
Lossy Compression of Climate Data
using Convolutional Autoencoders

Master Thesis of

Silke Teresa Donayre Holtz

At the Department of Informatics

Reviewers: Prof. Dr. Peter Sanders
Prof. Dr. Peter Braesicke

Advisors: Dr. Uğur Çayoğlu
Prof. Dr. Pascal Friederich

Time Period: 25th January 2021 - 25th August 2021

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde
sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der
jeweils gültigen Fassung beachtet zu haben.

Karlsruhe, August 25, 2021 Silke Teresa Donayre Holtz

Acknowledgments

Although this work lists a single author, it would not have been possible without
more people’s involvement. It is my pleasure to dedicate these few lines to thank
them.

First of all, I would like to thank Dr. Uğur Çayoğlu for his excellent advisory. His
interest and enthusiasm on me at every stage of my thesis helped me to a very great
extent to accomplish this task.

I would also like to acknowledge my deepest thanks to Prof. Dr. Pascal Friederich
for teaching me more about neural networks and also for inviting me to be part of
the Artificial Intelligence for Materials Sciences (AiMat) group. Without his guidance,
this work wouldn’t have been possible.

Furthermore, I would like to thank Prof. Dr. Peter Sanders and Prof. Dr. Peter
Braesicke for their kind advice and help in completing this project.

In addition, I would like to thank my friends. Even though many of them are not
physically near, they always listened and encouraged me to keep going.

Last but not least, I would like to thank my family, my mother Sabine, my dad
Javier and my sister Katia, for their love, support and encouragement. Without them,
I would not have been able to pursue my master’s. Moreover, I would like to take
this opportunity to give a special thanks to my father, even though we couldn’t end
this journey together, remembering his teachings and words of support allowed me
to finish this thesis.

Abstract

Climate model simulations, coupled with the increasing computing power of high-
performance computing (HPC) centres, are generating huge amounts of climate data.
Preserving such data presents a challenge as storage resources are mostly limited.
Techniques like limiting the simulation length have been used to reduce the amount
of climate data. However, such techniques can have a negative impact on scientific
goals. This problem underlines the importance of data compression, the process in
which the size of the data is reduced by removing redundant information.

In this work, we present a novel lossy compression algorithm. Lossy compression,
unlike lossless compression, does not allow an exact reconstruction of the original
data. However, this type of compression has the advantage that data volumes can
be reduced further. As long as no statistically significant effects are caused, lossy
compression can effectively reduce climate data without compromising scientific
conclusions.

The proposed method uses convolutional autoencoders to compress selected
ERA5 weather data from the European Centre for Medium-Range Weather Forecasts
(ECMWF). The algorithm is compared with current state-of-the-art lossy compression
algorithms. Our results show that convolutional autoencoders in combination with
lossless residual compression are superior to state-of-the-art algorithms for lossy
compression at almost all error-bounds tested. We show that for absolute errors
between 0.3 and 1.0 Kelvin, the compression algorithm achieves 1.3 to 4 times higher
compression factors than state-of-the-art.

iii

Kurzfassung

Mit der zunehmenden Rechenleistung von Hochleisungsrechenzentren (HPC) und
neuartigen Klimamodell-Simulationen, erzeugen Klimawissenschaftler riesige Men-
gen an Klimadaten. Die Aufbewahrung dieser Daten stellt eine große Heraus-
forderung dar, weil die Speicherressourcen meist begrenzt sind. Aktuell wurden
rudimentäre Techniken, wie die Begrenzung der Simulationsdauer eingesetzt, um
die Menge der Klimadaten zu reduzieren. Solche Techniken können sich jedoch
negativ auf die wissenschaftlichen Ziele auswirken. Dieses Problem unterstreicht
die Bedeutung der Datenkomprimierung, d.h. des Prozesses, bei dem die Größe der
Daten durch die Entfernung redundanter Informationen reduziert wird.

In dieser Arbeit stellen wir einen neuartigen verlustbehafteten Komprimierungsal-
gorithmus vor. Bei der verlustbehafteten Komprimierung können die ursprünglichen
Daten im Gegensatz zur verlustfreien Komprimierung nicht fehlerfrei rekonstruiert
werden. Dafür hat diese Art der Komprimierung den Vorteil, dass Datenmengen
stärker reduziert werden können. Solange keine statistisch signifikanten Effekte her-
vorgerufen werden, kann die verlustbehaftete Komprimierung Klimadaten effektiv
reduzieren, ohne wissenschaftliche Schlussfolgerungen zu beeinträchtigen.

Die vorgestellte Methode verwendet einen Convolutional-Autoencoder, um aus-
gewählte ERA5-Klimadaten des Europäischen Zentrums für mittelfristige Wetter-
vorhersage (ECMWF) zu komprimieren. Der Algorithmus wird mit dem aktuellen
Stand der Technik von verlustbehafteten Komprimierungsalgorithmen verglichen.
Die Ergebnisse dieser Arbeit zeigen, dass Convolutional-Autoencoder in Kombina-
tion mit verlustfreier Residualkompression bei nahezu allen getesteten Fehlergrenzen
dem Stand der Technik für verlustbehaftete Kompression überlegen sind. Es wird
gezeigt, dass der Kompressionsalgorithmus bei absoluten Fehlern zwischen 0.3 und
1.0 Kelvin, einen um den Faktor 1.3 bis 4 höheren Kompressionsfaktor erreicht.

iv

Contents

Acknowledgments ii

Abstract iii

Kurzfassung iv

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Purpose . 2
1.3 Thesis Structure . 2

2 Fundamentals 3
2.1 Data Compression . 3

2.1.1 Types of Compression . 3
2.1.2 Compression Metrics . 4
2.1.3 Modeling and Coding . 6
2.1.4 Relevant Compression Algorithms 6

2.2 Artificial Neural Networks . 7
2.2.1 Perceptron . 8
2.2.2 Multi-layer Perceptron . 8
2.2.3 Training Process . 9
2.2.4 Loss Function . 10
2.2.5 Activation Function . 10
2.2.6 Regularization . 11

2.3 Convolutional Neural Networks . 12
2.3.1 Convolutional and Deconvolutional Layers 13
2.3.2 Convolutional Autoencoder . 15

2.4 Climate Data . 17
2.4.1 Climate and Weather Model . 17
2.4.2 ERA5 Dataset . 18

3 Related work 20
3.1 Compression of Climate Data with Machine Learning 20
3.2 Compression of Other Data with Machine Learning 22

v

Contents

3.3 Compression of Climate Data with non ML-based Compression methods 24
3.4 Compression Data with non ML-based Compression methods 25

4 Methodology 27
4.1 Architecture . 27

4.1.1 Data Pre-processing and Post-processing 31
4.1.2 Convolutional Autoencoder . 33
4.1.3 Residuals, Quantization and Lossless Coding 35

4.2 Implementation . 39

5 Results 40
5.1 Experimental Setup . 40
5.2 Number of Convolutional Layers . 41
5.3 Adding Climate Information . 43
5.4 Residuals Encoding . 46
5.5 Hyperparameter Optimization . 49
5.6 Compression Algorithm . 51
5.7 Comparison with the State-of-the-Art 54

6 Conclusion and Recommendations 63

List of Figures 64

List of Tables 65

Bibliography 66

vi

1 Introduction

With the increasing computational power of high-performance computing (HPC) cen-
tres, climate simulations have been increasing enormously, generating vast amounts
of data by about 233 TB per day [1]. Climate models simulate more than 100 climate
variables, and the simulation spans often decades. Moreover, the data presented in
scientific publications must be stored for at least ten years. Therefore, climate research
centres must make great investments regarding storage and bandwidth [2]. However,
it is not always possible to cover such costs. Asch et al. [3] raise concerns about the
growing need for storage and bandwidth. The authors state that there is a need of
storing data efficiently through data-reduction methods like data compression.

Data compression represents information in a compact form which is created by
identifying and using patterns that are in the data [4]. By using some extra computa-
tion, data can be compressed and decompressed, reducing the number of transferred
bytes and improving I/O performance reducing storage requirements. [5]. There
are many different compression techniques with different approaches. One of the
approaches that is lately being encouraged to be used is the Machine Learning (ML)
approach. [6].

ML methods have become very popular and essential areas of research [7], with
more than 100 papers published per day [8]. There has been a growing interest in the
application of these data-driven techniques to scientific research. ML methods have
already been used in climatology for precipitation forecasting [9], improving subsea-
sonal forecasting in the western U.S.A. [10] and other applications [11] [12] reaching
promising results. Even though many of the applications are about forecasting, ML
methods can also be employed in other fields like data compression.

In this thesis we employ a ML method called deep convolutional autoencoder to
perform data compression of large netCDF [13] climate datasets. We specifically
compress data from the ERA5 hourly data on pressure levels from 1979 to present
dataset provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF).

1

1 Introduction

1.1 Motivation

During the last decades, the popularity of ML has been increasing. They have achieved
human-level performance in many challenging applications due to increased data
volume, processing power, and understanding. Many ML models have outperformed
traditional models, like in the field of computer vision. We are motivated to test
if a ML-based compressor could also outperform traditional lossy compression
algorithms used in climatology.

1.2 Thesis Purpose

The purpose of the present thesis is to develop a lossy compression algorithm using
ML to achieve the greatest possible impact on climate data’s compression factor.
This algorithm aims to surpass the compression factors gotten with state-of-the-art
floating-point compressor libraries like SZF and ZFP.

1.3 Thesis Structure

The thesis is organized as follows. Chapter 2 provides the fundamentals of data
compression, neural networks, convolutional neural networks, autoencoders and
climate data. Chapter 3 discusses related work in the field of climate data compression
using autoencoders and ML and other techniques used to achieve data compression
in general. Chapter 4 presents the proposed compression algorithm, the architecture,
the data, the convolutional autoencoder, and the processing of the residuals. Chapter
5 presents the results obtained with the proposed compression algorithm. We detail
the training process and the hyperparameter optimization; we analyze the models’
behavior and compare the models’ compression factor with state-of-the-art algorithms.
Finally, chapter 6 includes the conclusions and further recommendations that should
be implemented in the future.

2

2 Fundamentals

This chapter gives a brief introduction to the basics of data compression, neural
networks, and climate data. The goal of this chapter is to provide basic knowledge to
the reader about the aforementioned topics. The chapter starts by describing data
compression, its classification and different performance metrics used to evaluate the
quality of a compression algorithm. We also talk about the scheme of a compression
algorithm and give a brief introduction to four compression algorithms that will be
used in this work. Then, we introduce the concept of neural networks and their com-
ponents. Moreover, we introduce convolutional neural networks and convolutional
autoencoders. Finally, since we are working with climate data, a brief introduction
about its structure and properties are given.

2.1 Data Compression

Data compression is the process of encoding, restructuring, or otherwise altering data
to reduce its size. A data compression algorithm consists of two entities, the encoder,
and the decoder. The encoder takes an input X and generates a representation Xc
that tries to need less storage space by storing the information in a different way.
The decoder does the opposite, it takes as input a representation Xc and generates a
reconstruction Y which will be the same or almost the same as input X [4].

2.1.1 Types of Compression

Data compression algorithms can be classified into two broad classes: lossless com-
pression and lossy compression. The chosen category will depend on the require-
ments of the user [4].

Lossless techniques do not present any loss of information when compressing and
decompressing data. In other words, when decompressing Xc, Y will be identical to
X [4]. There are many cases where the decompressed data is required to be identical
to the original, e.g., bank records. If there are compression errors, it could lead to the
erroneous addition or substraction of money from a customers account. Nonetheless,
there are other situations where compression errors are allowed to further compress

3

2 Fundamentals

the data. In these situations, lossy compression is used.

As the name suggests, lossy compression algorithms present a certain amount of
information loss. This means that the reconstruction Y will not be identical to X [4].
An excellent example of this is multimedia. As long as there are no strong artifacts in
the decompressed sound, image or video, we will not be bothered if the sound or
images are not exactly the same as in the original version.

Compression algorithms can be further classified as following [14]: symmetric or
assymetric, universal or non-universal, and block or streaming mode.

• Symmetric vs. Assymetric
The architecture of the encoder and the decoder in a symmetric compression
algorithm are the same but differ in direction. In an assymetric architecture one
of the entities has more workload than the other.

• Universal vs. Non-universal
A universal compression algorithm has no statistical information about the orig-
inal data. A non-universal compression algorithm has a predefined knowledge
about the data to be compressed e.g. compression of climate data.

• Block vs. Streaming Mode
A block mode compression algorithm divides the data into blocks and com-
presses them independently. A streaming mode compression algorithm process
the data value by value. After reading and encoding one value, the following
value is processed until finished.

2.1.2 Compression Metrics

Since there are many different applications, distinct ways have been developed to
describe and measure the performance of a compression algorithm, e.g, time and
memory complexity, amount of compression, and how close the reconstruction is to
the input [4]. In this work, we will be using three measurements, compression factor,
distortion and peak-signal-to-noise-ratio.

Compression factor

One of the most straightforward ways to compare different compression algorithms
is by comparing the number of bytes of an input file with the number of bytes of the
compression algorithm’s output. There are two metrics: compression factor (CF) and
compression ratio (CR).

4

2 Fundamentals

The CF is given as follows [4]:

CF =
X
Xc

where CR is the inverse of the CF. A percentage can also be given as:

CF(%) = (1− XXc
) · 100

Suppose we have a file of size of 98,592 bytes, and its compressed version a size of
24,648 bytes. The CR would be 4, the CF 0.25, and the CF percentage 75%, meaning
that the compressed file is four times smaller than the original file.

Distortion

As mentioned in 2.1.1, lossy compression loses information in the process. To measure
the efficiency of a compression algorithm with such characteristics, the difference
between X and Y is calculated. This difference is called distortion. There are two
popular approaches, the mean squared error (MSE) and the mean abolute error
(MAE) [4]. Let x ∈ Rn be the input of the compression algorithm and y ∈ Rn the
output, where n is the number of elements in the vector. The MSE and the MAE are
defined as [4]:

MSE(x, y) =
1
n

n

∑
i=1

(xi − yi)
2

MAE(x, y) =
1
n

n

∑
i=1
|xi − yi|

Another measure is the peak-signal-to-noise-ratio (PSNR). This metric measures
the similarity between the input and output of the compression algorithm, and is
defined as [15]:

PSNR(x, y) = 20 log10(range(x))− 10 log10(MSE(x, y))

where range(·) represents the value range of the input i.e., the absolute difference
between its highest value and lowest value. The PSNR is expressed in terms of
decibels indicating higher values to have a higher similarity.

5

2 Fundamentals

2.1.3 Modeling and Coding

Up to now, we have seen that a compression algorithm can be lossless or lossy. In
this subsection, we will describe how a compression algorithm is developed. For the
development of a compression algorithm, two phases are generally needed: modeling
and coding [4]. The modeling phase tries to extract and describe redundant infor-
mation in the data in order to get a compact representation of it. The compression
algorithm’s performance will depend on how well this compact representation was
formed. The coding phase is the description of the compact representation. For
example, given the series of numbers: 4, 5, 6, 7, 8, we could model it as a straight line
and code it with the equation x = n + 4 where 0 ≤ n ≤ 4.

Next, we will introduce the compression algorithms used in this thesis, bzip2, fpzip,
zfp and SZ.

