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ABSTRACT

In this paper a hazard detection and landing site selection
algorithm, based on a single, visible light, camera acqui-
sition, processed by Artificial Neural Networks (ANNs),
is presented. The system is sufficiently light to run on-
board a spacecraft during the landing phase of a planetary
exploration mission. Unsafe terrain items are detected
and arranged in a hazard map, exploited to select the best
place to land, in terms of safety, guidance constraints and
scientific interest. A set of statistical indexes is extracted
from the raw frame, progressively at different scales in
order to characterize features of different size and depth.
Then, a set of feed-forward ANNs interprets these param-
eters to produce a hazard map, exploited to select a new
target landing site. Validation is carried out by the appli-
cation of the algorithm to images not considered during
the training phase. Landing sites maps are compared to
ground-truth solution, and performances are assessed in
terms of false positives ratio, false negatives ratio and fi-
nal selected target safety. Results for different scenarios
are shown and discussed, in order to highlight the effec-
tiveness of the proposed system.

Key words: Hazard Detection; Planetary Landing;
Vision-based Navigation; Spacecraft Autonomy; Artifi-
cial Neural Networks.

1. INTRODUCTION

In recent years, a renewed interest in space exploration
had brought to the development of several missions in
which the Entry Descent and Landing phase fulfils a crit-
ical role. The high level of precision and safety required
by the next space missions generation makes the pres-
ence of a Hazard Detection and Avoidance (HDA) sys-
tem mandatory. An autonomous landing system should
be able to scan the area around the landing site, to ver-
ify if the nominal target can be reached with the required
level of safety and, if not, to seek for an alternative safe
one. Then, a new landing path toward the updated tar-
get should be computed, followed by the execution of the
divert maneuver.

Four main criteria concur to determine if a landing site
can be classified as safe: visibility by sensors, surface
roughness, slopes, and available area. Areas that cannot
be analyzed by the sensors system should be classified
a priori as unsafe. At the same time, the actual archi-
tecture of the lander touchdown system (legs, airbags),
determines which are the maximum allowed dimensions
of local obstacles and slopes that maintain the probabil-
ity to avoid damages over tolerable values. Finally, the
landing site dimension must be compatible with the lan-
der footprint plus expected uncertainties due to Guidance,
Navigation and Control (GNC) system. Poor computa-
tional capabilities imposed severe restrictions over early
studies about HDA systems. Local variance over an in-
tensity image has been considered as criterion to estimate
surface roughness, together with surface major irregular-
ities detection performed by a scanning ranging laser [1].
Later, the development of more powerful systems and
specialized hardware paved the way to the development
of more complex and accurate hazard detection methods.
In the frame of the Autonomous Landing and Hazard
Avoidance Technology (ALHAT) project, carried out by
NASA since 2006, extensive studies have been conducted
on the hazard estimation based on a Digital Elevation
Map (DEM) obtained by active ranging sensors, such as
Doppler LIDAR and flash LIDAR [2]. Other methods
to reconstruct a DEM of the landing area through im-
age processing techniques, such as shape from shading
[3], stereo-vision [4] and shadow analysis [5] have been
widely investigated.

Recently our research group proved the feasibility
of HDA system based on Artificial Neural Networks
(ANNs) [6]. ANNs appear particularly attractive for
their generalization properties: in fact, once trained with
proper data, this kind of systems is able to autonomously
determine “fading” rules that describes the phenomenon
under investigation. This property is very relevant for haz-
ard detection. In fact, during algorithms development, it
is impossible to consider in advance all the types of ter-
rain morphological structures that a landing spacecraft
could potentially deal with during operations. At the
same time, ANNs working principle relies on a long se-
ries of elementary mathematical operations (sums and
multiplications), giving them a high computational effi-
ciency, compatible with real-time systems.
In this paper, a further step in the development of an
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Figure 1: Hazard Detection system neural networks logical scheme. A back propagation feed-forward network estimates
hazard index value from elementary information extracted from the image at different scales.

affordable ANN-based hazard detection system is pre-
sented. The paper is structured as following: in Section 2
the system architecture is described. The generation of
ground truth models for system training and validation
are explained in Section 3. In Section 4 obtained re-
sults and performances are assessed, while conclusions
and suggestions on future developments are expounded
in Section 5.

