kDist = distTemp(1:numWin,1); 
             
             
        case 3 % unit sphere normalization 
            for j=1:J % loop through each Kohonen node 
                 
                Zj(j)=x * Wij(:,j); % calculate dot product for each Kohonen 
node 
            end 
            [maxZ,ind] = max(Zj); % find maximum 
    end 
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    Zj = zeros(numWin,J); % all or nothing activation of k-winners 
    yEst = zeros(numWin,K); 
    % Zj(ind) = 1; 
     
    %Zj(kWinners) = 1; 
    for i = 1:numWin 
        Zj(i,kWinners(i)) = 1; 
        yEst(i,:)=Zj(i,:)*Wjk; % calculate estimated value of output/target 
    end 
    Zk = zeros(numWin,1); 
    for ii = 1:numWin 
        [Max,ind]=max(yEst(ii,:)); 
        Zk(ii) = ind; 
    end 
    wi = (kDist)./nansum(kDist); 
     
    %[maxZ ind] = max(yEst); 
    predictOutput(n,:)= round(nansum(wi.*Zk)); % store prediction 
    %predictOutput(n,:) = ind; 
     
    switch normMode % Normalize prediction for feedback into recurrent nodes 
        case 2 % L2 normalization 
            normPredictOutput(n,:) = (predictOutput(n,:)-
min_target)/(max_target-min_target); 
    end 
     
end 
save(fname,'Wij','Wjk','trainLoc'); 
interp = predictOutput; 
end % function end 
  
  
 
function [] = evalANN 
(predicted,observed,numDate,rainData,varName,titleName,numRecNodes) 
  
predicted = [observed(1:numRecNodes); predicted]; 
figure() 
subplot(3,1,2:3) 
h = plot(numDate,predicted,numDate,observed); 
ylabel(varName); 
legend('Estimated','Observed','Location','Northwest') 
title(titleName); 
set(h(1),'LineWidth',1.5,'LineStyle','--','Color','m') 
set(h(2),'LineWidth',1.0,'Color','k') 
datetick(gca,'x','mm/dd','keepticks') 
subplot(3,1,1) 
bar(numDate,rainData); 
set(gca,'Ydir','reverse'); 
ylabel('15-Minute Rainfall (in)'); 
datetick(gca,'x','mm/dd','keepticks') 
  
figure() 
loglog(observed,predicted,'.'); 
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xlabel('Observed'); 
ylabel('Predicted'); 
  
  
RMSE = rmse(predicted,observed) 
Corr= corr(observed,predicted) 
Rsquare = rsquare(observed,predicted) 
NSE = nashsutcliffe([numDate observed],[numDate predicted]) 
  
end 
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