2.1.4 Relevant Compression Algorithms

bzip2 and fpzip (lossless)

bzip2 [16] is an open-source lossless universal file compression algorithm. During
compression, bzip2 passes the data through several stacked compression algorithm
layers. The amount of layers can be set by the user in order to make the compression
algorithm faster. The CF increases with the amount of layers used [17].

fpzip [18] is an open-source library for lossless compression of large multidimen-
sional floating-point arrays. fpzip is a prediction-based compression algorithm. It
traverses the data in some order, e.g., row-by-row, and predicts every value from a
subset with already encoded data. The predicted data and actual values are then
transformed to an integer representation which are used to compute the residuals [18].

zfp and SZ (lossy)

zfp [19] is an open-source library for compression of integer and floating-point
arrays that support high throughput when encoding and decoding [19]. zfp is a
transformation-based compression algorithm, this means, to compress the data, a
series of transformations are done in order to eliminate redundancies. It works well
for correlated arrays, e.g., physics simulations. To achieve high compression factors,
zfp compresses the data lossy, with error bounds set by the user. zfp also supports
lossless compression by setting that error to zero [19].

6

2 Fundamentals

SZ [20] is an open-source modular parametrizable lossy compression library for
integer and floating-point data. Like zfp, SZ is, among others, used in physics
simulations, and it does error-bounded compression. There is not a single compressor
which is universally better than the other, since the performance varies depending on
the type of application. However, SZ and ZFP are considered to be two of the best
error-bounded lossy compressors currently available [21].

2.2 Artificial Neural Networks

ML is the science of programming computers so they can "learn from data without
being explicitly programmed" [22]. Using the data, ML algorithms build models
in order to solve specific tasks such as prediction and regression, image and text
classification, speech recognition, anomaly detection and natural language processing.
ML algorithms are often categorized based on whether or not they are trained with
supervision. The two main categories are supervised and unsupervised learning [22].
In supervised learning, the data x fed to the algorithm includes labels y [22], and the
model learns a model p(y|x). In unsupervised learning, no labels are provided to the
model. In other words, the model tries to learn p(x) to solve tasks such as dimension-
ality reduction or clustering [22]. In dimensionality reduction, the model tries to find
low dimensional data representations without losing too much information by, e.g.,
by merging several correlated features into one. There are different ML algorithms
used to solve the aforementioned tasks. One of them are artificial neural networks
(ANN).

An ANN is a ML model that aims to mimic the capabilities of biological neural
networks found in human brains using artificial neurons. The information that an
artificial neuron receives as input will be either transmitted or inhibited depending if
the input to the artificial neuron is excitatory or not. Like the human brain, ANNs
need to learn from examples. For a long time, this task was computationally difficult
because of the limited amount of data and processing power. However, ANNs have
recently become very popular, thanks to the growing amounts of data and increasing
computing performance [7]. ANNs were even shown to outperform human experts
e.g., in the ImageNet Challenge [23], encouraging researchers to keep using and
improving ANNs over different fields.

To get a better understanding on how ANNs work, we will start by introducing
the simplest architecture, the perceptron.

7

2 Fundamentals

2.2.1 Perceptron

The perceptron is a linear classifier that consists of a single layer of artificial neurons.
Let j be a neuron with input x = (x1, . . . , xn)T ∈ Rn and weights w = (w1, . . . , wn)T ∈
Rn, with n being the number of features. The output is calculated by the following
function [22]:

y = σ(
n

∑
i=1

xiwi + w0)

where σ is an activation function (see section 2.2.5), normally the Heavyside step
function [22], w0 the bias weight of neuron j and y ∈ R the output of the network.
An illustration of a perceptron with the respective parameters can be seen in Figure
2.1.

Figure 2.1: Perceptron with two inputs and one output.

The major drawback of the perceptron is that it can only be used for binary or
multilabel classifications with linearly separable output [22]. In order to be able to
solve complex tasks, a multi-layer architecture can be build by stacking several layers.
This architecture is called multi-layer perceptron (MLP) network.

2.2.2 Multi-layer Perceptron

An MLP consists of an input layer, multiple layers of artificial neurons also called
hidden layers and an output layer. All neurons are mostly fully connected with the
ones from the previous and next layer, the flow goes from the input to the output
without back loops and it contains at least one hidden layer [22]. Every layer, except
the output layer, includes a bias neuron. MLPs with non-linear activation functions
solve perceptrons major drawback, their output is non-linearly dependent given the
input.

An MLP has τ layers (the input layer does not count), where τ ≥ 2. Let C be a set
of neurons that is split into mutually disjunct subsets called layers L1, . . . , Lτ. The

8

2 Fundamentals

input layer would be then L1, the hidden layers L2, . . . , Lτ−1 and the output layer Lτ.
Each neuron in layer Li is connected to every neuron in layer Li+1 with i < τ − 1
with a set of weights W and a set of bias b. That is to say; all neighboring layers form
complete bipartite graphs [24]. To have a better understanding, Figure 2.2 provides a
representation of an MLP with only one hidden layer.

Figure 2.2: Multi-layer Perceptron with one hidden layer.

Now that we are more familiar with neural networks, the next step is to understand
how such ANNs are trained.

2.2.3 Training Process

The training process aims to find the optimal set of network parameters, i.e., weights
and biases, to solve a given problem by using a training dataset. A training dataset
is a set of data used only during the training process. An optimization algorithm
searches through a space of possible weights and bias values that provide a good
performance. One of the most common optimization algorithms is called gradient
descent (GD). It starts by initializing the network’s parameters with random values.
Inputs are then iteratively fed to the network, which calculates an output given the
iteration’s input. The output is analyzed, the error backpropagated, and the network’s
parameters are adjusted to minimize the error, thus achieving better results. For
example, let θ ∈ (W ∪ b) be a parameter to be optimized, and the network’s loss
function L be defined as [22]:

L =
1
n

n

∑
i=1

(Netθ(xi)− yi)
2

9

2 Fundamentals

where n is the number of samples in the training data, Net(xi) the output of the
network given data xi, and yi the observed label in the training dataset. To update
the parameters, a learning rule is followed defined by the following equation [22]:

θ ← θ − η
∂L
∂θ

where η is the learning rate deciding the magnitude of each update. For each pa-
rameter of the network, the gradient of the loss function with respect to the parameter
is calculated and updated by changing the parameters value to the opposite direction
of the gradients ∂L

∂θ .

GD aims to find a global minimum for the loss function through many iterations
with the given data and parameters. After the training process, the network is
evaluated with another set of data called validation dataset. The evaluation process
provides information about how well the network performs with data not used in the
training process, i.e, it evaluates how well the network generalizes.

2.2.4 Loss Function

The loss function is used to evaluate the performance of a set of network parameters.
When training neural networks, we typically want to minimize the error. Even though
it may sound simple, the selection of the loss function can be challenging since we
need to capture the goal of the search with it [25]. One of the most used loss functions
is the MSE:

MSE(x, y) =
1
n

n

∑
i=1

(Netθ(xi)− yi)
2

2.2.5 Activation Function

We mentioned in Section 2.2.1 the use of activation functions. In a perceptron, we
normally use the Heaviside step function, defined as [22]:

heaviside(z) =

{
0 if z < 0
1 if z ≥ 0

10

2 Fundamentals

or the sign function [22]:

sgn(z) =

−1 if z < 0
0 if z = 0
+1 if z > 0

Nevertheless, perceptrons can use any activation function, thus a perceptron and
single neurons in ANNs are the same. Other activation functions are mostly used in
MLPs being one of them the rectified linear unit (ReLU). ReLU is defined as [26]:

ReLU(z) =

{
z if z ≥ 0
0 otherwise

There are other activation functions such as Sigmoid and Tanh [22] that are often
used in MLPs. ReLUs are often less expensive than other activation functions since it
can be implemented by thresholding a matrix of activations at zero. ReLU also leads
to sparsity [27], which is desirable since it avoids overfitting by doing the weights
of each layer more precise by making some of the features insignificant. However, if
there is a large gradient flowing through the network, it could update the weights
in a way so that some inputs to the ReLU always remain negative, meaning that
the output of some neurons will always be zero independently from the input. This
results in a network with many inactive neurons that will be not afected by GD.
Nevertheless, it can be mitigated by reducing the learning rate or using a variant of
ReLU called LeakyReLU, which allows a small positive gradient when the unit is not
active.

2.2.6 Regularization

Once we are finished training a network, we might have the problem that the results
were a lot better with the training set than the validation set. The problem is called
overfitting, and it occurs when a model fits exactly against its training set, thus, being
unable to generalize. To prevent overfitting, regularization methods are used. One
common way of regularization is to influence the weights in specific ways by adding
a new term to the networks loss function. We can control how much of this term
will influence by setting a parameter λ. If λ is set too high, we might end with a
non-optimal solution since it will influence the gradient more than the data itself.
Two of the most common are L1 and L2 regularization, we will briefly introduce both
of them.

11

2 Fundamentals

L1 Regularization

Also called Lasso regression, tends to eliminate the weights of the least important
features, i.e., set them to zero. Let the MSE be the networks loss function which takes
as input the set of parameters θ, the L1 regression penalizes the weights w ∈ θ but
not the bias [22]. The L1 regression loss term is defined as [22]:

JL1(θ) = λ · ∑
w∈θ

|w|

L2 Regularization

Also called ridge regression, forces the network to keep the model weights as small
as possible [22]. The L2 regression loss term is defined as [22]:

JL2(θ) = λ · ∑
w∈θ

w2

2.3 Convolutional Neural Networks

The ANNs we have seen so far required the input to be 1-dimensional (see 2.2).
Let’s say we want to process a greyscale image with pixel size 640x480 with an
MLP. To feed the MLP with the image, we would need to flatten the values into a
1-dimensional array. This means we would have 307, 200 values in the input layer.
Now, let us suppose we have only one neuron in the hidden layer; since every input
value is connected to the hidden neuron and each connection has a weight, the
number of parameters would already be larger than 300, 000. Adding more neurons
to the hidden layer would significantly increase the number of parameters. Moreover,
since every neuron represents a pixel with a fixed position in the image, we would not
be able to detect a common feature in different images since it will likely not be at the
same position because there is no generalization. However, there is an architecture
that tackles this problem. In contrast to MLPs, convolutional neural networks (CNN)
learn that it does not matter where in the image they detect certain pattern. CNNs
take advantage of the local connectivity of image data [28].

CNNs are multi-layer feed-forward networks that process data that has a known
grid-like structure [7]. Instead of working with every single value, the neurons
in a CNN layer, also called convolutional layer, consider a small portion of the N-
dimensional data instead of being fully-connected. This portion of data is analyzed

12

2 Fundamentals

through filters for features that might be important. These features are then captured
in feature maps, passed through an activation function layer and then passed to the
next layer. The neurons from the next layer will be connected to a small portion
from the previous layer as well. In this way, the network can concentrate on small
low-level features in the first hidden layer, then assemble them into larger higher-level
features in the next hidden layer, and so on [22]. To get a better visualization, Figure
2.3 shows the architecture of a CNN network. The architecture consists of an input,
convolutional layers, pooling layers and fully-connected layers. The pooled maps
in the figure are generated by pooling layers. Pooling layers do not contain any
parameters to be optimized, they only reduce the size of feature maps.

Figure 2.3: Example of a CNN architecture [29].

CNNs have been very successful in practical applications such as image clas-
sification and segmentation, object detection, video processing, natural language
processing, and speech recognition [30].

2.3.1 Convolutional and Deconvolutional Layers

The name of the convolutional layer comes from a mathematical operation called con-
volution, which is used to extract features. For brevity reasons, we will only explain
2-dimensional convolutional layers which can be easily extended to N-dimensional
layers.

A convolutional layer’s parameters consist of a set of learnable filters. A filter is
small along width and height (spatial size) but extends through the full depth of
the input volume. For example, RGB images have a depth of three since they are
composed by three channels: red, green and blue. Taking them as input would mean
that the filter would also have a depth of three. To compute a feature, the filter is
convolved across the width and height of the input volume and the dot products
between the entries of the filter and the input at any position are computed [31].

13

2 Fundamentals

The output will be a 2-dimensional feature map which will be passed through an
activation function layer, resulting in an activation map. In this way, the network will
learn filters that activate when a visual feature is detected.

The size of the output after the convolution operation will depend on the number
of filters, the stride, and the padding [31]. The stride parameter indicates the amount
of shifting at a time. If the stride is set to one, the filter will be moved one pixel at a
time. The bigger the stride, the smaller will be the output size. The zero-padding
parameter defines how many zero pixels should be added around the border of the
input, letting us control the spatial size of the output volume.

Suppose we have a convolutional layer l with a set of feature maps Ql = (φ1, φ2, . . . , φk)
with k denoting the number of filters. Each feature map has a size of ml × nl since all
feature maps in the same layer have the same size. We also define the size of the set
of filters Fl in layer l to be ul × vl, the stride as sl > 0 and the padding as pl ≥ 0. To
calculate the output size of a convolutional layer, the following equation is used:

(ml, nl) =

(
ml−1 − ul + 2× pl

sl + 1,
nl−1 − vl + 2× pl

sl + 1

)
the padding and stride can also differ among dimensions, the equation above

assumes that the padding and stride are equal for both dimensions.

To calculate the feature map values in layer l, we need to compute the output of
the neurons in each feature map given Ql−1 and Fl. We will denote the output of
a neuron (i, j, φk, l), at position row i and column j in feature map φk in layer l as
yφk,l

i,j , where 0 ≤ i < ml and 0 ≤ j < nl. To be more specific, the neuron (i, j, φk, l) will

be connected to the outputs of neurons located in rows i× sl to i× sl + ul − 1 and
columns j× sl to j× sl + vl − 1 from feature map φk in Ql−1. The computation of the
output of a neuron in a convolutional layer is defined by [22]:

yφk,l
i,j = bl,φk + ∑

φ′∈Ql−1

ul−1

∑
p=0

vl−1

∑
q=0

yφ′,l−1
i×sl

r+p,j×sl+q
× wφk,φ′,l

p,q

where bl,φk is the feature map’s φk bias and wφk,φ′,l
p,q the connection weight (filter

value) between a neuron in feature map φk in layer l and a field in feature map φ′.
Figure 2.4 provides a visualization of the convolutional layer.

The deconvolutional layer is the inverse of the convolutional layer. Instead of
reducing the input’s size, the deconvolutional layer increases it. For that, it transposes

14

2 Fundamentals

Figure 2.4: Convolutional layer.

the convolution operation. It has a similar stucture as the convolutional layer, but the
calculation of the outputs is slightly different.

2.3.2 Convolutional Autoencoder

The goal of this work is to compress climate data as much as possible using ANNs.
We look for a network that learns a lower dimensional representation of a training
set and reconstructs it, like a compression algorithm. There is a ML architecture that
has those properties, the autoencoder (AE).

AEs are ANNs capable of learning dense representations of input data, called
latent representations. These latent representations can have a lower dimensionality
as the input data and therefore act as a compression algorithm. An AE consists of an
encoder function y = fθ(x) and a decoder function x̂ = gφ(y), where x is the original
data, x̂ the reconstructed data and y the latent representation. θ and φ are optimized
parameters in the encoder and the decoder function respectively [32]. In order to
learn the dense representations of the input data, the AE needs to be parametrized in
such way that it minimizes a reconstruction loss e.g., MSE and can be defined as [15]:

θ, φ = argmin
θ,φ

∥∥x− gφ(fθ(x))
∥∥2

2

15

2 Fundamentals

where the squared l2-norm is used as loss function. Note that there are other loss
functions that can be used in the equation.