2. SYSTEM ARCHITECTURE

In Fig. 1 the logical scheme of the hazard detection sys-
tem is shown. For each position of the landing area, this
system assigns a hazard index, giving a measure of the
safety of that position if chosen as landing site. Hazard
index can assume any value between 0 (completely safe)
and 1 (absolutely hazardous). The hazard map computa-
tion consists in 4 stages:

1. Preprocessing: the raw image is acquired. Image
perspective correction is applied if needed.

2. Indexes extraction: image is segmented at different
scales and low level information is extracted.

3. Image elementary indexes are processed by a feed-
forward back-propagation neural network and ar-
ranged in a hazard map.

4. Target Landing Site search. Computed hazard map
is exploited to select the most attractive landing site.

In the following sections each stage is expounded in de-
tails.

2.1. Input and Preprocessing

Grayscale (8 bit, single channel) images have been con-
sidered as system input. An image size of 1024 × 1024
pixels (compatible with most of the present camera de-
vices for use in space) has been adopted.

The system considers images taken from a near vertical
descent. Small deviations from the vertical attitude can
be corrected by the application of a perspective transfor-
mation just before the hazard map computation. This type
of transformation assumes that the scene can be consid-
ered as flat. The presence of orographic reliefs introduces
an approximation acceptable only for a limited angle of
view. Anyway, further corrections can be applied if ad-
ditional information are available, e.g. by a vision-based
navigation system. Plus, in order to perform hazard de-
tection and avoidance tasks, the landing site area is re-
quired to remain in the lander cameras field of view for a
certain amount of time during the approach phase, and
maneuverability requirements on the landing trajectory
are imposed to maximize the lander divert capabilities.
These requirements exclude tightest trajectories [7], like
the ones exploited during the Apollo missions [8], limit-
ing in this way the maximum view angle during hazard
detection phase.

2.2. Indexes Extraction and ANN Input Building

Indexes extraction is a key feature for the correct haz-
ard detection with neural networks. They have to be se-
lected in order to detect correctly slopes, craters, scraps
and any kind of obstacle that make a site non-suitable
to land on. To achieve such an accomplishment with
a single camera, it has been considered to use both ze-
roth and higher differential orders of the gray-scale im-
age. Zeroth order allows to have a reference value from
which the network can understand the general brightness
of the area analyzed in the acquired image. First and sec-
ond derivatives are obviously dedicated to detect the vari-
ous features present on planetary surface detecting varia-
tions of pixel intensity. Moreover, the exploitation of var-
ious image scales (downsampling the original one) helps
the neural network understanding depth and relative dis-
tances inside the image[9]. Size of these image windows
side has been selected trading off computational time and
final hazard map resolution, that is given by the original
image size divided by small window size. It has been
opted for a small, medium and large window sides respec-
tively of sS = 4, sM = 8, sL = 16 px, therefore a final



hazard map resolution of 256×256 px. In the current ar-
chitecture, indexes provided to the neural network can be
split in two categories:

• Window-based indexes: mean µ and standard devi-
ation σ of the current window pixels are computed.
This process is performed over each of the three win-
dow sizes. The two statistical indexes are defined as:

µ =

∑N

i=1
Ii

N
, (1)

σ =

√

∑N

i=1
(Ii − µ)2

N − 1
, (2)

where Ii corresponds to the intensity of the i-th
pixel, N is the number of pixels inside the consid-
ered image window.

• Global indexes: image gradient (grad) and Lapla-
cian of Gaussian (LoG) are computed across the
whole original acquired image through custom ker-
nels convolution. Then, both resulting matrices are
downsampled to 256×256, 128×128 and 64×64, in
order to be able to assemble all the indexes in a sin-
gle matrix that represents the input for the neural net-
work. Grad is approximated through an expanded
5×5 Prewitt filter for both horizontal and vertical
directions[10]. Then, the square root of the sum
of the square of every element of directional gradi-
ents yields the total image gradient. Laplacian of
Gaussian is a second order operator widely used as
edge detector[11]. It combines a Gaussian smooth-
ing with the Laplacian operator and its general for-
mulation in continuous space is:

LoG(x, y) = −
1

πσ4

[

1−
x2 + y2

2σ2

]

e−
x
2+y

2

2σ2 , (3)

where x, y represents image coordinates, while stan-
dard deviation σ determines the characteristic length
at which the filter tends to reject noise. Here it has
been implemented through an approximated 5×5
kernel.