AEs will not only be able to compress the training set, but also data similar to
what they have been trained on, which is a useful property since it means that the
algorithm will perform well on a specific type of input [33].

To train an AE, we define the targets of the AE to be the same as the input. The
AE will try to map the inputs to the outputs while generating a latent representation.
Even though the task may sound easy, the constraints that affect the network can
make this task challenging. By limiting the size of the latent representation, it will
force the network to learn efficient ways of representing the data [22].

The data we are working with has a grid-like topology. This means we will use
convolutional layers in our autoencoder to obtain latent representations. An AE
using convolutional layers is named convolutional autoencoder (CAE). A CAE with
three convolutional layers with stride 2 is presented in Figure 2.5. By setting the
stride to two, we automatically halve all dimensions three times since there are three
convolutional layers. The latent representation is defined as h and it can also be
represented as a 1-dimensional vector. Afterwards, the input is is reconstructed from
the latent representation by using deconvolutional layers with also stride 2.

Figure 2.5: Example of a convolutional autoencoder. Adapted from [34].

By constraining the network by setting latent representation dimensions and the
number of convolutional layers with sl ≥ 2 or pooling layers, we can approximate the
CF of the model. Let d be number of dimensions in our data, k the compression factor
in every dimension and t the number of times the dimensions are being reduced.

16

2 Fundamentals

An upper bound for the CF can be calculated as following:

CFmodel ≈
(kd)t

|Qe|

where |Qe| is the number of feature maps of the last layer in the encoder function.

After having seen an introduction about compression and ANNs, we will proceed
to introduce the properties of the climate dataset.

2.4 Climate Data

Even though there are many different ways to collect climate data, they can be divided
into two groups: observational data and simulation data [14]. Observational data
is data that is collected using measurement instruments. These can be constrained
regarding its spatial and temporal resolution due to hardware and/or software
specifications. Simulation data is data obtained through climate and weather models,
which are not constrained like observed data. Since the data we will be working with
is based on simulations, the next section will provide a brief introduction to the topic.

2.4.1 Climate and Weather Model

Climate and weather models simulate the transfer of energy and materials through
the climate system [35]. These models are systems of differential equations that
describe how energy and matter behave in different parts of the ocean, atmosphere,
and on land. To compute these mathematical equations, climate and weather models
mostly break the Earth’s surface into three-dimensional grid boxes through time.
The results of the mathematical equations in each box are passed to the neighboring
boxes to model the exchange of energy and matter over time. There are two types
of variables that models simulate: prognostic and diagnostic variables [14]. The
prognostic variables are directly calculated by the differential equations. Diagnostic
variables are derived from prognostic variables at specific time steps, e.g., humidity
from temperature. However, to achieve more accurate data, climate reanalyses are
done. Reanalyses combine past observations with models to generate consistent
time series for a large set of climate variables. Reanalyses are among the most-used
datasets in the geophysical sciences [36].

17

2 Fundamentals

2.4.2 ERA5 Dataset

In this thesis, we will be working with the ERA5 [36] dataset from the European
Centre for Medium-Range Weather Forecasts (ECMWF) [37]. ERA5 is the fifth
generation ECMWF reanalysis for the global climate and weather for the past 4 to 7
decades. The data is available from 1979 within 3 months of real-time, i.e. if today
is March 2021, the available data would be up to December 2020, which assimilates
as many observations as possible in the upper air and near earth surface. The ERA5
atmospheric model is coupled with a land surface model and a wave model [38]. We
will train and test our model with the ERA5 hourly data on pressure levels from
1979 and 1980 respectively. We chose these years as test since we are developing a
compression algorithm prototype for climate data. Table 2.1 provides a description of
the dataset. Note that 1000hPa is closest the earth’s surface and 1hPa the furthest.

ERA5 hourly data on pressure levels from 1979 to present
Data type Gridded
Projection Regular latitude-longitude grid
Horizontal coverage Global
Horizontal resolution Reanalysis: 0.25◦ × 0.25◦

Vertical coverage 1000 hPa to 1 hPa
Vertical resolution 37 pressure levels
Temporal coverage 1979 to present
Temporal resolution Hourly
File format GRIB; NetCDF

Table 2.1: ERA5 dataset characteristics [39].

The data structure of the ERA5 dataset is the hypercube, one of the most common
in climate data [14]. The hypercube presents four dimensions called coordinates
which are: longitude, latitude, altitude, and time as shown in Figure 2.6. Longitude
is represented by degrees east, latitude by degrees north and altitude by hPa.
The number of data variables in the dataset is 16 and are single-precision floating-

point values.

18

2 Fundamentals

Figure 2.6: Hypercube data structure [40].

19

3 Related work

Attempting to compress vast volumes of data, such as climate data, is not new. This
chapter provides an overview of work related to the compression of climate data
using machine learning and non-ML based approaches. The first section presents
work directly related to the topic of this thesis, climate data compression using ML.
Then, we present work related to the compression of other data types, such as images
or text. The third section provides information about non-ML based compression
algorithms used in the compression of climate data. Finally, the last section presents
state-of-the-art non-ML based compression algorithms for floating-point data.

3.1 Compression of Climate Data with Machine
Learning

The excellent results obtained with machine learning in other fields [23] [41], have
spurred research into using such models for climate data compression. Liu et al. [42]
present a fully connected AE with three layers for encoding and decoding climate
data. Every layer reduces the data by a factor of eight, having a theoretical CF
boundary of 512. To bound the relative error, the authors calculate the difference
between the input data and the reconstructed one and store the differences that are
greater than the error bound. After storing the differences, they lossy compress them
with SZ with an error bound of 0.1. They also store the indices of the numbers where
the difference is outside the error bound. The indices are stored as a bitmap where
a set bit indicates a difference outside the error bound and an unset bit otherwise.
Such bitmap is then losslessly compressed with bzip2. The authors compare their
results with SZ and ZFP obtaining two to four times the CF of SZ and 10 to 50 times
of ZFP. The code is available to the public1; however, the model only works with
1-dimensional data. Moreover, experiments are based on small-scale scientific data
(4.8MB), questioning its performance on Big Data.

The authors of SZ compression library, Liu et al. [43], present a modified version of
SZ called AE-SZ, an ML-based lossy compression algorithm. In AE-SZ, the authors

1https://github.com/tobivcu/autoencoder

20

https://github.com/tobivcu/autoencoder

3 Related work

replace the linear regression predictor of SZ with a Sliced Wasserstein AE (SWAE) [44].
First, the data is split into 2-dimensional or 3-dimensional blocks, and then fed to the
SWAE and the mean-Lorenzo predictor [45]. Each block is then compressed by both
compression algorithms. The one with the lowest L1-loss is used to compress the
data. The reason why they use two different compression algorithms and not only
the AE-based one is that the mean-Lorenzo predictor works better when compressing
data for really small error bounds(1E-4) [43]. After choosing the best compression
algorithm, the authors apply a linear-scale quantization to the difference between
the input and the reconstruction. Finally, the quantized values are encoded using
Huffman coding [46] and Zstd [47]. For CFs above 100, the AE-SZ has about 100%
to 800% CF improvement with the same PSNR achieved by SZ and ZFP. This is
because the AE-SZ works better with higher error-bounds, thus, reaching higher CFs.
The disadvantage is that the AE-SZ is about 10%-40% slower than SZ. The authors
conclude that the block and the latent space size in the AE play an essential role
for the CF. Nevertheless, the latent space and the block size depend on the dataset,
meaning that there is no general network architecture that provides the best CF
for all climate datasets. The authors mention that their approach outperforms any
other AE-based error-bounded lossy compression algorithm. However, they only
compare their method with the previously mentioned work [42]. Moreover, they
do not give a proper reason about the usage of the SWAE over a simple AE. The
authors only compare the PSNR gotten with different AEs when compressing a single
field of a specific dataset. The authors also use a layer called generalized divisive
normalization, which has been used for image compression; however, there is no
research about its effectiveness on climate data.

Pan et al. [48] compress climate data using an AE; however, they do not guarantee
an error-bound. The proposed AE does not have convolutional layers but fully con-
nected layers. The authors fed the AE with chunks of data. Each chunk is flattened
into a 1-dimensional vector and normalized. Afterwards, the authors quantize the
predictions and use an adaptive compression algorithm. They introduce an adaptive
compression mechanism which penalizes the use of more significant bits than needed
by defining a custom loss function. One problem the authors faced was visible
artifacts along the boundaries of each chunk. To solve that, they modify the model to
compress each value within the chunk with the distance to the chunk boundaries,
allowing a more precise compression of boundary values. The authors measure the
effectiveness of their approach by comparing the RMSE and PSNR achieved by other
models by setting a CF of 100. The authors do not compare the results with SZ. The
authors achieve 9 to 30 times less RMSE compared to other models.

21

3 Related work

Not all climate data compression algorithms are lossy. There are other works that
losslessly compress climate data using ML. One of them is presented in Mummadis-
etty et al. [49]. The authors build a lossless compressor using a fully connected
ANN with four layers with ten nodes each to compress solar radiation data. First,
the ANN predicts the solar radiation values with other information from variables
that are related to solar radiation. After predicting the values, the algorithm checks
for the leading zeros and stores the count and the same process is done for the
trailing zeros. Next, it checks for the non-zero data points and performs differential
encoding, keeping the first non-zero digit as it is required during decoding operation.
Finally, Huffman coding is applied to the count of leading zeros, trailing zeros and
the differentially encoded data. As a result, the authors get a maximum CF of 5.81.

Saenz et al. [50] show that convolutional AEs are suitable to encode climate data.
The authors compare the reconstruction error with the one gotten with principal
component analysis (PCA). They analyze several convolutional AEs with different
settings to encode two temperature fields from pre-industrial climate model simula-
tion datasets. The results show that the reconstructed temperature fields preserve the
large-scale features of the global temperature patterns, but small-scale features are
filtered out. They also show that AE outperforms PCA.

3.2 Compression of Other Data with Machine Learning

While there are only a handful of ML-based compression algorithms for climate
data, other types of data that share structural similarities have been also tried to be
compressed using ML. Glaws et al. [15] compress turbulence flow simulation data.
The authors use an AE with 12 residual blocks and three compression layers with a
maximum CF of 64. The results show that AE outperformed singular value decom-
position (SVD) and was able to restart the simulations and keep them in the correct
trajectory. In Choi et al. [51], physics plasma simulation data is being compressed.
The authors use a variational AE with physics-informed optimization functions and
refinement layers. Further, the authors quantize the latent space and compress it with
Gzip [52]. They achieve a CF 1.5 times higher than ZFP.

Not only floating-point datasets have been compressed with ML but also images.
For brevity, we will only introduce a few relevant works. Ballè et al. [53] introduce a
transformation called generalized divisive normalization (GDN) to AE. DN represents
a multivariate generalization of a particular type of sigmoidal function. The authors
indicate that GDN and ReLU achieve qualitatively similar results but that ReLUs
generally require a substantially larger number of model stages to achieve the same

22

3 Related work

performance as the GDN. The authors claim that GDN provides better results for
natural image compression. This transformation is used in the AE’s architecture
instead of activation functions, e.g., ReLU. Theis et al. [54] modify the AE by adding
a sub-pixel convolutional layer [55] which is a convolution followed by reshaping
and reshuffling of the feature map values. The sub-pixel layer allows the images
to be better reconstructed and achieve a higher resolution when upsampling. The
authors also add residual layers to learn features of the image. Both works quantize
the output of the encoder by modifying the loss function, Ballè et al. [53] add additive
uniform noise to simulate the quantizer noise, and Theis et al. [54] use a rounding
function for the quantization. Li et al. [56] use an importance map for the coding of
the quantized values. The authors present an AE with an aditional residual network,
called an importance map, that calculates the importance each pixel in the feature
maps. After quantizing the feature maps, the importance map identifies the areas
with more details and structural information in order to assign them more bits to
encode. The idea behind this, is to use more space for essential features from the
image and save space when storing less important features. Thus, generating better
visually decoded images. To achieve this, the authors integrate the quantization and
importance map to the loss function. Mentzer et al. [57] also use an importance map
for the quantization; however, they quantize the values differently. They use a relax-
ation of the rounding function for quantizing the values called soft quantization. This
function is derivable, making it suitable for calculating the AE gradients. All of the
above-mentioned authors compare their approach with JPEG [58] and JPEG2000 [59].
They conclude that the use of AEs looks promising for lossy image compression.

AEs are not the only ML-based method to compress data. Generative adversarial
networks (GAN) [60] and recurrent neural networks (RNN) [61] are also used for
data compression. Agustsson et al. [62] present a lossy image compression algorithm
based on GANs. The difference between a GAN and other compression algorithms,
is that the decoder in a GAN is a generator. Instead of following a deterministic
process like the AE, the GAN tries to generate new data consistent with the input
data distribution and its latent space. This approach works really well on images
since the importance lies in the images’ visual quality and not the actual pixel val-
ues. Lossless compression can also be achieved with other ML methods. Goyal et
al. [63] and Bellard et al. [64] use RNNs to compress sequences like text and genomic
datasets losslessly. Both works use a variant of RNN called LSTM, which is capable
of learning long short-term dependencies. In this way, the authors compress text
and genomic datasets by predicting the sequence to be compressed. Goyal et al. [63]
further combine the LSTM with an arithmetic coder to achieve a higher CF.

So far, we have seen different ML methods to achieve lossless and lossy compres-

23

3 Related work

sion of different types of data. The following section will cover methods that use non
ML-based models to compress climate data.

3.3 Compression of Climate Data with non ML-based
Compression methods

Many authors have expressed their interest in the effectiveness of non ML-based com-
pression algorithms on climate data. Baker et al. [65] and Hübbe et al. [2] examine the
effects of lossy compression on climate data. In Baker et al. [65], the authors employ
different quality metrics, e.g., mean and standard deviation of the reconstructed
data, to compare the effects of lossy compression. The authors conclude that the
compression of climate data must be done variable-by-variable since the data is very
diverse. Hübbe et al. [2] also compare different lossy compression methods and
evaluate them according to compression ratio, signal-to-residual ratio, and processing
time. Hübbe et al. [2] conclude that climate data could probably be lossy compressed;
however, intermediate results like checkpoints should be compressed losslessly since
numerical stability and control play an important role in the restart of simulations.

Besides comparing different lossy compression algorithms on climate data, Ham-
merling et al. [66] analyze the behavior of a lossy compression algorithm i.e., ZFP
when compressing climate data. To tackle artifacts that appear by compressing
climate data and are not typically picked up by standard compression metrics, the
authors modify the compression algorithm. As a result, the authors provide a new
compression algorithm that improves the compression ratio in climate data analysis.

In the case of lossless compression, Huang et al. [67] propose a lossless compres-
sion algorithm called Czip. Czip eliminates data redundancy through several new
methods, including adaptive prediction, eXclusive OR (XOR) differencing, multiway
compression, and static regions. The authors show that Czip can achieve outstanding
compression ratios as well as higher throughput since it runs in parallel.

Methods to improve lossless prediction-based compression algorithms used in cli-
mate data were presented by Cayoglu et al. [68] [69]. After analyzing the performance
of different prediction-based compression algorithms on climate data, the authors
introduce the concept of Information Spaces (IS) [68]. With the introduction of IS,
better predictions and more consistent compression ratios were achieved. Further-
more, Cayoglu et al. [69] propose an encoding scheme that outperforms the current

24

3 Related work

state-of-the-art scheme used in lossless prediction-based compression algorithms.
The authors use the shifted XOR calculation to move the data into another range
to improve compression since compression performance is dependent on the value
range covered by the data.

A modular software framework for compression of structured climate data was
developed by Cayoglu et al. [70]. The authors present a framework that provides all
necessary components to design, test, and grade various prediction-based compres-
sion algorithm. Moreover, the framework provides additional features such as the
execution of benchmarks and validity tests for sequential as well as parallel execution
of compression algorithms.

3.4 Compression Data with non ML-based Compression
methods

There are many non-ML based compression algorithms for data compression. For
reasons of brevity, this subsection will only mention the most recent work. For
floating-point data, two lossy compression algorithms stand out.

SZ is a prediction-based compression algorithm First presented in Di and Capello [71]
and improved over the years. The latest version of SZ is presented in Liang et al. [72].
SZ works with three predictors: a linear-regression-based predictor, the Lorenzo
predictor [73] and the mean-Lorenzo predictor. SZ chooses the best predictor based
on the reconstruction loss to compress the data. After predicting the data, the errors
are calculated, quantized, and coded using Huffman coding [46].

The second lossy compression algorithm is zfp, introduced in Lindstrom [74]. zfp is
a lossy transformation-based compression algorithm that decorrelates the data by an
applying orthogonal block transformation. The data is divided the data into blocks,
which are then aligned by a common exponent. Next, they convert the floating-point
values to a fixed-point representation. Afterwards, the values are decorrelated using
an orthogonal block transform. Finally, the transform coefficients are ordered by the
expected magnitude, sorted by bit plane, and coded.

The performance of the previously mentioned compression algorithms vary ac-
cording to the data. For that reason, Tao et al. [21] developed a hybrid compression
algorithm by choosing between SZ and zfp regarding their performance.

25

3 Related work

In the case of lossless compression, a lossless compression algorithm called fpzip
was introduced in Lindstrom and Isenburg [5]. fpzip traverses the data in some
coherent order, e.g., row-by-row, and predicts each value from a subset of already
coded data. The predicted and actual values are then transformed to an integer
representation. Next, the residuals are computed, partitioned into entropy codes and
raw bits, which are then transmitted by an entropy coder.

26

4 Methodology

This chapter describes the architecture of the ML-based compression algorithm. First,
we look at the overall architecture and discuss the convolutional AE as the selected
ML model. Second, we describe the core steps of the architecture in more detail. We
start by explaining the pre-processing of the data to be compressed. Then, we explain
and provide details of the convolutional AE’s architecture. Finally, we explain the
calculation of the residuals and discuss the use of the lossless coding methods used
for the residuals and the convolutional AE’s latent representation compression.

4.1 Architecture

We aim to develop a prototype of a prediction-based lossy compression algorithm for
climate data using ML. A prediction-based lossy compression algorithm compresses
data by predicting the values given a latent representation and later comparing its
predictions with the actual data [14]. Afterwards, the comparison is lossy encoded
and given as output of the encoder together with the latent representation used for
predicting the values. In this way, the data can be later reconstructed. Thus, for the
prediction of values, we will be using an ML model.

We will start by giving an insight into the climate dataset since it plays an essential
role in the architecture’s design. As mentioned in Section 2.4, this work focuses on the
compression of the ERA5 dataset, specifically the temperature variable. This variable
is a four-dimensional array (time, level, latitude, longitude) of floating-point numbers.
The first challenge we tackle is the processing of data for compression. We mentioned
in Section 2.1.1 that there are two ways to process the data, value by value (streaming
mode) or block-wise (block mode). Climate data contains spatio-temporal information
that should be exploited. Processing the data value by value would require looking
at neighbouring data in order to get as much information as possible about the value
to be processed. In fact, this is how the compression framework SZ [20] works. Oth-
erwise, we could take 4-D blocks of data and process them as a whole, as zfp [19] does.

We first find and use an ML model that can exploit the spatio-temporal information
in climate data to get good predictions. The better the predictions the less residuals

27

4 Methodology

are going to be stored, thus, achieving greater compression. Previous work (see
Section 3.2) have compressed N-dimensional data with two different ML models:
GANs and convolutional AEs.

A GAN is a generative model which reconstructs the compressed data by gen-
erating new data according to a latent representation. GANs achieve significant
compression factors [32]. However, they only work well for subjective quality re-
constructions like images. The reconstructed data by the GAN present great visual
quality. Nevertheless, the reconstruction error is high since it only generates similar
data to the actual data. For this reason, we decided against GANs.

Convolutional AEs reconstruct the data by learning a compact representation of the
data, thus, getting a more accurate output than GANs. AEs have also been proved to
be better than traditional methods for lossy compression [32]. Therefore, we decided
to choose a convolutional AE as the ML model for our compression algorithm. The
input of an AE is N-dimensional which means that the input of the model needs to
be N-dimensional as well. If we choose to process the data in streaming mode i.e.,
receiving multi-dimensional data sequentially, the compression and decompression
time would be high since the data would be processed one by one. If we process the
data in block mode, the blocks could be processed in parallel which fits in our case
since convolutional AE operations can be done using GPUs which are very good at
data-parallel computing. Therefore, we decided our compression algorithm to work
in block mode. Because of the symmetry of AEs, our compression algorithm will also
be symmetric.

Scientific data, like climate data, go through extensive scientific analysis. In con-
sequence, its compression and decompression must be done without negatively
affecting scientific conclusions. That being the case, our compression algorithm
bounds the error of the decompressed data. The error in the reconstructed data will
not pass a previously specified error. For bounding the error, the absolute error is
used, and its unit is the same as the data to be compressed.

The proposed compression algorithm is a non-universal, block mode, symmetric
lossy compression algorithm. It takes as input an N-dimensional array to be com-
pressed and the maximum allowed absolute error. The output of the compression
algorithm is the reconstructed data. Figure 4.1 illustrates the architecture of our
compression algorithm which consists of two parts: an encoder that compresses data
and a decoder that reconstructs the data.

The encoder of the compression algorithm starts by normalizing and chunking

28

4 Methodology

Figure 4.1: Compression algorithm architecture.

29

4 Methodology

the data into blocks. This is the pre-processing of the data. Afterwards, the blocks
are fed into the convolutional AE, which outputs a more compact representation of
the data (i.e., a latent representation), and the predicted data (i.e., reconstructed
data). Even though the AE compresses the data, we can still further compress it
using an encoding algorithm. The reconstructed data provided by the convolutional
AE may present a low average prediction error. However, it is not enough for the
lossy compression of climate data. Given an average prediction error of 0.003 in the
convolutional AE’s reconstructed data, and a set absolute error of 0.5. Not all the
reconstructed values will respect the set absolute error, the majority of the them, e.g.
90%, will lie under the set error bound but the remaining 10% will not respect it,
which is unacceptable. Therefore, we work with residuals.

Residuals are the values obtained by differentiating the input data from the re-
constructed data. In order to do the differentiation, the values must have the same
scale. Since the convolutional AE outputs a normalized version of the data, we first
pre-process the reconstructed data, i.e., we merge the data blocks and denormalize
them. After calculating the residuals, we compare the values with the set absolute
error. The values that are outside the allowed absolute error are stored in an array.
Since we only store the values outside the allowed absolute error independently of
their position in the data, we need to store another array that lets us know where
such values are located. After storing the positions and residuals, we quantize the
residuals and use an approach called differential coding in together with bzip2 [16],
to compress the quantized residuals and position array further.

The encoder includes extra information that helps the decoder reconstruct the data.
The decoder only receives as input the compressed data, meaning that that user does
not need to specify the absolute error as in the encoder. For this reason, the absolute
error is included in the compressed data as it is needed to dequantize the residuals.
We also store the mean and the standard deviation for the post-processing of the
values. The input data and the residuals are also stored because they are needed for
reconstructing the arrays. The output elements of the encoder are illustrated in Figure
4.2. The colour denotes the type of each element, green represents a floating-point
value, yellow a tuple, and violet bytes.

As previously mentioned, our compression algorithm is symmetric. The same steps
will be done in the decoder but in reverse order. The decoder of our compression
algorithm gets as input the output of the encoder. The decoder reads the input
elements and starts decompressing the latent representation using fpzip [18]. With
the latent representation the data is reconstructed using the convolutional AE and
processed to go back to the original scale (see Section 4.1.1). The residuals and

30

4 Methodology

Figure 4.2: Encoder output.

the position arrays are decoded as well using differential decoding together with
bzip2 [16]. Then, the residuals are dequantized and assigned to their respective
position. Finally, we sum up the residuals and the reconstructed data and return the
result as the output of the decoder.

The following section will provide a detailed description of the procedures.

4.1.1 Data Pre-processing and Post-processing

The pre-processing of the data has two steps: normalization and division of data
into chunks. The first step consists of normalizing the data using the standard score
normalization by subtracting the mean from the data and dividing the difference by
the standard deviation of the data. This helps us to keep the input data consistent.
By normalizing the data, each feature contributes approximately proportionate to
the training of the convolutional AE, thus resulting in a faster convergence of the
network [75]. The standard score normalization is defined as [76]:

z =
x− x

S

where x are the input data values, x the mean of the data, and S the standard
deviation of the data.

As mentioned in Section 2.3.2, a convolutional AE takes as input N-dimensional
data. Due to constraints of the programming API, the prototype uses a 3-dimensional
convolutional AE. Since climate data is 4-dimensional, we had to choose which di-
mension to set aside. Previous work [77] has shown that a higher CF is achieved when
using the time, longitude, and latitude dimensions. Therefore, we decided to desist
from using pressure levels. Nevertheless, there are 37 pressure levels in the dataset.
We decided to choose the highest pressure level (1000hPa), i.e., values nearest to the
surface because they have greater complexity. This is the reason why the second step
is to divide the data into 3-dimensional fix-sized chunks. The size of the chunk will

31

4 Methodology

depend on the convolutional AE’s architecture and available computational power.
The convolutional AE reduces the dimensions of the input data depending on the
number of convolutional layers and stride in the encoder. Therefore, the size of the
block must be bigger than the amount of reduction the encoder achieves since a small
chunk would reach a state of not being reducible anymore when reaching a minimum
size of [1, 1, 1] in a 3-dimensional data block. The blocks can not be too big either due
to increased training time since a bigger input means more mathematical operations.
Moreover, a bigger block size would mean that the input data has to be big enough
to cover the size of at least one block. Figure 4.3 illustrates the chunking along the
longitude and latitude dimensions for temperature.

Figure 4.3: Visualization of a 2-dimensional chunk.

The data is split into same sized chunks and bounded to form an array of chunks.
If the number of blocks resulting from the chunking is not a multiple of the chunk’s
size, an extra chunk of data that includes the data not covered by the other chunks is
taken. Figure 4.4 shows the process when the data is not a multiple of the chunk’s size.

Figure 4.4: Division of data into chunks.

32

4 Methodology

The post-processing of the data consists in reversing the steps made in the encoder’s
pre-processing part. After decompressing, we merge and denormalize the chunks
to get the original shape and values of the data. The merging function requires the
chunked data and the original size of the data to be reconstructed. To denormalize
the data, the following function is used [76]:

z = x× S + x

the mean value x and standard deviation S are part of the encoder’s output. Next
section will provide a description of the convolutional AE’s architecture.

4.1.2 Convolutional Autoencoder

The performance of the convolutional AE plays an essential role in the performance
of the compression algorithm. The reason lies in the residuals. The better the con-
volutional AE reconstructs the data, the smaller the errors, thus, reducing the size
of the residual array. If the size of the residual array is small, a high compression
factor will be reached since there will be fewer data to store. We draw inspiration
from the convolutional AE presented in [15] and propose a convolutional AE that
consists of four 3-dimensional convolutional layers and 3-dimensional deconvolu-
tional layers with one residual block each. The architecture of our convolutional
AE is shown in Figure 4.5. The colour of the blocks denote the stride value of the
convolution; blue represents a stride of one and yellow a stride of two. The con-
volutions (deconvolutions) with a stride of two halves (double) the input’s size in
all dimensions, thus reducing(increasing) the size of the data. This means that the
data compression happens after the residual block and the decompression before the
residual block. A residual block is a skip-connection block that copies the current
state of the data and adds it back to the network further down the line. The use of
skip connections reduces the amount of information that intermediate processing
layers must encode, enabling the effective training of deeper networks with increased
capacity to learn complex features [15]. There are different configurations of residual
blocks; our implementation uses the first version of residual blocks which consists
in two convolutional layers and an activation function [23]. We use 20 filters in each
convolutional and deconvolutional layer. Only the last convolutional layer in the
decoder has one filter since it outputs the reconstructed data. The padding varies in
each convolutional and deconvolutional layer. The resulting feature map’s size has
the same size as the input. The convolutional layers inside the residual block have a
size of three. The rest of the convolutional and deconvolutional layers have a kernel
size of five.

33

4 Methodology

Figure 4.5: Architecture of the AE.

34

4 Methodology

We use ReLU as activation function since it is more computationally efficient than
other activation functions and reduces the likelihood of a vanishing gradient [27].
Notice that the last convolutional layer in the decoder is not followed by an activation
function since it provides the reconstructed values. If we add a ReLU after this
convolutional layer, values that are less than zero would stay at zero since ReLUs
only return zero or positive values (see Section 2.2.5). We choose the convolutional
AE parameters through hyperparameter optimization and as loss function the MSE
(as defined in Section 2.2.4).

With the defined AE architecture, we can now calculate the maximum CF the
convolutional AE can get if the user does not set any error bound. Note that the
CF achieved by the AE is not the maximum CF that the compression algorithm can
achieve since the latent representation gets further compressed in another step by
fpzip. By halving three dimensions four times and expanding the latent representation
across 20 filters, the maximum CF the AE achieves is (as defined in Section 2.3.2):

CFmodel ≈
(23)4

|20| ≈ 204, 8

Now that we have the latent representation and reconstructed data from the AE,
the next step is to compute the residuals in order to be able to set an error bound.
The following section will provide the details of the process.

4.1.3 Residuals, Quantization and Lossless Coding

Once we got the reconstructed data from the AE, we calculate the residuals by taking
the difference between the reconstructed data and the data to be compressed. The
residuals allows us to control the error bound in the reconstructed data.

The error bound set has to be respected when reconstructing the data; however,
the convolutional AE’s output will have errors that are greater than the defined error
bound. The simplest way to ensure that the error bound is not surpassed is by storing
the residuals plus the latent representation. In such a way, the decoder could perfectly
reconstruct the data by adding the residuals to the reconstructed data gotten with the
latent representation. Nevertheless, the compression algorithm would be considered
a lossless compression algorithm since no information is lost when reconstructing
the data because we are considering the residuals in their entirety. Moreover, storing
so much information would considerately affect the CF negatively. Luckily, setting
an error bound lets us reduce the amount of information to be stored. Instead of
storing all the residuals, we only store the residuals that are outside the error bound.

35

4 Methodology

However, storing the residuals in such a way makes us lose information about their
position in the 3-dimensional data array. As a consequence, we use another array that
provides us that information.