In addiction to these indexes, also Sun inclination angle is
assembled in the input matrix. This is necessary to make
the neural net correctly compute hazard maps with both
sharp and blunt shadows. Summarizing, indexes are 13
in total: µ, σ, Grad and LoG for each of the 3 considered
scales, plus the Sun inclination angle. Every kind of input
is normalized to unit value. Eventually, assembling of
the whole input is concluded expanding indexes relative
to bigger image windows and higher downsample levels
because of their intrinsic smaller size.

2.3. Artificial Neural Network and Hazard Map As-
sembly

After assembling, input is processed by a Feed-Forward
Back Propagation Neural Network. It consists in a very

simple single hidden-layer unit of 15 neurons with hyper-
bolic tangent function. Output is a scalar value and rep-
resents the intensity of a single pixel of the hazard map.
Thus for each input sample of 13 values, a single double
number depicting the hazard value is computed. Numeri-
cal values are bounded between (0,1) through a logarith-
mic sigmoid function, where one represents a totally un-
safe hazard map pixel, zero a completely safe one.
To relate nearby pixels, a light blur filter is applied di-
rectly on the resulting hazard map. The size of the neural

Figure 2: Sketch of the used Neural Network.

network came out to be so conveniently small after com-
parisons with much bigger counterparts: due to the fact
that almost no performance increase was registered up
to nets made of three hidden layers with fifteen neurons
each, it has been opted to privilege the simplest and light-
est architecture. Therefore, the training time was benefi-
cially reduced too.

2.4. Target Selection

Once the hazard map is computed, the system seeks for a
safe landing site. Possible sites are classified and ranked
according to the following drivers:

• Minimum hazard index

• Maximum landing area

• Minimum distance from nominal landing site (re-
quired to maximize the probability to find a landing
site actually reachable by the lander divert capabili-
ties)

In order to do that, for each of these principles, a specific
index is assigned to each landing site candidate. Then,
the three indexes are fused in a unique score exploited
to create a global landing site ranking. The image refer-
ence frame is considered. This frame is centered in the
pixel at the upper-left image corner, aligned with the im-
age borders. Distances in image reference frame can be
expressed in pixel units (the position of each pixel corre-
sponds to the number of its column and row, numerated



from 0) or in real units (meters). The transformation be-
tween them is a simple scaling conversion:

r = dresssx, (4)

where r
T is the image position vector expressed in me-

ters, xT is the same vector expressed in pixels units, dres

is the original image resolution, expressed in meters per
pixel, and ss is the length, in pixels, of the “small” win-
dow considered by neural networks during hazard map
computation. It is remarkable that a sufficiently good es-
timation of the image resolution is required in order to
correctly evaluate areas of possible landing sites. Then, at
least information about the altitude, camera field of view,
and attitude (the minimum required for image perspec-
tive correction and resolution estimation) are assumed to
be available to the system.
The following procedure is adopted:

1. The hazard map is thresholded at the maximum tol-
erable level of hazard index for a safe landing site,
denoted as zmax. All the pixels above the threshold
are classified as unsafe. Pixels under this level are
initially classified as Candidate Landing Site (CLS).

2. For each pixel at coordinates xT = [i, j] with zij ≤
zmax the Size Score rCLSij is computed as the dis-
tance from the nearest unsafe pixel.

3. A safe landing site is required to respect a minimum
dimension requirement. Modeled as a circle, its ra-
dius is required to be:

rCLSij ≥ rmin =
dfoot

2
+ egnc, (5)

where dfoot is the lander footprint diameter, and egnc

is the expected landing error due to navigation im-
precision, with the desired level of confidence. Then,
all CLSs that do not respect this constraint are dis-
charged.

4. For each CLS the Diversion Score dCLSij is com-
puted as the distance from the Nominal Landing Site
(NLS):

dCLSij = ‖rCLSij − rNLS‖, (6)

where rCLSij is the metric position of the CLS at im-
age coordinates, and rNLS is the metric position of
the NLS.

5. The Safety Score zCLSij of each CLS is obtained by
the mean of the hazard index of the pixels contained
in the circle centered at the CLSij of radius rCLSij .