We lossily code the residual arrays. The residual values are floating-point values
which are generally more difficult to compress than integers [78]. Unlike fixed-length
integers, which often have a fair number of leading zeros, floating-point values often
use all of their available bits, making it harder to compress. For this reason, we
decided to lossily compress the residual array by using quantization. Quantization
maps a continuous set of values to a discrete set of values by breaking the input’s
interval into bins. All values that lie in a given bin are rounded to the reconstruction
value associated with that bin [79]. Let x ∈ R be the input to the quantizer. The
quantization function is defined as [79]:

Q(x) = round(
x
∆
)

where round(·) is a function that rounds a value to its nearest integer value and ∆
is the quantizer step size. By rounding, the errors gotten through quantization are
zero-mean and bounded [79]:

−∆
2
≤ ε ≤ ∆

2

where ε represents the quantization error; having knowledge of the quantizer error
bounds, we can keep controlling the error bound to set in the compression algorithm.
For that, we define the quantizer step size to be two times the error bound to set
in the compression algorithm. By means of that, the residual array values are now
integers and the error bound is respected. Nevertheless, before quantizing, we take
the absolute value of the residuals, so all values are positive. By making all the values
positive, we reduce the values space, making it easier to code. Figure 4.6 provides a
visual representation of the quantization operation.

To dequantize the values we multiply the quantized value with the quantizer step
size:

D(Q(x)) = Q(x)× ∆

The position array does not need to be quantized. To store the positions, three
integer values are defined: ’0’ for residuals within the error bound, ’1’ for positive
residuals outside the error bound, and ’2’ for negative residuals that lie outside the

36

4 Methodology

Figure 4.6: Quantization.

error bound.

Now we focus on the compression of the integer arrays. It is best if most integers
are small since they can be represented more compactly by using shortcodes. A
way to reduce the size of the integers is through differential coding. Differential
coding, also known as delta coding, computes the difference between successive array
elements. The value in the encoded array is the same as the first value in the input
array. After that, the difference between the next element and the previous one is
calculated and stored. Let x ∈Nn be the elements of an integer array with size n, we
calculate the differential coded value δ ∈ Zn as:

δi = xi − xi−1

To decode, the inverse operation is done:

xi = δi + xi−1

37

4 Methodology

Calculating the difference between successive elements in an array means that
the array has to be 1-dimensional. Unlike the quantized residual array, which is
1-dimensional, the position array is N-dimensional, according to the dimensions
of the input data. Therefore, we flatten the array to be 1-dimensional. Figure 4.7
provides an example of differential coding.

Figure 4.7: Differential coding example.

Now that the integers are smaller, we proceed to encode the differential coded
array with bzip2. We choose bzip2 because it provided the highest compression factor
among other compression modules like zlib [80] and lzma [81]. Algorithm 1 shows
the pseudo-code of the residuals compression.

Algorithm 1 Residuals compression
Input Abs. error, Original Data, Reconstructed Data.

1: procedure CodeResiduals

2: difference← original− reconstructed
3: pos← difference
4: pos[(pos ≤ threshold) and (pos ≥ -threshold)] = 0
5: pos[(pos < 0] = 1
6: pos[(pos > 0] = 2
7: residuals← absolute(difference) > threshold . Residuals outside abs. error
8: delta← threshold× 2
9: residuals← round(residuals

delta) . Quantization
10: residuals← diffEncoder(residuals) . Differential coding
11: pos← diffEncoder(pos)
12: residuals← bzip2(residuals) . Bzip2 coding
13: pos← bzip2(pos)
14: end procedure

38

4 Methodology

4.2 Implementation

The compression algorithm is implemented in Python 3.8.51. We use Keras [82], an
API that is included in Tensorflow 2.3.1 [83] for the implementation of the convolu-
tional AE. Keras is a high-level deep learning API written in Python, running on top
of the machine learning platform TensorFlow. Keras provides essential abstractions
and building blocks for developing and shipping machine learning solutions with
high iteration velocity, enabling fast experimentation.

For the lossless coding, we use the bzip2 [84] module and fpzip [18] python library.
Bzip2 is a python module that provides a comprehensive interface for compressing
and decompressing data using the bzip2 compression algorithm [16]. fpzip is a
BSD-licensed open-source library for lossless or lossy compression of large multidi-
mensional floating-point arrays [18].

The code of the implementation is available at https://github.com/SilkeDH/
lossy-ml.

1https://www.python.org/downloads/release/python-385/

39

https://github.com/SilkeDH/lossy-ml
https://github.com/SilkeDH/lossy-ml
https://www.python.org/downloads/release/python-385/

5 Results

This chapter presents the conducted experiments, discusses the performance of
our compression algorithm under different setups and provides a comparison with
state-of-the-art compression algorithms. First we provide details to the setup and
preparation of the data and the training of the convolutional AE. Then, we compare
different improvements to the base model. Next, we perform a hyperparameter
tunning and analyze the CF gotten by the convolutional AE depending on the
allowed absolute error. Lastly, we compare the proposed compression algorithm
performance with state-of-the-art compression algorithms.

5.1 Experimental Setup

For the experiments, we use the global temperature values from 1979 and 1980 from
the ERA5 hourly data on pressure levels [39]. We use the data from year 1979 for
training and validation of the model and the data from 1980 for testing. One year
of data is represented by a 4-dimensional 32-bit floating-point data array with the
following dimensions 8784×721×1440×37 (time, latitude, longitude, level). One year
of data is approximately 1.2 TiB in size.

Training the convolutional AE with such volume of data requires a considerable
amount of time, therefore, a fixed amount of chunks of data are randomly sampled
from the dataset for training and validation of the model. We decided to select 60k
chunks of data for the training set and 6k for the validation set. The chunks of
data have a size of 16× 48× 48. We decided to keep the size of the chunks small
so it will be easier to catch fine-grained data features [43]. Liu et al. [43] decided
to test different block sizes for different datasets showing that for 3-dimensional
floating-point datasets, smaller chunks lead to a better performance.

For the training of the different convolutional AEs we use the Adam optimization
algorithm with an exponential decay rate of 0.9 for the moment estimates. The start-
ing learning rate is set to 0.001 and decays from epoch 10 to epoch 100 in a gradual
way to 0.0001. We train each model for 100 epochs with 4 GPUs and compute our
evaluation metrics every 10 epochs. The batch size is 100, thus each GPU is working

40

5 Results

with a batch size of 25. For the best performing models we increase the number of
samples to 400k for the training dataset and 40k for the validation dataset. Different
convolutional AEs are compared by computing the CF achieved by each of them.

The experiments were carried out on two clusters: the BwUniCluster 2.0 [85]
and the HDFML System [86]. The bwUniCluster 2.0 is a parallel computer with
distributed memory. Each node of the system consists of at least two Intel Xeon
processors, local memory, disks, network adapters and optionally NVIDIA Tesla
V100 accelerators. The HDFML System is provided by the Jülich Supercomputing
Centre (JSC) [87] and is also a parallel computer with distributed memory. The nodes
consists of Intel(R) Xeon(R) processors and NVIDIA Tesla V100 accelerators.

5.2 Number of Convolutional Layers

In order to find a suitable model for the problem, we decided to start by defining a
convolutional AE with empirically chosen parameters to serve us as baseline. The
convolutional AE architecture has 20 filters, each one with kernel size 3× 3× 3 and
stride 2× 2× 2. The deconvolutional layers have the same structure as the convolu-
tional layers. We use as activation function ReLU and the MSE as loss function. To
compare the CF gotten by the convolutional AE depending on the error, we decided
to bound the error by storing and further compressing the latent representation and
the residuals with bzip2.

The number of convolutional layers with stride two define the amount of compres-
sion the convolutional AE can achieve. We decided to test three models with different
estimated CF to define the number of convolutional layers. The first model has three
convolutional layers, with a CF of 25.6, the second model, four convolutional layers
with a CF of 204.8 and the third model, five convolutional layers with a CF of 1638.4.
For the third model, we doubled the size of the chunk dimensions since adding a fifth
convolutional layer halved the dimensions one more time, which was not possible for
the initial size set.

For the calculation of the CFs, we decided to randomly select 50 data chunks of size
32× 721× 1440. This will also be true for the following experiments unless otherwise
stated. We chose32 time steps i.e., 32 hours to compress data containing day-night
changes. Even though 12 hours would have been enough, the chunk size needs to be
at least 16 time steps big. This is due to the amount of convolutional layers present
in the model. Every layer halves each dimension, thus, four convolutional layers
reduce the data 16 times. We decided to double the amount to 32 to compress more

41

5 Results

data. The latitude and the longitude sizes cover all locations in the world. The mean
CF is then calculated with each set absolute error. Figure 5.1 shows the different
CF achieved by each of the models depending on the absolute error. The maximum
absolute error set is 1 Kelvin (K). We decided to not take into account values higher
than 1 K since we concentrate in small error bounds.

Figure 5.1: CF achieved with different number of convolutional layers.

For absolute errors below 0.1 K, the CF gotten by the models differ by at most 3%. It
also shows that convolutional AEs are not that effective compressing values with very
small error-bounds since smaller absolute errors leads to higher amount of residuals,
thus decreasing the CF. This behaviour is also seen in Liu et al. [43], the authors
use the Lorenzo predictor instead of the AE for such small errors since it achieves
better CFs. As the error increases, we see that the model with four layers outperforms
the other two. This lies in the fact that the convolutional AE with three convolu-
tional layers already achieves almost its maximum CF when having an absolute error
of 1 K. Note that the finally achieved CF is higher than the previously estimated
through the convolutional AE. This is because the quantization and encoding of
the latent representation and residuals further increase the CF. A similar behaviour
is seen in convolutional AE with five convolutional layers. The CFs of the model
increase slower than the model with four convolutional layers. This is due to higher er-
rors in the predictions, thus, increasing the size of the error array and reducing the CF.

42

5 Results

5.3 Adding Climate Information

Temperature changes faster depending on whether the surface is land or water. On
land, the temperature warms and cools quicker, leading to strong temperature differ-
ences in regions like coasts where land and sea meet [88]. Moreover, the temperature
varies depending on the altitude. In the lower atmosphere, the higher the altitude is,
the colder it is in such region. In other words, temperature values that are located
in mountain ranges like the Andes, present drastic changes throughout the region,
increasing the complexity of the data. Providing location and surface information
could help the model to learn about such complex areas and therefore achieve a
better reconstruction.

The ERA5 dataset gives such formation by providing the latitude and the longitude
of the temperature values on the grid. Moreover, there is another dataset called
ERA5 hourly data on single levels from 1979 to present [89] that provides information
about a large number of atmospheric, ocean-wave and land-surface quantities. The
land-sea mask variable provides information about the proportion of land and water
in a grid box. This parameter has values ranging between zero and one and is
dimensionless. Values above 0.5 indicate that the surface is mostly land and below
0.5, mostly water. Since the temperature depends on whether the surface is land
or water, we decided to include this parameter as an input. Figure 5.2 visualizes a
time-step of the temperature and land-sea mask dataset.

Figure 5.2: Visualization of temperature and land-sea mask values.

43

5 Results

We decided to test if providing the model information about the location or type of
surface of the chunk helps the model to improve the results. Three convolutional AEs
with the same architecture but with different inputs were trained. All models have as
base input the temperature values, the difference lies in the type of extra information
each of one will get:

• Temperature (only)

• Temperature with land-sea mask

• Temperature with latitude and longitude position

The first model was trained only using temperature values, serving us as baseline
to see if extra information improves the reconstruction. The second model has as
extra information, the land-sea mask values, providing the model knowledge about
the surface. The third model includes information about the latitude and longitude
of the data. Before feeding the model the latitude and longitude values, we applied
a transformation to such values. The latitude has a range of [90,−90] degrees and
the longitude of [−180, 180] degrees. Since the earth is a sphere, we transformed the
longitude values to indicate that −180 degrees and 180 degrees are the same point
on earth. This was not necessary for the latitude since the limits of the range do not
denote the same point. Moreover, to facilitate the training, we scaled to values to
[−1, 1]. We code the latitude and longitude using two features, for the longitude:

lon1 = sin(2 · π · (longitude + 180
180

))

lon2 = cos(2 · π · (longitude + 180
180

))

and for latitude:

lat1 = sin(π · (latitude + 90
90

))

lat2 = cos(π · (latitude + 90
90

)))

Note that the latitude was not multiplied by 2 like in the longitude since it only
covers half the earth. We plotted the coded latitude and longitude in Figure 5.3.

The results are presented in Figure 5.4 and show that the performance of the
model increases when adding information about the location and surface of the
data. As expected, the model with the highest CF is the model that has as input the

44

5 Results

Figure 5.3: Encoded latitude and longitude.

temperature values with the land-sea mask, i.e. the second model. As mentioned
before, the surface of the earth plays an important role in the behaviour of the
temperature values. We also see that the third model which had information about
the latitude and longitude achieves a higher CF than the model without any extra
information.

Figure 5.4: Visualization of temperature and land-sea mask values.

We also see in Figure 5.5 the training and validation losses of the three models. The
first model starts learning faster than the other two, however, after a certain number
of epochs, the second and third model start reaching smaller training and validation

45

5 Results

losses, meaning that the models present smaller errors when reconstructing the data
by taking into account the extra information about the location of the temperature
values. For this reason, we decided to add as extra information the land-sea mask
dataset to our final model in order to achieve higher CFs when compressing the
temperature values.

Figure 5.5: Train and validation losses achieved by the models with different inputs.

5.4 Residuals Encoding

After getting the reconstructed data by the convolutional AE, the residuals are com-
puted, quantized and encoded. We tested two ways to quantize the residuals. The
first method consists of storing two arrays, qp and qn. Array qp stores the quantized
positive residuals outside the absolute error and the second one, qn, the quantized
negative residuals outside the absolute error. These arrays keep the position informa-
tion of the values by maintaining the shape of the residual array. The second method
also stores two arrays, qe and pos, but differently. Array qe stores the residuals outside
the absolute error and pos the positions of the residuals that are in qe taking into
account their sign (see Section 4.1.3). For the tests, the latent representation array
latent was encoded with bzip2 and the rest encoded with differential coding and
bzip2. Figure 5.6 shows the CF gotten with both methods. Note that the model used
for testing is the one without extra information.

46

5 Results

Figure 5.6: CF gotten with different residual encoding methods.

Absolute Error (K)
0.0001 0.001 0.01 0.1 0.3 0.5 0.7 1

Method 1
latent(%) 0.01 0.01 0.02 0.04 0.08 0.13 0.19 0.29

qp(%) 0.57 0.57 0.56 0.55 0.53 0.51 0.47 0.40
qn(%) 0.42 0.42 0.42 0.41 0.39 0.36 0.34 0.31

Method 2
latent(%) 0.01 0.01 0.02 0.04 0.08 0.13 0.19 0.30

qe(%) 0.40 0.91 0.86 0.60 0.27 0.15 0.10 0.06
pos(%) 0.05 0.07 0.12 0.36 0.65 0.72 0.71 0.64

Table 5.1: Percentage of space consumption with different quantization methods.

Figure 5.6 shows that the second method achieves higher CFs than the first method.
Table 5.1 presents the percentage of space taken by the residuals and the latent repre-
sentation by each method for each absolute error in the compressed output. Note
that the header information included in the output file (mean, standard deviation
and shape of data array) was not taken into account for the calculation of the space
consumption.

The results show the behaviour of each method. We can see that the percentage of
space taken by the latent representation in the compressed file with the first method
is less than with the second method. This means that, with the first method, the
residuals consume more space. The residuals are almost equally split into positive
and negative values. In the case of the second method, all the residuals outside the

47

5 Results

Method Absolute Error (K)
0.0001 0.001 0.01 0.1 0.3 0.5 0.7 1

bzip2 2.26 3.04 4.40 9.44 18.64 29.17 42.52 65.99
lzma 1.66 2.23 3.23 6.93 14.62 23.12 33.71 52.30
zlib 2.26 3.0 4.53 9.15 17.89 27.45 39.0 59.56

Table 5.2: CF with different lossless encoders.

Method Absolute Error (K)
0.0001 0.001 0.01 0.1 0.3 0.5 0.7 1

bzip2 2.26 3.03 4.40 9.42 18.52 28.70 41.71 64.57
fpzip 2.26 3.03 4.40 9.46 18.67 29.07 42.50 66.47

Table 5.3: CF by coding the latent representation with bzip2 [84] and fpzip [18].

absolute error are stored in qe. The lower the absolute error, the higher the space
consumption of the residuals since more residuals need to be stored. The second
method achieving higher CFs than first method means that the residuals are better
encoded when they are stored in the same array instead of having them separated by
sign without a position array. Therefore, we decided to use the second method to
quantize the residuals.

As mentioned before, the quantized residuals are differentially coded and then
losslessly encoded. For the encoding, we tested three different lossless encoders
that already come with Python to see which one achieves a higher CF: bzip2 [17],
lzma [81] and zlib [80]. Table 5.2 shows the CFs gotten with each of the encoders.
The results show that the highest CF is achieved by bzip2 [17]. Therefore, we decided
to quantize the values with the second method and encode them with bzip2 [17]. We
also decided to test fpzip [18] for the latent representation to see if we can further
compress the data. The reason why we try fpzip is because it is designed to compress
floating-point arrays like the latent representation. Table 5.3 shows that fpzip [18]
works better for absolute errors above 0.1. For absolute errors below 0.1 the CFs are
the same, this is due to the residuals playing a major role in the CF since they occupy
more space as seen in Table 5.1. Thus, we decided to use fpzip [18] as lossless encoder
for the latent representation.

48

5 Results

5.5 Hyperparameter Optimization

We previously showed that the convolutional AE with four layers presented promising
results and that the hyperparameters used for training the network were chosen
empirically. In this section we perform a hyperparameter optimization to improve
the model’s predictions by using random search. Random search is a strategy used
for hyperparameter optimization and works by randomly sampling a certain amount
of values for each hyperparameter, comparing the performance with each set of
hyperparameters and choosing the best one [90]. We decided to use random search
since the amount of hyperparameters to be tuned and training time needed are high.
We tuned five hyperaparameters of the convolutional AE with the following ranges:

• Number of filters N ∈ {10. . .40}.

• Kernel size k ∈ {3. . .7}.

• Number of residual blocks res ∈ {1. . .3}.

• Learning rate lr ∈ [0.0001, 0.01].

• L2-loss λ coefficient l2 ∈ [0.00005, 0.005].

44 models with a different set of hyperparameters were trained as indicated in
Section 5.1, the training of the models was done without extra climate information
(see Section 5.3). Figure 5.7 shows the validation loss (MSE) achieved by each of the
models depending on the hyperparameter value. The first plot shows the number of
filters and depicts that the minimum MSE values have been reached by setting 20
and 23 filters. However, we can see that other models that also had 20 and 23 filters
achieved really high MSE values. This is due to other hyperparameters that affect the
performance of the convolutional AE. For the kernel size, values between four and five
present the best results. Adding residual blocks to the convolutional AE also helped
reducing the MSE: Having one residual block leads to smaller MSE in comparison to
none or more than one. For the learning rate, we can see that the higher the learning
rate, the less the MSE. This is because the smaller the learning rate, the slower the
convolutional AE learns, therefore, not being fast enough to achieve smaller errors
since all models train with the same number of epochs. The opposite happens when
the learning rate is set too high. When updating the weights, the network will most
likely pass the minimum and not be able to achieve a smaller MSE. Instead of learning
slowly, the model will not learn or even suffer of exploding gradients resulting in
a very high MSE. There is not a clear tendency for the L2-regularization parameter.
The highest values present a tendency to increase the MSE. This is because the L2
regularization starts dominating which makes optimizing the function by adjusting

49

5 Results

the weights more difficult.

From the 44 models, we chose the two with the smallest validation error. Table
5.4 shows the parameters values of the best two models. Next, we calculate the CF
reached by the two models and select the one with the highest CF as the final model.

Figure 5.7: MSE achieved by the models with different parameters.

The best performing models resulting from random search were trained with a
bigger training and validation set. For the training set, 400k chunks were randomly
sampled from the dataset, and for the validation set, 40k. The models were trained
for 130 epochs with the land-sea mask as extra information described in Section 5.3.

50

5 Results

Parameters
N k lr res l2 Val. Loss (MSE)

Model 1 20 5 1.148E-4 1 5.8989E-05 0.0446822
Model 2 23 4 1.204E-4 1 1.3702E-05 0.0465775

Table 5.4: Parameters and validation loss of the two best models.

We calculated the CF gotten by the two models and chose the best one. Figure 5.8
shows the compression factor reached by the two models.

Figure 5.8: CF achieved with the best two models gotten through hypeparameter tuning.

The results show that the models achieve a similar CF but the first model is
slightly better. Moreover, the CF increased from 78.4 to 96.2 in comparison to the
CF reached by the model using the land-sea mask described in Section 5.3 without
hyperparameter tunning and using less data for training. The maximum CF achieved
is 95.2 for an absolute error of 1 K and a minimum of 2.4 for 0.0001 K. Since the best
performing model is model 1, we present the final architecture of our convolutional
AE in Table 5.5.

5.6 Compression Algorithm

In this section, we analyze our compression algorithm’s behaviour. We randomly
select a portion of data from the year 1980 and use it for the visualization of the

51

5 Results

AE Architecture
Layer # Filters Kernel size Stride
Conv. 20 5× 5× 5 (1, 1, 1)
Res.Block 20 3× 3× 3 (1, 1, 1)
4× Conv. 20 5× 5× 5 (2, 2, 2)
4× Deconv. 20 5× 5× 5 (2, 2, 2)
Res.Block 20 3× 3× 3 (1, 1, 1)
Conv. 1 5× 5× 5 (1, 1, 1)

Table 5.5: Convolutional AE Architecture.

Absolute Error (K) Count (>abs. error) Percentage (%)
0.0001 1037963 99.97
0.001 1035491 99.73
0.01 1010825 97.36
0.1 769729 74.14
0.3 391564 37.71
0.5 209380 20.16
0.7 118343 11.40
1.0 56589 5.45
5.0 259 0.03

Total values = 1038240

Table 5.6: Percentage of residuals values above absolute error.

results. We start by visualizing the reconstructed data from the convolutional AE in
Figure 5.9. The figure shows a visual comparison between the original data and the
reconstructed data together with the residuals. Since the higher frequencies of the
data are filtered out by convolutional AE, we can see that the reconstructed data is
a blurred version of the original data. In other words, the zones that present more
temperature variations will tend to look more blurry in contrast to zones where
the temperature is more stable, e.g., coast lines vs. ocean. We can also see that the
residual values lie within the range of [−12.17, 8.45] K, however, only a very small
percentage of the data presents such extreme values as it can be seen in Table 5.6
where only 5.45% of the data presents an error greater than 1 K. Nevertheless, such
huge errors are unacceptable for the analysis of scientific data.

Figure 5.10 visualizes the residuals gotten for different absolute errors with the
same data used in Figure 5.9. For the smallest absolute errors (1E-4 to 1E-1), no
pattern can be seen since almost every value lies outside the absolute error as seen

52

5 Results

Figure 5.9: Reconstruction of the original data with the convolutional AE.

53

5 Results

in Table 5.6. However, the larger the acceptable error, the better we see the zones
on earth where the convolutional AE has trouble to reconstruct. To have a better
understanding of the residuals, Figure 5.11 provides the respective histogram for
each plot presented in Figure 5.10. We can see that the more we decrease the absolute
error, the more uniform is the distribution of the residuals. Losslessly compressing
values that follow a uniform distribution is very difficult since every value has equal
probability to happen, thus, making them unpredictable and leaving no space for
compression [91]. However, the values can be compressed if they are correlated. As
we see in Table 5.6, using bzip2 for the residuals slightly increases the CF, showing
that the residuals present some correlation.

We take a look to the encoder’s output space consumption in Figure 5.12. We
show the three main parts of the encoder output: the latent representation, the error
array and the position array. Naturally, the greater the absolute error, the less space
the error array takes. However, we can see that the position array takes more than
half the space for storing the positions. Taking into account that nearly 5% of the
data is outside the absolute error and only the position of these values are important
to store, the position array is taking too much space. This is due to the storing
of the position of all values, including the ones that are inside the absolute error.
A different approach for cases where the amount of residuals are small should be
taken e.g., storing the position index from the residuals outside the absolute error only.

After analysing the behaviour of our compression algorithm, we proceed to com-
pare its performance with two of the current state-of-the art compression algorithms:
SZ [20] and zfp [19].

5.7 Comparison with the State-of-the-Art

SZ [20] and zfp [19] are considered state-of-the-art compression algorithms for
floating-point data. To prove the effectiveness of our compression algorithm, we
perform three different evaluations. The first evaluation consists of comparing the
CF achieved with different absolute errors by each of the compression algorithms.
Second, we make a visual comparison with the same CF between the reconstructed
values by each model. Moreover, we visually compare the results with the same
absolute error and PSNR. The last evaluation consists of the compression and decom-
pression speed achieved by each compression algorithm.

We present the CF results of all three lossy compression algorithms in Figure 5.13.
The first experiment shows that our compression algorithm outperforms both of

54

5 Results

Figure 5.10: Residuals gotten with different absolute errors.

55

5 Results

Figure 5.11: Histogram of the residuals with different absolute errors.

56

5 Results

Figure 5.12: Compressed output space consumption.

the state-of-the-art compression algorithms. Specially for absolute errors above 0.3
where we obtain 130% ∼ 400% improvement in CF for the same absolute errors
in comparison to SZ and zfp. We also see that the CF of our algorithm has higher
variance than the state-of-the-art compression algorithms by a factor of four. This
variance could be caused by the convolutional AE’s reconstruction quality which
might slightly differ depending on the complexity of the data to be compressed, thus
increasing the amount of residuals outside the error threshold. We can also observe
that our compression algorithm is the best even for very small absolute errors like
0.001 K which are promising results. Furthermore, we can observe that zfp performs
the worst in all cases. This is due to zfp not using the full range of the absolute
error, i.e., zfp presents in the decompressed data a much lower absolute error than
the permissible one, leading to low CFs. Such behaviour is not seen in the proposed
compression algorithm nor in SZ.

For the second evaluation, we compare the PSNR gotten by the three lossy com-
pression algorithms. The PSNR (see Section 2.1.2) indicates the rate of distortion
present in the reconstructed data. The higher the PSNR value is, the smaller the
distortion in the decompressed data [43]. We present visualizations over a selected
zone (South America) in Figure 5.14 with a fixed CF of 21.0. The results show that
the reconstructed data of our compression algorithm has almost double PSNR than
SZ with a smaller absolute error, completely outperforming SZ. In the case of zfp,
we present two values for the absolute error, the first one is the calculated absolute
error of the resulting reconstructed data and the second one the absolute error given

57

5 Results

Figure 5.13: CF comparison (Our model vs. SZ vs. zfp).

as input in zfp. We can see that for an absolute error of 5 K, zfp reaches the same
compression factor than our compression algorithm; however, an absolute error of 5
K is unacceptable for climate data analysis. Even though we set in zfp 5 K as absolute
error, the actual absolute error present in the data is 0.8. In addition, prior works
show that a PSNR in the range of [30, 60] is good enough to have a high visual quality
for different scientific applications [43].

Figure 5.15 presents the reconstructed data with each of the compression algo-
rithms with a fixed PSNR of 38.0. The results show that for the same reconstruction
quality, our compression algorithm achieves a three times higher CF than SZ while
having a slightly higher absolute error. This means that our compression algorithm
achieves the same reconstruction quality as SZ while admitting a higher error in the
reconstruction. In the case of zpf, the CF achieved is higher than ours. However, the
absolute error had to be set to 20 K in order achieve that. For higher absolute errors,
our compression algorithm outperforms zfp in terms of CF but the visual quality
decreases.

We present in Figure 5.16 the reconstructed data by the three compression algo-
rithms with an absolute error of 0.01. Since the absolute error is small, a visual
difference is difficult to identify. However, the results vary for every compression
algorithm. We can see that our compression algorithm outperforms both state-of-the-
art algorithms by reaching a CF of 52.34 while SZ and zfp achieve a CF of 7.51 and

58

5 Results

Figure 5.14: Visualization of reconstructed data with CF ≈ 21.0.

59

5 Results

Figure 5.15: Visualization of reconstructed data with PSNR ≈ 38.0.

60

5 Results

Figure 5.16: Visualization of reconstructed data with absolute error = 0.1

61

5 Results

Absolute Error (K) Ours SZ [20] ZFP [19]
0.0001 19.68 2.02 1.69
0.001 16.89 1.97 1.54
0.01 16.93 1.97 1.43
0.1 14.02 1.97 1.30
0.3 10.32 1.96 1.19
0.5 9.15 1.96 1.14
0.7 8.64 1.97 1.15
1.0 8.30 1.97 1.07

Table 5.7: Compression + decompression speeds in seconds.

4.76, respectively. The PSNR is the same in our compression algorithm and SZ’s, i.e,
our compression algorithm achievs higher CF while having the same recontruction
quality as SZ. zfp reaches a higher PSNR since the actual absolute error is 0.02 and
not 0.1 reducing the MSE, thus increasing the PSNR.

Next, we evaluated the execution time of the three compression algorithms. Table
5.7 shows the compression plus decompression time gotten by each of them. The
results show that our compression algorithm can be ∼ 8× slower than SZ and ∼ 19×
than ZFP. The operations of the convolutional AE are done in a GPU and consists of
a fixed number of operations making the lossless encoders the reason why the com-
pression algorithm takes such amounts of time for compressing and decompressing
the values. The execution time of our algorithm varies according the absolute error.
The higher the absolute error, the faster it compresses and decompresses. This is due
to the error array depending on the amount of residuals outside the absolute error.
The next chapter summarizes the achieved results and provides recommendations
for improvement of our compression algorithm.

62

6 Conclusion and Recommendations

In this thesis, an error-bounded lossy compression algorithm for climate data with fo-
cus on high CFs has been designed, implemented and tested. The algorithm combines
lossless residual compression with convolutional AEs to compress and decompress
climate data. We studied the convolutional AE’s behaviour by testing different CFs
and providing extra information to the network such as the coordinates and the land-
sea mask. We showed that the number of convolutional layers plays an important
role in the performance of the compression algorithm and providing the surface type
to the model improved the reconstruction of climate data. We tested different lossless
encoders for the latent representation and the residuals, showing that bzip2 and fpzip
reach the highest CF. Two different approaches for quantizing the residuals were also
tested, demonstrating that a large part of the CF depends on the efficient compression
of the residuals. Our compression algorithm was evaluated by comparing it with
two state-of-the-art floating-point lossy compression algorithms, SZ and zfp. After
parameter tunning, our compression algorithm achieved higher CFs than SZ and
zfp do under the same error-bounds ([1E-3, 1]), showing an improvement by about
1.3 to 4 times higher compression factors, demonstrating a great potential for lossy
compression with focus on high CFs. Our compression algorithm also achieves equal
or a higher visual quality compared with SZ for the same absolute errors. Regarding
compression/decompression speeds, our compression algorithm is 8× ∼ 19× slower
than SZ and zfp.