6. The three scores are normalized to make their values
to the same order of magnitude. Than, a global score
lCLSij is obtained as:

lCLSij = w
T





r̃CLSij

1− d̃CLSij

1− z̃CLSij



 , (7)

where wT is a vector of weights, introduced in order
to give to the user the faculty to confer more rela-
tive importance to one index with respect to others.
Symbols marked with a tilde stand for normalized
values.

7. Finally, the CLS with the larger global score is se-
lected as Target Landing Site (TLS).

3. NETWORK TRAINING

ANNs performance depend widely on the completeness
and coherence of the dataset used to train the network.
In the specific case of HDA systems, the type of training
set must be also tailored on the celestial body target of
the mission. In this paper, a lunar landing case is con-
sidered. True lunar images present several criticalities:
image metadata (model, position, and attitude of the cam-
era when the picture is taken) are scarcely available, as
well as detailed model of the terrain depicted, required to
obtain the correspondent ground truth solution. On the
contrary artificial images make possible an objective and
precise ground truth reconstruction, being all the setting
and the 3D model used for image generation completely
known. Despite that, an high level of photorealism is re-
quired to preserve coherence.
In this work, a dataset of 98 images has been generated
and exploited for training and testing purposes. Images
are taken from random altitude between 2000m (an alti-
tude inside the interval in which HDA system is required
to operate [12]), and they are divided into 3 subsets: train-
ing, validation and test. The training set (67 images)
is exploited to directly optimize the network weights
with a backpropagation algorithm; network overfitting is
avoided when the RMS error, evaluated on the valida-
tion set (23 images), reach a minimum (early stopping
method). The test set, made up of 8 images, is exploited
to assess the system performances (see Sec. 4).

3.1. Training Set Building

High resolution lunar DEMs obtained from LROC data1,
with a variable resolution between 2 and 5 m/point, have
been used as starting point for the creation of artifi-
cial images. First, DEMs resolution is improved up to
0.3m/point, by adding fractal noise, small craters and
boulders [13]. Craters deposition respects the statisti-
cal distribution observed on the real lunar surface, as
well as the real craters formation process [14], while
craters morphology follows empirical morphometric re-
lations obtained from lunar imagery [15]. Finally, the
camera frame is rendered in POV-Ray 2 with the desired
settings for camera, position, and attitude with realistic

1Courtesy of NASA and Arizona State University.

http://wms.lroc.asu.edu/lroc/rdr product select, last visit on: May

1, 2015.
2Persistence of Vision Raytracer (Version 3.7) [Computer software].

Retrieved from http://www.povray.org/download/



illumination conditions. A pinhole camera model, with a
60° angle of view has been adopted.

3.2. Ground-truth Solution Computation

Slopes and roughness can be extracted directly from
DEM data. For each DEM point, a surrounding circu-
lar window with diameter equal to the lander footprint is
considered: the slope is computed as the inclination of the
mean plane obtained by a least squares approximation of
the points in the window. The plane is expressed by the
equation:

Z = aX + bY + c, (8)

where X and Y are the coordinates of the points in the
window, and Z is the altitude. Then, the plane inclination
S is obtained as:

S = tan−1
(

√

a2 + b2
)

. (9)

Roughness R is estimated as the difference between the
maximum and the minimum deviation of the window
points from the mean plane:

R = max
(

Zi − (aXi + bYi + c)
)

−min
(

Zi − (aXi + bYi + c)
)

, (10)

where the subscript i denotes the i-th DEM point inside
the window. Once slopes and roughness maps are avail-
able, they are converted in camera image coordinates by a
perspective transformation, computed through rendering
software. Then, they are exploited to obtain the corre-
spondent ground-truth hazard map. Each point is consid-
ered safe if respect the following conditions:

• S ≤ Smax,

• R ≤ Rmax,

• the point is not in shadow.