Our compression algorithm has difficulties compressing data with an absolute error
less than 0.1 due to the performance of the convolutional AE. We suggest trying out a
Wasserstein Autoencoder, presented in Liu et. al [43], to test if errors of low threshold
can be reduced. Moreover, instead of using ReLU as activation function, generalized
divisive normalization (GDN) could be used since they have been proven to help
the model converge faster in comparison to ReLU [53] for compression purposes.
Another approach to improve the convolutional AE’s reconstruction is to use a pair of
de-/convolutional layers for one upsampling/downsampling operation [32]. Instead
of upsampling/downsampling the data consecutively, a de-/convolutional layer (with
stride 1) is added before the upsampling/downsampling convolutional layer. To
improve the processing of residuals other coders like Huffman coding [46] could be
tested as well as storing the residuals differently for high absolute errors.

63

List of Figures

2.1 Perceptron with two inputs and one output. 8
2.2 Multi-layer Perceptron with one hidden layer. 9
2.3 Example of a CNN architecture [29]. 13
2.4 Convolutional layer. 15
2.5 Example of a convolutional autoencoder. Adapted from [34]. 16
2.6 Hypercube data structure [40]. 19

4.1 Compression algorithm architecture. 29
4.2 Encoder output. 31
4.3 Visualization of a 2-dimensional chunk. 32
4.4 Division of data into chunks. 32
4.5 Architecture of the AE. 34
4.6 Quantization. 37
4.7 Differential coding example. 38

5.1 CF achieved with different number of convolutional layers. 42
5.2 Visualization of temperature and land-sea mask values. 43
5.3 Encoded latitude and longitude. 45
5.4 Visualization of temperature and land-sea mask values. 45
5.5 Train and validation losses achieved by the models with different inputs. 46
5.6 CF gotten with different residual encoding methods. 47
5.7 MSE achieved by the models with different parameters. 50
5.8 CF achieved with the best two models gotten through hypeparameter

tuning. 51
5.9 Reconstruction of the original data with the convolutional AE. 53
5.10 Residuals gotten with different absolute errors. 55
5.11 Histogram of the residuals with different absolute errors. 56
5.12 Compressed output space consumption. 57
5.13 CF comparison (Our model vs. SZ vs. zfp). 58
5.14 Visualization of reconstructed data with CF ≈ 21.0. 59
5.15 Visualization of reconstructed data with PSNR ≈ 38.0. 60
5.16 Visualization of reconstructed data with absolute error = 0.1 61

64

List of Tables

2.1 ERA5 dataset characteristics [39]. 18

5.1 Percentage of space consumption with different quantization methods. 47
5.2 CF with different lossless encoders. 48
5.3 CF by coding the latent representation with bzip2 [84] and fpzip [18]. 48
5.4 Parameters and validation loss of the two best models. 51
5.5 Convolutional AE Architecture. 52
5.6 Percentage of residuals values above absolute error. 52
5.7 Compression + decompression speeds in seconds. 62

65

Bibliography

[1] P. Dueben and P. Bauer. “Challenges and design choices for global weather and
climate models based on machine learning”. In: Geoscientific Model Development
11 (Oct. 2018), pp. 3999–4009. doi: https://doi.org/10.5194/gmd-11-3999-
2018.

[2] N. Hübbe, A. Wegener, J. M. Kunkel, Y. Ling, and T. Ludwig. “Evaluating
Lossy Compression on Climate Data”. In: Supercomputing. Ed. by J. M. Kunkel,
T. Ludwig, and H. W. Meuer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 343–356. isbn: 978-3-642-38750-0.

[3] M. Asch, T. Moore, R. Badia, et al. “Big data and extreme-scale computing:
Pathways to Convergence-Toward a shaping strategy for a future software
and data ecosystem for scientific inquiry”. In: International Journal of High
Performance Computing Applications 32 (4 July 2018), pp. 435–479. doi: https:
//doi.org/10.1177/1094342018778123.

[4] K. Sayood. Introduction to data compression. Elsevier, 2005. isbn: 978-0-126-20862-
7.

[5] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of Floating-
Point Data”. In: IEEE transactions on visualization and computer graphics 12 (Sept.
2006), pp. 1245–50. doi: https://doi.org/10.1109/TVCG.2006.143.

[6] U. Jayasankar, V. Thirumal, and D. Ponnurangam. “A survey on data com-
pression techniques: From the perspective of data quality, coding schemes,
data type and applications”. In: Journal of King Saud University - Computer
and Information Sciences 33.2 (2021), pp. 119–140. issn: 1319-1578. doi: https:
//doi.org/10.1016/j.jksuci.2018.05.006.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge,
2016. isbn: 978-0-262-03561-3.

[8] P. Dueben et al. Machine Learning at ECMWF: A roadmap for the next 10 years. Jan.
2021. url: https://www.ecmwf.int/sites/default/files/elibrary/2021/
19877-machine-learning-ecmwf-roadmap-next-10-years.pdf.

[9] C. K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S.
Agrawal, J. Hickey, and N. Kalchbrenner. MetNet: A Neural Weather Model for
Precipitation Forecasting. 2020. arXiv: 2003.12140 [cs.LG].

66

https://doi.org/https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/https://doi.org/10.1177/1094342018778123
https://doi.org/https://doi.org/10.1177/1094342018778123
https://doi.org/https://doi.org/10.1109/TVCG.2006.143
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.05.006
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.05.006
https://www.ecmwf.int/sites/default/files/elibrary/2021/19877-machine-learning-ecmwf-roadmap-next-10-years.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2021/19877-machine-learning-ecmwf-roadmap-next-10-years.pdf
https://arxiv.org/abs/2003.12140

Bibliography

[10] J. Hwang, P. Orenstein, J. Cohen, K. Pfeiffer, and L. Mackey. Improving Subsea-
sonal Forecasting in the Western U.S. with Machine Learning. 2019. arXiv: 1809.
07394 [stat.AP].

[11] F. Falasca, J. Crétat, P. Braconnot, and A. Bracco. “Spatiotemporal complexity
and time-dependent networks in sea surface temperature from mid- to late
Holocene”. In: The European Physical Journal Plus 135 (5 May 2020), p. 392. doi:
https://doi.org/10.1140/epjp/s13360-020-00403-x.

[12] M. Taillardat and O. Mestre. “From research to applications – examples of
operational ensemble post-processing in France using machine learning”. In:
Nonlinear Processes in Geophysics 27 (2 May 2020), pp. 329–347. doi: https:
//doi.org/10.5194/npg-27-329-2020.

[13] NetCDF. url: https://www.unidata.ucar.edu/software/netcdf/ (visited on
06/2021).

[14] U. Çayoğlu. “Compression Methods for Structured Floating-Point Data and
their Application in Climate Research”. dissertation. Karlsruhe Institute of Tech-
nology, 2019. url: https://publikationen.bibliothek.kit.edu/1000105055.

[15] A. Glaws, R. King, and M. Sprague. “Deep learning for in situ data compression
of large turbulent flow simulations”. In: Phys. Rev. Fluids 5 (11 Nov. 2020),
p. 114602. doi: 10.1103/PhysRevFluids.5.114602. url: https://link.aps.
org/doi/10.1103/PhysRevFluids.5.114602.

[16] bzip2. Sept. 2018. url: http://www.bzip.org.

[17] bz2-Support for bzip2 compression. May 2021. url: https://docs.python.org/3/
library/bz2.html.

[18] fpzip: Compressed Large Multidimensional Floating-Point Arrays. url: https://
computing.llnl.gov/projects/fpzip.

[19] zfp 0.5.5 documentation. url: https://zfp.readthedocs.io/en/release0.5.5/
introduction.html.

[20] SZ Lossy Compression. url: https://szcompressor.org.

[21] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki, S. Klasky,
M. Wolf, T. Liu, and Z. Qiao. “Understanding and modeling lossy compression
schemes on HPC scientific data”. In: Proceedings - 2018 IEEE 32nd International
Parallel and Distributed Processing Symposium, IPDPS 2018. Proceedings - 2018
IEEE 32nd International Parallel and Distributed Processing Symposium, IPDPS
2018. United States: Institute of Electrical and Electronics Engineers Inc., Aug.
2018, pp. 348–357. isbn: 9781538643686. doi: 10.1109/IPDPS.2018.00044.

67

https://arxiv.org/abs/1809.07394
https://arxiv.org/abs/1809.07394
https://doi.org/https://doi.org/10.1140/epjp/s13360-020-00403-x
https://doi.org/https://doi.org/10.5194/npg-27-329-2020
https://doi.org/https://doi.org/10.5194/npg-27-329-2020
https://www.unidata.ucar.edu/software/netcdf/
https://publikationen.bibliothek.kit.edu/1000105055
https://doi.org/10.1103/PhysRevFluids.5.114602
https://link.aps.org/doi/10.1103/PhysRevFluids.5.114602
https://link.aps.org/doi/10.1103/PhysRevFluids.5.114602
http://www.bzip.org
https://docs.python.org/3/library/bz2.html
https://docs.python.org/3/library/bz2.html
https://computing.llnl.gov/projects/fpzip
https://computing.llnl.gov/projects/fpzip
https://zfp.readthedocs.io/en/release0.5.5/introduction.html
https://zfp.readthedocs.io/en/release0.5.5/introduction.html
https://szcompressor.org
https://doi.org/10.1109/IPDPS.2018.00044

Bibliography

[22] G. Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow :
Concepts, Tools, and Techniques to Build Intelligent Systems. Vol. Second edition.
O’Reilly Media, 2019. isbn: 9781492032649. url: http://www.redi-bw.de/
db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%
3dnlebk%26AN%3d2245240%26site%3dehost-live.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
2015. arXiv: 1512.03385 [cs.CV].

[24] J. Vojt. “Deep neural networks and their implementation”. MA thesis. Charles
University in Prague, 2016.

[25] R. Reed and R. J. MarksII. Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. MIT Press, 1999.

[26] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann
Machines”. In: ICML’10. Omnipress, 2010, pp. 807–814. isbn: 9781605589077.

[27] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neural Networks.”
In: AISTATS. Ed. by G. J. Gordon, D. B. Dunson, and M. Dudík. Vol. 15. JMLR
Proceedings. JMLR.org, 2011, pp. 315–323.

[28] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Comprehensive Survey
on Graph Neural Networks. 2019. url: http://arxiv.org/abs/1901.00596.

[29] H. Wang, A. Cruz-Roa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman,
J. Tomaszewski, F. González, and A. Madabhushi. “Mitosis detection in breast
cancer pathology images by combining handcrafted and convolutional neural
network features”. In: Journal of Medical Imaging 1 (Dec. 2014), pp. 1–8. doi:
10.1117/1.JMI.1.3.034003.

[30] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. “A Survey of the Recent Ar-
chitectures of Deep Convolutional Neural Networks”. In: CoRR abs/1901.06032
(2019). arXiv: 1901.06032. url: http://arxiv.org/abs/1901.06032.

[31] S. University. Convolutional Neural Networks (CNNs / ConvNets). url: https:
//cs231n.github.io/convolutional-networks/.

[32] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto. Performance Comparison of Convo-
lutional AutoEncoders, Generative Adversarial Networks and Super-Resolution for
Image Compression. 2018. arXiv: 1807.00270 [eess.IV].

[33] F. Chollet. Building Autoencoders in Keras. May 14, 2016. url: https://blog.
keras.io/building-autoencoders-in-keras.html.

[34] X. Guo, X. Liu, E. Zhu, and J. Yin. “Deep Clustering with Convolutional
Autoencoders”. In: Oct. 2017, pp. 373–382. isbn: 978-3-319-70095-3. doi: 10.
1007/978-3-319-70096-0_39.

68

http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d2245240%26site%3dehost-live
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d2245240%26site%3dehost-live
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d2245240%26site%3dehost-live
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1901.00596
https://doi.org/10.1117/1.JMI.1.3.034003
https://arxiv.org/abs/1901.06032
http://arxiv.org/abs/1901.06032
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://arxiv.org/abs/1807.00270
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://doi.org/10.1007/978-3-319-70096-0_39
https://doi.org/10.1007/978-3-319-70096-0_39

Bibliography

[35] N. Climate.gov. Climate Models. url: https://www.climate.gov/maps-data/
primer/climate-models.

[36] Climate datasets. url: https://climate.copernicus.eu/climate-datasets.

[37] European Centre for Medium-Range Weather Forecasts. 2021. url: https://www.
ecmwf.int.

[38] The family of ERA5 datasets. https://confluence.ecmwf.int/display/CKB/
The+family+of+ERA5+datasets. Accessed: 2021-05-21.

[39] ERA5 hourly data on pressure levels from 1979 to present. May 21, 2021. url:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels?tab=overview.

[40] K. Rogers. Scientific modeling. url: https://www.britannica.com/science/
scientific-modeling.

[41] A. Buetti-Dinh, V. Galli, S. Bellenberg, O. Ilie, M. Herold, S. Christel, M. Boretska,
I. V. Pivkin, P. Wilmes, W. Sand, M. Vera, and M. Dopson. “Deep neural
networks outperform human expert’s capacity in characterizing bioleaching
bacterial biofilm composition”. In: Biotechnology Reports 22 (2019), e00321. issn:
2215-017X. doi: https://doi.org/10.1016/j.btre.2019.e00321. url: https:
//www.sciencedirect.com/science/article/pii/S2215017X18301954.

[42] T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He. “High-Ratio Lossy Com-
pression: Exploring the Autoencoder to Compress Scientific Data”. In: IEEE
Transactions on Big Data (2021), pp. 1–1. doi: 10.1109/TBDATA.2021.3066151.

[43] J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and F. Cappello.
Exploring Autoencoder-Based Error-Bounded Compression for Scientific Data. 2021.
arXiv: 2105.11730 [cs.LG].

[44] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-Wasserstein Au-
toencoder: An Embarrassingly Simple Generative Model. 2018. arXiv: 1804.01947
[cs.LG].

[45] D. Tao, S. Di, Z. Chen, and F. Cappello. “Significantly Improving Lossy Compres-
sion for Scientific Data Sets Based on Multidimensional Prediction and Error-
Controlled Quantization”. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (May 2017). doi: 10.1109/ipdps.2017.115. url:
http://dx.doi.org/10.1109/IPDPS.2017.115.

[46] D. A. Huffman. “A Method for the Construction of Minimum-Redundancy
Codes”. In: Proceedings of the IRE 40.9 (1952), pp. 1098–1101. doi: 10.1109/
JRPROC.1952.273898.