Shadow map is easily obtained by the application of a
threshold on the camera image histogram. At each pixel
of the camera image is assigned the hazard index 0 (per-
fectly safe) if respects all the conditions mentioned above.
Pixels in shadow are considered as out of the sensor range,
and are then considered as completely unsafe (hazard in-
dex 3). Hazard index 1 is assigned to those pixels that
fail only one of the tests on slope and roughness, while
the value 2 is assigned to those ones that fail both the
tests. Then, the obtained hazard map is normalized to
bring back the hazard index in the interval [0, 1]. At
this stage the ground-truth hazard map has the same res-
olution of the camera image. In the last step, the map
size is decreased up to the resolution computed by ANNs
(256 × 256 for a 1024 × 1024 px frame) by applying a
Gaussian pyramid. The downsampling process increases

the hazard map smoothness, making easier the ANNs
training process (feed-forward neural network are less
effective in reproducing discontinuous functions). Fig-
ure 3a reports an example of artificial image, obtained
from a real DEM of the Manilius crater floor, while the
correspondent ground truth hazard map is depicted in
Fig. 3b. Based on this hazard map, is possible to com-
pute the true safety of the landing sites with the algorithm
presented in Sec. 2.4.

4. PERFORMANCE ASSESSMENT

The system performance is verified by comparison with
the ground truth solution of a test set, which consists of
four landscapes with two different sun inclination angles
(15° and 80°) for a total of 8 images. For each image,
from the correspondent ground truth hazard map, the pull
of the real safe landing sites is computed through the
procedure described in Sec. 2.4 with a safety threshold
zmax = 0.30. A footprint dfoot = 3m and a navigation
error egnc = 15m (3σ) have been considered.
ANNs are not expected to exactly reproduce the original
ground truth hazard map; instead an approximation of
them is expected. In Fig. 3 an example of hazard map
computed by the ANN system is shown. It is possible
to see how all the large scale hazardous features are cor-
rectly detected; the network response tends to be conser-
vative, with a mean hazard index higher than the ground
truth solution. For these reasons, the safety threshold zmax

used in the target search is not required to be equal to the
value used in ground truth computation; plus, the actual
ranking of the landing sites is affected by the choice of the
weights vector w. The 4 parameters (the safety threshold
plus the 3 weights) should be then tuned in order to re-
produce the desired behavior. The adopted optimization
criteria are:

• The first ranked target landing site shall be always
a true positive. Also if the distance from the NLS
is taken into account in the sites ranking, there is
always a possibility that the guidance is not able to
find a feasible trajectory to the selected target. Then,
this requirement is extended to the first 2 landing
sites to have always a backup target.

• The total number of false positives should be mini-
mized;

• The total number of false negatives should be mini-
mized.

A multi-objective optimization has been performed to op-
timize the algorithm capabilities in terms of safety of the
landing site. The optimization has been run in Matlab®

environment with an elitist variant of NSGA-II algorithm
[16] with 100 individuals. As preliminary attempt, 2 ob-
jective functions have been taken into account:



(a) Original frame. (b) Ground truth hazard map. (c) ANN computed hazard map and TLS.

Figure 3: Hazard map computation. Comparison between original image (a), ground truth (b) and computed solution (c).
It can be seen as ANNs tends to be conservative with a more diffuse hazard index. The small red circle at the top of figure
3c indicates the TLS found.

• The sorting position of the first false positive target
(to be maximized);

• The maximum number of false positives in the
whole test (to be minimized).

The following optimization constraints have been consid-
ered:

• hazard index threshold between 0.20 and 0.30;

• landing site selection weights between 0 and 1;

• sum of landing site weights equal to 1.

At the end of the optimization 35 quadruplets (hazard
threshold, weights) resulted optimal. Among these op-
timal values, it has been selected a threshold of 0.24 and
weights equal to (0.0067581, 0.50467, 0.48794). With
such values, performances on the 8 images of the test set
are evaluated. At least 4 true positives landing sites has
been identified in every test image, with a peak of 438.
An average of 5634 false negatives has been recorded,
mainly because of the very low hazard threshold adopted.
An average of 6.5 false positives landing sites occurred
in the whole set. For 3 test images no false positives at
all were recorded. In the remaining 5, the average value
of the first false positive position in landing site candi-
dates ranking resulted 119.4, with only one critical case
in which occurred to be position 3.

4.1. True Images

The very same neural network and algorithm has been
also tested on real lunar images and photos taken by
Rosetta mission of the 67P/Churyumov–Gerasimenko.
Being unknown the Sun inclination angle, it has been
briefly hypothesized looking at the photos. Moreover, in
these images there is no ground truth to quantitatively test

the hazard maps with. Thus, results are to be intended
just as an example of the generalization capabilities of
the neural network and must be not intended as a valu-
able result of the hazard detection system. Anyway, the
choice of the photos was dictated by the presence of rel-
evant morphological features, that could have challenged
the system.