69

https://www.climate.gov/maps-data/primer/climate-models
https://www.climate.gov/maps-data/primer/climate-models
https://climate.copernicus.eu/climate-datasets
https://www.ecmwf.int
https://www.ecmwf.int
https://confluence.ecmwf.int/display/CKB/The+family+of+ERA5+datasets
https://confluence.ecmwf.int/display/CKB/The+family+of+ERA5+datasets
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://www.britannica.com/science/scientific-modeling
https://www.britannica.com/science/scientific-modeling
https://doi.org/https://doi.org/10.1016/j.btre.2019.e00321
https://www.sciencedirect.com/science/article/pii/S2215017X18301954
https://www.sciencedirect.com/science/article/pii/S2215017X18301954
https://doi.org/10.1109/TBDATA.2021.3066151
https://arxiv.org/abs/2105.11730
https://arxiv.org/abs/1804.01947
https://arxiv.org/abs/1804.01947
https://doi.org/10.1109/ipdps.2017.115
http://dx.doi.org/10.1109/IPDPS.2017.115
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898

Bibliography

[47] Y. Collet. Zstandard. 2016. url: https://facebook.github.io/zstd/#other-
languages (visited on 06/2021).

[48] Y. Pan, F. Zhu, T. Gao, and H. Yu. “Adaptive Deep Learning based Time-Varying
Volume Compression”. In: 2019 IEEE International Conference on Big Data (Big
Data). 2019, pp. 1187–1194. doi: 10.1109/BigData47090.2019.9006146.

[49] B. C. Mummadisetty, A. Puri, E. Sharifahmadian, and S. Latifi. “Lossless Com-
pression of Climate Data”. In: Progress in Systems Engineering. Ed. by H. Sel-
varaj, D. Zydek, and G. Chmaj. Cham: Springer International Publishing, 2015,
pp. 391–400. isbn: 978-3-319-08422-0.

[50] J. A. Saenz, N. Lubbers, and N. M. Urban. “Dimensionality-Reduction of
Climate Data using Deep Autoencoders”. In: arXiv e-prints, arXiv:1809.00027
(Aug. 2018), arXiv:1809.00027.

[51] J. Choi, M. Churchill, Q. Gong, S.-H. Ku, J. Lee, A. Rangarajan, S. Ranka, D.
Pugmire, C. Chang, and S. Klasky. “Neural data compression for physics plasma
simulation”. In: Neural Compression: From Information Theory to Applications
– Workshop @ ICLR 2021. 2021. url: https://openreview.net/forum?id=
eEp5uad8bM.

[52] GNU GZIP. Aug. 9, 2020. url: https://www.gnu.org/software/gzip/.

[53] J. Ballé, V. Laparra, and E. P. Simoncelli. “End-to-end Optimized Image Com-
pression”. In: CoRR abs/1611.01704 (2016). arXiv: 1611 . 01704. url: http :
//arxiv.org/abs/1611.01704.

[54] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy Image Compression with
Compressive Autoencoders. 2017. arXiv: 1703.00395 [stat.ML].

[55] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang. Real-Time Single Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network. 2016. arXiv: 1609.05158 [cs.CV].

[56] M. Li, W. Zuo, S. Gu, J. You, and D. Zhang. Learning Content-Weighted Deep
Image Compression. 2019. arXiv: 1904.00664 [cs.CV].

[57] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool. Conditional
Probability Models for Deep Image Compression. 2019. arXiv: 1801.04260 [cs.CV].

[58] JPEG 1. url: https://jpeg.org/jpeg/index.html (visited on 06/2021).

[59] JPEG 2000. url: https://jpeg.org/jpeg2000/index.html (visited on 06/2021).

[60] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. Generative Adversarial Networks. 2014. arXiv: 1406.2661
[stat.ML].

70

https://facebook.github.io/zstd/#other-languages
https://facebook.github.io/zstd/#other-languages
https://doi.org/10.1109/BigData47090.2019.9006146
https://openreview.net/forum?id=eEp5uad8bM
https://openreview.net/forum?id=eEp5uad8bM
https://www.gnu.org/software/gzip/
https://arxiv.org/abs/1611.01704
http://arxiv.org/abs/1611.01704
http://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1703.00395
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1904.00664
https://arxiv.org/abs/1801.04260
https://jpeg.org/jpeg/index.html
https://jpeg.org/jpeg2000/index.html
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661

Bibliography

[61] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Representations
by Back-propagating Errors”. In: Nature 323.6088 (1986), pp. 533–536. doi:
10.1038/323533a0. url: http://www.nature.com/articles/323533a0.

[62] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. V. Gool. Generative
Adversarial Networks for Extreme Learned Image Compression. 2019. arXiv: 1804.
02958 [cs.CV].

[63] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa. DeepZip: Lossless Data
Compression using Recurrent Neural Networks. 2018. arXiv: 1811.08162 [cs.CL].

[64] B. F. Lossless Data Compression with Neural Networks Long Short-Term Memory
Model. 2019. url: https://bellard.org/nncp/nncp.pdf.

[65] A. H. Baker, D. M. Hammerling, S. A. Mickelson, H. Xu, M. B. Stolpe, P. Naveau,
B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe, F. De Simone, F. Carbone,
C. N. Gencarelli, J. M. Dennis, J. E. Kay, and P. Lindstrom. “Evaluating lossy
data compression on climate simulation data within a large ensemble”. In:
Geoscientific Model Development 9.12 (2016), pp. 4381–4403. doi: 10.5194/gmd-9-
4381-2016. url: https://gmd.copernicus.org/articles/9/4381/2016/.

[66] D. Hammerling, A. Baker, A. Pinard, and P. Lindstrom. “A Collaborative Effort
to Improve Lossy Compression Methods for Climate Data”. In: Nov. 2019. doi:
10.1109/DRBSD-549595.2019.00008.

[67] X. Huang, Y. Ni, D. Chen, S. Liu, H. Fu, and G. Yang. “Czip: A Fast Lossless
Compression Algorithm for Climate Data”. In: Int. J. Parallel Program. 44.6
(2016), pp. 1248–1267. doi: 10.1007/s10766-016-0403-z. url: https://doi.
org/10.1007/s10766-016-0403-z.

[68] U. Cayoglu, F. Tristram, J. Meyer, T. Kerzenmacher, P. Braesicke, and A. Streit.
“Concept and Analysis of Information Spaces to improve Prediction-Based
Compression”. In: 2018 IEEE International Conference on Big Data (Big Data). 2018,
pp. 3392–3401. doi: 10.1109/BigData.2018.8622313.

[69] U. Cayoglu, F. Tristram, J. Meyer, J. Schröter, T. Kerzenmacher, P. Braesicke,
and A. Streit. “Data Encoding in Lossless Prediction-Based Compression Algo-
rithms”. In: 2019 15th International Conference on eScience (eScience). 2019, pp. 226–
234. doi: 10.1109/eScience.2019.00032.

[70] U. Cayoglu, J. Schröter, J. Meyer, A. Streit, and P. Braesicke. “A Modular
Software Framework for Compression of Structured Climate Data”. In: Pro-
ceedings of the 26th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. SIGSPATIAL ’18. Seattle, Washington: Associ-
ation for Computing Machinery, 2018, pp. 556–559. isbn: 9781450358897. doi:
10.1145/3274895.3274897. url: https://doi.org/10.1145/3274895.3274897.

71

https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
https://arxiv.org/abs/1804.02958
https://arxiv.org/abs/1804.02958
https://arxiv.org/abs/1811.08162
https://bellard.org/nncp/nncp.pdf
https://doi.org/10.5194/gmd-9-4381-2016
https://doi.org/10.5194/gmd-9-4381-2016
https://gmd.copernicus.org/articles/9/4381/2016/
https://doi.org/10.1109/DRBSD-549595.2019.00008
https://doi.org/10.1007/s10766-016-0403-z
https://doi.org/10.1007/s10766-016-0403-z
https://doi.org/10.1007/s10766-016-0403-z
https://doi.org/10.1109/BigData.2018.8622313
https://doi.org/10.1109/eScience.2019.00032
https://doi.org/10.1145/3274895.3274897
https://doi.org/10.1145/3274895.3274897

Bibliography

[71] S. Di and F. Cappello. “Fast Error-Bounded Lossy HPC Data Compression with
SZ”. In: 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 2016, pp. 730–739. doi: 10.1109/IPDPS.2016.11.

[72] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello. “Error-
Controlled Lossy Compression Optimized for High Compression Ratios of
Scientific Datasets”. In: 2018 IEEE International Conference on Big Data (Big Data).
2018, pp. 438–447. doi: 10.1109/BigData.2018.8622520.

[73] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. “Out-of-core compres-
sion and decompression of large n-dimensional scalar fields”. In: Computer
Graphics Forum (2003). issn: 1467-8659. doi: 10.1111/1467-8659.00681.

[74] P. Lindstrom. “Fixed-Rate Compressed Floating-Point Arrays”. In: IEEE Transac-
tions on Visualization and Computer Graphics 20 (Aug. 2014). doi: 10.1109/TVCG.
2014.2346458.

[75] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik. “Prediction of
aerodynamic flow fields using convolutional neural networks”. In: Computa-
tional Mechanics 64.2 (June 2019), pp. 525–545. issn: 1432-0924. doi: 10.1007/
s00466-019-01740-0. url: http://dx.doi.org/10.1007/s00466-019-01740-
0.

[76] E. Kreyszig, H. Kreyszig, and E. J. Norminton. Advanced Engineering Mathematics.
Tenth. Hoboken, NJ: Wiley, 2011. isbn: 0470458364.

[77] M. Kloewer, M. Razinger, J. Dominguez, et al. Compressing atmospheric data
into its real information. June 2021. doi: https://doi.org/10.21203/rs.3.rs-
590601/v1.

[78] J. Lockerman and A. Kulkarni. Time-series compression algorithms, explained. Apr.
2020. url: https://blog.timescale.com/blog/time-series-compression-
algorithms-explained/.

[79] T. Duy Trác. Sparse Signal Processing. url: https://slidetodoc.com/sparse-
signal-processing-trn-duy-trc-ece-department/f.

[80] zlib — Compression compatible with gzip. July 2021. url: https://docs.python.
org/3/library/zlib.html.

[81] lzma. url: https://docs.python.org/3.6/library/lzma.html.

[82] Keras. url: https://keras.io/.

[83] TensorFlow. url: https://www.tensorflow.org/.

[84] bz2 — Support for bzip2 compression. url: https://docs.python.org/3/library/
bz2.html.

72

https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1109/BigData.2018.8622520
https://doi.org/10.1111/1467-8659.00681
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/s00466-019-01740-0
http://dx.doi.org/10.1007/s00466-019-01740-0
http://dx.doi.org/10.1007/s00466-019-01740-0
https://doi.org/https://doi.org/10.21203/rs.3.rs-590601/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-590601/v1
https://blog.timescale.com/blog/time-series-compression-algorithms-explained/
https://blog.timescale.com/blog/time-series-compression-algorithms-explained/
https://slidetodoc.com/sparse-signal-processing-trn-duy-trc-ece-department/f
https://slidetodoc.com/sparse-signal-processing-trn-duy-trc-ece-department/f
https://docs.python.org/3/library/zlib.html
https://docs.python.org/3/library/zlib.html
https://docs.python.org/3.6/library/lzma.html
https://keras.io/
https://www.tensorflow.org/
https://docs.python.org/3/library/bz2.html
https://docs.python.org/3/library/bz2.html

Bibliography

[85] BwUniCluster 2.0. June 2021. url: https://wiki.bwhpc.de/e/Category:
BwUniCluster_2.0.

[86] M. Götz. HDFML Execution Environment Reproducibility Report. url: https:
//b2share.eudat.eu/records/cb02356f7dc5445cbf0952324f23d90c.

[87] Forschungszentrum Jülich. url: https://www.fz-juelich.de/portal/EN/Home/
home_node.html.

[88] S. Trojniak. Sea-, Lake-, and Land- Breezes: How the Temperature Difference Between
Water and Land Influences Weather Along the Coastline. Aug. 2018. url: https:
//www.globalweatherclimatecenter.com/weather- education/sea- lake-
and-land-breezes-how-the-temperature-difference-between-water-and-
land- influences- weather- along- the- coastline- photo- credit- north-
carolina-climate-office.

[89] ERA5 hourly data on single levels from 1979 to present. July 14, 2021. url: https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview.

[90] J. Bergstra and Y. Bengio. “Random Search for Hyper-Parameter Optimization”.
In: Journal of Machine Learning Research 13.10 (2012), pp. 281–305. url: http:
//jmlr.org/papers/v13/bergstra12a.html.

[91] A. Pak. Image Data Compression - Introduction to Coding. url: https://ies.
anthropomatik.kit.edu/ies/download/lehre/idc/IDC-02-Coding-Intro.
pdf.

73

https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0
https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0
https://b2share.eudat.eu/records/cb02356f7dc5445cbf0952324f23d90c
https://b2share.eudat.eu/records/cb02356f7dc5445cbf0952324f23d90c
https://www.fz-juelich.de/portal/EN/Home/home_node.html
https://www.fz-juelich.de/portal/EN/Home/home_node.html
https://www.globalweatherclimatecenter.com/weather-education/sea-lake-and-land-breezes-how-the-temperature-difference-between-water-and-land-influences-weather-along-the-coastline-photo-credit-north-carolina-climate-office
https://www.globalweatherclimatecenter.com/weather-education/sea-lake-and-land-breezes-how-the-temperature-difference-between-water-and-land-influences-weather-along-the-coastline-photo-credit-north-carolina-climate-office
https://www.globalweatherclimatecenter.com/weather-education/sea-lake-and-land-breezes-how-the-temperature-difference-between-water-and-land-influences-weather-along-the-coastline-photo-credit-north-carolina-climate-office
https://www.globalweatherclimatecenter.com/weather-education/sea-lake-and-land-breezes-how-the-temperature-difference-between-water-and-land-influences-weather-along-the-coastline-photo-credit-north-carolina-climate-office
https://www.globalweatherclimatecenter.com/weather-education/sea-lake-and-land-breezes-how-the-temperature-difference-between-water-and-land-influences-weather-along-the-coastline-photo-credit-north-carolina-climate-office
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://ies.anthropomatik.kit.edu/ies/download/lehre/idc/IDC-02-Coding-Intro.pdf
https://ies.anthropomatik.kit.edu/ies/download/lehre/idc/IDC-02-Coding-Intro.pdf
https://ies.anthropomatik.kit.edu/ies/download/lehre/idc/IDC-02-Coding-Intro.pdf

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Thesis Purpose
	Thesis Structure

	Fundamentals
	Data Compression
	Types of Compression
	Compression Metrics
	Modeling and Coding
	Relevant Compression Algorithms

	Artificial Neural Networks
	Perceptron
	Multi-layer Perceptron
	Training Process
	Loss Function
	Activation Function
	Regularization

	Convolutional Neural Networks
	Convolutional and Deconvolutional Layers
	Convolutional Autoencoder

	Climate Data
	Climate and Weather Model
	ERA5 Dataset

	Related work
	Compression of Climate Data with Machine Learning
	Compression of Other Data with Machine Learning
	Compression of Climate Data with non ML-based Compression methods
	Compression Data with non ML-based Compression methods

	Methodology
	Architecture
	Data Pre-processing and Post-processing
	Convolutional Autoencoder
	Residuals, Quantization and Lossless Coding

	Implementation

	Results
	Experimental Setup
	Number of Convolutional Layers
	Adding Climate Information
	Residuals Encoding
	Hyperparameter Optimization
	Compression Algorithm
	Comparison with the State-of-the-Art

	Conclusion and Recommendations
	List of Figures
	List of Tables
	Bibliography