Moon In Fig. 4, taken by LROC Narrow Angle Cam-
era, depicting part of the Larmor Q crater floor, it is pos-
sible to spot some fractures on the surface in the lower
left hand side half, while the rest of the image is char-
acterized by diffuse roughness due to craters. In its rel-
ative hazard map (Fig. 5), the neural network seems to
have qualitatively understood the terrain features, assign-
ing a distributed high hazard value to the rough region at
top right hand side and about maximum value precisely
where fractures are located.

Figure 4: Lunar real surface image, Larmor Q
crater floor, NAC frame M151726155R, courtesy of
NASA/GSFC/ASU.



Figure 5: Computed hazard map relative to Fig. 4

67P/Churyumov–Gerasimenko The great interest of
both the scientific community and companies in small ce-
lestial bodies pushed to test the same hazard system used
for lunar images on 67P/C-G. Not many suitable images
are available for the purpose, and even less are equipped
with data the neural network should need to be as much
efficient as it can. A test on the Imhotep region is pre-
sented in Fig. 6. Such an area is composed by many
well distinct features: a planar plateau with sharp boul-
ders and rifts, developing from the center to the top of the
picture, surrounded by an irregular area full of craters and
high sloped sides. In the relative computed hazard map
(Fig. 7), the system seems to have qualitatively under-
stood hazard trends of the various areas: deep blue (safe)
for the planar area apart from the irregularities, green and
red (unsafe) for the most of the rest.

Figure 6: Comet 67P Churyumov-Gerasimenko, Imhotep
region (Photo: ESA).

Figure 7: Imhotep region computed hazard map.

4.2. Profiling

To properly estimate the computational weight of the pro-
posed HDA system, a profiling analysis has been carried
out. Gperftools, a tool released by Google under BSD
license, has been selected as main profiler; as verifica-
tion, obtained result have been crosschecked with the C++
standard library’s CPU time computation. All tests have
been performed on a Intel® Core™ i7-4712HQ CPU @
2.3GHz running 64 bit Ubuntu 14.10 GNU/Linux oper-
ative system. In each profiling test, the hazard detector
runs in a cycle for 1000 times, while the sampling fre-
quency has been set to 250Hz (the highest possible value)
to maximize the precision in runtime estimation. In order
to avoid modern processors’ automatic multi-core com-
putation, the system has been forced to run in single-
thread configuration. Gperftools registered 56 666 hits
at 250Hz, for a total time of 226.66 s, while the corre-
spondent CPU time resulted 235 s. Taking into account
the possible overhead that can affect measurements dif-
ferently with the two methods, the values are compara-
ble. The mean obtained runtime is 230ms. The principal
bottleneck is identified in the indexes extraction, that re-
quires more than the 65% or the total runtime. This result
agrees with the expected: image processing algorithms,
that constitute most of the task, are computationally ex-
pensive. Recent developments of dedicated space qual-
ified hardware [17, 18] allow to expect further improve-
ments in real applications up to real-time performances.

5. CONCLUSIONS

In this papers, a completely revised design of a previ-
ously implemented HDA algorithm, based on Artificial
Neural Networks, is proposed. A deep analysis to detect
which information can be extracted from the original im-
age and exploited as network input has been carried out.
The exploitation of more informative indexes from the



original image dramatically improves both classification
capabilities and computational performances, allowing a
drastic simplification in the neural network architecture
with respect to previous configurations. A fully objective
training and validation method has been developed, in or-
der to avoid any dependency of the system performance
from the operator’s choices during the training phase and
to have an affordable estimation of the system capabil-
ities. Further improvements are currently under study
at PoliMi DAER: alternative neural network structures,
such as cascade neural network, should be investigated
and compared to the feed-forward architecture. Also
multi-objective optimization of internal parameters can
be enhanced by the addiction of the minimization of false
negative sites to assure fully compliance with the require-
ments stated in Sec. 4. Eventually, in order to definitely
increase the TRL of this technology, algorithm hardware
porting and hardware-in-the-loop testing are required. A
landing simulation facility for vision based navigation
systems is currently under development, scheduled to be
operative at DAER premises by the Autumn 2015.
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